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Abstract

Arterial spin labelling (ASL) is a powerful magnetic resonance imaging technique,

which can be used to noninvasively measure perfusion in the brain and other organs

of the body. Promising research results show how ASL might be used in stroke,

tumours, dementia and paediatric medicine, in addition to many other areas. How-

ever, significant obstacles remain to prevent widespread use: ASL images have an

inherently low signal to noise ratio, and are susceptible to corrupting artifacts from

motion and other sources. The objective of the work in this thesis is to move towards

an “intelligent imaging” paradigm: one in which the image acquisition, reconstruc-

tion and processing are mutually coupled, and tailored to the individual patient.

This thesis explores how ASL images may be improved at several stages of the

imaging pipeline. We review the relevant ASL literature, exploring details of ASL

acquisitions, parameter inference and artifact post-processing. We subsequently

present original work: we use the framework of Bayesian experimental design to

generate optimised ASL acquisitions, we present original methods to improve pa-

rameter inference through anatomically-driven modelling of spatial correlation, and

we describe a novel deep learning approach for simultaneous denoising and artifact

filtering. Using a mixture of theoretical derivation, simulation results and imaging

experiments, the work in this thesis presents several new approaches for ASL, and

hopefully will shape future research and future ASL usage.



Impact Statement

In an academic context, the work presented herein offers three princi-

pal benefits within the area of ASL imaging. First, the novel exper-

imental design approach for optimising ASL acquisitions offers state

of the art results compared to previous comparable work, and is gen-

erally applicable to different ASL acquisitions. Moreover, this work

has helped to revive the idea of experimental design for ASL acquisi-

tions, as well as presenting a more extensive validation across different

ASL acquisitions. Second, the use of shrinkage priors offers a step for-

ward in ASL image processing generally, and may be applied to any

of the popular models used for inference. Third, the use of a convolu-

tional neural network for joint denoising and artifact removal presents

an exciting new direction in imaging research, and is among the ear-

liest such work. Much of this work has impact in academia outside

the specific area of ASL imaging. The experimental design approach

developed herein is generally applicable to imaging modalities with a

tractable signal and suitable noise model, and has already been used in

abdominal imaging and experimental multi-modal acquisitions in both

human and animal experiments. The shrinkage prior approach bridges

the gap between the emerging field of probabilistic programming – in

which multi-level regression is a canonical technique for data analy-

sis – and more traditional numerical methods for Bayesian inference

on otherwise-intractable models. Finally, the convolutional neural net-

work approach to joint denoising and artifact removal is generally ap-
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plicable to other imaging modalities, including natural images. Finally,

there is potential for impact outside academia. Most obviously, many

of the methods developed in this work may, one day, be suitable for

clinical use. Optimised acquisitions, improved fitting and improved fil-

tering of artifacts all have a place in clinical ASL (as well as in other

imaging modalities). Parts of the work in this thesis contributed to the

open-source software, NiftyFit, a package for multi-modal MRI fitting.
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Chapter 1

Introduction

1.1 Context and background

Arterial spin labelling (ASL) is a powerful magnetic resonance imaging technique,

which can be used to noninvasively measure perfusion in the brain and other or-

gans of the body. Promising results from both research and clinical use show how

ASL might be used in stroke, tumours, dementia and paediatric medicine, in addi-

tion to many other areas. Medical imaging methods to map perfusion have been

an active area of research for decades, but there are many practical barriers to the

widespread use of perfusion imaging. ASL, because it does not require the injec-

tion of an exogenous contrast agent, has the potential to overcome these barriers

and possibly even to bring perfusion imaging to common clinical practice, as well

as expanding its role in research. At the time of writing, the UK Biobank project

– in which 100,000 participants will be scanned over a five year period – is pilot-

ing ASL protocols, reflecting the excitement as ASL becomes increasingly reliable

and informative [17]. However, significant obstacles remain to prevent widespread

use of ASL: images have an inherently low signal to noise ratio (SNR), and are

additionally prone to corrupting artifacts from motion and other sources.

1.2 Challenges in ASL

ASL has an inherently low SNR. This is discussed further in Chapter 2, but essen-

tially the reason for this is that only a small amount of blood flows into the brain

over the timescale on which ASL images are acquired. Because of this poor SNR,
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numerous techniques exist to improve ASL image quality, ranging from modified

acquisitions to improved parameter estimation methods. It remains challenging,

however, to reliably get a high quality image in a practical scan duration.

In addition, but distinct from the low SNR, ASL is highly prone to corruption

by subject motion, scanner coil instability, boundary artifacts, and other difficult

to model sources of spurious signal. Consequently, there is another key challenge

in ASL: how to reliably get a signal that reflects the underlying perfusion rather

than being dominated by artifacts, which may be achieved either through avoiding

artifacts in the first place or by using post-processing to remove them.

1.3 Aims and scope

The aims of this thesis are the following: to survey the challenges of ASL in depth,

including pre-existing solutions; to present original work that attempts to address

these challenges; and to validate, both in simulations and in vivo experiments, our

techniques. We approach these challenges within the paradigm of “intelligent imag-

ing”; this emphasises that image acquisition, reconstruction and processing are

strongly coupled, and tailoring these to the individual patient can allow synergistic

improvement across all areas. In particular, we explore three different innovations in

ASL: improved acquisitions using optimal experiment design (hence improving the

overall measurement SNR for a given scan duration), anatomy-driven modelling for

spatial regularisation of the ASL signal (improved parameter estimation to increase

the effective SNR), and deep learning based filtering for simultaneous denoising

and artifact reduction (improving the effective SNR again, but more importantly

addressing the problem of difficult-to-process artifacts).

1.4 Structure of the thesis

Chapter 2 reviews several areas of the literature and provides detailed background

information for the rest of this thesis. First, we provide a comprehensive literature

review of ASL, with contextual information about perfusion imaging in general.

We discuss the motivations and applications behind perfusion imaging, the physi-

cal principles behind ASL, and the information processing techniques underpinning
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ASL images. In Sections 2.1–2.2 we present the history of ASL, with notable “first”

achievements and methodological advances focused on the underlying physics. We

then review the ASL processing pipeline in Section 2.3, focusing on spatial regular-

isation (discussed at length in Chapters 4 and 5) and artifact removal (Chapter 5).

In Section 2.4, we proceed to give a brief literature review of optimal experiment

design, the field of statistics devoted to providing maximally informative exper-

iments. After this, in Section 2.5, we discuss the history of optimal experiment

design in ASL and other MR imaging modalities, setting the stage for our original

work on experimental design in Chapter 3.

Chapter 3 contains the main contributions of this thesis within the area of op-

timal experiment design. We present our optimal design approach, including sim-

ulations and in vivo experiments. This approach yields statistically and practically

significant improvements in image quality, and marks a step forward in ASL opti-

mal design. We explain the motivation for our approach, its origins in preceding

work, and how it has influenced subsequent research on optimal design.

Chapter 4 presents original work on image spatial regularisation to improve

the effective SNR in ASL. We first derive a hierarchical Bayesian model approach

for data-driven spatial regularisation of ASL images. Subsequently we show the

benefits of this anatomy-driven hierarchical prior through several simulations and

experiments. We show that this approach is robust to extreme focal changes in per-

fusion, as well as substantially improving the quality of more typical ASL images.

Chapter 5 presents original work on the problem of artifacts in ASL images.

We present a novel deep learning approach for simultaneous spatio-temporal de-

noising and artifact removal, exploiting the synergy in these two related problems.

This work is one of the first to use deep learning in ASL image processing, and

offers an intriguing contrast to more traditional information processing approaches.

Finally, Chapter 6 offers a conclusion to the thesis, summarising the work,

recapping its context in the field, and discussing potential future directions. Appen-

dices B–C contain a presentation of software implementations of our methods and

a glossary of acronyms and abbreviations.



Chapter 2

Background and literature review

2.1 Perfusion and blood flow

2.1.1 The role of blood and blood flow in the body

The blood plays several crucial roles in the body: it transports oxygen (bound to

haemoglobin), used in aerobic respiration; it carries nutrients around the body; it

facilitates signalling in several different systems (for example the immunological

and endocrine systems); it allows the removal of waste products from organs and

tissues; and its use for heat exchange with the environment is fundamental to the

body’s temperature regulation [18, 19]. For all of these purposes, in human physi-

ology (and mammalian physiology more generally) the blood is circulated through

blood vessels by the movement of powerful muscular tissue in the heart [18]. Net-

works of blood vessels have a semi-fractal structure [20] in which vessels repeatedly

subdivide into smaller vessels – the largest vessels in the body (such as the aorta)

are on the order of centimetres [18], while the terminating capillaries are on the

order of microns [18].

Fresh blood typically feeds into organs and tissues via the capillary bed, and

this is where the aforementioned exchange processes occur [19]. The passage of

blood into an organ or tissue is known as perfusion, and its regulation is essential

for life [18, 19].
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2.1.2 Homeostasis, blood flow regulation and cerebral blood

flow

To maintain homeostasis, the various systems of the body regulate their physiolog-

ical condition in several coupled feedback loops. In the case of blood flow, these

are commonly divided into extrinsic and intrinsic regulatory factors [18]. Extrinsic

regulation occurs by such means as sympathetic nervous response and circulating

hormonal signals, and has a widespread effect on the vascular tone throughout an

entire system or even the entire body [18, 19]. Conversely, intrinsic factors are spe-

cific to a given organ, with examples including myogenic regulation (a feedback

coupling between mechanical stress from blood flow and vessel dilation/constric-

tion), regulation due to metabolic byproducts (a negative feedback loop wherein

the products of metabolism encourage increased blood flow by vasodilation), and

neurogenic regulation (control by the sympathetic nervous system) [18, 19]. These

changes in blood flow properties – particularly localised changes within a single

organ – motivate perfusion imaging [21, 22]. Such changes in blood flow are often

of interest because they are linked to pathology, the action of various pharmaceu-

tical drugs, or even different patterns of attention and thought as in neuroscientific

experiments [23, 24, 25, 26, 27, 28].

Blood flow to the brain is of particular importance because of the brain’s sen-

sitivity to perfusion fluctuations [18, 22]. The brain has a high metabolic demand

(approximately 20% of the oxygen used in metabolism is used by the brain, de-

spite the brain typically weighing 2% of total body weight), and is more sensitive

than other organs to comparatively small changes in perfusion [29]. The human

cerebral blood flow in grey matter is approximately 50–70 ml/100g/min in young

healthy adults as measured by both positron emission tomography (PET) and ASL

studies, decreasing with age [30, 31]. Remarkably, blood flow changes can be mea-

sured on the level of individual brain areas – for example, when experiencing a

visual stimulus, blood flow increases to the visual cortex to cope with increased de-

mand [32]. This phenomenon (and imaging processes used to observe it) has been

hugely influential in modern neurology and neuroscience, and is discussed further
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in Section 2.1.3.

2.1.3 Blood flow imaging methods

Here we briefly examine the main perfusion imaging methods, with a focus on how

they compare to ASL. We divide these into magnetic resonance imaging (MRI)

methods and non-MRI methods.

2.1.3.1 MRI

More detail about the physics underpinning MRI is described in Section 2.2. Here,

we simply note that MRI scans involve applying a strong magnetic field to the sub-

ject, then measuring the signal emitted by hydrogen nuclei in response to changes

in this magnetic field. These emitted signals can, subject to certain assumptions, be

used to reconstruct a per-voxel map of tissue properties. The most common type

of MRI examines images of structure (again, see Section 2.2); however, there are a

myriad of tissue properties that may be measured, including blood flow. Blood flow

imaging using MRI is more challenging than the more common structural imag-

ing: the SNR is lower, longer acquisitions lead to subject motion being more prob-

lematic, and estimation/interpretation of the flow properties can be complicated by

many kinds of confound or artifact [23].

ASL ASL is the primary focus of this thesis, and provides a quantitative measure-

ment of perfusion. ASL uses the blood water as a tracer by magnetically labelling

it – that is, ASL does not require the injection of an exogenous contrast agent [24].

Figure 2.1: A high-level view of ASL measuring perfusion: a perfusion-weighted image

(right) is the difference between labelled and control images (left and centre

respectively). Figure adapted from [33]

First developed in the late 1980s and early 1990s [22], ASL was slower to

achieve popularity than blood oxygenation level dependent imaging (BOLD), its

non-quantitative functional MRI contemporary [34]. This was largely due to the
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technical challenges involved and the relatively poor quality of ASL images [24,

23]. Over time this situation improved dramatically, and ASL is now available on

all major scanners [23].

BOLD Blood-oxygenation level dependent MRI (BOLD) uses the oxygenation-

dependent difference in transverse magnetisation (parameterised by observed time

constant T ∗
2 , see Section 2.2) to measure relative changes in blood flow within the

brain [34]. Neuronal activation leads to increased oxygen use, which in turn causes

an increased supply of blood flow through the haemodynamic coupling as previ-

ously discussed. Consequently, the BOLD image is correlated with the cerebral

blood flow (CBF). Unlike the other contrasts described here, BOLD does not of-

fer quantitative measurements of perfusion, only relative patterns of activation [23].

However, like ASL, it benefits from having no requirement for an exogenous con-

trast agent. Its temporal and spatial resolution are typically similar to ASL, although

image quality and SNR are typically slightly better [23].

IVIM Intravascular incoherent motion (IVIM) is a contrast based on the popular

technique of diffusion imaging [35]. In IVIM, lower-than-normal diffusion gradi-

ents are applied, resulting in a signal that is partly a function of water diffusion

as usual, and partly a function of microscale perfusion. Like ASL, IVIM bene-

fits from not requiring an exogenous contrast; and like ASL, IVIM offers absolute

measurements of blood flow (or pseudo-diffusion). However, unlike ASL, IVIM is

mostly used outside the brain: preliminary results show that the original biexponen-

tial IVIM model does not describe perfusion well in all vascular geometries, and its

usage in the brain is highly experimental, and pseudo-diffusion is not immediately

comparable to capillary perfusion as measured using a tracer-based method [36].

When used outside the brain, IVIM has been notably applied in well-perfused

abdominal organs such as the liver [37], kidneys [38] and even the placenta [6, 14].

Because of the conceptual similarity to ASL, some of the methods presented in

this thesis have subsequently been applied to IVIM experiments in the placenta and

the liver [4, 12, 14], although this is largely outside the scope of this thesis, which

focuses on ASL.
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DSC/DCE Dynamic susceptibility contrast imaging (DSC) uses an exogenous con-

trast agent (a gadolinium chelate), which changes the T ∗
2 properties of the MR signal

(see Section 2.2) [39, 40]. DSC offers similar information to ASL, albeit at a higher

SNR. However, the requirement for an exogenous contrast agent limits its use: in

some cases gadolinium chelates are contraindicated (for example when the kidneys

are damaged) [41], and in any case it is undesirable to prepare a subject for bolus

injection. Notably, there are recent concerns about accumulation of gadolinium-

based contrast agents in the brain and other organs, and unnecessary DSC scans are

to some extent discouraged [42].

Dynamic contrast enhanced imaging (DCE) is conceptually similar to DSC,

except that the images are weighted by longitudinal relaxation (parameterised by

time constant T1) and the perfusion signal comes from gadolimium-driven lowering

of T1 [40]. DCE operates at a longer timescale than DSC or ASL, yielding estimates

of permeability properties. As with DSC, DCE benefits from a high SNR relative

to ASL, at the cost of using an exogenous contrast agent. Consequently DSC and

DCE are often used to generate relatively high quality maps of perfusion proper-

ties, but have significant barriers for use in large neuroimaging studies, screening

programmes, and even routine clinical use [41, 42].

2.1.3.2 Non-MRI methods

Two of the non-MRI methods described here fall under the category of nuclear

imaging, in which radioactive tracers are used to generate the signal [43]: single

photon emission computerised tomography (SPECT) and positron emission tomog-

raphy (PET). Such methods were historically the most reliable and accurate (and

first) to provide usable perfusion images, but have significant practical obstacles:

intravenous administration of a contrast agent is already a significant barrier to use,

as previously discussed; when that contrast agent is a radioactive substance subject

to stringent regulation, these barriers become even steeper. The remainder of the

methods (CT and ultrasound) are not nuclear imaging although CT, being based on

X-rays, does use ionising radiation in the image acquisition phase.
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SPECT/PET SPECT for perfusion exclusively uses technetium-based radioiso-

topes [43]. Most prevalently used for perfusion imaging of the heart, SPECT can

also be used in the brain [43]. An advantage of SPECT over PET is that the ra-

dioisotopes used are significantly more long-lived: technetium-based radioisotopes

have a half-life of six hours, meaning that they can be produced far away from the

hospital site and delivered over days [44]. PET for perfusion uses either fluorine-18

deoxyglucose (FDG) or oxygen-15 (O15) as the radiotracer [43]. The former has a

half-life of two hours; the latter a half-life of two minutes [44]. In both cases, short

half-lives render it necessary to produce radioisotopes close to the scanner site – a

significant practical disadvantage over SPECT. Nonetheless, PET’s improved spa-

tial resolution, speed, versatility and ease of quantification make it popular enough

to overcome this drawback. The fundamental spatial resolution limit of PET in

general is on the order of 2mm [45], while in theory significantly smaller resolu-

tions are achievable with MRI – although for ASL as currently measured, this is a

comparable resolution.

CT CT for perfusion acts similarly to DSC in that there is an injection of an iodi-

nated contrast agent (or inhalation in the case of a xenon-based contrast), which is

tracked over time to provide the signal [21]. CT perfusion imaging is primarily used

after ischaemic stroke, to differentiate salvageable tissue from infarct [46]. Diffu-

sion MR imaging is also suitable for this task, but it is not always feasible to get

timely access to an MR scanner [46]. Although perfusion CT has the convenience

of not requiring a radioactive contrast agent, it nonetheless needs an exogenous con-

trast agent. It also has the significant disadvantage of requiring a CT scan – an X-ray

method with a large (for imaging) dose of ionising radiation, on the order of 5 mSv,

reasonably comparable to FDG-PET [46]. As such, while CT is not a form of nu-

clear imaging, it nonetheless has some of the same disadvantages for widespread

applicability, and is mostly limited to urgent use for stroke diagnostics.

Ultrasound There is precedent of using ultrasound to assess blood flow – either

using Doppler-based measurements or an injected contrast agent [21, 47]. Doppler-

based imaging can only image bulk flow in large vessels, whereas microbubble-
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based contrast agents provide more detail at the cost of convenience [47]. In the

former case, imaging is not truly comparable to the other approaches discussed

here; in the latter case results are preliminary, and the skeleton provides a significant

barrier to use throughout the body (for instance in the brain) [47].

2.1.4 Applications of perfusion imaging

Many imaging studies of perfusion focus on the brain, as does most of the original

work in this thesis. Consequently we give the brain its own section before discussing

applications in other organs of the body.

2.1.4.1 Clinical applications in the brain

Clinically, the area in which perfusion imaging is best established is arguably is-

chaemia (stroke). There are significant localised blood flow changes in ischaemia

by definition, meaning this condition makes a large difference to perfusion im-

ages [48, 25]. Several perfusion imaging techniques have shown their capability

to diagnose stroke with no other diagnostic information; subsequent research has

focused on triage/guidance for thrombolytic therapy, prognosis, and to a lesser ex-

tent on guidance for non-thrombolytic therapies. Perfusion imaging has also been

used in other vascular disorders such as chronic cerebrovascular disease, moyamoya

disease and arteriovenous malformation [26].

In neuro-oncology, perfusion imaging has a history of use for differential di-

agnosis (tumour or abscess, tumour type), tumour grading (for instance in glioma)

and monitoring of therapy [49]. Tumours are characterised by extreme changes in

angiogenesis (and are often described as “hot and bloody” [50]), which leads to

striking changes in perfusion images.

Perfusion imaging has also shown promise for assessing epilepsy, developmen-

tal disorders and dementias such as Alzheimer’s disease or fronto-temporal demen-

tia [25] – as well as cardiovascular diseases in their own right and as comorbidities

of other diseases such as diabetes [51]. These applications are less well established,

but cerebral perfusion has shown promise as a biomarker for severity of disease,

and even has hope of being used prognostically. There is a widespread hope that
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dementias might be responsive to currently ineffective treatments if caught earlier,

and perfusion imaging might be a way of achieving this [52]. Perfusion imaging of

various kinds is also capable of distinguishing dementia subtypes, such as fronto-

temporal dementia versus Alzheimer’s disease [53].

2.1.4.2 Clinical applications in other organs

One of the most important niches for perfusion imaging is perfusion imaging of

myocardial ischaemia, using gamma cameras (the two-dimensional predecessor of

SPECT) or CT perfusion [54]. As in the case of stroke, previously discussed, is-

chaemia by definition produces immediate and prominent changes in perfusion, and

hence perfusion imaging is very effective for diagnosis, prognosis and guidance.

Applications in oncology are similar to those described in the case of neuro-

oncology: tumours exhibit a different blood flow regime to healthy tissue, meaning

that perfusion imaging has high utility for diagnosis and grading [49].

Perfusion imaging has also shown promise in highly vascularised organs of the

abdomen, such as the liver, kidney and placenta [37, 55, 56]. Particularly for the

placenta, invasive imaging modalities using exogenous contrast agents are discour-

aged, which encourages the use of noninvasive techniques such as ASL or IVIM.

2.1.4.3 Applications in neuroscience and pharmacological studies

As discussed in Section 2.1, there are localised changes in brain perfusion according

to different cognitive demands placed on the brain. For example, when a subject is

involved in a visual task or observing visual stimuli, blood flow to the visual cortex

increases measurably [32]. This phenomenon has led to widespread use of blood

flow imaging for neuroscientific research [57]. Although any suitably sensitive per-

fusion imaging technique could be used for this purpose, BOLD MRI dominates

this application. BOLD does not provide absolute measurements of blood flow, but

rather measures changes in T ∗
2 due to a change in blood oxygenation (which in turn

leads to increased local CBF due to the cerebrovascular coupling). BOLD imaging

has the advantage of superior time resolution compared to ASL and (like ASL) does

not require the injection of an exogenous contrast agent [23].

Perfusion imaging of various kinds has also been used for pharmacological



2.2. ASL: MR physics and acquisitions 26

studies, ranging from neuroscientific research on everyday substances such as caf-

feine to investigatory research for novel therapeutic drugs [25]. The latter case has

mostly been limited to using established clinical applications of perfusion imaging,

but given the increasing usage of perfusion imaging in a greater variety of condi-

tions, this area has significant potential for future development.

2.2 ASL: MR physics and acquisitions

2.2.1 MR imaging

MRI exploits the effect of different chemical environments on the magnetic reso-

nance response, producing images of the brain or other organs. We will not discuss

the fundamentals of MR imaging in great depth, but will instead present a brief

conceptual summary to aid in subsequently understanding ASL MRI and the con-

tributions in this thesis.

Hydrogen nuclei, or protons, are abundant in the body’s tissues, due to the

ubiquity of water within blood, proteins, fats and other biological materials [58].

When a magnetic field (B0) is applied to protons, their magnetic moment aligns

either parallel or anti-parallel to the direction of this field [58]. Aggregated over

protons in a volume, there is a net magnetisation that reflects the difference be-

tween these two states. In order to measure the net magnetisation, an orthogonal

radiofrequency pulse is used to tip the alignment of these protons, which now have

a precession frequency (Larmor frequency) related to both the applied field and the

chemical environment. As the magnetisation recovers from this displacement it in-

duces an environment-dependent electromotive force (EMF) in nearby coils, and

this is the basis of the MR signal [58]. The recovery is characterised by two time

constants: longitudinal relaxation (T1), determining the time for the magnetisation

to recover; and transverse relaxation (T2), determining the time for excited protons

to go out of phase with one another. In practice, the measured transverse relaxation

is reduced by inhomogeneities in the magnetic field, and is denoted by T ∗
2 .

To spatially localise chemical properties – that is, to measure an image rather

than a signal aggregated over the entire volume – gradient coils superimpose a
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small magnetic gradient on the original field, B0, such that B = B0 + xG where x

is the distance along the gradient direction and G is the strength of the gradient

magnetic field. Because the precession frequency depends upon B, this has the ef-

fect of frequency encoding the signal by spatial position [58]. Consequently, after

measurement the signal can be transformed from frequency space (the famous “k-

space” formalism [59]) to image space. The choice of gradient frequencies can be

expressed as a k-space trajectory (a readout), with the most common choice being

a Cartesian readout in which k-space is acquired in lines [58].

There is, of course, much further detail to MR imaging – in particular, there ex-

ist a plethora of details considering the acquisition and readout, categorised broadly

into gradient-echo and spin-echo acquisitions. The image may be acquired in a sin-

gle excitation and acquisition, or several acquisitions segmented over k-space. The

image can also be acquired slice-by-slice, which is common in ASL [23].

2.2.2 Physics of the ASL signal and the Buxton kinetic model

ASL is based upon the use of magnetically-tagged blood as a tracer. Consequently,

much of the resulting signal model (and tracer kinetic analysis) is comparable to

that seen in the use of exogenous tracers, such as in PET. A single ASL image

can be derived from two MR images: a magnetically-tagged image, and a control

image. In the tagged image, the blood undergoes adiabatic inversion at labelling

location below the brain. In the control image, this inversion pulse is not present,

although all other conditions are as in the tagged image, meaning they are otherwise

comparable. A fairly large number of these images must be acquired to provide a

high-quality image, as the signal difference due to the magnetic inversion is on the

order of 1% of the normal MR signal. This is a physiological limit on the signal,

as only approximately 1% of the cerebral blood can be replaced on a timescale

of seconds [60]. Labelling longer than a timescale of seconds has exponentially

diminishing returns in the signal strength, as T1 decay reduces the usable signal

from the labelled blood.
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2.2.2.1 Pulsed and continuous ASL

There are, broadly, two common categories of ASL: pulsed ASL (PASL) and

(pseudo-)continuous ASL (PCASL). Figure 2.2 illustrates the difference between

these two approaches. In the former, the magnetic tagging is performed with a

small number of pulses (often a single pulse), inverting a large slab of blood near the

imaging region. In the latter, the inversion is performed continuously (or pseudo-

continuously, as a shaped train of many individual inversion pulses) for a longer

time, at a plane near the imaging region [61]. Blood is tagged as it flows through

this plane, in a process known as flow-driven adiabatic inversion. Because of the

larger tagged bolus in PCASL, and the larger amount of transferred magnetisa-

tion in a continuous label, it has a larger SNR, and is consequently recommended

over PASL for standardisation in the recent ASL implementation recommendations

produced by the ISMRM perfusion study group [23]. However, there are many

circumstances in which a PASL sequence must be used – for example due to re-

strictions on available scanner hardware, or lower radiofrequency power deposition

in a multiple inflow time study. Another subtlety is that PCASL is less sensitive to

arterial transit time – it is harder to measure the early arrival of labelled blood at a

given voxel with the longer inflow times of PCASL, and hence PCASL has taken

some time to become popular for the research-focused multiple inflow time ASL

measurements [23, 62].

2.2.2.2 Buxton kinetic model

Neglecting error, the difference between tag and control images results solely from

the perfusion of the tagged blood into the brain. A key result came from the analysis

of Buxton et al, who derived a commonly-used approximate model to relate the

signal to the perfusion [60].

Fundamentally, the ASL signal difference is given by the amount of magneti-

sation that is carried into a voxel by the magnetised blood. The insight of the Buxton

model is that it is then possible to express the changing magnetic environment as a

convolution of three functions: a delivery function, c(t), which specifies how much

magnetised blood arrives at time t; a residue function, r(t, t ′), which describes what
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Figure 2.2: Overview of ASL timing, and how it differs between PASL and PCASL. First

a label is applied before the imaging region, typically at the neck for neu-

roimaging. Subsequently, after waiting to allow labelled blood to reach the

organ, imaging occurs. In PASL (bottom) the label duration is not necessarily

known, although it can be fixed with a quantitative imaging of perfusion with

single subtraction (QUIPSS-II) pulse. PASL is usually specified in terms of TI,

whereas PCASL is usually specified in terms of PLD. Figure adapted from [63]

fraction of tagged molecules that arrived at t will remain at t ′; and a magnetisation

relaxation function, m(t, t ′), which is the remaining fraction, at t ′, of longitudinal

magnetisation delivered at t. A common assumption is that the flow is at steady-

state, so r(t, t ′) = r(t − t ′) and c(t, t ′) = c(t − t ′), and they may be respectively

written as r(t) and c(t). This yields the following expression for the ASL signal:

∆M(t) = 2M0b f (c(t)∗ [r(t)m(t)]) (2.1)

where ∗ represents convolution, M0b is the equilibrium magnetisation of the

blood and f is the perfusion (also known as the cerebral blood flow, CBF).

A common assumption is that of “plug flow” – that is, a boxcar-shaped input
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function. Another useful assumption is that the exchange kinetics can be described

by a single-compartment model – that is, r(t) = exp− f t/λ . Finally, it is assumed

that labelled blood does not remain in the vessels after reaching the tissue, so mag-

netisation decays with relaxation time T1b (T1 for blood) until it reaches the tissue,

at which point it abruptly switches to decaying with relaxation time T1. This sets

m(t) = exp−t/T1. Applying this modelling to PASL yields a signal model relating

perfusion to the measured control-label difference:

∆M(t) =







0, 0 < t < ∆t

2M0b f (t −∆t)exp(−t/T1b)qp(t) ∆t < t < τ +∆t

2M0b f τ exp(−t/T1b)qp(t) τ +∆t < t

(2.2)

qp(t) =







exp(kt)(exp(−k∆t)−exp(−kt))
k(t−∆t) ∆t < t < τ +∆t

exp(−k∆t)−exp(−k(τ+∆t))
kτ τ +∆t < t

k =
1

T1b

− 1

T ′
1

,
1

T ′
1

=
1

T1
+

f

λ

where ∆M(t) is the demagnetisation response, t is time, T1 and T1b are decay

constants for magnetisation of water in tissue and blood respectively, f is perfusion

magnitude, ∆t is the transit delay from the labelling plane to the voxel of interest,

τ is the bolus temporal length and λ is the blood-tissue partition coefficient. The

assumptions can similarly be applied to create a model for CASL, as done in [60],

yielding the following:

∆M(t) =







0, 0 < t < ∆t

2M0b f T ′
1 exp(−∆t/T1b)qss(t) ∆t < t < τ +∆t

2M0b f T ′
1 exp(−∆t/T1b)exp(−(t − τ −∆t)/T ′

1)qss(t) τ +∆t < t

(2.3)

qss(t) =







1− exp(−(t −∆t)/T ′
1),∆t < t < τ +∆t

1− exp(−τ/T ′
1),τ +∆t < t
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Evidently, if all parameters except for f were known, it would be trivial to

invert the model to infer f . This is conceptually the simplest type of ASL measure-

ment: a single inflow time (TI) is used, and then parameters are either measured

elsewhere or assumed, allowing f to be calculated by a simple division.

In practice, ∆t is not likely to be known a priori, and differs from voxel to

voxel. For single-TI ASL to work, then, the effects of ∆t upon the signal at the

measured TI must be minimised. For both PASL and PCASL, this can be fairly

workable without further modification [60]: when t > ∆t + τ , and T1b = T ′
1, the

dependence on ∆t is cancelled out. We note that this is easier to see in Equa-

tion 2.3. In Equation 2.2, the presence of k in the denominator makes it seem

as if qp(t) would become undefined. However, qp(t) can be re-expressed as

qp(t) =
exp(−k∆t)(1−exp(−k(τ)))

kτ , which converges towards unity as k → 0. Even

when T1b and T ′
1 are not equal but only similar, the dependence on ∆t is weak for

t > ∆t +τ , and so a single measurement can be taken at some fairly long delay after

the labelling. This has the disadvantage of reducing the signal for almost all voxels,

which is especially undesirable in a low-SNR modality such as ASL. However, on

balance, this is the recommended implementation of ASL [23].

A notable disadvantage of PASL, compared to PCASL, is that the labelled

bolus does not have a clearly-defined width. A common modification – necessary

to provide a quantitative CBF measurement with a single inversion time similar to

that which PCASL can provide – is to use a second pulse to remove the distal end

of the bolus, hence restricting the bolus width to a known time. The main way in

which this is done is known as QUIPSS [64, 65] (quantitative imaging of perfusion

using a single subtraction), although an improved scheme known as Q2TIPS [66]

(QUIPSS-II with thin-slice TI1 periodic saturation) is also common.

2.2.2.3 Multiple inflow time ASL

A more advanced implementation of ASL, which is more common in research, uses

multiple inflow times in order to estimate the arterial transit time, ∆t (also referred

to as ATT). This may be desirable for several reasons. ∆t is, itself, a parameter of

interest, and is often increased in several diseases [67]. Moreover, by allowing for
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measurement of the signal at higher-intensity times (that is, near the peak of the ASL

response curve), and accounting for ∆t in the model inversion, multi-TI ASL can

provide even better estimates of the perfusion [68] [69]. There are other methods

that attempt to measure ∆t, for example using bipolar gradients to differentially

encode blood flow [70], but these remain experimental and are not commonly used.

The principal disadvantage of using multiple inversion times in ASL is that

it can increase the time taken to acquire sufficient data. There have been many

attempts to reduce the multi-TI scan duration [62, 71], and a large part of the original

work in this thesis (Chapter 3) concerns using optimal experiment design to this end.

Multi-TI ASL also has the disadvantage that it complicates the model fit –

rather than simple division, as in the single TI case, now two parameters must be

simultaneously inferred. Indeed, sometimes an even greater number of parameters

are fitted – as in PASL without QUIPSS-II/similar, which requires τ to be esti-

mated [72]; or simultaneous estimation of parameters such as T1 or the arterial blood

volume, ABV [73, 74]; or simultaneous estimation of partial volume effects [75].

The problem of simultaneous inference for multiple parameters is tractable using

several different approaches. Solutions can be provided most simply through non-

linear least squares fitting [15]; and more advanced Bayesian inversion/inference

methods [74, 76] improve on this and render this problem solved, for practical ASL

analyses. More daunting is the requirement for a larger scan time to estimate these

parameters simultaneously – even when only fitting two parameters ( f and ∆t), the

required scan duration is considerably longer than typical single inversion time CBF

quantification [23].

2.2.2.4 Readout

The readout (see Section 2.2) is the k-space trajectory used for acquisition of the

image. In ASL, as in MR imaging generally, there is an important distinction be-

tween 2D readouts such as echo-planar imaging (EPI), in which slices are acquired

separately, and 3D readouts such as gradient spin-echo (GRASE), in which the z

dimension is also included within the k-space trajectory. 3D readouts are generally

preferred for ASL: the SNR is intrinsically higher due to exciting the whole volume
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during each readout, and the entire volume is excited at a given time, rather than at

separate per-slice times [77]. This is useful both for quantification and background

suppression, discussed in Sections 2.2.2.3 and 2.3.5 respectively.

3D readouts generally lead to fewer ASL volumes, but each at a higher SNR;

2D readouts give more volumes at a lower SNR. EPI is more prone to geometric

distortion, while GRASE suffers from worse in-plane blurring [78, 23]. Despite the

advantages of 3D readouts, there is no practical consensus on readout – the recent

ASL white paper recommends 3D-GRASE, but acknowledges EPI as acceptable,

and different scanner vendors offer different readouts as their recommended imple-

mentation of ASL [23].

2.2.2.5 Novel acquisitions

There are many different ASL-based acquisitions, in addition to the basic single-TI

and multi-TI acquisitions set out above. Quantitative STAR labelling of Arterial Re-

gions (QUASAR) is a model-free ASL technique, inspired by DSC MRI, in which

crusher gradients allow the estimation of an arterial input function and deconvolu-

tion allows estimates of perfusion and arterial blood volume [79]. Vessel-selective

ASL is a technique in which labelling is modulated across the different feeding

arteries, allowing inference of vascular territories [80]. Hadamard ASL (or time-

encoded ASL) is a time-saving technique in which labelling is time-encoded, typ-

ically using a Hadamard sequence for maximum distinguishability [62, 81]. ASL

fingerprinting is a recent attempt to use similar compressed sensing methods to

magnetic resonance fingerprinting for ASL to reduce the time taken while measur-

ing several parameters simultaneously [82].

There have also been several uses of ASL simultaneously with other modal-

ities, such as calibrated BOLD fMRI [83], joint T2 and ASL imaging to measure

blood-tissue water transfer [84, 85], and joint diffusion and ASL imaging to esti-

mate capillary permeability [86].
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2.3 ASL: reconstruction, fitting and post-processing

2.3.1 ASL pipeline and fitting

The reconstruction of the MR signal transforms frequency-encoded signals into a

three-dimensional image, where voxel values are a function of the per-voxel chem-

ical environment. However, another level of processing exists for ASL: given a

series of control and label images, we have yet to estimate the per-voxel perfusion

properties. The measured signal is a function of the perfusion as set out in Sec-

tion 2.2, which means to estimate perfusion we must invert that model. However,

there are many different steps to consider in an ASL processing pipeline: in addition

to the fundamental model fitting, common steps include motion correction, partial

volume correction, artifact/outlier filtering and spatial regularisation/denoising.

2.3.2 Error and bias

There are several sources of corruption in ASL experiments. Fundamentally, mea-

surement accuracy is limited by thermal noise: random thermodynamic fluctuations

in the MRI scanner’s measurement coils place a limit on how close a measurement

will be to an idealised ground truth [58]. In MRI in general, noise is well-modelled

by a Rician distribution [58]. In ASL, because the signal is the difference of two MR

magnitude images, the noise is modelled by the difference of two Rician distribu-

tions, which is well-modelled by a Gaussian distribution [87]. (An MR magnitude

image has Rician noise because both real and imaginary parts have separate Gaus-

sian noise.) In addition to this white noise, there is the difficulty of motion: subjects

are prone to move within the scanner, which ranges from small breathing-related

movements to larger movements in the case of patient discomfort. Even if subjects

were to lie perfectly still, there would be motion within the body due to the pulsa-

tion of moving blood from the pumping of the heart – and such pulsation can make

a large difference to measured blood flow [88].

A further difficulty is presented by partial volume effects [89, 90, 75, 91]: a

given voxel contains a mixture of tissues, such as grey matter, white matter, cere-

brospinal fluid, blood vessels, fat, etc. Grey and white matter have different perfu-
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sion properties, blood vessels may contain labelled blood that has not yet perfused,

while other tissues tend to provide no signal. When fitting does not model the in-

dividual contributions of different tissues within a voxel, parameter estimates are

incorrect – typically perfusion is underestimated. Finally there are other sources

in which the signal is corrupted by artifact: for example signal dropout from metal

such as in dental fillings or braces, or other causes [23].

2.3.3 Partial volume

Partial volume effects are a common issue in medical imaging. Voxels are likely to

contain several different types of tissue, particularly when the voxel size is coarse as

in ASL. Consequently, the signal is a mixture of signals from each tissue type – grey

matter perfusion is approximately four times larger than white matter perfusion,

with other tissues (for example cerebrospinal fluid or dura) having no perfusion at

all. Thus, when attempting to quantify grey matter perfusion, uncorrected partial

volume effects lead to underestimates.

There are essentially two ways to correct for partial volume: incorporate vol-

ume effects into the ASL signal model, or increase the spatial resolution of ASL

images to reduce PV effects. The latter approach remains less popular, as the low

SNR of ASL means that it benefits from a larger voxel size; however, attempts

at better image fitting can to some extent improve this trade-off [92]. The former

approach has been implemented in several different ways: Asllani et al used re-

gression to implicitly spatially regularise the signal (and hence make the inverse

problem well-conditioned); Chappell et al used a data-driven spatial prior to ex-

plicitly encode spatial regularisation for the same purpose. Approaches such as

those of Asllani or Chappell have been applied in several different configurations

of partial volume fraction and ASL data, variously using resampled anatomical im-

ages [91, 75]; T1 images specifically acquired in ASL space [93]; or performing the

analysis in high-resolution T1 space by resampling the ASL data [94].
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2.3.4 Spatial regularisation

Spatial regularisation provides a powerful tool for ASL processing, not only for

denoising, but also for assisting in partial volume correction, which is an ill-posed

problem when there is no assumption of parameter spatial correlation. Most spatial

regularisation techniques are intended solely as a way to denoise the ASL signal,

but the difference between these applications is often ambiguous.

There are many different approaches to spatial regularisation, with most fo-

cused on denoising. Wells et al prepared a fairly comprehensive comparison ex-

amining five such methods in 2010 [95]. To provide a non-exhaustive list, sev-

eral methods use a more traditional approach to filtering: for example a Wiener

filter, wavelet filter, anisotropic diffusion filtering, and independent components

analysis. Subsequent work has introduced methods based on convolutional neu-

ral networks [96, 97], nonlocal means filtering [98], and other image processing

techniques.

In practice, the most widely-used regularisation technique (other than simple

Gaussian smoothing) is the approach pioneered by Groves and Chappell using a

spatial prior [99]. This is also one of the few methods used for other purposes in

addition to denoising: the spatial prior technique is also used for conditioning the

inverse problem of partial volume estimation [75]. Another more recent technique

uses total generalised variation (TGV), a generalisation of (familiar from natural

image processing) total variation [92]. Like the spatial prior approach, TGV is used

both for denoising and for another purpose: by providing a high-quality denoising,

Spann et al argue that they can acquire ASL at a finer spatial resolution, and hence

can minimise partial volume effects.

2.3.5 Motion correction

Motion correction commonly uses registration between images to minimise the ef-

fect of inter-scan motion. There are two types of scheme for this: registration of

all images to one reference image, and registration of images with other images

adjacent in time. The former is conceptually simpler, while the latter is more sim-

ilar to the functional registration performed in the popular neuroimaging software
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library SPM [100]. Registration, in general, is an ill-posed problem; it is difficult

to ascertain how well motion correction performed without a ground truth. Motion

during an acquisition is especially difficult to solve, as it introduces greater ambigu-

ity into the raw acquired data, meaning motion would have to be estimated during

reconstruction.

When images are registered with adjacent images, this may be done in a con-

trol/label/control/... pattern [63], or a control to control and label to label pat-

tern [100]. The former is predicated on the assumption that it is better to attempt

registration between similarly-oriented images, meaning it is preferable to regis-

ter images to the closest images in time. The latter attempts to account for the

systematic (but small) difference between tagged and control images, in case this

affects registration. In practice, all of these modifications have a small effect [100],

and there is no clearly superior option. A simple but effective method of motion

correction, especially for scans corrupted by intra-acquisition motion, is to discard

corrupted data. This can be done either automatically or manually, and is arguably

the most practical means of correcting for motion.

The previous methods of motion correction apply only to inter-scan motion –

when the patient moves between individual acquisitions. Unfortunately, the prob-

lem becomes significantly more difficult when the patient moves during acquisition

(intra-scan motion). Recent advances in intra-motion correction for ASL have been

made using specialist cameras or low-resolution navigator MR sequences to pro-

vide a ground truth for prospective motion correction [101, 102]. Here, the pulse

sequence is modified to change the scan’s coordinate system to compensate for the

motion. This appears to yield small but significant improvements, although it re-

mains developmental technology, and needs further research.

A complementary approach to reduce the effects of inter- and intra-scan mo-

tion artifacts also exists at the acquisition level: background suppression (BS). This

can be used in conjunction with the aforementioned methods or in their place. In

background suppression, the background non-perfusion signal is reduced through

careful timing of inversion pulses. When motion occurs, its effect on the esti-
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mated ASL signal is smaller, consequently, as the suppressed background signal

is smaller relative to the ASL signal. The drawbacks of background suppression are

twofold. First, removing structural information makes registration less successful,

so although the effect of motion is smaller, it is also harder to correct. Second, the

choice of BS pulses now affects the scan result – which T1 values should the BS be

focused on, and for which parts of the image? In the 2D case, this can lead to BS

applying more in some slices than others; in the 3D case, this is less clearly defined.

In both cases, some tissues are more strongly suppressed than others.

2.3.6 Artifact filtering

ASL is prone to artifacts which corrupt the image. Distinct from thermal noise,

such artifacts are not well-modelled by a Gaussian distribution. These can come

from uncorrected motion (even after motion correction, artifacts may remain), coil

instability, susceptibility artifacts due to implants, chemical shift artifacts and ring-

ing artifacts near air-tissue interfaces, among other causes.

There are several ways to handle artifacts. The simplest way is manual in-

spection: one can attempt to remove volumes that appear suspect while leaving

unaffected volumes. This has problems for reproducibility and can require signifi-

cant effort in large datasets. Consequently, many authors have developed automated

methods. Among the simplest and most widely used method is z-score filtering, de-

veloped for ASL by Tan et al, in which volumes are classed as outliers (or not)

according to whether the volume’s signal is far from the mean signal[103]. Other

approaches use robust estimators in place of the temporal mean [104] to reduce the

influence of outliers. Finally, there are more algorithmic methods [105, 106, 107] –

in these, volumes are iteratively ranked for their similarity to other volumes, allow-

ing a prioritisation of volumes by how likely they are to be artifact.

2.3.7 Inference and machine learning in ASL

Many of the methods used in spatial regularisation and artifact filtering enter the

territory of machine learning, although such methods can differ drastically in their

aims and approaches. The inference methods pioneered in ASL by Chappell et
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al [74, 99, 75] use numerical methods to provide fast, high quality solutions to the

fundamental problem of Bayesian inference for the ASL model – that is, inferring

the posterior distribution of the perfusion parameters given the observed data. Spa-

tial priors can enforce regularisation and allow for the simultaneous inference of

partial volume parameters, arterial blood volume, and other additional parameters.

Very different to this well-established (and data-parsimonious) way of ap-

proaching the problem, modern machine learning methods may be used for sim-

ilar aims [108]. Rather than explicitly creating models of the spatial correlation or

signal regularity, and then performing inference on the data subject to these, data-

driven approaches can be used to automatically learn these relationships and apply

them [108]. This can similarly be used for spatial regularisation, outlier rejection

and parameter estimation. Another valuable use of data-driven machine learning

is to use the information in ASL images (and other modalities) to classify or score

subjects based on disease status [109].

It must be noted, however, that the use of these methods comes at a significant

cost: data-driven machine learning approaches not only require large amounts of

high quality data, but also suffer from being less interpretable than classical mod-

elling procedures, and moreover they often need to be retrained whenever the data

are subject to small changes in acquisition [108, 110]. As such, these automated

machine learning approaches are on the cutting edge of information processing in

ASL and medical imaging generally. We discuss some of these issues in more depth

in Chapter 5, in which we present an original approach to simultaneous denoising

and artifact filtering via a convolutional neural network.

2.3.8 Beyond the Buxton model

Several researchers have explored the use of alternative models to the simplified

Buxton model. These tend to explore the use of additional phases [111], more

realistic input functions, or additional compartments [112]. Although the use of

these is supported by the evidence in some cases, their benefit is marginal. Usually,

the data are dominated by error and external biases to such an extent that the bias

introduced by model inaccuracies is negligible.
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2.4 Optimal experiment design

This section examines the mathematical principles that underpin optimal experi-

ment design, and discusses the background of optimal design approaches in medical

imaging. This gives a context to the original work in Chapter 3, where we present

Bayesian experimental design approaches in multi-TI ASL.

2.4.1 Locally optimal design

An experiment may be described, for the purposes of this work, as a process that

gathers data for parameter inference. Such an experiment consists of a forward

model, g; a noise model, e; parameters to be estimated, θ ; independent variables

(also known as design variables), η ; and output data, y.

Assuming additive noise (a common and reasonable assumption for ASL is

additive Gaussian noise – see Section 2.3.2), this may be expressed thus:

y = g(θ ,η)+ e (2.4)

If the noise model is known, one may formulate an expression for the posterior

distribution of the parameters, p(θ |y,η), using Bayes’ rule:

p(θ |y,η) =
p(y|θ ,η)p(θ |η)

p(y|η)
(2.5)

Note that the design variables, η , have been explicitly included above, because

they will become the free variables in the optimal design problem. Experimental

design consists in choosing η to maximise some metric of experimental usefulness

– historically, in the literature for problems with approximately Gaussian errors,

these metrics have been based upon functions of the Fisher information matrix, H,

elements of which are defined by Hi, j =
∂ 2y

∂θi∂θ j
[113]. The most commonly used

such function for parameter estimation has been the determinant (D-optimality),

although several other functions have been used, such as trace (G-optimality) or

the minimum eigenvalue (E-optimality). Theoretical justification for these metrics

was initially non-rigorous, but later work showed that they naturally arise from

information-theoretic arguments.
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When one wishes to maximise information gain between a prior belief and the

posterior (post-experiment) belief, the difference between prior and posterior dis-

tributions must be maximised. Different measurements of the difference between

distributions give rise to different utility functions. A common choice of utility

function is the Kullback-Leibler divergence [113] between the prior and the poste-

rior distributions, which gives rise to the D-optimality criterion (determinant of the

Fisher information matrix). This divergence quantifies the information difference

between two distributions, F and G, and is given thus where Θ is the set of possible

θ and F ||G means divergence of F relative to G:

DKL(F ||G) =
∫

Θ
pF(θ) log

pF(θ)

pG(θ)
dθ (2.6)

In locally optimal design, which was the form of experimental design most

common before computational approaches, the optimal design was selected by set-

ting θ to a representative point value of parameters, and then optimising some ex-

perimental design utility function as previously described. The ensuing design is

locally optimal in the sense that, for this specific value of θ , it provides the maxi-

mum possible information gain [113, 114].

2.4.2 Robust/Bayesian optimal design

A significant problem with locally optimal design, however, is that the resulting

experimental designs are often strongly dependent upon θ [113]. Indeed, θ and y

are unknown before the experiment by definition – the purpose of the experiment

is to estimate θ , and an outcome cannot be known until the experiment has been

performed. To find a design that is optimal given a prior distribution of the param-

eters, rather than using a utility function evaluated at some point estimate of θ , one

should use U(η): the expectation of the utility, which is evaluated over the support

of the parameters, Θ, and the support of the outcomes, Y . Evaluating this expecta-

tion allows one to compare the merit of different designs, η , despite θ and y being

unknown.

Hence,
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u(η ,y,θ) = DKL(p(θ |y,η)||p(θ)) =
∫

Θ
p(θ |y,η) log

p(θ |y,η)

p(θ)
dθ (2.7)

Integration over the entire parameter space, Θ, removes the dependence upon

the parameters, θ . Hence,

U(η) =
∫

Y

∫

Θ
u(η ,y,θ)p(θ ,y|η)dθdy

=
∫

Y

∫

Θ
p(θ |y,η) log

p(θ |y,η)

p(θ)
dθ p(y|η)dy

= 〈DKL(p(θ |y,η)||p(θ))〉y|η

(2.8)

where 〈A〉B represents the expectation of A with respect to B.

This definition of the utility makes intuitive sense: the expected utility is equal

to the expected gain of information in θ . That is, a larger divergence from posterior

to prior implies that the posterior is more different to the prior – and hence offers a

greater increase in information.

The optimal experimental design, then, is the η that maximises U(η):

η∗ = argmax
η

U(η) (2.9)

Use of this utility function is typically called “robust” or “Bayesian” D-

optimality to distinguish it from the locally optimal case. This is a generalisation

of the special case where the distribution is Gaussian [113]. Robust D-optimality

– and other “alphabet optimality” designs have a long and rich history in experi-

mental design [114, 113], although the problem as posed here is often analytically

intractable and numerically challenging. This motivates the use of several different

approximate techniques, as discussed in subsequent sections.
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2.4.2.1 Common Approximations and Approximate Solution Meth-

ods

In order to derive solutions to the optimal design problem, there are many approx-

imate methods that may be used, depending upon the nature of the problem. The

less computationally-demanding method is to approximate the distribution involved

by some surrogate function that is easy to evaluate. Depending upon the complexity

of the surrogate function, this may be simple, or may require a great deal of effort.

The alternative method is to evaluate the distribution numerically, for example using

Monte Carlo simulations. This has the advantage of being asymptotically exact, for

all practical cases [115], but has the disadvantage of bearing a high computational

cost.

2.4.2.2 Numerical Simulation

Numerical simulation is straightforward in principle, although many techniques

have been developed for reducing its computational cost. Essentially, one uses a

two-stage sampling procedure to approximate U(η) and p(y|η).

Drawing N samples indexed by i, yi, from p(y|θ = θ i,η),

U(η)≈ 1

N

N

∑
i

log p(yi|θ i)− log p(yi|η) (2.10)

As p(y|η) does not, in general, have an analytic form, it is similarly approxi-

mated using importance sampling, here using index j for those samples and drawing

M of them:

p(yi|η)≈ 1

M

M

∑
j

p(yi|θ i, j,η) (2.11)

One common method to speed up this approximate (but asymptotically correct)

method is to reduce the number of new θ samples used. Because a large part of the

computational cost is sampling of the likelihood for each new θ i, j, it is beneficial to

reuse samples θ i, such that N = M. The complexity is reduced (for a fixed value of

η) from O(NM) to O(N). This sample reuse does increase the estimator’s bias, but
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the effect is negligible for all practical implementations [115].

If this numerical method were used to find the optimal design, it would likely

be necessary to develop a faster method to search and hence optimise over the space

of the design variables, as discussed in [115]. However, in this work, the sampling

method is used only a small number of times, to validate the results of the approx-

imate solution method discussed below. Consequently, a grid search is acceptable,

as it need only be performed a small number of times.

2.4.3 Approximate Bayesian optimal designs for Gaussian ap-

proximations

Many different approximations exist, again depending upon the nature of the prob-

lem, ranging in difficulty from simple Gaussian approximations [113] to complex,

tailored solutions (namely, Gaussian process emulators [116] and polynomial chaos

surrogates [115]). In this work, when taking the surrogate approach, only the Gaus-

sian linearisation is considered, because the distributions involved in the ASL de-

sign problem (see Section 2.2.2) are comparatively well-modelled by Gaussians for

this task.

When the problem is approximated by a Gaussian, the situation is in some

senses analogous to approximating a function in analysis by its linearisation. In-

deed, linearisation is used to achieve the Gaussian approximation. One considers

the Hessian (the inverse of the Fisher information matrix) – the matrix of second

derivatives of the data residuals during parameter fitting. Then, through approxima-

tions, one reaches the final cost function, det(H). Denoting the data and parameter

residuals (i.e. the log-probability for Gaussian noise model and Gaussian distributed

parameters) as Λ, noise for measurement i as σ , parameter prior standard deviation

as φ and mean as θ0 for parameter l:
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Λ2 =
N

∑
i

(y−g(η ;θ)

σi

)2
+

|θ |
∑

l

(
θl −θl,0

φl

)2 (2.12)

∂Λ2

∂θ j
=−2∑

i

[yi −g(η ;θ)]

σ2
i

∂g(η ;θ)

∂θ j
+

1

φ 2
j

(θ j −θ j,0) (2.13)

∂ 2Λ2

∂θ j∂θk

= 2
N

∑
i

1

σ2
i

(g(η ;θ)

θ j

g(η ;θ)

θk

− (yi −g(η ;θ))
∂ 2g(η ;θ)

∂θ j∂θk

)
(2.14)

Ignoring the second order terms (which are close to zero near the minimum)

allows this to be reformulated to remove the data, y:

H jk = ∑
i

1

σ2
i

(∂g(η ;θ)

∂θ j

∂g(η ;θ)

∂θk

)
(2.15)

This is familiar as the Fisher information matrix, which is the inverse of the pa-

rameters’ covariance matrix. Minimising the determinant of this matrix corresponds

to minimising the volume of the confidence interval ellipsoid for the parameter esti-

mates. Numerical solution of this problem depends upon the distributions involved,

and is discussed further in subsequent sections.

2.4.3.1 Exact Results for Gaussian-Distributed Data

One notable result relates the D-optimal design, under the Gaussian approxima-

tion, to an important special case that has an analytic solution. This is the situation

when the distributions of interest are themselves Gaussian and linear, and Bayesian

D-optimality maximises the determinant of information matrix (plus the prior co-

variance).

This gives insight into the Gaussian approximation discussed above. So long

as the approximation is good, the proposed design, based upon minimising the de-

terminant of the approximate information matrix, will be close to the truly optimal

design. In the simple case that the covariance matrix is diagonal, this will clearly

minimise the product of covariances. More generally, this optimisation problem will

reflect a trade-off between measurement precision and the associated covariances.
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2.4.4 Optimal experiment design for medical imaging

Making use of the theoretical background of optimal experimental design as dis-

cussed above, several researchers have applied experimental design to medical

imaging. In medical imaging, there is typically a high cost associated with scan-

ner/equipment time, meaning that there are large potential benefits to improved

experimental designs. This section reviews previous uses of experimental design

in other MR imaging methods before discussing pre-existing uses of experimental

design in arterial spin labelling.

2.4.5 Optimal experiment design in other MR contrasts

Optimal experimental design has long been used in biology [117, 118] and nuclear

imaging [119], but its use in MR imaging was comparatively recent. Experimental

design approaches to magnetisation transfer imaging were used by Cercignani [120]

and others [121], significantly improving the quality of magnetisation transfer esti-

mates. A similar approach was also successfully used for Dixon imaging to estimate

water and fat [122]. Diffusion measurements have been similarly optimised, with

different design optimisations performed for many of the different models by which

diffusion MRI is quantified [123, 124]. Again, these optimised designs produce su-

perior parameter estimates, at least within a certain region of validity – when the

true underlying parameters are drastically different from the targeted design values,

the optimised designs can perform worse.

2.4.6 Optimal experiment design for ASL acquisition parame-

ters

The most fruitful ASL optimal design approach taken in previous work made use

of the Gaussian approximation method discussed in Section 2.4.3. This was the

work of Xie et al [71], who created an iterative exchange algorithm to compute the

optimal inflow times for a multi-TI ASL experiment, yielding improvements in ∆t

estimation at a small cost to f estimation, or improvements in f estimation with no

cost to ∆t. In follow-up work, Xie et al explored the use of adaptive experimental

design [125]: iterating the design optimisation as data was acquired, rather than op-
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timising the design based only upon the initial prior. This was especially beneficial

for subjects with abnormal parameter values due to pathology (in this work, moy-

amoya disease). A similar approach to ASL optimal design was taken by Santos

et al [126], who applied a very similar technique to Xie et al, yielding comparable

improvements, and showed that these improvements were sustained after simplifi-

cation of the design into a smaller number of clustered measurements. This work

also used additional simulations to evaluate the proposed experimental designs at

different values for the perfusion and transit time. This approach to design opti-

misation has the additional benefit of easily supporting optimisation for a subset of

parameters: Xie et al show that designs can be generated for perfusion and transit

time, or can be generated to prioritise perfusion.

Kramme et al took a different approach to acquisition optimisation, some years

after Xie et al: rather than making any claim of optimality, they presented three

different designs intended to compensate the T1 decay over time – that is, to provide

more measurements at longer TIs. They proceeded to compare the performance

of these designs in simulations and experiments, both for normal transit times and

prolonged transit times. They concluded that a quadratic distribution of inversion

times outperforms equally-spaced and linearly-spaced inversion times, particularly

for prolonged transit times. The Kramme approach has the benefit of simplicity

compared to the optimal design approaches of Xie and others, although in theory a

parameter-driven optimisation should yield a better result.

Relatedly, while not being strictly optimal design, optimisation approaches

have also been used to select background suppression pulses [127]. By using a

utility function based on simulation of the magnetisation signal with different values

of T1, Maleki et al found optimal timings for background suppression, reducing

background signal to 1% across a broad range of T1 values. This utility function is

more straightforward than the Fisher information as used in D-optimal design, but

the overall concept and application are very similar: optimisation of a signal metric

marginalised approximately over some parameter prior (in this case T1).
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2.5 Optimal design for ASL: overview and insight

This section provides detailed background information about optimal design in the

context of ASL. In particular, this section relates approaches within the same math-

ematical treatment, and shows the benefits and drawbacks of previous such methods

in practical use. This section also sets out the different trade-offs and model/optimi-

sation choices in the literature on experimental design for ASL. These differences

lie in four different areas: treatment of priors, measurement constraints, optimisa-

tion tractability, and pulsed versus continuous ASL.

In Section 2.5.3, on measurement constraints, we examine how optimal de-

sign procedures limit themselves by scan time – clarifying a key limitation of the

original work by Xie et al, and how it differs from subsequent optimal design work

by ourselves and others. In Section 2.5.4, on optimisation tractability, we delve

into the practical details of optimisation within these design problems – describing

how these problems can be made tractable through approximate methods, simplifi-

cation based on symmetry arguments, or heuristic global optimisation techniques.

Finally, Section 2.5.5 compares PASL and PCASL, and we set out several relevant

but potentially non-obvious differences that labelling type makes on optimal design

– in particular: ranges of values, differences in models, and key differences in how

specific absorption varies with label duration.

2.5.1 Translation of optimal design to ASL

In multi-TI ASL, the measured signal is related to the underlying parameters that

characterise blood flow: the perfusion, f , and the transit time, ∆t. This is discussed

at greater length in Section 2.4. Practically, this means that the forward model for

optimal design, g(θ), is equal to ∆M( f ,∆t). Different values of f and ∆t produce

different kinetic curves, as shown in Figure 2.3. Noisy measurements are taken at

some measurement times, t, after having a label applied for label duration, τ . The

purpose of optimal design, then, is to select the optimal values of t – or, even more

challenging, the optimal values of t and τ .

Intuitively, one wishes to measure near the high-SNR peak at t = ∆t + τ , to

estimate f . However, one also wishes to measure near t = ∆t, to estimate ∆t. Thus
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Figure 2.3: The black curve shows the ASL kinetic model (PASL), with f and ∆t set to typ-

ical values of 40 ml/100g/min and 0.8 s respectively. The shaded region shows

how the curve varies as f and ∆t vary over common values (20–60 ml/100g/min

for f and 0.5–1.0 s for ∆t). Blood arrives at t = ∆t, the first turning point of the

curve; then collects, increasing the measured signal, until the second turning

point, t = ∆t + τ , when there is no more inflowing blood and the signal begins

to decay. Red crosses show example noisy measurements from this forward

model: the task in model fitting is to infer f and ∆t from these noisy measure-

ments.

the optimal design will involve some trade-off between these parameters – albeit

made under uncertainty as to their values, represented by a prior.

2.5.2 Priors

Optimal design problems make use of priors over the parameters, as set out in Sec-

tion 2.4. These are necessary to marginalise the local utility, u(η ;θ), over the entire

space of parameters, Θ. That is, U(η) =
∫

Θ u(η ;θ)p(θ)dθ . In practical optimal de-

sign problems, this prior will be at least weakly informative intuitively, to improve

one’s measurements it is necessary to have an idea of what needs to be measured.
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2.5.2.1 Prior distributions

The earlier ASL optimal design methods [71, 125, 126] used Gaussian priors,

consistent with common optimal design practice and with the inference tools in

FSL [76]. These were truncated to be non-negative, because perfusion and tran-

sit time are non-negative. Many physiological properties, including perfusion, are

normally distributed over a population, to a first approximation, as a consequence

of the Central Limit Theorem [71]. As such they were a natural starting point,

although even when the parametric form of the distribution has been fixed, there re-

main difficulties in choosing its hyperparameters. Should the Gaussian be chosen to

be very broad, for instance covering all physiologically plausible values relatively

equally? (This might be, for example, f ∼ N (µ = 70,σ = 30) ml/100g/min and

∆t ∼N (µ = 1.5,σ = 1.0) s, where N denotes a normal distribution.) Or should it

be narrower, perhaps reflecting prior knowledge of a particular population, or even

of a particular individual? In their initial work, Xie et al set these hyperparameters

for a young and healthy population [71] ( f ∼ N (µ = 70,σ = 24) ml/100g/min,

∆t ∼ N (µ = 0.7,σ = 0.3) s); subsequently they explored per-individual priors

using a system of real-time feedback and optimisation in a closed loop [125].

Priors may be found from previous knowledge of physiologically plausible

values, or may be made more informative if data already exists for a suitable popu-

lation. One innovative way around the chicken-and-egg problem of wanting better

priors to measure, but needing measurements to create priors, is to use a rapid low

resolution prescan to generate an approximate estimate of transit time. Another

solution to this problem is the use of a feedback loop in which priors are initially

broad, but parameter estimates are continuously updated as data is acquired – with

priors updated based on these estimates, and used to select subsequent measure-

ments.

2.5.2.2 Global optima versus ensemble of local optima

As previously mentioned, the most fruitful ASL optimal design approach taken in

previous work made use of the Gaussian approximation discussed in Section 2.4.3,

which leads to a utility function based on the Fisher information matrix. This was
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the work of Xie et al [71], who used a coordinate exchange algorithm to compute the

optimal inversion times for a multi-TI ASL experiment. Deferring the discussion of

coordinate exchange optimisation until Section 2.5.4, we note that Xie et al made a

strong assumption about the priors in their optimisation procedure, which to some

extent weakened their method.

Xie et al assumed that the ensemble of locally optimal designs gave a solu-

tion equivalent to the globally optimal design. They sampled from the parameter

prior, evaluated the optimal design for this combination of parameters, and then

constructed a distribution of optimal points, using this to select their final design

points. In the best case, at each f and ∆t, the optimisation finds the global opti-

mum for that combination of parameters. Essentially, this answers the question:

“if f = fi and ∆t = ∆ti, what would be the best set of inversion times to measure

them?”. This optimisation is performed over a range of fi and ∆ti sampled from

the f and ∆t priors, p( f ) and p(∆t). They assumed that the ensemble of results

also answers the question: “if f ∼ p( f ) and ∆t ∼ p(∆t), what would be the best set

of inversion times to measure them?”. However, these are not equal in general, or

even often [113]. In the ASL model they are not equal, and this leads to appreciable

differences between the designs proposed by Xie and Santos and the true optimal

designs, as is discussed in Chapter 3.

2.5.2.3 Implicit priors and experimental design

One point, which might not be immediately clear, is that one may view any ASL

experiment as coming from an optimal design process. This is the case even when a

radiographer makes ad hoc choices about acquisition parameters to use: effectively,

in this example, the radiographer is using their prior knowledge of physiology (par-

ticularly transit times) and the ASL signal (particularly the location of its high-SNR

peaks) to estimate a set of measurements that give high quality parameter estimates.

This latter estimation step, of course, is not formalised as in conventional experi-

mental design methods. Nevertheless, the underlying procedure is the same.

Recognising that we can view any process to generate acquisitions in this way,

we can examine the method of Kramme et al to reveal the implicit assumptions
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made concerning priors.

Kramme et al assume an acquisition has a given number of acquisitions, Ntot .

They define a search space of NT I equally-spaced inversion times, ti = tmin + i ∗∆.

They impose a design in advance where Ni =
(Ntot−NT I)∗ fi

Σ
NT I
j f j

+ 1 with fi = i (linear),

fi = i2 (quadratic), or fi = ei. Each of these reflects an assumed prior on the signal

parameters and forward model.

The intuition that guided Kramme et al to these designs was that T1 decay

causes lower SNR at longer TIs – subsequently, more TIs are necessary at longer

TIs to achieve a comparable SNR at all TIs. This is equivalent to a utility function

based on the T1 decay model rather than on the perfusion parameters. Moreover,

the attempt to equalise SNR across these TIs is equivalent to different assumptions

concerning the signal decay – this is, of course, an exponential decay in T1, but the

imposition of the ASL kinetic model is treated here as an unmodelled confound,

handled heuristically by using a linear or quadratic weighting scheme. They con-

clude that a quadratic weighting scheme, as shown in Figure 2.4, copes best with

the dual demands of equalising SNR while improving (rather than hurting) ASL

parameter estimation.

Figure 2.4: MR signal decay due to T1 relaxation (red curve) was used as an argument

for weighting the number of averages (blue bars) at different TIs differently,

with quadratically more averages at the lower intensity regions. The figure is

reproduced from Kramme et al [128].
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2.5.3 Measurement constraints: fixed number of measurements

versus fixed duration

The typical approach for optimal design in general is to assert that there are a given

number of measurements to be taken. This matches well with the classic experi-

mental design problems, and was the approach taken by Xie et al and Kramme et

al. Clearly, a constraint on measurements is necessary: the entire motivation of

optimal design for this problem is that scan time should be reduced or scan quality

improved within the same scan time. However, the assumption of a fixed number

of measurements leads to shortcomings in the optimal design process, as not all

ASL measurements need to take the same amount of time. Our work (set out in

Chapter 3) was the first to account for this during optimisation.

The fact that ASL measurements may not need to take the same amount of

time, although a fundamental consequence of MR physics, is easily missed. His-

torically, most ASL acquisitions have used a single repetition time (TR) for all

measurements. This TR has been set by constraints on basic feasibility (TR must

be greater than TI plus a readout duration, by definition) as well as constraints on

SAR. There is a complex trade-off between TI and TR, and one of the first attempts

to explore this systematically with MR experiments came from Johnston et al [129],

who showed that TR could be reduced for shorter TIs and hence acquisition times

could be substantially shortened.

2.5.4 Optimisation for experimental design

Optimisation is necessary in the optimal design process to find a design giving the

best value of the utility function described in Section 2.4. This optimisation is

complementary to the normal use of optimisation in quantitative imaging methods:

typically one has unknown parameters, θ , and known measurement parameters, η ,

and the task is to estimate θ |y ∼ g(θ ;η). In experimental design, conversely, one

has priors θ ∼ p(θ), and the task is to choose η to optimise
∫

θ u(θ ;η)p(θ)dθ .

Unfortunately, the optimisation of these design parameters is often more

difficult than the counterpart optimisation to estimate parameters such as perfu-
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sion [113]. This is because the presence of a (typically nonlinear) utility function,

and marginalisation over parameter priors, can make optimisation drastically harder,

particularly global optimisation.

There are several approaches to solve this problem. In certain special cases,

analytic solutions may exist [113]. Failing this, one can resort to any of the global

nonlinear optimisation approaches in the literature – variants on grid search, evo-

lutionary search, multi-start linear search, etc [113, 116]. Often the loss function

is expensive to evaluate, so a cheap-to-evaluate surrogate function may be used to

estimate the loss and hence speed up optimisation [116].

It is very common, in experimental design problems, to use coordinate ex-

change as the optimisation procedure. In coordinate exchange, the curse of di-

mensionality is overcome by optimising design points separately in turn [113, 71],

assuming this will ultimately lead to the globally optimal design. Various means

exist to select which design point to exchange at a given time, and how to optimise

a design point [116]. Global optimality in the nonlinear case is not generally guar-

anteed, but in practice for most realistic problems, performance of these approaches

is very good [113]. In the approach of Xie et al, the exchange algorithm iterated

over each design point (inversion time) in ascending order, performing line search

between the neighbouring design points. This was iterated to convergence. Their

approach was actually local design optimisation, as discussed in Section 2.5.2.2,

meaning that this was computationally feasible. However, similar approaches are

often used in global design optimisation, and as will be seen in Chapter 3, this

underpinned our approach.

We note, in passing, that the design problem as posed by Xie et al can be

solved analytically, and that their use of separate coordinate exchange optimisation

and ensembling steps is valid, but unnecessary. We discuss this, and present a proof,

in Appendix A. Unfortunately, in the problem as posed in our work, no such solution

presents itself.
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2.5.5 PASL versus PCASL

The choice of pulsed versus pseudo-continuous ASL might appear, at first, to make

little difference to the optimal design methods considered here. However there are

three key areas in which the choice can make a difference: the range of values for

TIs and LDs, the sensitivity of the model to ∆t, and the relationship between SAR

and LD.

Although optimal design was first applied to PASL by Xie et al in 2008, and

they noted then that their method was equally applicable to PCASL, optimal design

has only been used for PCASL very recently – both by ourselves and by Wood et al.

This is likely due to the ambivalent results achieved by Xie et al with their weighted

ensemble approach: improved f estimation at the cost of ∆t estimation is an unap-

pealing prospect for PCASL, which already improves f estimation (compared to

PASL) while being relatively insensitive to ∆t. The move towards true globally

optimal design somewhat alleviated this, and this is explored further in Chapter 3.

2.5.5.1 Ranges of values for parameters

The range of values for TI/LD will tend to be longer in PCASL. This is a funda-

mental consequence of the physics underpinning the ASL signal: Q2TIPS imple-

mentations typically have an upper limit for LD – PCASL acquisitions are much

more flexible to use a long bolus, and when a longer bolus is used, the TI is corre-

spondingly longer for the same PLD. Conversely, because of the improved SNR in

PCASL, fewer acquisitions are typically needed to produce a usable image, which

will in turn affect the optimisation results.

2.5.5.2 Sensitivity to transit time

When all other factors are the same, it is generally harder to measure ∆t with PCASL

as opposed to PASL, whereas PCASL offers more accurate and reliable f measure-

ments. This is discussed in Section 2.2.2, and originates from the reduced sensitiv-

ity to the ATT. In our own work, this can be seen in the trade-off between f and ∆t

in one contrast versus the other. The worsening in ∆t performance is significantly

worse in PCASL.
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2.5.5.3 SAR

PASL and PCASL have different relationships between LR and SAR. In PASL with

a defined bolus (e.g. Q2TIPS, see Section 2.2.2.2), the RF energy deposited is

proportional to t − τ , whereas in PCASL it is proportional to τ [66, 23]. This can

influence the allowable values of t and τ when designs are optimised. We discuss

this in greater detail in Chapter 3.

2.6 Conclusion

We have presented a detailed survey of the ASL literature, covering MR physics,

the development of ASL acquisitions, applications and processing pipelines. This

provides background information for the thesis. In particular, we have conducted an

in depth review of optimal design work in ASL, focusing on the differences between

how the problem is posed, methods of solution, and the designs obtained. This sec-

tion has linked the specific problem of ASL experimental design to the more general

discussion of optimal design in Section 2.4. We have shown, most importantly, the

motivation for a globally optimal design approach, and how this can make a dif-

ference compared to the method of Xie et al. This discussion sets the scene for

Chapter 3 in which we present our original optimal design approach, including its

applications to both PCASL and PASL, as well as simultaneous optimisation of

label durations with inflow times.



Chapter 3

Bayesian experimental design for

multi-parametric optimisation of

ASL

This chapter presents work on optimal design for ASL, and is based on an orig-

inal publication and subsequent work. Parts of this chapter were also showcased

informally at the European Cooperation in Science and Technology on ASL in De-

mentia [130]. The publication focused on imposing more useful scan time con-

straints in a general optimisation framework which found true globally optimal and

duration-constrained designs [5] for PASL experiments, while subsequent work in

this chapter applied this to PCASL and examined multi-parametric optimisation of

both label durations and inflow times. Chapter 2 gives a detailed exploration of

the context in which this work was done, and compares the different ASL optimal

design methods in the literature before our method.

3.1 Introduction

Here, we develop a Bayesian experimental design approach to optimise multiple

delay ASL scans of any chosen duration, applying our method in pulsed and pseudo-

continuous ASL, and showing that the same method can be used to jointly optimise

several parameters to achieve an even greater improvement. This is one of the first

applications of optimal design to pseudo-continuous ASL [131], and is the first use
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of optimal design to simultaneously optimise inversion times and label durations.

Moreover, our approach is one of the first such design methods to optimise the

acquisition for a given scan time rather than a fixed number of measurements [131],

allowing for a superior design and a more practically useful optimisation constraint.

In ASL measurements in the brain, blood is magnetically tagged at the neck by

an inversion pulse, and then allowed to flow into the brain before the MR image is

acquired (see Chapter 2 for more detail). ASL acquisitions have several choices of

acquisition parameters, in particular the label durations (LDs) – the temporal width

of the labelled blood water bolus; and inflow times (TIs) – the time between when

the labelling begins and the image is acquired. These choices can have a signifi-

cant effect on the accuracy and precision of the perfusion and arterial transit time

estimates [60]. In previous work there have been attempts to optimise TI selection

using experimental design [71, 128], which has led to small but statistically signifi-

cant improvements in parameter estimation. This previous work, however, assumed

a fixed number of TIs in the acquisition, and so did not account for the possibility

of using a larger number of shorter TIs to achieve the total scan duration. The relax-

ation of this assumption, while offered as potential future work, has only recently

begun to be explored [5, 131].

In this chapter we address this more realistic situation in which there is a fixed

amount of scanner time available, and the task of experimental design is to select

the best possible set of ASL measurements that fill this time. Here, such mea-

surements are jointly optimised within a novel Bayesian framework for constrained

experimental design of imaging experiments. Subsequently, we apply this same

framework to the problem of simultaneously optimising TIs and LDs for the first

time, yielding even further improvement in parameter estimates. We show that our

optimisation framework is equally applicable to pulsed ASL (PASL) and pseudo-

continous ASL (PCASL), and to TI-only or joint TI-LD optimisation.

Using results from numerical simulations and experimental results from nine

healthy volunteers, we demonstrate that our framework improves parameter esti-

mation in ASL compared to a more conventional multi-TI acquisition with evenly-
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spaced TIs. We also use simulations to investigate how the optimised design per-

forms when f or ∆t take abnormal values, as is the case in some pathologies. When

optimising TIs for a five-minute PASL acquisition we achieve significant improve-

ments in f estimation (approximately a 18% reduction in error), with no practical

change in ∆t estimation. When optimising TIs for a five-minute PCASL acquisi-

tion we achieve smaller improvements at a cost to ∆t. However, when we jointly

optimise TIs and LDs we achieve significant further improvements in f estimation

(27% reduction in error) while boosting ∆t estimation back to be comparable to the

conventional design. Finally, this chapter briefly compares how the different treat-

ment of priors in different methods leads to different proposed designs for the same

set of priors, illustrating the effects of different methods side by side.

3.2 Theory

3.2.1 Arterial spin labelling

In ASL, blood water is magnetically tagged by spin inversion before flowing into the

brain. Images are repeatedly acquired, with and without tagging, and the differences

between these images are used to fit to a kinetic model. When images are acquired

at several inflow times, one can simultaneously estimate perfusion (the amount of

blood perfusing through the tissue) and arterial transit time (the time taken for blood

to travel from the labelling plane to the image voxels) [60]. In this work, the single

compartment kinetic model of Buxton et al [60] is used throughout to model the

ASL signal, both for PASL and PCASL. All constants, where not stated, use the

recommended values given by Alsop et al[23].

3.2.2 Bayesian design theory

The objective of Bayesian experimental design is to maximise the information

gained from a set of experiments. Experiments yield a set of measured data points,

y, which are related to the parameters of interest, θ , and the design parameters, η ,

by a forward model, yi = g(θ ;ηi)+ e. e here is additive Gaussian noise, the most

commonly used noise model for ASL data. In multi-TI ASL, θ = ( f ∆t)
′

where f

is perfusion and ∆t is transit time, and g(θ) is the signal model of Buxton et al [60],
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with g(θ ;η) = ∆M(η ; f ,∆t). η here is the set of inflow times, ti. If one were to

simultaneously adjust the LDs, τi, then η would contain both ti and τi. We chose

not to optimise over τi in our PASL experiments, as our PASL implementation was

physically unable to use LD greater than 0.8s due to the size of the RF transmit-

ter coil limiting the spatial extent over which tagging could occur. In our PCASL

experiments, however, we optimised over ti on their own, and ti and τi jointly.

Because the noise model is Gaussian, maximisation of the information gain

for a given θ is approximately equivalent to maximisation of the Fisher information

matrix’s determinant, u(θ ,η) [113], where

u(θ ,η) = det ∑
i




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(3.1)

Initially, it is unclear what value of θ to use when evaluating this utility func-

tion. θ is not known ahead of time – indeed, it is θ that we seek to estimate. In a

Bayesian approach, the utility is marginalised over a prior for θ , p(θ) [113]:

U(η) =
∫

θ
logu(θ ,η) p(θ)dθ =

∫

f

∫

∆t
logu( f ,∆t) p( f ) p(∆t) d∆t d f (3.2)

In the early history of Bayesian experimental design, experimenters sought to

avoid the computationally demanding step of evaluating the expected Fisher infor-

mation by evaluating it once at a representative point estimate of parameter val-

ues [113]. Subsequent work improved on this by sampling from the θ prior, and

then optimising for each sample, making the assumption that the distribution of

point-wise optimal designs reflects the optimal design for that prior [71]. This as-

sumption is only approximately true, however, and cannot be used when there are

certain constraints (in this work, scan duration) on η . Consequently, we use a nu-

merical approach to approximate Equation 3.2, allowing us to find the true solution

and respect feasibility constraints on η .
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3.2.3 Computationally-tractable optimal design solutions

To find the expected utility for a given design, an adaptive quadrature tech-

nique [132] is used to approximate Equation 3.2. Using a high-performance im-

plementation of an approximate global optimisation algorithm [133], the parameter

space is iteratively divided into subregions, over which the integral is approximated.

Subregions are refined preferentially when they have larger error, leading to highly

accurate approximations of the overall integral. This estimate of the expected utility

is then used as the utility function by which η is selected.

Throughout this work, p(θ) = p( f ,∆t) is assumed to have f and ∆t indepen-

dently distributed, such that p( f ,∆t) = p( f )p(∆t). p(∆t) is a normal distribution,

with ∆t ∼N (0.8,0.3) s for PASL and ∆t ∼N (1.2,0.3) for PCASL. p( f ) is a log-

normal distribution, with f ∼ logN (3.5,0.5) (i.e. the mean value of f , as opposed

to log f , is approximately 40 ml/100g/min, and similarly σ f ≈ 20 ml/100g/min).

These distributions were chosen to be broadly representative of physiologically-

plausible f and ∆t across the whole population [23], ensuring the optimised design

works over a wide range of values. The f prior uses a somewhat low mean value to

ensure that a broad range of f values can be included in the optimisation, even low f

values due to partial volume effects or pathology. If more information were known

ahead of time, such as reference values for a specific clinical population [71] or pre-

existing measurements from a given patient, this could be used instead to further

improve the design optimisation.

Performing an exhaustive search for the optimal solution is impractical, as

there are many inflow times in a typical scan duration – in this work, approximately

30 such inflow times. In a naive exhaustive search, each inflow time is an additional

dimension over which to search, meaning that this search cannot be performed on a

realistic timescale. Fortunately, there is a simplifying symmetry in the utility func-

tion: when η is restricted to the inflow times, U(η) does not depend upon the order

of elements in η . This follows from Equation 3.1: overall utility is a function of the

sum of individual utilities, making it commutative under reordering of inflow times.

Thus, with no loss of generality, t can be constrained to be in increasing order.
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Such a constraint lends itself to solution by a joint coordinate-exchange/line-search

algorithm [71] [116], in which each inflow time is optimised separately, bounded

between its neighbouring inflow times. Such an optimisation scheme can easily

extend to joint optimisation of TIs and LDs by changing each line-search to a 2D

grid-search, with each LD constrained to be less than its corresponding TI. Al-

though there is no theoretical guarantee of global optimality, the results show good

agreement with more time-consuming solutions from heuristic global optimisation

methods such as controlled random search with local mutation [133, 134].

3.2.4 Constrained optimal design

Much of the experimental design literature concerns experiments with a fixed num-

ber of measurements. In ASL, and medical imaging more generally, this often is not

the case. Instead, there is a fixed amount of time available in which to acquire data.

Different acquisition parameters will result in a given measurement taking more or

less time, and this constraint changes the optimal solution. Hence, in addition to

the constraint that TIs are ordered, we impose a duration constraint, for our exper-

iments here requiring that the whole ASL acquisition last no longer than five min-

utes. To calculate the experiment’s duration, we set an experimentally-determined

inter-acquisition delay (0.5 s in PASL experiments and 2 s in PCASL experiments,

discussed in Methods) to wait between every TI, which allows the experiment to

comply with MR Specific Absorption Rate (SAR) limits. We also enforce that ∆t

must be positive – effectively truncating its normal prior. The optimisation is per-

formed, in parallel, over a range of TI list lengths. Finally, the resulting design with

the highest utility is selected.

3.3 Material and methods

3.3.1 Experimental design optimisation

Computation of the optimal design was performed with a C++ implementation of

the constrained optimisation approach discussed in Theory, using libcuba [132]

for quadrature and NLOpt [133] for optimisation. Evaluation of the optimal de-

sign took approximately three hours on a modern computer using a 2.5 GHz In-
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tel Xeon processor. In practice, computational time could be reduced through a

more efficient optimisation scheme [116] and suitable approximation of the utility

function [125]. With such approaches even real-time optimisation should be fea-

sible [125], although these numerical improvements are beyond the scope of this

work.

3.3.2 Variable TR acquisition

Typically, ASL images are acquired using a constant relaxation time (TR), regard-

less of the TIs used. In this work we use a variable TR, in order to take advantage

of the time savings available from shorter TIs. Using a constant TR is a less effi-

cient use of scanner time, but has remained standard due to being conceptually and

practically easier. When varying the TR between measurements, several authors

have shown the importance of pre-saturation pulses to remove residual signal [129].

Simulations and experiments have shown that, after appropriate pre-saturation, the

effect of residual signal is small even at short TIs [129]. We follow this practice

and use FOCI pre-saturation to remove residual signal from the previous measure-

ment [135]. We set TR proportional to TI: for each measurement, T R = T I+ tpause.

tpause is fixed to a constant value across measurements, for the sake of simplicity

in acquisition design. tpause is set to 0.5 s for PASL and 2 s for PCASL, based on

preliminary experiments and the simulation results discussed in Section 3.3.3.

Background suppression can be challenging in a variable TR acquisition and

earlier work on variable TR ASL did not use background suppression as a re-

sult [129]. Other work has used background suppression, taking care to verify

that the variable TR’s affect on background suppression did not greatly affect re-

sults [131]. In this work, we use background suppression pulses during labelling, in

a similar fashion to Dai et al [136] Most background suppression techniques in ASL

are applied between labelling and acquisition, so when there is little time between

these, the background suppression timing deviates further from its optimal values.

We use two hyperbolic secant background suppression pulses, one during labelling

and one after labelling, optimally timed [127]. If the quality of background suppres-

sion varies substantially between measurements, this will result in variable noise
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magnitude – or worse yet, subtraction artifacts in the images. We guard against this

by inspecting images manually, finding no visible sign of subtraction artifact. We

also find our perfusion parameters are inline with literature values, with no sign of

bias between different methods (see Section 3.4).

3.3.3 Specific absorption rate modelling

SAR can become a limiting factor in duration-optimised acquisitions. Using a vari-

able TR acquisition reduces “dead” time in the experiment, but this also worsens

the problem of SAR, as the RF energy is applied over a shorter time than in a typ-

ical sequence with constant TR. This is not a safety-critical concern in practice, as

modern scanners have a safety interlock that aborts a scan when the SAR limit is

reached. However, if optimisation yielded designs that could not be run due to SAR

limits, it would clearly not be useful. Consequently, it is important that these opti-

mised designs fit within SAR constraints. We achieve this through the use of a fixed

pause, tpause, after every measurement in our protocol.

PASL and PCASL have opposite relationships between LD and SAR; for

PASL, EPASL ∝ (t − τ) whereas for PCASL, EPCASL ∝ τ [66, 23], where E is the

RF energy deposited in each case. For the PASL experiments, in which τ is fixed to

the reasonably common value of 0.8 s, tpause was simply set to 0.5 s by early trial

and error [5]. Because the optimised PASL design for tpause = 0.5 s did not produce

particularly long TIs compared to the reference design, and had the same LD, there

was no reason to expect it to do any worse than the reference design in terms of

SAR.

For the PCASL experiments, SAR was more of a concern, particularly given

the long values of τ produced by initial runs of our optimisation procedure. We

were hesitant to simply set tpause by trial and error for PCASL, because this might

have led to time-consuming experiments for each subject. Worse, this might have

led to some values of tpause working in only some subjects, making fair comparison

of results difficult. Instead, we used pulse sequence simulations from the Siemens

Healthcare IDEA platform to estimate the SAR. This allowed us to ensure feasibility

of our optimised designs.
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Figure 3.1: Scanner estimates of SAR, as a percentage of the allowable limit, versus label

duration for PCASL. Energy deposition is linear with τ , matching published

theoretical models.

First, we ran simulations for our sequence at several different values of LD.

This allowed us to set the parameters E0 and m in a linear model: SARPCASL =

E0+m×τ
T

, where T = Σiti+ tpause is the total time over which the sequence is applied.

We show this in Figure 3.1. This model could be used to estimate the SAR for

any design, as defined by its TIs and LDs. This simulation was intentionally run

assuming a heavier subject mass (90kg), as SAR issues are known to be worse in

larger subjects. By choosing a heavier mass, we hoped to enforce a pessimistic

estimate of the relationship between sequence and SAR.

Due to constraints in the platform, these simulations used the same pulses (la-

belling, readout, background suppression, etc) as our experimental acquisitions, but

SAR was estimated for a given label duration repeated 10 times at T R = 6 s. This in

turn allowed us to take SAR estimates for a given label duration and scale them to

a given acquisition duration (E = SAR×T ). The “perfect” model fit of Figure 3.1

confirms that the scanner simulation matches the linear models of RF deposition

in PCASL. We emphasise this fit cannot be taken as evidence of the simulation’s

accuracy, and many sources have noted the relative inaccuracy of scanner SAR

simulations [137]. However, it does show that our model matches the scanner’s

own estimate of SAR, and hence that a design satisfying the SAR constraint from

this model would avoid triggering the safety interlock.

We subsequently used this SAR relationship to ensure feasibility of our gen-

erated PCASL designs, requiring that the SAR was below the allowable limit. We
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ultimately set tpause to 2 s for the PCASL experiments, based on design feasibility

and previous experience with the reference acquisition. Using the relationship of

Figure 3.1, the SAR was estimated at approximately 90% of the limit for the op-

timised designs and 80% of the limit for the reference design. We did not search

extensively over tpause, although this might be a valuable addition in future work.

SAR safety interlocks did not activate during our acquisitions, providing some ev-

idence of our model’s suitability. Moreover, qualitatively, the scanner’s real-time

estimate of SAR during acquisition matched the pattern of our calculated whole se-

quence SAR. The reference design had lower SAR in this real-time estimate than

the two optimised designs, which were broadly similar to one another and were

closer to the allowable limit.

3.3.4 Synthetic data

Synthetic data were generated from the appropriate forward model (PASL or

PCASL) with additive Gaussian noise, chosen such that the SNR was broadly rep-

resentative of real ASL data at σ ≈ M0/100 [71]. An example PASL time course

is shown in Figure 3.2. Simulations, to assess performance across parameter space,

were implemented by dividing the parameter space into a grid of 150 by 150 evenly

spaced points and simulating 1000 noisy ASL signals at each point. In both PASL

and PCASL simulations, the range of values was 0–150 ml/100g/min for f and

0.1–5.0 s for ∆t, both chosen to cover the full range of plausible values relative

to the prior distribution. This was done for both optimised and reference designs.

Least-squares fitting was subsequently performed on each of these datasets to esti-

mate parameters for both designs. All these simulations were performed in MAT-

LAB, including implementation of the ASL forward model. In addition to assessing

expected performance of optimal and reference designs, we used a similar approach

to explore how the optimised design copes with abnormal parameter values, in Sec-

tion 3.4.5.

Performance in the synthetic data was measured through the root mean square

error (RMSE) and the expected coefficient of variation (CoV), which were both

evaluated at each pair of parameter values based upon the 1000 estimates. By



3.3. Material and methods 67

Figure 3.2: The black curve shows the PASL kinetic model, without noise, simulated at

f = 40 ml/100g/min and ∆t = 0.8 s. Labelled blood first arrives at t = ∆t, and

the signal magnitude peaks at t =∆t+τ . The shaded region shows the variation

in the curve within one standard deviation of the parameter means (20 < f <
40 ml/100g/min, 0.5 < ∆t < 1.1 s). × shows example noisy measurements,

which can be used to invert the model to estimate f and ∆t.

definition, a better design produces estimates of the parameters that are closer to

the true values. Because estimation in this problem is approximately unbiased,

RMSE and CoV show good agreement, and the CoV is a more intuitive way to

express results as a dimensionless indicator of the standard deviation: CoV = σ
µ .

The difference in the CoV, ∆CoV = CoV R −CoV O, should be positive where the

optimised design outperforms the reference. It expresses how much of a reduc-

tion in estimates’ variance comes about from the new design, compared to the ref-

erence. The optimal design is that which minimises the generalised variance of

the posterior, so assuming posterior independence of f and ∆t, any design with

σO
f σO

∆t < σR
f σR

∆t =⇒ CoV O
f CoV O

∆t <CoV R
f CoV R

∆t is considered an improvement on

the reference design.
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3.3.5 Experimental data

For the PASL experiments, data were acquired from nine healthy subjects (seven

male, two female; ages 22-34) using a 3T Tim Trio scanner (Siemens Healthcare,

Erlangen, Germany). Q2TIPS was used to fix the bolus length to 0.8s [138]. For

the PCASL experiments, data were acquired from five healthy subjects (three male,

two female; ages 20–31). In both experiments a two-segment 3D-GRASE readout

with background suppression was used, although the optimal design approach is

applicable to any readout. f and ∆t were estimated using FSL BASIL for ASL

parameter inference [74]. Scan duration was fixed at 5 minutes for both optimal

and reference scans. The specific TI and LD values used for the optimised and

reference scans are described in the Results section.

In the absence of ground truth data, each of the optimised and reference scans

was acquired twice, allowing the measurement of test-retest reproducibility, which

is commonly used to judge potential acquisition improvements. To minimise the

effects of subject motion and small drifts in perfusion values, measurements were

acquired in an interleaved fashion, alternating between optimised and reference TIs.

To assess the experimental results in the absence of ground truth values for f and

∆t, we calculated whole grey matter test-retest coefficients for both parameters in

all subjects, for both reference designs and optimised designs [71]. These were

subsequently compared using a repeated measures ANOVA to test for significant

differences [139], allowing us to show whether perceived changes in performance

were statistically significant. When post hoc testing, to see which methods were

significantly different to which other methods, we used Bonferroni correction – and

p values are stated after adjustment. We subsequently examined parameter maps to

confirm these results visually, as well as checking for any introduction of systematic

bias.

In order to generate grey matter masks, MPRAGE T1-weighted structural scans

were also acquired. The grey matter was segmented using pre-existing atlas-based

segmentation software [140], thresholded at grey matter volume fraction ≥ 0.8,

before being registered to the ASL images using FLIRT [141, 142]. Finally, to allow
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for estimation of M0, and hence absolute quantification of f , saturation-recovery

images were acquired at three recovery times (1s, 2s, 5s).

3.4 Results

3.4.1 Proposed designs

0.5 1 1.5 2 2.5 3

Inflow Time (s)

Reference 

Optimised 

Figure 3.3: PASL optimised design (top) and reference design (bottom), defined by their

TIs. Shifting TIs to more informative values near ∆t and ∆t + τ makes the

acquisition more efficient, and avoiding longer TIs allows more measurements

to be made in the same scan time.

The optimised design for PASL is shown in Figure 3.3, with the reference de-

sign also shown for comparison. (TI and TR values are also listed in Tables 3.4-3.5).

The more conventional reference design used 28 TIs, equally spaced between 0.5s

and 3s, chosen to be similar to a representative reference scan used in previous

optimal design work [71, 5]. The optimised design used 32 TIs, which tend to

cluster between 0.8s and 1.5s. This makes intuitive sense, as the forward model

predicts higher signal magnitudes near t ≈ ∆t + τ – while also encouraging the use

of some shorter measurements to estimate ∆t. However, accounting for the effect

of TI choice on scan duration, as done here, discourages longer, time-consuming

TIs. This trade-off explains why the longest TIs are shorter than those in the refer-

ence scan. It also illustrates the value of this approach: the optimised scan not only

chooses more informative TIs, but was able to fit in more TIs than the reference

scan. It shows that it is preferable to use a larger number of shorter TIs rather than

a smaller number of longer TIs, within reason, and this is reflected in the optimised

design.

Although not shown here, the pattern of selected TIs remains broadly the same

when the total scan duration is changed. Shorter duration constraints tend to reduce
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the number of TIs in the tails of the distribution, especially longer TIs – that is,

when there is less time available in which to scan, TIs near t ≈ ∆t+τ are prioritised

for near-average values of ∆t, with costly longer TIs tending to be discarded. Con-

versely, when there is more time available in which to scan, more points are placed

at longer TIs, reflecting their value for measurements with long ∆t.
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Figure 3.4: PCASL reference design (top), TI-optimised design (middle) and TI+LD-

optimised design (bottom). ◦ marks TI and × marks LD. Note that we are

specifying TIs rather than PLDs, for consistency with the PASL results.

The optimised design for PCASL is shown in Figure 3.4, with the reference de-

sign shown for comparison. (TI, LD and TR values are also listed in Tables 3.6–3.8).

The reference design uses 17 TIs, the TI-optimised design uses 18 TIs and the

TI+LD-optimised design uses 14 TIs. When only TIs are optimised, the result is

conceptually similar to PASL: longer TIs are deprioritised, and TIs are clustered

around the expected peak of the kinetic model. When TIs and LDs are optimised
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Figure 3.5: TI against LD for the the PCASL TI+LD optimised design. The line shows

identity (TI=LD), highlighting how the gap between LD and TI increases at

longer TIs. Long LDs are generally favoured (near as possible to the identity

line) at lower TI values, but at higher values, this is deprioritised. Somewhat

similarly to the PASL optimised design, measurements cluster roughly around

∆t and ∆t + τ .

jointly, however, the result is quite different: the optimisation favours a cluster of

shorter TIs (presumably to measure ∆t) and very long TIs with long LDs (to mea-

sure f with a very high SNR, as the magnitude of the kinetic model increases with

LD). Figure 3.5 shows the relationship between TI and LD in the joint optimisation

in more detail. It shows that although LD increases with TI, it does not remain a

constant offset below TI, but instead the gap between LD and TI grows with TI. This

reflects the diminishing returns from longer LD as the signal reaches saturation.

3.4.2 Synthetic results

Table 3.1 summarises the expected improvements from the optimised design for

PASL, compared to the reference. As expected, the performance is best near the

prior’s mean, because the design optimisation gives more weight to the high proba-

bility mass near here. Within the first standard deviation, f estimation improves on

the reference design by approximately 27%, as measured by both RMSE and CoV

(P < 0.05). ∆t estimation, conversely, shows no significant difference. Improve-

ments from the optimised design then decrease as they are evaluated over more of

the parameter space. When evaluated over the whole space, f estimation improves

on the reference design by approximately 17% (P < 0.05). ∆t estimation is slightly

impaired by the optimal design – decreasing by 7% (P < 0.05). However, this de-
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crease is less than half of the increase in f performance, meaning the optimised

design performs better overall. Over the entire parameter space, then, these results

suggest there should be a large improvement in f estimation, and a smaller worsen-

ing of ∆t estimation.
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Table 3.1: Synthetic results for PASL, evaluated within one and two standard deviations of the prior, and over the whole space. Root mean square error

(RMSE) is measured in the same units as the parameter, i.e. ml/100g/min for f and seconds for ∆t. ∆RMSE and ∆CoV are the percentage

changes between reference and optimised acquisitions, where positive change indicate better performance in the optimised design.

f (ml/100g/min)

RMSER RMSEO ∆ CoVR CoVO ∆ P

1SD: 20 < f < 60, 0.5 < ∆t < 1.1 0.27 0.20 27.2 0.761 0.552 27.4 0.0015

2SD: 0 < f < 80, 0.2 < ∆t < 1.4 1.24 0.99 19.9 3.24 2.61 19.5 0.0095

Whole space: 0 < f < 150, 0.1 < ∆t < 5.0 3.34 2.75 17.7 7.67 6.39 16.7 0.0124

∆t (s)

RMSER RMSEO ∆ CoVR CoVO ∆ P

1SD: 20 < f < 60, 0.5 < ∆t < 1.1 0.0051 0.0046 9.7 0.653 0.590 9.6 0.4966

2SD: 0 < f < 80, 0.2 < ∆t < 1.4 0.0216 0.0218 -0.1 3.02 3.02 -0.3 0.0861

Whole space: 0 < f < 150, 0.1 < ∆t < 5.0 0.0516 0.0553 -7.3 9.25 9.91 -7.1 0.0080
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Table 3.2: Synthetic results for PCASL, evaluated within one and two standard deviations of the prior, and over the whole space. Root mean square error

(RMSE) is measured in the same units as the parameter, i.e. ml/100g/min for f and seconds for ∆t. ∆RMSE and ∆CoV are the percentage

changes between reference and optimised acquisitions, where positive change indicate better performance in the optimised design. p < 0.05

for all.

f (ml/100g/min)

RMSER RMSETI ∆ RMSETI+LD ∆ CoVR CoVTI ∆ CoVTI+LD ∆

1SD: 20 < f < 60, 0.9 < ∆t < 1.5 0.624 0.503 19.4 0.415 33.5 0.92 0.75 18.4 0.62 32.6

2SD: 0 < f < 80, 0.6 < ∆t < 1.8 0.622 0.559 10.1 0.455 26.8 0.99 0.89 10.1 0.73 26.2

Whole space: 0 < f < 150, 0.1 < ∆t < 5.0 0.649 0.610 6.0 0.472 27.0 1.09 1.04 4.59 0.80 26.6

∆t (s)

RMSER RMSETI ∆ RMSETI+LD ∆ CoVR CoVTI ∆ CoVTI+LD ∆

1SD: 20 < f < 60, 0.9 < ∆t < 1.5 0.0094 0.0096 -2.13 0.0094 0.00 0.87 0.86 1.15 0.85 2.30

2SD: 0 < f < 80, 0.6 < ∆t < 1.8 0.0101 0.0109 -7.34 0.0099 1.98 1.03 1.07 -3.88 1.00 2.91

Whole space: 0 < f < 150, 0.1 < ∆t < 5.0 0.0106 0.0119 -12.3 0.0107 0.934 1.07 1.13 -5.61 1.09 -1.87
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Table 3.2 summarises the expected improvements from the optimised designs

for PCASL. As previously, the performance is best near the prior’s mean, because

the design optimisation gives more weight to the high probability mass near here.

Within the first standard deviation, f estimation in the TI-optimised design im-

proves on the reference design by approximately 20%, as measured by both RMSE

and CoV (P< 0.05). ∆t estimation, conversely, shows no significant difference. Im-

provements from the TI-optimised design then decrease as they are evaluated over

more of the parameter space. When evaluated over the whole space, f estimation

in the TI-optimised design improves on the reference design by approximately 6%

(P < 0.05). Here, optimisation of only the TIs leads to a practically significant de-

terioration in ∆t estimation (10%), whereas joint optimisation of TIs and LDs gives

no practical difference.

The effect of joint LD+TI optimisation is to significantly increase the improve-

ments achieved in TI optimisation in f estimation, while removing the negative ef-

fects on ∆t estimation. Joint optimisation improves f estimation by 45% within the

first standard deviation, with this improvement decreasing gradually to 30% over

the entire parameter space. ∆t estimation also degrades further from the prior mean,

but remains comparable to the reference design throughout.

3.4.3 Experimental results – PASL

Whole grey matter test-retest correlation coefficients are shown for f and ∆t, in all

subjects, in Figure 3.6. For f , these results show good agreement with the simu-

lations: test-retest correlation coefficients are significantly higher for f in the opti-

mised experiment (p= 0.0087). In the reference design, the mean f test-retest coef-

ficient is 0.79, as opposed to 0.84 in the optimised design – an improvement approx-

imately corresponding to the 20% improvement in RMSE and CoV predicted by

simulations. For ∆t, there is no clear difference, with the mean coefficient roughly

equal to 0.70 in both designs, and tests do not suggest significant differences in the

correlations (p = 0.80). Although simulations suggest that ∆t estimation is slightly

worse in the optimised experiment, the difference is small, and it is unsurprising

that it cannot be detected in these experimental results.
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Figure 3.6: Boxplots of whole-GM test-retest coefficients for f and ∆t in the PASL exper-

iments. Boxes show lower and upper quartiles of the data, and the line within

each box shows the sample median. Crosses mark individual subjects’ coeffi-

cients. When there is no increase in bias, a higher coefficient is preferable, as

it reflects a lower variance between test and retest.

Example parameter estimates from a representative subject (Subject 2, show-

ing improvement in f estimation and no apparent difference in ∆t estimation) are

shown in Figure 3.7, along with the differences between test and retest images. By

visual inspection, the f test-retest difference image shows slightly smaller differ-

ences for the optimised design, suggesting a greater consistency in its estimated

results. This interpretation is supported by the higher test-retest correlation coeffi-

cient. There is no appreciable difference in the ∆t images, which similarly agrees

with simulation-based predictions and test-retest statistics. In both cases, optimised

and reference images are visually similar, confirming that they are providing similar

measurements of the same underlying distribution of parameter values.

3.4.4 Experimental results – PCASL

Example parameter estimates are shown in axial slices in Figure 3.9, along with the

differences between test and retest images. Again, the f test-retest image shows

smaller error for the optimised design, suggesting a greater consistency in its esti-

mated results, supported by the higher test-retest correlation coefficient. Moreover,

the TI+LD image has visibly smaller test-retest error than the TI-optimised im-

age, showing the additional improvement from joint optimisation. These results

are consistent with simulations and are significant in the test-retest correlation anal-
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Figure 3.7: Example grey matter maps of f (left) and ∆t (right) for Subject 4 from the

PASL experiments. Absolute test-retest difference maps are also shown for

each parameter. The same axial slice is shown throughout for comparison.

Estimated maps are similar for both parameters, indicating no great change in

bias, whereas test-retest difference maps are smaller for f and similar for ∆t,

indicating lower variability and hence improved performance.
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Figure 3.8: Boxplots of whole-GM test-retest coefficients for f and ∆t from the PCASL

experiments. Boxes show lower and upper quartiles of the data, and the line

within each box shows the sample median. Crosses mark individual subjects’

coefficients. When there is no increase in bias, a higher coefficient is preferable,

as it reflects a lower variance between test and retest.

ysis (Figure 3.8). Running post hoc comparisons using repeated measures t-tests

(p values stated after Bonferroni adjustment), optimisation improves f estimation

(p < 10−5 for each design versus reference), and joint TI+LD optimisation is better

than TI optimisation alone (p < 0.01). Meanwhile, the ANOVA for ∆t estimation

does not show a significant difference between methods (p = 0.275).
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Figure 3.9: Example grey matter maps of f (left) and ∆t (right) from the PCASL exper-

iments. Absolute test-retest error maps are also shown. The same axial slice

is shown for each parameter, for comparison. Estimated parameter maps are

broadly similar, indicating no change in bias, whereas the maps of absolute

test-retest error are clearly smaller in the optimised acquisitions, and lowest of

all in the joint optimisation.

3.4.5 Robustness to abnormal parameter values

A summary of simulation results under extreme values of f or ∆t, for the PASL

design, is shown in Table 3.3. Generally, the optimised design performs better than

the reference design, although it performs significantly worse when the transit time

is prolonged. In each case, results are discussed further within their own section.

To allow visualisation of the results and comparison of the designs, Figures 3.10

and 3.11 show 95% confidence intervals for the parameter residuals. Where these

confidence intervals are reduced by a design, the CoV is correspondingly smaller,

indicating improved estimation.

3.4.5.1 Abnormal perfusion

Results from abnormal perfusion simulations are shown in Figure 3.10. We simulate

hypoperfusion by setting the mean perfusion lower than is typical, with f ranging

from 20 ml/100g/min to a healthy value of 40 ml/100g/min, all with ∆t = 0.8 s.

Simulation shows that the optimised design continues to outperform the reference

design (CoV for f improves by 10%, CoV for ∆t improves by 38%), even in these

challenging conditions.

We simulate hyperperfusion by setting perfusion higher than is typical, with

f ranging from a healthy value of 40 ml/100g/min to 100 ml/100g/min, all with
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Table 3.3: Simulation results for optimised vs reference designs under various combina-

tions of abnormal parameter values. Positive change in RMSE and CoV indicate

better performance in the optimised design.

f

f ∆t RMSEO RMSER CoVO CoVR ∆RMSE (%)

Hypoperfusion 20 0.8 0.6384 0.7027 0.0319 0.0351 10.0664

Hypoperfusion 30 0.8 0.6341 0.7165 0.0211 0.0239 12.9827

Normal Perfusion 40 0.8 0.6296 0.7176 0.0157 0.0179 13.9682

Hyperperfusion 70 0.8 0.6323 0.7221 0.0090 0.0103 14.2094

Hyperperfusion 100 0.8 0.6315 0.7249 0.0063 0.0072 14.7793

Reduced Transit Time 40 0.4 0.4332 0.5449 0.0108 0.0136 25.7923

Reduced Transit Time 40 0.6 0.5076 0.6254 0.0127 0.0156 23.1968

Normal Transit Time 40 0.8 0.6296 0.7176 0.0157 0.0179 13.9682

Prolonged Transit Time 40 1.0 0.8392 0.8108 0.0210 0.0203 -3.3835

Prolonged Transit Time 40 1.2 1.3380 0.9488 0.0335 0.0237 -29.0844

∆t

f ∆t RMSEO RMSER CoVO CoVR ∆RMSE (%)

Hypoperfusion 20 0.8 0.0167 0.0231 0.0208 0.0288 38.3774

Hypoperfusion 30 0.8 0.0109 0.0155 0.0137 0.0194 42.2734

Normal Perfusion 40 0.8 0.0082 0.0117 0.0103 0.0146 42.9196

Hyperperfusion 70 0.8 0.0047 0.0067 0.0058 0.0084 43.8514

Hyperperfusion 100 0.8 0.0032 0.0047 0.0040 0.0058 44.0825

Reduced Transit Time 40 0.4 0.0091 0.0108 0.0228 0.0269 17.8053

Reduced Transit Time 40 0.6 0.0080 0.0104 0.0134 0.0173 29.2129

Normal Transit Time 40 0.8 0.0082 0.0117 0.0103 0.0146 42.9196

Prolonged Transit Time 40 1.0 0.0100 0.0129 0.0100 0.0129 28.3804

Prolonged Transit Time 40 1.2 0.0140 0.0145 0.0117 0.0121 3.4890

∆t = 0.8 s. Simulations show, again, that the improved performance of the optimal

design is relatively insensitive to the value of f . CoV for f estimation is improved

by 14%, and CoV for ∆t estimation is improved by 43%.

3.4.5.2 Abnormal transit time

Results from abnormal transit times simulations are shown in Figure 3.11. We sim-

ulate a prolonged transit time by setting ∆t to be longer than is typical, with ∆t

ranging from a healthy value of 0.8 s to 1.2 s, all with f = 40 ml/100g/min. These

are the only conditions under which the optimised strategy performs significantly

worse than the reference strategy: on average, the CoV is 29% worse in the opti-

mised design for f , and 3.5% better for ∆t.
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Figure 3.10: Simulation results for abnormal perfusion values. The top row shows results

for hypoperfusion and the bottom row shows results for hyperperfusion. Bars

show the 95% confidence intervals for f and ∆t residuals at each f value,

calculated over 10,000 noisy simulations, with reference design on the left

(red) and optimised design on the right (blue) in each case. In each case, ×
marks the mean residual.

We simulate a reduced transit time by setting ∆t to be shorter than is typical,

ranging from 0.4 s to a healthy value of 0.8 s, all with f = 40 ml/100g/min. Simula-

tions show that the optimised design outperforms the reference design in this case,

with the f CoV decreased by 25% and the ∆t CoV decreased by 17%. f estimation

is improved more than ∆t estimation, as both the optimised and reference designs

have a similar number of measurements near the curve discontinuity (t = ∆t), which

matters more for ∆t estimation. Conversely, the optimised design has proportion-

ally more measurements near ∆t + τ here, making it significantly more useful for f

estimation.
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Figure 3.11: Simulation results for abnormal transit time. The top row shows results for

prolonged ∆t and the bottom row shows results for shortened ∆t. Bars show

the 95% confidence intervals for f and ∆t residuals at each ∆t value, calculated

over 10,000 noisy simulations, with reference design on the left (red) and

optimised design on the right (blue) in each case. In each case, × marks the

mean residual.

3.5 Different prior distributions and their effects on

design optimisation

We show in Figure 3.12 how different priors affect the distribution of measurements

in the different methods of optimisation. Our work and that of Xie et al has focused

on truncated Gaussian and log-normal priors, to enforce positivity while getting a

broader coverage of perfusion values, closer to covering an entire physiologically

plausible range [5]. In both cases, the same techniques could have been used with

any prior, however. Recent work has used uniform priors (0.5<∆t < 1.8 s), arguing

that these are fairest to use in the absence of knowledge of an individual’s parameter

distribution [131].
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Figure 3.12: Optimised designs, Xie method versus truly global method, flat prior ∆t ∼
U(0.5,1.8) versus normal prior ∆t ∼ N (µ = 1.15,σ = 0.325) such that two

standard deviations of the normal prior reflect the entire range of the flat prior.

The Xie approach tends to undervalue shorter TIs in the case of normal priors,

and in the case of uniform priors simply places TIs uniformly across that range.

Conversely, in the truly global approach used by ourselves and and subsequent

work [131], we can see that flat priors and normal priors produce more concep-

tually similar results, clustering around key values. The main difference is that for

the normal prior case, optimisation favours lower TIs because it is more willing to

discount less likely, higher values of ∆t.

3.6 Discussion and conclusions

The optimal design approach in this work has demonstrated its effectiveness in sig-

nificantly improving ASL-based estimation of perfusion without greatly affecting

arterial transit time estimation. The optimisation, for this five-minute ASL exper-

iment, leads to a coefficient of variation improvement of approximately 20% as

predicted by simulations, with a corresponding improvement in experimentally de-

termined test-retest correlation coefficients. Simultaneous optimisation of TIs and

LDs leads to further improvements in f estimation, and show the effectiveness of

the optimal design paradigm. There is good agreement between simulations and

experimental results, which demonstrates the validity of this model-based optimisa-
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tion approach. Moreover, optimisation with a constrained scan duration allows for

additional TIs to be used in the acquisition, which can improve robustness of the

experiment.

Further simulations show the optimised acquisition is fairly robust to abnor-

mal values of f or ∆t in PASL, continuing to outperform the reference design under

conditions of hypoperfusion, hyperperfusion and shortened transit time, performing

worse only in the case of prolonged transit time. It may seem surprising that ∆t esti-

mation is improved in simulations of hypoperfusion and hyperperfusion, especially

because it is not practically changed under normal perfusion conditions. There is an

intuitive explanation, however: much of a design’s ability to measure ∆t comes from

measuring the very start of the labelled blood’s arrival, and the optimised design

used ∆t = 0.8 s as the mean value. Because that was the value of ∆t in the abnormal

perfusion simulations, the optimal design performs significantly better than refer-

ence for ∆t estimation. Similarly, it is intuitively sensible that changes in ∆t affect

the optimised design more, which in turn describes the significant impairment under

prolonged transit times: the free variables in the design optimisation are the inflow

times, so a change in the transit time will drastically affect the design performance.

Performance for ∆t is impaired less, because ∆t is easier to estimate from the low-

magnitude signal near the discontinuity in the Buxton curve, when labelled blood

just begins to arrive. Many of the time points from the optimised design are placed

near this discontinuity, so ∆t measurement is relatively unaffected. f estimation is

impaired more because f is most effectively estimated from the higher-magnitude

(and, more importantly, later) peak of the Buxton curve, near t = ∆t + τ . When the

transit time is prolonged, the optimised design measures far less of the f -sensitive

part of the curve, and hence performs worse at f estimation. The same logic ex-

plains why the design performs well for shorter transit times: more of the optimised

design’s inflow times are placed at shorter inflow times, meaning more of the curve

is usefully measured in this case.

A challenge in this work is the problem of determining appropriate prior distri-

butions for design optimisation. This is something of a double bind: if the parame-
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ters were known ahead of time, it would be easy to optimise for them – but of course,

there would then be no need to measure them. In this work we have mostly taken the

approach of using broad priors based on the assumption of physiologically normal

values in a young, healthy population. This would be less effective were we to use

the same design for an older population. A simple solution would be to derive priors

based on previous studies of similar populations, should they be available. Another

solution might be to take even broader, flatter priors – for instance a uniform dis-

tribution extending to long ∆t values. Yet another solution might be to use a rapid

low-resolution pre-scan [136] or a closed-loop feedback system in which, within a

given scan, intermediate fitting results inform optimisation to select subsequent ac-

quisitions.[125]. All these approaches would be supported by our general method,

although the latter would require numerical modifications for speed, as mentioned

in Section 3.3.1. We note that the problem of determining an appropriate prior is

present in some form however one selects TIs for an ASL acquisition: our optimi-

sation approach makes this explicit, but the prior selection problem is present when

one simply chooses a set of TIs – this always depends on selecting TIs in a useful

range to measure the signal.

Although not examined in this work, there is an implicit trade-off between f

and ∆t estimation. This work improves f estimation (approximately 20% improve-

ment in results’ consistency) with no practical impairment of ∆t estimation – this is

the opposite case to previous optimal design work without duration constraints [71],

which slightly improved ∆t estimation while slightly impairing f estimation. We

believe the reasons for ∆t estimation remaining unimpaired are twofold. Firstly, the

differences predicted from simulations are very small and difficult to measure. Sec-

ondly, the simulations do not account for how the increased number of inflow times

in the optimised acquisition may improve robustness against outliers due to motion

or hardware instability. The optimised acquisition has more TIs, so it is more ro-

bust against outliers, and might be expected to perform even better than simulations

suggest.

Future work could examine the trade-off between parameters in the design op-
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timisation, exploring how designs can be targeted towards particular parameters of

interest. This might be useful where a cohort exhibits changes in one parameter

(e.g. f or ∆t), and researchers wish to study these changes in detail while still gath-

ering information to estimate the other parameter. Future work might also explore

duration-constrained optimal design using population-specific or subject-specific

priors, adapting the ASL acquisition for maximum experimental efficiency when

there are known abnormal parameter values associated with a particular pathol-

ogy, or even more strongly informative subject-specific priors derived from previ-

ous measurements [125]. This should lead to a performance improvement even in

subjects with prolonged transit time, where the optimised design currently performs

worse than the reference. This would be valuable for imaging elderly subjects and

patients with neurodegenerative diseases, who often present such prolonged tran-

sit times. The general optimisation framework in this work is applicable to many

other imaging modalities, and further future work will also examine how it may

be applied to other quantitative MR acquisitions, such as relaxometry or diffusion

imaging. Finally, a promising direction for future work might explore how the opti-

mal design approach may be applied to time-encoded ASL – an ASL technique that

uses time encoding in the labelling phase to shorten scan durations when acquiring

multi-TI data.

The choice of a five-minute window for scanning is comparatively brief for

multi-TI ASL, but still provides reasonably consistent measurements, as shown in

the experimental results. It is also useful for allowing test-retest measurements on

both the optimised and the reference strategy within a 20-minute period. Moreover,

such a time period is broadly representative of the realistic time available for ASL

scans in multi-parametric research studies and in clinical practice. It would be valu-

able future work to explore real-time optimisation of the experimental design in this

situation, allowing for the design to be optimised at the time of acquisition. Ideally

this would also involve prioritisation of TI-ordering, to ensure viability of parameter

estimates within a short time before refining parameter estimates’ accuracies. This

would be similar to adaptive optimal design approaches [125], but using the more
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realistic duration-constrained optimisation presented in our work.

Our work, set out in this chapter, argued that previous work on optimal design

in ASL was not finding true globally optimal design, but rather a prior-weighted

ensemble of locally optimal designs. Our work was the first to find a true globally

optimal design for an ASL experiment [5], with subsequent work by ourselves and

others exploring this in PCASL [131]. Our work also explored multi-parametric

optimal designs – designs in which inflow times and label durations were optimised

simultaneously, to further boost acquisition efficiency. In addition, our approach has

been used in other modalities [4]. The subsequent work of Woods et al strikingly

uses a further approximation to ease the optimisation in ASL specifically [131].

They note that the utility function’s optimum is insensitive to the perfusion, be-

cause the perfusion’s contribution to the utility function comes primarily from a

multiplication that can be factored out. Most of our work was done before this, and

attempting to retain generality across many kinetic models relevant to MR imaging

studies. As a result, we did not take advantage of this simplifying approximation.

Our approach is hence significantly slower, albeit offering greater generality – hence

its successful application to other imaging contrasts where such an assumption may

not be available [4].

In conclusion, our work reduces the time needed for ASL experiments – or,

equivalently, obtains better perfusion estimates from ASL experiments of a given

duration. Poor image quality, only somewhat alleviated by lengthy scan durations,

is often given as a major weakness of ASL [23], and our work directly improves

this. Simulations show that the optimised design approach is robust to hypoperfu-

sion, hyperperfusion and shortened transit times. Experimental validation confirms

the improvement in f estimation, with no practical impact on ∆t estimation. This

work enables multi-TI ASL experiments to be performed in the most time-efficient

way possible in a chosen duration, making the best possible use of scanner time

to achieve a maximally-accurate perfusion image. We hope that this direction of

research, and the subsequent work it has inspired, may eventually help increase the

use of ASL in research studies and in clinical trials.
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Table 3.4: PASL inversion times (ms) for reference and optimised acquisitions. Label duration is 0.8s for all measurements.

Reference 500 590 680 770 860 950 1040 1130 1220 1310 1400 1490 1580 1670

1760 1850 1940 2030 2120 2210 2300 2390 2480 2570 2660 2750 2840 2930

Optimised 710 750 810 840 880 910 940 1000 1050 1080 1120 1150 1170 1240 1280 1310

1360 1370 1430 1470 1500 1530 1560 1650 1700 1730 1780 1830 1880 1940 1990 2030

Table 3.5: PASL relaxation times (ms) for reference and optimised acquisitions.

Reference 1000 1090 1180 1270 1360 1450 1540 1630 1720 1810 1900 1990 2080 2170

2260 2350 2440 2530 2620 2710 2800 2890 2980 3070 3160 3250 3340 3430

Optimised 1210 1250 1310 1340 1380 1410 1440 1500 1550 1580 1620 1650 1670 1740 1780 1810

1860 1870 1930 1970 2000 2030 2060 2150 2200 2230 2280 2330 2380 2440 2490 2530
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Table 3.6: PCASL inversion times (ms) for reference, TIs-optimised and joint-optimised acquisitions.

Reference 1500 1710 1920 2130 2340 2550 2760 2970 3180

3390 3600 3810 4020 4230 4440 4650 4860

Opt TIs-only 1500 1500 1500 1500 1500 1500 1610 2060 2260

2290 2400 2560 2620 2680 2730 2790 2850 3140

Opt TIs+taus 1450 1500 1540 1570 1660 1720 1950 3690 4800

5050 5120 5410 5640 5870

Table 3.7: PCASL label durations (ms) for reference, TIs-optimised and joint-optimised acquisitions.

Reference 1500 (all)

Opt TIs-only 1500 (all)

Opt TIs+taus 1450 1450 1390 1430 1640 1530 1670 3050 3570 4100 4320 4090 4610 4710

Table 3.8: PCASL relaxation times (ms) for reference, TIs-optimised and joint-optimised acquisitions.

Reference 3500 3710 3920 4130 4340 4550 4760 4970 5180

5390 6600 5810 6020 6230 6440 6650 6860

Opt TIs-only 3500 3500 3500 3500 3500 3500 3610 4060 4260

4290 4400 4560 4620 4680 4730 4790 4850 5140

Opt TIs+taus 2450 3500 3540 3570 3660 3720 3950 5690 6800

7050 7120 7410 7640 7870



Chapter 4

ADRIMO: Anatomy-DRIven

MOdelling of spatial correlation

This chapter presents work on spatial regularisation of ASL images, primarily in

the context of denoising. The chapter is based on the original publication of this

work [3]. We thank Stefan Spann and his coauthors for providing an implementation

of the TGV denoising method to compare against.

4.1 Introduction

As discussed at length in Chapter 2, ASL images have an intrinsically low SNR. In

addition to addressing these issues through acquisition improvements such as that

discussed in Chapter 3, post-processing methods offer the opportunity of improving

data quality by increasing the effective SNR, and hence the accuracy of the de-

rived perfusion estimates [23]. Many methods exist to denoise ASL images, either

through filtering [95] or explicit regularisation using a spatial prior during estima-

tion of perfusion [99]. However, filtering approaches are often sub-optimal, relying

on a trade-off between smoothing details in the data and failing to provide the max-

imum possible amount of regularisation. Moreover, filtering methods tend to be

burdened with a myriad of tuning parameters, the choice of which can affect the

quality of the results. These parameters make it hard to compare results from dif-

ferent experiments, and also complicate the ASL post-processing pipeline through

their need for optimisation. Spatial priors do not generally suffer this burden, but
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their performance suffers for ASL data acquired with a single post-labelling delay

(the most common type of ASL acquisition) compared to multiple-delay ASL [90].

In this chapter, we present a technique, Anatomy-DRIven MOdelling (AD-

RIMO), for Bayesian data-driven spatial regularisation in single-delay ASL data.

By using cross-modality spatial information from the available structural images,

ADRIMO improves parameter estimate accuracy significantly more than existing

regularisation techniques. At the same time, ADRIMO removes the need to set

tuning parameters, allowing for more reproducible results with less effort to set up

pipelines for ASL analysis. Building on our previous presentation of the theoretical

underpinnings of ADRIMO and early experimental evidence of its efficacy [3], here

we validate the approach through extensive ASL simulations, as well as comparing

it to state of the art filtering methods. We show ADRIMO’s improved performance

first through simulations of typical perfusion distributions, where mean absolute er-

ror is reduced by 20–80% relative to the state of the art; and then in experiments

using an extensive (N=130) ASL dataset, where ADRIMO significantly improves

test-retest repeatability and statistical power for detecting group differences in per-

fusion. Finally, in rigorous simulations and experimental data we show that perfor-

mance is sustained even in the presence of highly focal perfusion changes, justifying

the use of ADRIMO on potentially heterogeneous real-world data.

4.2 Denoising ASL

Image denoising is a fundamental problem in computer vision, and the methods

that have been applied to ASL images have have been inspired by predecessors in

computer vision more broadly [143]. Initial approaches used local smoothing, typi-

cally with a Gaussian kernel [144]. The motivation for this is that spatial correlation

between nearby voxels can be used to improve the effective SNR – and this same

logic underpins practically all denoising methods, which differ in how they model

that spatial (or spatio-temporal) correlation.

Subsequent authors explored more advanced means of spatial regularisation,

including anisotropic diffusion [95, 145], wavelet-based and total variation regu-
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larisation methods [144, 146]. Each of these was a breakthrough in the computer

vision literature, and each led to many subsequent publications on application in

different problems, MR imaging and ASL among them. These methods were ap-

plied as-is to ASL difference images, as well as combined with other steps in the

ASL processing pipeline, such as temporal filtering [98] and partial volume correc-

tion [147]. One of the more thorough head to head comparisons was conducted by

Wells et al, in the same work that introduced their own denoising approach [95].

Generally, subsequent methods have often been compared in a more ad hoc way, if

at all.

Most recently, total generalised variation (TGV) stands out as the front runner

for these “tunable” methods [92]. Such methods have several tuning parameters

that must be set by the user. This is in many senses a disadvantage as it compli-

cates the processing pipeline and makes it difficult to compare analyses [99, 148].

However, this general approach is common in regularisation methods generally,

and usually such parameters can be set through cross validation or otherwise. TGV

adopts a generalisation of total variation (TV) regularisation that has shown its su-

periority in the literature, and applies it to both ASL difference images and control

images [149]. In their original publication, Spann et al examined denoising in both

standard resolution and high resolution ASL data, showing the superiority of their

method to several others from both classical computer vision and the ASL literature.

Of particular note is the denoising approach adopted in the popular BASIL

software for ASL processing [74]. Adopting a fully Bayesian model, this method

avoids the need to set tuning hyperparameters, and handles parameter inference un-

der several variations of the different ASL models. Adaptive spatial regularisation

can be combined with a physiological prior through extension to a Gaussian process

model, although in practice the computational challenges associated with this lead

to a spatial-only Laplace prior being used by default, initialised based on inference

with a physiological prior. However, this approach has shown significant over-

smoothing in single-TI ASL in some settings [90]; marginalisation and evidence

optimisation significantly benefit from rich kinetic curve information provided by
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multi-TI ASL, and may struggle in single-TI ASL.

4.3 Material and methods

4.3.1 Arterial spin labelling

In ASL, images are acquired with and without magnetic labelling of water in the

feeding vessels. The difference between these images is related to perfusion by the

model of Buxton et al [60]:

∆M =
2αM0 f (1− exp(−τ/T1b))

6000λePLD/T1b
(4.1)

where ∆M is the difference image; f is the perfusion in ml/100g/min; PLD (in

seconds) is the post-label delay at which the signal is measured; T1b (in seconds) is

the decay constant for longitudinal magnetisation of water in blood; τ (in seconds)

is the bolus temporal length; α is the labelling efficiency; and λ (in ml/g) is the

blood-tissue partition coefficient. All constants, where not otherwise stated, use the

recommended values given by Alsop et al [23]. The model above is for ASL using

pseudo-continuous labelling, but a similar model applies for pulsed labelling [60].

4.3.2 Theory and implementation

We use a hierarchical model in which spatial correlation is modelled by regions

containing voxels with similar values, to the extent supported by the data [3]. Re-

lated approaches using manually defined regions of interest and different statistical

models have been used in IVIM diffusion imaging [148]. Intra-region similarity is a

justifiable assumption due to the later use of a noninformative prior: if intra-region

similarity is not supported by the data, the fit will fall back to a broad and very weak

spatial correlation. This would not typically be the case, however, as intra-region

similarity is supported by the literature and perfusion statistics are often reported

on a per-region basis [150, 151]. Parameter inference makes use of this intra-region

correlation, resulting in large-scale, data-driven spatial smoothness. To define the

regions in this work, we use lobar parcellations automatically derived from T1 im-

ages [140], thresholded at per-voxel grey matter volume fraction greater than or
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equal to 0.8[90]. In principle, however, our method could use any parcellation, and

is not restricted to neuroimaging data.

We begin from the data likelihood for a voxel, index i, with ASL measurements

yi,: where N is a normal distribution, MV N is a multivariate normal, g( f ) is the

forward model of Equation 4.1, ✶ is a vector of ones of the same length as the

number of measurements, and ■ is the identity matrix of dimension equal to the

number of measurements:

p(yi,:| fi,σn) = ∏
j

N (yi, j;g( fi),σn) = MV N (yi,: −g( fi)✶,σ
2
n ■) (4.2)

As the noise standard deviation, σn, is unknown at this stage, we marginalise

over it: p(yi,:| fi) =
∫ ∞

0 p(yi,:| fi,σn)p(σn)dσn. We use a conjugate inverse gamma

prior, p(σn) = I G (σ2
n ;α,β ) with shape parameter α and scale parameter β , later

intentionally setting α,β → 0 to make the prior noninformative. Reparameterising

and combining these, where N I G is normal-inverse-gamma, we get the follow-

ing:

p(yi,:| fi) =
∫ ∞

0
N I G (yi,: −g( fi)✶,σ

2
n ■,α,β )dσ2

n (4.3)

The integral of a N I G distribution with respect to noise variance has a

known solution in the form of a multivariate t-distribution, here denoted tν with

ν degrees of freedom:

⇒ p(yi,:| fi) = t2α(yi,: −g( fi)✶,
β

α
) (4.4)

Next we introduce the hierarchical prior structure: we assume that each region

(throughout this work a lobe of the cortex) contains voxels with normally distributed

perfusion values. µ and σ are hyperparameters controlling this distribution, and are

unknown, so we again use a noninformative hyperprior to make them wholly data-

driven. We use a noninformative Jeffreys’ prior: p(µ,σ) = 1
σ3 . Applying Bayes’

theorem, the joint posterior distribution for a region containing N voxels is:
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p( f1:N ,µ,σ |y1:N,:) ∝
N

∏
i=1

{p(yi,:| fi)p( fi|µ,σ)} p(µ,σ) (4.5)

We use a Monte Carlo Markov Chain (MCMC) approach to perform inference

on the per-voxel perfusion, fi, as well as the per-region distribution hyperparame-

ters, µ and σ , using Gibbs sampling. This is initialised with least squares estimates,

and over 100,000 iterations (1,000 discarded for burn-in), yields robust estimates

on a timescale of minutes.

MCMC update equations for step k+1 are derived as follows:

1. Update the mean hyperparameter by randomly sampling from µk+1 ∼
p(µ|σ k,y) = N (∑ f k

i

N
, σ k

N
), the marginal posterior for the unknown mean of a

Gaussian distribution with N measurements [152].

2. Update the covariance hyperparameter by randomly sampling from σ k+1 ∼
σ | f k

1:N ,µ
k,y=I G (∑i( f k

i −µk+1)2,N−1), where I G is the inverse gamma

distribution, the marginal posterior for the unknown variance of a Gaussian

distribution [152].

3. For each voxel, generate a proposal voxelwise parameter, f ∗i , by sampling fi

in turn from N ( fi,w f 2
i ), where w is a proposal variance.

4. Update f k+1
i with this new value if r ∼U(0,1)<α( f ∗i , f i

i ), otherwise f k+1
i =

f k
i .

Proposal variance, w, is initialised at w = 0.5 for all regions. Periodically

these are tuned to ensure approximately 25% of samples are being accepted [148].

The acceptance probability, α , is given by the ratio of likelihoods, as is standard

in Metropolis-Hastings: α( f ∗, f 0) = p(y|µ,σ , f= f ∗)
p(y|µ,σ , f= f 0)

, where the proposal is f ∗ and the

previous value is f 0. That is, α is higher when the proposal f ∗ better matches the

observed data than f 0. The evaluation of α here uses our derivation of the joint

distribution in Equation 4.5, evaluated at the limit α,β → 0.

In this way, ADRIMO provides full posterior distributions for the per-voxel

perfusion, similarly to the inference approach of BASIL. To help analyse ADRIMO
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results and compare with methods such as TGV, we set ADRIMO’s per-voxel per-

fusion estimates equal to their expected values from these posterior estimates. This

is done by evaluating the average of the inferred f distribution, for each voxel.

4.3.3 Comparison methods

To assess ADRIMO, we compare with several other ASL spatial regularisation ap-

proaches: standard voxelwise fitting with no denoising, smoothing with a Gaussian

kernel, regularisation via inference under an explicit prior [99], and spatio-temporal

total generalised variation filtering [92]. These were chosen to provide a mix of the

most commonly used approaches (voxelwise fitting, Gaussian smoothing), and the

state of the art in both filtering methods (total generalised variation) and Bayesian

methods (BASIL). All comparison methods are described in more detail below.

Voxelwise fitting Voxelwise fitting attempts no denoising; it simply involves esti-

mation of perfusion values. To achieve this, we solve for f in the appropriate per-

fusion model (pulsed or continuous ASL, depending upon which type of labelling

was used during acquisition) [60]. Throughout this work, fitting was performed

using the open-source NiftyFit package [15]. Voxelwise fitting provides a simple

baseline against which to compare all methods: it is still common not to perform

spatial regularisation, and this is currently the recommended approach for standard

ASL experiments [23].

Gaussian smoothing Gaussian smoothing is conceptually the simplest approach to

spatial denoising, and is common in ASL processing pipelines. This consists of

smoothing with a Gaussian filter with standard deviation σ mm. Smoothing is per-

formed only within the masked region in which perfusion values are estimated, to

prevent blurring noisy voxels without significant perfusion signal into the estimates.

σ is a tuning parameter, and to some extent arbitrary. Here we first examine a range

of σ values to show ADRIMO out-performs Gaussian smoothing for any value of

σ . We subsequently use only σ = 1 mm to represent Gaussian smoothing, as this

has lowest absolute error and is closest to common practice [23]. As with voxelwise

fitting, Gaussian smoothed images were calculated using the NiftyFit package [15].

When voxels outside the grey matter mask were within the extent of the smoothing
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kernel, they were excluded, and the kernel was subsequently re-weighted to correct

for their exclusion. This prevents biasing of the smoothed values by partial volume

effects [76].

BASIL inference The popular ASL processing software, BASIL, uses a data-driven

method in which the extent of smoothing is estimated from the data, estimated

jointly with the perfusion values. Conceived of by Groves et al [99], we use the soft-

ware implementation in FSL’s oxford_asl [74]. This is a very effective technique in

multiple-delay ASL, where there is a wealth of information to be derived from mea-

surements of the full kinetic model [99, 74]. In single-delay ASL, however, there

is less information available over the full extent of the model, and consequently the

BASIL approach may be less suitable [90]. It is included here as the state of the

art for Bayesian regularisation without tuning parameters, although it is plausible

that methods with tuning parameters may out-perform it. We use default settings

for parameters such as label efficiency, partition coefficient, etc. In practice, at least

in this work, BASIL provides results comparable to or better than the other state of

the art method (TGV), albeit with a larger bias.

Spatio-temporal total generalised variation (TGV) filtering TGV is a recently

developed regularisation technique for single-delay data, which has demonstrated

the best performance of any regularisation approach in an extensive compari-

son [92]. We include this technique as a gold standard in filter-based regularisation,

and in single-delay ASL denoising generally. TGV regularisation for ASL requires

the use of three tuning parameters: α1/α0, s and λ .

The first parameter, α1/α0, is inherent to TGV regularisation, and controls

how regularisation behaviour varies between smooth and non-smooth parts of the

decomposed image. Essentially, this weights the balance between TV and TV 2

regularisations, both different variants of TV. Notably, TGV is fairly insensitive to

α1/α0, and here we follow Spann et al in setting α1/α0 = 1/
√

2 throughout.

s and λ are specific to TGV for ASL, and must be tuned on representative

data for optimal performance [92]. s controls the balance between regularisation of

label images and regularisation of difference images. λ provides an overall trade-
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off between data fidelity and regularisation, and in the ASL implementation is most

sensitive to noise level [92]. In this work, both these parameters are optimised for

experimental data and simulated data in a similar fashion to Spann et al, using the

single subject dataset with a large number of repeats as gold standard (Section 4.3.4)

and optimising on a smaller subset of this data to minimise mean absolute error

(MAE). A subset with 30 random repeats was used, to be comparable to the number

of repeats in the main dataset. This yielded s = 0.525 and λ = 3.8, which are

similarly to parameters used in the literature [92]. These values are used throughout

this work.

4.3.4 Validation for representative patterns of typical perfusion

4.3.4.1 Simulations

In order to validate our method for typical patterns and values of cerebral per-

fusion, we initially used simulations. Simulations were of the following types:

flat, where white matter perfusion was 20 ml/100g/min and grey matter perfusion

was 70 ml/100g/min; and normal, where white matter perfusion was sampled ran-

domly from a normal distribution with mean 20 ml/100g/min and standard deviation

5 ml/100g/min and grey matter perfusion was sampled randomly from a normal dis-

tribution with mean 70 ml/100g/min and standard deviation 20 ml/100g/min. These

were chosen to represent relative extremes of spatial correlation: in flat simulations

there is maximal spatial correlation as the underlying perfusion values are the same

throughout, whereas in normal simulations, spatial correlation exists only to the

slight extent that all perfusion values are sampled from the same physiologically-

plausible normal distribution. Both of these cases are based upon simulations from

previous denoising and regularisation publications in arterial spin labelling and dif-

fusion imaging [92, 153], and by covering the extremes of spatial correlation, the

results form a complete picture of how different regularisation methods perform.

Partial volume effects were included in all simulations, with each voxel contribut-

ing both white matter and grey matter perfusion, weighted by its corresponding

volume fraction – this is why the flat simulation does not simply show one uniform

value of perfusion throughout the brain.
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Simulations were based on high-quality ASL images taken using the same

readout as our main experimental dataset (Section 4.3.4.2), but with many more re-

peats (120 repeats, as opposed to the 30 used in the main dataset). The subject used

to provide these simulation basis scans was a healthy male 22-year-old volunteer.

The benefits of this approach are twofold. Firstly, we have representative and realis-

tic control images to use as the basis for simulations with imposed perfusion values.

Secondly, this gives a realistic estimate for the spatial distribution of noise magni-

tude: in ASL noise is well-approximated by white noise [99, 92, 23], but without

these data we would not know the magnitude of noise to impose across different

voxels.

Simulations used 40 difference images, with white noise added to each voxel

according to the noise magnitude estimated from the initial high-quality dataset.

On average the SNR of this noise (for a single measurement) was approximately

40%, relative to the ASL signal for f = 70 ml/100g/min in a purely grey matter

voxel. This varied spatially from as high as 10:1 to approximately 1:1 near the

edges of the brain. To compare methods, we denoised and estimated perfusion for

each simulation using each regularisation method. We examine the resulting fits for

bias and variance, which both contribute to the overall estimate error – that is, the

distance of an estimated value from the underlying true value. Ideally, bias should

be close to zero and the estimate error should come mostly from the fit variance,

so we first assess bias from the simulation results to verify that this is the case.

Subsequently, if a given method produces estimates with smaller error in simulation

fits, this is taken as evidence of its superiority.

4.3.4.2 Experimental validation

In addition to simulations of typical perfusion maps, we perform experimental vali-

dation using a large dataset (N=130) of preterm-born adolescents and age-matched

controls. First, we assess the different regularisation methods based on their test-

retest repeatability. Each subject’s ASL series is split in half, and then the test-retest

coefficient is calculated for that subject as the correlation between per-voxel values

in the first half and the second half of the data. This can serve as a proxy for the
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error in the absence of a ground truth, given (as we show in simulation results) there

is no increase in bias. If the test-retest repeatability is significantly increased, this

may be taken to demonstrate improved performance. This is analysed with repeated

measures ANOVA, extending a paired t-test to multiple methods and allowing for

post hoc paired t-test comparison between methods [139].

We make further use of the experimental data by testing how different fitting

methods affect the statistical power with which perfusion differences can be de-

tected between groups. It has been shown previously that differences in cerebral

perfusion exist between male and female subjects [154], so these differences can be

used to assess detection capabilities for each method. A method that detects these

known differences with higher statistical power is better – assuming it does not also

increase the false positive rate. We compare, for each method, the p value with

which significant differences between these groups are detected. We perform simi-

lar tests for differences between term-born and preterm-born subjects, where differ-

ences are less well-established but have previously been shown in this cohort [16].

As a control, we compare preterm subjects delivered by Caesarean section with

preterm subjects who had normal vaginal delivery, where no perfusion difference

is expected to be present. To show improved performance, a regularisation method

should increase the statistical power (decrease the p value) where differences truly

do exist between groups, without falsely detecting inter-group differences that do

not exist.

In this set of experiments we use ASL images from 130 19-year-old sub-

jects, 81 born extremely preterm (F:M=48:33, < 26 wks gestation) and 49 term-

born peers (F:M=31:18). Informed consent was obtained from all subjects. Im-

ages were acquired on a 3T Phillips Achieva with 2D EPI pseudo-continuous ASL

using 30 control-label pairs, PLD=1800ms+41ms/slice, τ = 1650 ms, voxel size

3 × 3 × 5 mm. We also acquired SIPD images and 3D T1-weighted volumes at

1 mm isotropic resolution for segmentation and parcellation. Analysis was re-

stricted to grey matter, masked by thresholding the segmentation at 0.8. We use

a pre-existing tool to derive lobar parcellations corresponding to the Neuromorpho-
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Figure 4.1: Examples of the experimental data, shown in an axial slice. From left to

right: T1-weighted structural image, lobar parcellation, proton density image,

perfusion-weighted image. The top row shows data from a term-born subject,

while the bottom row shows data from a preterm-born subject.

metrics atlas [140]. We separate the grey matter into parietal, temporal, fontal and

occipital lobes, dividing each of these lobes into left and right halves. Example data

are shown in Figure 4.1.

4.3.5 Validation in the presence of focal perfusion changes

A common pitfall for spatial regularisation methods is to smooth excessively, re-

sulting in the loss of fine detail in the data. This is particularly problematic when

there is a small region of focal perfusion change, which may be lost from the image

during regularisation. To assess the extent of this for different spatial regularisation

techniques, we used simulations and experimental data with highly focal perfusion

changes.

4.3.5.1 Simulations

We performed similar simulations to those discussed in Section 4.3.4, referring

to them as focal simulations. In focal simulations, the normal perfusion map

had focal regions of grey matter hypoperfusion (20 ml/100g/min) and hyperper-

fusion (120 ml/100g/min) imposed. To assess the effects of spatial regularisation

across different sizes of focal perfusion change, the focal regions were chosen to

be cuboids of length two voxels, four voxels and eight voxels. As with previous
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Gaussian
︷ ︸︸ ︷

Voxelwise 1mm 2mm 3mm TGV BASIL ADRIMO

Bias (%) 0.33 0.02 2.29 3.71 0.19 0.43 0.01

CoV (%) 20.9 18.7 10.4 8.51 7.53 3.01 0.590

MAE (ml/100g/min) 3.66 3.34 3.21 3.80 1.86 1.37 0.317

Table 4.1: Flat simulation: bias (as a percentage of the mean perfusion), coefficient of

variation (CoV = σ/µ) and mean absolute error (MAE) for each method.

simulations, we assess regularisation techniques based upon their error relative to

the ground truth values, where smaller error is preferable. We further examine how

well the focal regions were preserved, qualitatively, in the fitted images.

4.3.5.2 Experimental validation

Subsequently, we compared fitted perfusion values and regularisation performance

in a 73-year-old female subject with a large arachnoid cyst, which leads to a large fo-

cal hypointensity in both the T1-weighted image and the perfusion values. The ASL

data from this subject were used to estimate perfusion, where ADRIMO-generated

perfusion maps are compared with maps from other approaches. Images were ac-

quired on a Siemens Trio 3T with Q2TIPS pulsed ASL using seven control-label

pairs, with PLD = 1200 ms and τ = 800 ms, 3D-GRASE read-out, voxel size

1.875× 1.875× 4 mm. A proton density image was acquired for calibration, with

T R = 5000 ms, and the total acquisition time was five minutes.

4.4 Results

4.4.1 Typical perfusion

4.4.1.1 Simulation results

Simulation ground truths and fits are shown in the top row of Figure 4.2 for flat

simulations and the top row of Figure 4.3 for normal simulations. Maps of absolute

error between ground truth and fitted value are shown in the bottom row of each fig-

ure. Finally, Tables 4.1 and 4.2 show mean absolute error, error bias, and coefficient

of variation for the errors.

Bias in the flat simulation is negligibly small in almost all methods, becoming
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(a) Ground truth and estimated perfusion for several regularisation methods. Top row: ex-

ample slice, bottom row: distribution of grey matter perfusion estimates.

(b) Error between estimated perfusion and ground truth. Top row: example slice showing

absolute error, bottom row: distribution of error over grey matter.

Figure 4.2: Ground truth, fitted values and errors for the flat simulation. Gaussian smooth-

ing is shown for σ = 2mm.

appreciable only in Gaussian smoothing with unrealistically large kernel widths,

where it can reach levels (3.7%, p < 1×10−10) that might have a meaningful effect

on data analysis. Notably, Gaussian smoothing is very sensitive to the kernel width:

when using σ = 1mm, the bias falls to non-detectable levels (0.02%, p = 0.94).

Otherwise, the only method to increase bias beyond voxelwise fitting is BASIL,

where bias is 0.4% with p =< 1×10−10. ADRIMO produces the smallest bias of

any detectable method, at 0.01%, p = 0.025. Bias in the normal simulation shows

a similar pattern, although here any amount of Gaussian smoothing increases bias.

Again, Gaussian smoothing with extremely large kernel widths has an appreciable

bias (3.86%, p < 1×10−10), but all other methods produce negligible bias and only

BASIL significantly increases bias beyond voxelwise fitting. Again, ADRIMO is

one of the methods presenting least bias of those with any detectable bias, and is far
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Gaussian
︷ ︸︸ ︷

Voxelwise 1mm 2mm 3mm TGV BASIL ADRIMO

Bias (%) 0.02 0.286 2.54 3.86 0.03 0.326 0.03

CoV (%) 17.5 15.7 9.38 8.49 8.65 3.50 3.23

MAE (ml/100g/min) 3.59 3.27 3.36 3.92 2.05 1.63 1.30

Table 4.2: Normal simulation: bias (as a percentage of the mean perfusion), coefficient of

variation (CoV = σ/µ) and mean absolute error (MAE) for each method.

below the level of practical significance (0.03%, p < 1×10−10).

(a) Ground truth and estimated perfusion for several regularisation methods. Top row: ex-

ample slice, bottom row: distribution of grey matter perfusion estimates.

(b) Error between estimated perfusion and ground truth. Top row: example slice showing

absolute error, bottom row: distribution of error over grey matter.

Figure 4.3: Ground truth, fitted values and errors for the normal simulation. Gaussian

smoothing is shown for σ = 2mm.

ADRIMO produces the lowest mean absolute error in both flat and normal

simulations. This is most striking in the flat simulation, where ADRIMO’s shrink-

age property allows accurate detection of the near-constant perfusion map, leading

to a mean absolute error of 0.32ml/100g/min compared with 1.37ml/100g/min for

BASIL. ADRIMO also achieves the best performance in the normal simulation, al-
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though the margin is smaller here: 1.30ml/100g/min versus 1.63ml/100g/min. The

perfusion and error maps for the flat simulation, shown in Figure 4.2, illustrate the

difference in methods’ performance. Denoising methods lead to smoother, more

accurate perfusion estimates in all cases. Absolute error is made smaller by all

methods, and is reduced most visibly in the ADRIMO image. The more advanced

denoising methods (TGV, BASIL, ADRIMO) do particularly well at ridding the er-

ror map of extreme errors, which corresponds to their lower coefficient of variation

and narrower tails. These points are also true of the maps from the normal simu-

lation, shown in Figure 4.3, with ADRIMO creating the perfusion map closest to

ground truth and reducing errors.

4.4.1.2 Experimental results

Figure 4.4 shows an axial slice from an example term-born subject, with perfusion

estimates in the top row and absolute test-retest differences in the bottom row for

each regularisation method. Consistently with the simulations, the test-retest dif-

ferences are visibly smaller for the ADRIMO method than for others, while the

estimated values show no sign of a bias in any method. Moreover, the test-retest

differences for ADRIMO show less of a recognisable spatial structure than seen

with the other approaches, suggesting that more of what is removed is noise rather

than fine image detail.

Whole grey matter test-retest coefficients and per-subject mean perfusion val-

ues are shown in Figure 4.5, along with a table of statistical comparisons between

methods using repeated measures ANOVA and post hoc testing with adjustment of

p values to correct for multiple comparisons. These show the same pattern as the

example slices: test-retest coefficients are significantly higher for ADRIMO than

any other method (p < 0.05), with BASIL being closest and voxelwise fitting per-

forming worst.

It should be noted that although Gaussian smoothing with a large kernel leads

to a high test-retest coefficient (higher even than TGV or BASIL), this is simply due

to the large bias introduced by smoothing away all spatial detail, and as shown in

simulations such large kernels produce poor results. Unlike large-kernel Gaussian
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(a) Perfusion estimates. Top row: example slice, bottom row: distribution of estimated

perfusion in grey matter.

(b) Test-retest errors. Top row: absolute error shown in an example slice, bottom row:

distribution of error in grey matter.

Figure 4.4: Example perfusion estimates and test-retest errors in experimental data.

smoothing, ADRIMO showed minimal bias in simulations, and ADRIMO’s marked

increase in test-retest correlation is compelling evidence of reduced estimate error,

and hence of more precise perfusion estimates.

Figure 4.6 shows perfusion estimates for the following groups: term vs

preterm, male vs female, Caesarean vs vaginal delivery. Each boxplot shows dis-

tributions of whole grey matter perfusion for each method, as well as the p value

from post hoc tests for significant differences between the groups after a three-way

ANOVA, controlling for covariates in each case. For example, when comparing

term/preterm, we control for male/female and Caesarean/vaginal delivery. Table 4.3

summarises group statistics, including the mean perfusion and confidence interval

for each group, as well as the p values for post hoc significant inter-group differ-
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(a) Test-retest coefficients (left) and grey matter perfusion distributions (right) for all sub-

jects.

Voxelwise Gaussian TGV BASIL ADRIMO

Test-Retest µ 0.57 0.59 0.64 0.67 0.70

Test-Retest σ 0.19 0.19 0.18 0.12 0.14

p < 1×10−6 < 1×10−6 5.14×10−4 0.0314 –

(b) Test-retest statistics for each method. µ and σare the mean and standard deviation

of the test-retest coefficients, while p is calculated by post hoc testing for significant

differences compared to ADRIMO, adjusted for multiple comparisons using Holm-

Bonferroni correction.

Figure 4.5: Results of test-retest experiments. Top row: distributions of test-retest correla-

tion and estimated perfusion, bottom row: test-retest statistics and comparison

against ADRIMO.

ences. We note that this is not a repeated measures ANOVA, unlike Figure 4.5, as

we are no longer testing for differences between between different methods. In-

stead, we are showing the ANOVA result an imaging study would get under each

processing method.

Broadly speaking, regularisation methods improve the statistical power to de-

tect real differences – regularised results have smaller p values than the voxelwise

case, apart from in Gaussian smoothing. With ADRIMO, however, the p value for

real differences is an order of magnitude smaller when a difference exists. For ex-

ample, we can compare male versus female subjects. Sex differences in perfusion

as measured by ASL are well-established in the literature [155], and in this work

all methods agree that female subjects have higher perfusion than males. However,

the statistical power with which this is detected is greater when using ADRIMO;

p = 2.0×10−5 for ADRIMO, whereas p = 2.8×10−3 without regularisation and

p = 7.8×10−4 for BASIL.
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(a) Term-born (left) vs preterm-born (right) for each method.

(b) Male (left) vs female (right) for each method.

(c) Caesarean (left) vs vaginal delivery (right) in preterm subjects for each method.

Figure 4.6: Grey matter perfusion estimates for different groups, and p value for post hoc

tests for statistical difference between them, compared across methods. p val-

ues here are stated before adjustment for multiple comparisons – for adjusted

versions, see Table 4.3.
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Similarly, when considering term-born versus preterm-born subjects, all meth-

ods agree that term-born subjects have higher perfusion than preterm-born sub-

jects before adjustment for multiple comparisons (p = 1.1×10−3 for ADRIMO,

p = 0.036 for voxelwise fitting, p = 0.022 for BASIL and p = 0.030 for TGV).

All methods agree that term-born subjects have higher perfusion than preterm-born

subjects, but ADRIMO again shows this with greater power, similarly to the com-

parison of male versus female subjects. The effect of preterm birth on perfusion

is much less established in the literature than sex differences in perfusion, but our

finding does seem to agree with what previous work there is in this dataset and

others [156, 16]. Assuming that this effect is present in the data, it is found with

higher power by ADRIMO. Moreover, the increase in statistical power seems to be

achieved without compromising the false positive rate: when comparing preterm-

born subjects who were born via Caesarean section with those who were delivered

vaginally, all methods agree there is no significant difference (p ∼ 0.3).

4.4.2 Focal perfusion changes

4.4.2.1 Simulations

For focal simulations, the ground truth and fitted values are shown in the top row

of Figure 4.7, and maps of absolute error by method are shown in the bottom

row. In the focal simulations, as discussed in Section 4.3.5, we imposed sev-

eral focal regions on the normal perfusion map: focal regions have 2 × 2 × 2,

4× 4× 4 and 8× 8× 8 voxels, both hypoperfused (20 ml/100g/min) and hyper-

perfused (120 ml/100g/min). These regions are indicated with arrows in Figure 4.7.

Regularisation methods again produce smoother images with little sign of overall

bias, and reduced error variance relative to voxelwise fitting in each case, as in the

original simulations. ADRIMO does not smooth away the focal regions, which

remain visible in Figure 4.7, but it does exhibit a tendency to drag these regions

towards the average perfusion value, particularly in the case of the smaller regions.

This tendency to drag focal regions of hypo- or hyperperfusion towards the

average perfusion value is quantified in Table 4.4. BASIL, which also uses a prior

(and hence involves some degree of statistical shrinkage), is nonetheless less prone
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Voxelwise BASIL

µ σ p ∆ f µ σ p ∆ f

Preterm 48.4 7.80
0.0360 2.90±3.21

48.2 7.73
0.0222 3.25±3.07

Term 51.3 7.44 51.5 7.01

Male 46.5 5.69
2.82×10−3 4.74±2.70

46.3 5.28
7.80×10−4 5.06±2.59

Female 51.2 8.40 51.4 8.25

Caesarean 49.5 10.9
0.36 1.38±6.34

49.2 8.21
0.33 1.50±5.03

Vaginal 48.1 7.49 47.7 8.04

TGV ADRIMO

µ σ p ∆ f µ σ p ∆ f

Preterm 49.2 7.24
0.0301 2.95±3.02

46.7 8.95
1.08×10−3 6.58±4.15

Term 52.1 7.07 53.3 10.3

Male 47.5 5.47
1.80×10−3 4.60±2.54

44.2 7.31
1.95×10−5 7.95±3.35

Female 52.1 7.78 52.2 10.2

Caesarean 50.2 9.05
0.38 1.21±5.37

47.7 7.15
0.30 1.38±4.75

Vaginal 49.0 7.27 46.4 9.42

Table 4.3: Perfusion statistics by group, compared under different methods: preterm-born

versus term-born, male versus female, Caesarean versus vaginal delivery. µ

and σ are perfusion mean and standard deviation (both in ml/100g/min), p is

for significant differences between groups and ∆ f is the perfusion difference

with 95% confidence intervals (also in ml/100g/min). p values and confidence

intervals are stated after Holm-Bonferroni adjustment for multiple comparisons.

to drag focal regions towards the mean perfusion condition. The difference be-

tween methods is most dramatic for extremely small focal regions, in both hy-

operfused and hyperperfused cases. For the small hypoperfused region, for ex-

ample, ADRIMO overestimates perfusion as 38.2 ml/100g/min, whereas the true

value is significantly lower at 18.6 ml/100g/min. TGV and BASIL also overesti-

mate perfusion, but to a smaller degree (25.6 ml/100g/min and 26.2 ml/100g/min

respectively). A similar pattern of overestimation exists for hyperperfusion. In

“large” regions, ADRIMO performs more similarly to BASIL and other methods,

for example estimating 107.5 ml/100g/min on the large hyperperfusion, compared

to 115.5 ml/100g/min ground truth and 113.3 ml/100g/min for BASIL.

Focal changes would be expected to be most challenging situation for AD-

RIMO: when there are abrupt voxel-scale changes in the data, these may be

less well-modelled with ADRIMO than with TGV (which explicitly models step
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Ground Truth Voxelwise Gaussian TGV BASIL ADRIMO

µ σ µ σ µ σ µ σ µ σ µ σ

Small Hypo (ml/100g/min) 9.6 0.77 18.6 14.9 37.9 11.9 26.2 11.5 25.6 11.7 38.2 8.0

Medium Hypo (ml/100g/min) 9.8 0.50 6.5 15.5 16.7 18.3 18.8 11.6 25.7 10.9 34.9 12.2

Large Hypo (ml/100g/min) 9.7 0.66 8.0 26.9 17.4 20.4 11.1 12.5 16.7 10.4 28.6 12.8

Small Hyper (ml/100g/min) 113.8 7.2 120.4 23.8 130.2 18.3 115.5 14.2 100.6 10.6 87.4 2.0

Medium Hyper (ml/100g/min) 116.5 6.3 142.2 26.5 166.8 25.9 131.1 22.6 131.6 18.1 98.1 9.0

Large Hyper (ml/100g/min) 115.5 7.9 116.0 29.0 135.5 27.0 120.6 23.6 113.3 19.6 107.5 11.9

Table 4.4: Focal simulation: mean perfusion within ROI (and standard deviation) for each

method.

changes and ramp changes in intensity) or BASIL (which, like ADRIMO, is data-

driven – but also has an explicit model that weights parameter smoothness at the

voxel level rather than the regional level). These results show a need for caution

when very small focal changes in perfusion might be present, although we note that

changes on this scale would in general be difficult to reliably detect using ASL.

4.4.2.2 Experimental results

Figure 4.8 shows example axial slices from the subject with focal hypoperfusion.

Although there is no way to ascertain the ground truth, and the data are too scarce

for the test-retest difference to be meaningful, it is clear that ADRIMO succeeds in

detecting the focal perfusion difference, similarly to other regularisation methods.

The estimated perfusion maps are broadly similar, with a mean perfusion of approx-

imately 25 ml/100g/min and all methods preserving the hypoperfused region.

4.5 Discussion

We have presented a new technique for spatial regularisation of ASL images, and

shown its superior performance in typical perfusion maps using both simulations

and test-retest experiments. Compared with state of the art regularisation techniques

such as TGV, ADRIMO produces more accurate results in simulations and has

higher test-retest repeatability. Moreover, we have shown ADRIMO significantly

improves the statistical power to detect perfusion differences between groups: us-

ing data from a cohort of 130 preterm-born adolescents and age-matched controls,

ADRIMO is more able to detect perfusion differences between groups where they
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Figure 4.7: Ground truth and estimated values for the focal simulation. Gaussian smooth-

ing is shown for σ = 2mm. Focal regions are indicated with arrows in the

ground truth image and then zoomed in on the lower rows.
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(a) T1w image

(b) Voxelwise (c) Gaussian

(d) TGV (e) BASIL (f) ADRIMO

Figure 4.8: T1-weighted image and example fits from a subject with focal hypoperfusion,

for all methods. The top row shows an example axial slice, while the bottom

row shows the distribution of perfusion values within the mask.
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are present, while giving comparable (negative) results where differences are not

present. Finally, we have shown that ADRIMO copes with highly focal changes in

perfusion – both in simulations with challenging small focal hypo- or hyperperfu-

sion, and in experimental data with a highly focal arachnoid cyst.

4.5.1 Increased accuracy of perfusion estimates in representa-

tive simulations

ADRIMO offers the best fit accuracy in simulations with both flat and normal per-

fusion values. In the flat simulation (see Table 4.1), previously used in the liter-

ature for comparison of regularisation techniques with TGV [92], ADRIMO out-

performs BASIL and TGV, with a mean absolute error of 0.317 ml/100g/min (AD-

RIMO), compared with 1.86 ml/100g/min (TGV) and 1.37 ml/100g/min (BASIL).

This clear improvement in performance stems from the underlying statistical model:

ADRIMO is more able to detect these non-varying perfusion values because they

are well modelled by Gaussians in a region. In the less spatially correlated normal

simulation (see Table 4.2), ADRIMO out-performs BASIL and TGV, with a mean

absolute error of 1.30 ml/100g/min (ADRIMO) compared with 1.63 ml/100g/min

(BASIL) and 2.02 ml/100g/min (TGV). This simulation again shows significant per-

formance improvements for ADRIMO. This is likely because the reference methods

explicitly weight perfusion estimates towards voxel-scale (rather than region-scale)

similarity, which is not present in this simulation. Together, these simulations show

ADRIMO is better able to handle spatial similarity and also better able to model its

comparative absence, which is reflected in the improved estimate accuracy in each

case.

4.5.2 Significant experimental evidence of improved accuracy in

typical perfusion maps

Test-retest correlations support the idea that ADRIMO offers improved fit accuracy;

assuming no significant increase in bias (and none is predicted by simulations) then

more accurate fits should lead to increased test-retest correlation. ADRIMO fitting

results in greater and more consistent test-retest correlation than other regularisation
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techniques, improving on voxelwise fitting by 22.8%, TGV by 9.4% and BASIL by

4.5%, with p < 0.05 for all. This corresponds to smaller test-retest differences:

in Figure 4.4, example slices show how ADRIMO gives visibly smaller test-retest

errors over the whole image. ADRIMO also leaves less spatial information in the

error map, as seen by the more constant intensity of the test-retest difference across

the slice: more of what is smoothed is noise, rather than fine-scale information.

The improvement in fit accuracy has a striking effect when the values from dif-

ferent methods are used to test for perfusion differences between groups. ADRIMO-

processed results are more statistically powerful for the cases where perfusion dif-

ferences are believed to exist: in male versus female subjects and term-born versus

preterm-born subjects, the p value is reduced by orders of magnitude (see Figure 4.6

and Table 4.3). This directly corresponds to statistical power, and hence needing a

smaller number of subjects to detect a difference. We argue that this is achieved

without increasing the false positive rate, but rather by improving the fit accuracy:

as can be seen in the case of subjects born via Caeasarean section versus vaginal

delivery, ADRIMO-processed results agree with other methods that there is no dif-

ference between subjects. Sample size calculations illustrate how significant an

improvement in statistical power can be: based on the statistics in Table 4.3, a

male/female perfusion difference can be detected (p < 0.05) with 19 subjects us-

ing ADRIMO and 24 subjects using the next-best method (BASIL). Similarly, for

the smaller preterm-born/term-born difference, ADRIMO requires 40 subjects and

BASIL requires 58 subjects on average.

4.5.3 Sustained performance in the presence of focal perfusion

changes

Simulations show that ADRIMO copes tolerably with preserving the focal hypo-

and hyperintensities: the focal regions – although smoothed to a greater degree than

by other methods – remain clear in the image, as shown in Figure 4.7. Very small

focal changes on the scale of a 1–2 voxel radius are smoothed towards the region

average, but just about remain distinguishable from their surroundings. This repre-

sents an extremely challenging example: focal changes with a larger spatial extent
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are more realistically detectable with ASL (small focal changes would be difficult to

differentiate from artifact in ASL), and these spatially larger changes are preserved

with less smoothing and are clearly distinguishable from the baseline perfusion for

both hyperperfusion and hypoperfusion. Focal changes of interest in ASL studies,

for example in the study of dementia, would typically be comparable to these large

regions if not even larger [150, 151], and hence ADRIMO would tolerate them well

based on these simulations. Perhaps more importantly, experimental evidence for

focal hypo- and hyperperfusion shows ADRIMO performs similarly to TGV and

BASIL regularisation, preserving the focal difference while smoothing the image.

This confirms that, even in the presence of challenging and highly focal perfusion

changes, ADRIMO is able to preserve spatial detail, although this is an area of

weakness compared to other methods.

4.5.4 Limitations and future work

One key limitation of our work, so far, is that we do not model partial volume

effects within the signal model, instead relying on a grey matter threshold to min-

imise them. In practice this is a common approach, especially for single-delay

ASL, and should not significantly limit our method’s applicability [23]. Moreover,

we do model partial volume effects within our simulations, which still show an im-

provement in performance from our method, without significant deterioration from

this unmodelled factor. Nevertheless, in future work we hope to implement partial

volume modelling within our method, which might work by incorporating volume

fractions into the forward model, either directly [91] or by exploiting spatial cor-

relation to simultaneously improve the resulting partial volume and perfusion esti-

mates [75]. Indeed, it should be possible to directly implement ADRIMO within

the spatial regularisation framework that enables simultaneous partial volume esti-

mation in BASIL [99]: in the Gaussian process’s covariance matrix, the parameter

variance should be included as a per-region parameter to be inferred, rather than

modelled by a noninformative hyperprior. This would involve substantial work on

tractable implementation, however, and we argue it is out of scope for the work as

presented here.
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In the future, we also intend to explore how statistical models with adaptive

complexity might further improve the performance of ADRIMO in regions with

heterogeneous perfusion patterns, as in our focal simulations in this work. For ex-

ample, using a mixture of Gaussians and automatic relevance detection [74], one

could explicitly model regions with focal hypoperfusion, hence obtaining higher

estimate accuracy. Another promising avenue of research would be to incorporate

a Gaussian process or other more fine-scale smoothing prior into the model, poten-

tially combining the benefits of ADRIMO with existing regularisation techniques.

(As discussed above, this be achieved through integrating ADRIMO assumptions

within the prior structure used in BASIL). Finally, it might be advisable to model

spatially-varying noise, allowing some degree of data-driven noisemap estimation

in a similar fashion to popular diffusion imaging denoising methods [153], or even

incorporating noisemap estimates based on coil sensitivity measurements [74].

4.5.5 Conclusion

ADRIMO is a novel Bayesian approach to spatial regularisation of ASL images,

exploiting anatomical information from structural images to improve the quality of

perfusion estimates in single inflow time data. Entirely data-driven, it eliminates

the need for tuning parameters as are used in most existing methods. It outperforms

other methods in simulations (as measured by absolute error) and experiments (as

measured by test-retest coefficients), and can be seen in simulations and experi-

ments to preserve regions with focal perfusion changes. This work shows that AD-

RIMO significantly improves the quality of perfusion estimation using ASL, and

increase the statistical power of ASL-based experiments. This could enable more

reliable detection of perfusion differences using fewer subjects, and would be in-

valuable for ASL in research and the clinic.



Chapter 5

Deep convolutional filtering for

spatio-temporal denoising and

artifact removal

This chapter presents work on the problem of artifacts in ASL images, showing

how doing artifact filtering and denoising jointly may yield superior results to doing

these as separate processing steps. This chapter is based on the original publication

in which this work first appeared [1].

5.1 Introduction

As discussed at length in Chapter 2, ASL suffers from the twin problems of having

low signal-to-noise ratio (SNR) and being prone to artifacts from patient motion,

RF coil instability and several other sources. Typically, to address these problems,

denoising and artifact filtering are used. Denoising uses statistical properties of the

ASL signal to improve the effective SNR, for example by modelling the signal using

total variation priors, a wavelet basis, or anatomy-derived spatial correlation [92, 3].

Denoising methods tend to assume Gaussian noise, and are not usually robust to

non-Gaussian artifacts, for example due to patient motion or hardware instability.

Artifact filtering methods, conversely, remove or down-weight parts of the ASL sig-

nal that have severe artifacts, allowing subsequent processing to assume Gaussian

noise [103, 100, 107, 106].



5.2. Methods 118

Denoising and artifact removal are usually considered in isolation from one

another, but are overlapping problems: noise is often neither strictly Gaussian nor

spatially homogeneous, and artifact filtering often results in the rejection of entire

image volumes when only a fraction of the image is thoroughly corrupted. In this

work, we develop a deep convolutional neural network (CNN) [110] for simultane-

ous denoising and artifact filtering, making full use of the available data. Inspired

by cutting-edge developments in computer vision, we create a novel deep learning

architecture that can relate noisy, artifact-corrupted ASL images to the true under-

lying perfusion. This architecture uses joint convolutional filtering [157] in order to

efficiently extract spatio-temporal information from the ASL signal, allowing our

method to distinguish artifact from noise. We present results from our method in

ASL data from 15 healthy volunteers, showing that our method improves on the

state of the art for both artifact filtering and denoising, increasing the peak SNR

by up to 50%. These promising initial results show that deep convolutional joint

filtering holds great promise for ASL processing, and suggest our approach might

be useful both for improving individual subjects’ images and for increasing the sta-

tistical power of neuroimaging studies.

5.2 Methods

5.2.1 Arterial spin labelling

We use the Buxton kinetic model (described in Chapter 2) to relate the underlying

perfusion parameters to the measured ASL signal. In this work, we use an ASL

dataset from 35 healthy 19-year-old volunteers (F/M=17/18). Images were acquired

on a 3T Phillips Achieva with 2D EPI pseudo-continuous ASL using 30 control-

label pairs, PLD=1800ms+41ms/slice, τ = 1650ms, 3×3×5mm. We also acquired

M0 images and 3D T1-weighted volumes at 1mm isotropic resolution. All ASL data

were motion corrected via rigid registration before being used – note, however, that

motion correction often does not fully compensate for subject motion, and this is

one of the artifacts that should ideally be filtered when estimating the true perfusion.
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5.2.2 Denoising and artifact removal in natural images and

medical images

Denoising and artifact removal are long-standing problems in computer vision, dat-

ing back to the early days of image processing [143]. For decades, the main ap-

proaches to these problems used explicit image prior models to regularise the in-

verse problem of estimating an original image after corruption. In recent years

these problems have, like many other problems in computer vision, seen radical

progress by using discriminative approaches based on convolutional neural net-

works (CNNs) [110]. Here we discuss these recent advances, focusing on CNN

architecture and results in natural images.

Much work on image denoising focuses on the case of additive white Gaus-

sian noise (AWGN), due to its being a commonplace property of noise in many

practical settings [143]. Early work on AWGN denoising focused on formulating

explicit image priors, subsequently using these to regularise the inverse problem

of estimating the original image. These were based on sparsity in some image ba-

sis (e.g. wavelets, total variation), non-local self-similarity, or some model of the

image content variation (e.g. Markov Random Fields, Gaussian processes) [143].

These have all been used extensively in medical image denoising as well as natural

image denoising, and typically they can easily be adapted for the problem of blind

image denoising, where noise magnitude is unknown ahead of time. This is done

by marginalising over (or estimating) the appropriate noise parameter, which in the

case of AWGN is simply the noise variance.

Attempts to learn discriminative models of image content offered the promise

of richer, data-driven image models. As machine learning in general moved towards

neural networks [110], it was natural to use these to learn such a discriminative

model. The work of Zhang et al was a significant advance in this direction, using a

CNN to learn blind AWGN denoising and demonstrating significant improvements

relative to the state of the art at the time [143]. This work used an architecture

stacking several identically sized 3× 3 convolutional layers, batch normalisation

after each convolution, and residual linear unit (ReLU) nonlinearity layers after
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each batch normalisation. This architectural design is fairly “standard”, to the extent

standards exist in this new and rapidly developing field, and was heavily inspired

by the work of He et al [158]. Another design feature was the use of a residual

connection; this had already shown notable success in training deep networks, and

was a natural fit to the problem of AWGN denoising, where the noise itself may be

seen as an additive residual on the uncorrupted image.

Subsequent work has achieved its largest improvements primarily through

careful processing or augmentation of the training data (hence improving gener-

alisation), with the benefits from subsequent architectural changes being relatively

small [159]. One notable architectural development was that of using shallow, wider

networks to achieve similar or even superior results – seemingly in disagreement

with CNN design principles for other problems such as image classification [160].

Another novel subsequent direction of research was to use related methods in dif-

ferent applications – for instance burst denoising and video denoising, where there

are multiple noisy images to be used [161]. In theory this could allow a higher qual-

ity reconstruction, but carries challenges related to any non-stationarity between the

images.

Related to this question of stationarity between images in burst denoising and

video denoising, artifact removal (as opposed to denoising) has commonly been as-

sociated with anomaly identification [106, 103]. Rather than modelling the noise

process as stationary, and the noisy image as a sample from the noise process ap-

plied to the ground truth image, artifacts are occasional dramatic changes in appar-

ent image content. Artifacts often have no clearly defined model, and hence are

particularly amenable to machine learning approaches [110]. Excitingly, CNN de-

noising approaches like those discussed above have shown a promising capability to

learn robustness to artifacts, without the need for a separate step for anomaly iden-

tification [143]. In general, the ability to learn invariance to nuisance features that

are hard to explicitly define is a recognised advantage of rich, automatically learned

discriminative models such as CNNs [110]. In our approach, outlined below, we

take advantage of this property. We use a CNN primarily designed for denoising,
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similar to [143] and [160], ensuring that it learns robustness to relevant artifacts in

our problem.

As set out above, CNNs are a well-established means of processing images

for a variety of tasks including denoising [110, 143]. Application of deep learning

based denoising methods to MR imaging (particularly ASL) remains in its infancy,

but has already achieved several promising results. Here, we focus on pixel-to-pixel

denoising networks: those which take input images and produce a higher quality

output image. We also focus our review on methods that existed prior to the work in

this chapter was conducted. Subsequent developments are discussed in Section 5.4.

Outside ASL, much of the initial work on applying deep learning to medical

imaging focused on classic computer vision tasks such as segmentation or regis-

tration [162]. Aside from this, several authors used deep learning approaches for

denoising and artifact removal in low-dose CT reconstruction – with architectures

ranging from an encoder-decoder approach [163] to generative adversarial networks

(GANs) [164]. There is as yet no clear consensus on which approach is best, with

comparisons being made (if at all) on different data under different conditions. Ar-

guably more relevant to work in ASL, Benou et al used an ensemble of autoencoders

for denoising of DCE-MRI, with evidence of improvement over traditional meth-

ods [165]. Their approach was quite different to the rest of the literature, which has

mostly focused on CNNs. Benou et al focused on fully-connected (rather than con-

volutional) autoencoders, and trained a classifier to route a given kinetic curve to the

most appropriate autoencoder in an ensemble trained across their parameter space.

Finally, another exciting area of application was the application of CNNs to image

quality transfer in diffusion MRI by Tanno et al [166], where variational dropout

was used in a shallow convolutional architecture for simultaneous super-resolution

and quality enhancement.

Within ASL, Gong et al did early work on a deep learning method to fuse

information across ASL and other contrasts for patch-based denoising, showing

proof of concept results with dramatic SNR improvements [167], but their tech-

nique was never developed further or published in full. Kim et al applied deep
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learning based denoising to Hadamard-encoded ASL, showing significant improve-

ments in image quality although not comparing with any other method [96]. Kim

et al used a relatively shallow two-pathway network in an attempt to encourage the

extraction of multi-scale information – one pathway focused on higher-level global

information, one pathway focused on low-level information. It is perhaps surpris-

ing that this was necessary, given the success of single-pathway architectures for

denoising in the computer vision literature [143]. Part of the reason may be the

great benefit to ASL processing of spatio-temporal models: it is easier to distin-

guish artifact from perfusion when one is aware of whether a particular part of the

signal was transient or permanent [92]. Processing a sequence of several 3D images

rapidly becomes computationally expensive, however, and although there is work

on recurrent-convolutional networks in the literature, they are mostly for 2D images

and are technically challenging even then [161].

5.2.3 Deep convolutional joint filtering for ASL

ASL
mean

ASL
variance

Filtered
output

Conv 3x3x3, 64 kernels
Batch Norm + ReLU Conv 3x3x3, 1 kernel Skip

connection
Input

Figure 5.1: Architecture diagram for our deep convolutional joint filter network. Skip con-

nections at the end of first and second stages improve convergence. In the case

of the mean-only filter, the ASL variance branch is not used.

In order to provide some temporal information in our network, we decided on

a simpler and computationally cheaper approach: we explicitly feed in temporal

variance information so the network has two inputs: the mean ASL signal, and

the ASL signal variance over time. The naive approach to using spatio-temporal

information in this way would be to feed the signal mean and variance maps into

the same CNN, similarly to colour channels in a natural image. However, initial

testing showed poor performance, as the network was unable to translate voxel-

level features into meaningful cross-channel information, and produced denoised

images very similar to those from using only the mean ASL signal image.
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Our approach to solve this problem is a joint convolutional filter architecture,

inspired by image processing approaches to integrating RGB cameras and depth

sensors [157]. In such sensor fusion problems, simply providing inputs as different

channels of an image is also ineffective, likely due to the dramatically different do-

main inhabited by RGB images and depthmaps [157]. We reasoned that there may

be a similar discrepancy between temporal variation and ASL signal mean images,

which might benefit from a similar approach. In our architecture, information is

extracted and processed in parallel from the mean ASL image and the ASL tem-

poral variance. These images are combined at a later stage in the network, with

several more layers used to extract meaningful features from their combination –

again, inspired by the literature on multi-modality image fusion, in which similar

architectures are established and successful [157].

We settled on a relatively shallow number of layers (the network is essentially

six layers deep) as performance seemed to plateau, which is actually consistent

with state of the art results in natural image denoising networks [160]. This is

also beneficial for computational cost, particularly during training; indeed, in other

image fusion techniques, shallow networks are also used [157]. Skip connections

in the parallel stages improve network convergence and robustness [158], as well

as transferring global information in the learning process [157]. We also use a skip

connection from the mean ASL image to the output for the same purpose. We avoid

using a skip connection from the temporal variance, as this data is much further from

the desired output than the ASL mean is, and initial experiments showed negative

effects on convergence and performance.

To train our models, we first identified artifact-corrupted volumes using the

filtering method of Tan et al [103]. We generated gold standard high-quality perfu-

sion maps by removing these outlying volumes and using all of the remaining data

to fit perfusion according to literature recommendations [23]. These gold standard

images were used as ground truth. The inputs to our network were derived by taking

10 random volumes from the ASL series, including 1–3 artifact-corrupted volumes

per subject to train the network to correct for artifacts in addition to denoising. This



5.2. Methods 124

selection of volumes was repeated 10 times for each subject in the training set. The

loss function used was mean squared error within the brain mask.

We implemented our CNNs in Keras, using the Adam optimiser with learning

rate 0.01 with 20 subjects for training and 15 subjects for validation. As previ-

ously discussed, each training subject had 10 different random subsamples of its

original data used, yielding a total training pool of 200 images derived from the

original 20. The learning rate was set empirically by choosing a rate low enough

to converge but high enough to converge in reasonable time; learning rate optimisa-

tion or scheduling are generally less beneficial for the Adam optimiser compared to

Stochastic Gradient Descent (SGD), and tend not to yield drastic performance im-

provements [110]. To avoid overfitting and improve generalisation, we augmented

with random translations sampled uniformly up to 5mm in each dimension. We

also augmented input images with Gaussian noise, magnitude approximately 1% of

the ASL noise as estimated from gold standard data. Augmentations were applied

with random fresh values at every iteration of training, meaning each epoch used

slightly different training images [110]. We note that, although it is typical to use

datasets with thousands of images in deep learning, here we used 3D images, which

means there was significantly more information per image. We also, as discussed,

used a relatively shallow network. We trained to convergence (within 1000 epochs),

which took 12 hours using an NVIDIA K80 graphics card. We subsequently used

the model with lowest validation set loss.

5.2.4 Comparison to pre-existing methods and validation

For both denoising and artifact filtering, we compare our method with a state of the

art spatial regularisation technique using total generalised variation (TGV), which

has been shown to produce reliable and accurate denoising with built-in artifact

rejection via robust statistics [92]. For reference, we also compare against voxelwise

fitting with no spatial regularisation – this remains a very common way to process

ASL data, and acts as a representative baseline.

We evaluate our method, using the full spatio-temporal information as dis-

cussed in Section 5.2.3, and we also evaluate a simpler CNN architecture using
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only spatial information (see Figure 5.1), to show the benefit of the joint filter. We

evaluate the performance by examining filtered images for residual artifacts, and by

producing maps of absolute error relative to the gold standard perfusion map. These

are shown in Figure 5.3. We show slices from subject 7, where there is extreme ar-

tifact; and subject 4, with less severe artifact. Subsequently we perform quantitative

validation by calculating the peak SNR (PSNR) for each denoising method, again

calculated relative to the gold standard and expressed in decibels, dB1. We subse-

quently statistically compare the performance of different methods on a per subject

basis by bootstrapping volumes for subjects in the validation set, i.e. running in-

ference with the trained network on different subsets of the original full per-subject

data, in a similar fashion to how the training data was subsampled in Section 5.2.3.

For each subject, we run paired nonparametric tests (Wilcoxon signed-rank) com-

paring the different methods.

Often, outlier filtering is performed as a separate step prior to denoising; so

we also compare against TGV and voxelwise fitting with explicit outlier rejection

via z-score filtering [103]. Our validation dataset was chosen such that each subject

1PSNR = 20log10 (Smax/RMSE), where Smax is the maximum ASL signal over all voxels and

RMSE is the root mean square error
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Figure 5.2: Train and validation loss versus epoch for the deep convolutional filter. Over-

fitting begins around epoch 6000, and the lowest val loss is obtained at epoch

6084.
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contains one or more artifact volumes, as identified by z-score filtering on the full

dataset. We remove artifact volumes for the reference methods, showing how they

would perform in conjunction with z-score filtering. For our joint filter, however, we

do not remove the volumes in this comparison, as the purpose of the joint filter was

to use the non-artifact information within partially-corrupted images. As before, we

evaluate example images from subjects 4 and 7, and then we present quantitative

validation over all subjects using PSNR calculations.

5.3 Results

5.3.1 Example images
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Figure 5.3: Example perfusion estimates and absolute errors for several denoising methods,

with no separate artifact filtering step, shown in subjects 4 and 7. Our two CNN

filter approaches are shown on the right (CNNmean and CNN joint).

Figure 5.3 shows example axial slices from subjects 4 and 7, as well as maps

of absolute error. For subject 7, there is a strong hyperintense ring artifact near the

front of the brain. Similarly, for subject 4, several artifacts present as extreme inten-

sity changes, mostly near the edges of the brain. Voxelwise fitting shows these most

plainly in both subjects, as the fitting has no implicit artifact removal. TGV results



5.3. Results 127

in heavily smoothed images, removing some of the artifact seen in the voxelwise

images, but also losing detail in the image. CNN mean-only smooths away even

more spatial detail than TGV, and shows a similar pattern of artifact to voxelwise

fitting. However, the joint filter produces a significantly less artifact-prone image,

as well as improved denoising.
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Figure 5.4: Example perfusion estimates and absolute errors for several denoising methods,

with separate artifact filtering performed before denoising, shown in subjects 4

and 7. Our two CNN filter approaches are shown on the right (CNNmean and

CNN joint).

Figure 5.4 shows example axial slices for subjects 4 and 7 again, this time

preprocessed with artifact removal as a separate step. This is a more realistic com-

parison – certainly for voxelwise smoothing, which has no built-in artifact rejec-

tion. Here, the mean-only CNN performs closer to the joint CNN, although the

joint CNN continues to produce visibly better denoising. Moreover, the remaining

artifacts have been better removed by the joint CNN, despite the joint CNN being

the only method to have no explicit artifact rejection before fitting.
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5.3.2 Quantitative evaluation via PSNR

Figure 5.5 shows the PSNR for each subject and method, when there is no explicit

artifact filtering. Because there are relatively few ASL images, and there is large

inter-subject variability in the artifacts and global perfusion, PSNR varies greatly

across subjects. To assist comparison between methods, Figure 5.5 shows change

in PSNR relative to voxelwise fitting for each subject. The joint CNN produces the

best result in all subjects except subject 15, where TGV performs marginally better.

The average per-subject improvement of the joint CNN over TGV is 1.25dB (p <

0.01), although for some subjects with extreme artifact the improvement can be as

high as 6dB. Crucially, while the mean-only CNN is often worse than TGV, the joint

filter outperforms it significantly (p < 0.05 for each) in 11/15 subjects, marginally

in 3/15 subjects, and is marginally worse (0.72dB, p = 0.07) only in subject 15.

Although joint filtering does not always produce significantly better results than the

mean-only CNN, it is significantly better than the mean-only CNN (p < 0.05) in

nine subjects. Figure 5.7 supports these results by showing confidence intervals:

differences are significant where there is small overlap of confidence intervals.

Figure 5.6 shows the PSNR for each subject and each method, when there is

an explicit artifact filtering step as described in Section 5.2.4. Joint filtering again

performs the best, always better than or comparable to the runner-up. Joint filtering

is significantly (p < 0.05) better than TGV in 13/15 subjects, and marginally supe-

rior in subjects 9 and 13. The average improvement over TGV per subject is 1.64dB

(p < 0.001). Moreover, the second-best method is typically the mean-only CNN –

with this explicit filtering step, even the mean-only CNN consistently outperforms

TGV filtering (p < 0.05 for 12/15 subjects). This is reasonable: when there is less

artifact influence, temporal information is less important and the problem becomes

one of spatial regularisation, where CNNs excel. Additionally, TGV often performs

worse than voxelwise fitting – over-regularising the fits based on the scarce data re-

maining after filtering. Figure 5.7 again shows confidence intervals for these PSNR

results, demonstrating the significant improvement of the CNN methods in most

subjects.
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Figure 5.5: Left: PSNR for each subject and filtering method, with no separate artifact

filtering step. Right: change in PSNR, expressed relative to simple voxelwise

fitting, shown to make comparison of methods easier. Key: × joint CNN, H

mean-only CNN, � TGV, • voxelwise.

5.4 Discussion and conclusions

As demonstrated by the visible improvements in image quality (Figure 5.3) and

the significant increase in PSNR (Figure 5.5), our joint filtering approach performs

better than state of the art for denoising in the presence of artifact. Of particular note

is the filter’s strong performance in artifact removal – in subject 7, for example,

a prominent edge artifact is removed completely from the output image without

any appreciable drop in denoising. The superior performance of the joint filter,

compared with a mean-only CNN, shows the value in providing temporal variance

information when processing artifact-prone data.
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Figure 5.6: Left: PSNR for each subject and filtering method, with a separate artifact fil-

tering step before denoising as described in Section 5.2.4. Right: change in

PSNR, expressed relative to simple voxelwise fitting, shown to make compar-

ison of methods easier. Key: × joint CNN, H mean-only CNN, � TGV, •
voxelwise.
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Figure 5.7: Change in PSNR for each subject and each processing method, expressed rela-

tive to voxelwise fitting in each case. These are the same plots as in Figure 5.5

(right) and Figure 5.6 (right) but now include errorbars generated by bootstrap-

ping volumes. This helps to see where differences between methods are signif-

icant. Left: no separate artifact filtering step, right: separate preprocessing for

all methods except the joint filter, as described in Section 5.2.4. Key: blue –

joint CNN, orange – mean-only CNN, green – TGV, red – voxelwise.

Compared with pipelines involving separate filtering and denoising, our

method again outperforms state of the art (Figures 5.4 and 5.6). By retaining parts

of a corrupted volume, more information can be used in denoising, meaning the

joint filter performs better than mean-only CNN filtering in most subjects. This is

evidence the joint filter is able to perform better, on average, than combining a sim-

pler CNN approach with explicit artifact filtering. Moreover, even the mean-only

CNN is itself an advance on state of the art: this approach outperforms TGV in

12/15 subjects when filtering is applied separately.

Future work will involve validation across different ASL acquisitions and sub-

ject populations, leading the way for use in neuroimaging studies and the clinic.

Such work would also benefit from a more thorough comparison across more pre-

existing methods: denoising methods have been compared relatively thoroughly in

ASL [95], but artifact filtering methods have not seen head-to-head comparison for

the most part. In this work we have focused on comparison against a small number

of methods in the literature, shown to perform close to state of the art (in the case of

denoising) or to be in common use (in the case of artifact filtering). We argue that it

is outside of the scope of this work to produce a fuller comparison, which would be

a publication in itself [95], but it would be valuable work for the future of the field.
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Future work might also explore alternative ways to exploit temporal informa-

tion, for example through a recurrent-convolutional architecture. More importantly,

any method should handle variations in ASL data such as readout and label type.

Currently this requires retraining on each new dataset, but it may be possible for a

single network to handle these different cases. Finally, a limitation of this work is

the necessity for higher-quality data (e.g. more ASL volumes) in a subset of sub-

jects for training; so we wish to explore how cross-validation derived loss functions

might ameliorate this. To this end, transfer learning may be helpful to reduce the

computational cost of retraining in several cross-validation folds.

Since the original publication of this work, deep learning for medical imaging

has flourished, with thousands of new publications covering many diverse applica-

tions [162, 168]. Our work was one of the first applications of deep learning to

ASL processing, with preceding work discussed in Section 5.2.2. Roughly contem-

poraneous with our work was that of Ulas et al, who adopted a similar approach

of CNN-based residual learning for denoising, albeit using only a single network

branch [97]. They also included a loss term that encouraged perfusion estimates

to fall close to normal reference values – conceptually similar to a physiological

prior [74], albeit without the analytical advantages of generative models. This ap-

proach showed a PSNR improvement of 1.5dB relative to simple averaging in real

data, i.e. the “voxelwise” reference method in this work. This seems to be smaller

than the benefit we derived from our method in this work, although the datasets are

not directly comparable, so it is uncertain.

The innovative joint approach to denoising and artifact filtering presented here

has the potential to substantially increase the quality of ASL images, even salvaging

datasets that were previously considered unusable. By fusing temporal variance in-

formation with spatial information in a novel network architecture, our deep con-

volutional joint filter method outperforms state of the art in both denoising and

filtering. Our method is applicable to any ASL data, subject to training require-

ments, and could even be used in other imaging modalities. Consequently, deep

convolutional joint filtering presents an exciting future direction for medical image
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processing in noisy and artifact-prone modalities, and may eventually be used to

improve the statistical power of neuroimaging studies.



Chapter 6

Conclusions

In this final chapter we summarise our contributions, examine subsequent devel-

opments, and discuss future research directions. This thesis has presented three

strands of original work within ASL imaging: optimising acquisitions with exper-

imental design (Chapter 3), regularising parameter estimation in a forward model

using anatomical information (Chapter 4), and spatio-temporal regularisation for si-

multaneous filtering of noise and artifact (Chapter 5). These may all be seen within

the context of an “intelligent imaging” paradigm: optimised acquisitions tailor the

acquisition to the patient, making the measurement process “intelligent”; ADRIMO

uses the patient’s individual anatomical information to generate a shrinkage prior

which improves parameter estimates; and spatio-temporal regularisation using a

convolutional neural network is an example of using state-of-the-art pattern recog-

nition methods to provide more informed filtering.

6.1 Experimental design

In Chapter 3, we presented an original approach to Bayesian experimental design

for ASL acquisitions. The objective of this work is to make maximally efficient

use of scanner time, and experimental results show it can significantly improve

the accuracy of perfusion parameter estimates in a given duration. The primary

novelty of our approach lies in its use of global design optimisation, and its use of

a direct constraint on scanner time rather than number of measurements. Ours was

also among the first such work on simultaneous optimisation of inversion times and
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label durations, and was among the first such work on optimal design in pseudo-

continuous ASL.

Among subsequent work on this topic, the most directly relevant is that of

Woods et al [131]. Their work contained the first publication of optimal design in

pseudo-continuous ASL and, citing our work, also followed a truly global design

optimisation. They explored the usage of flat priors, and presented an ASL-specific

approximation that dramatically speeds up design optimisation with negligible ef-

fect on optimisation quality. They also confirmed improvements in perfusion pa-

rameter estimation from their method, both in simulations and ASL experiments,

which is consistent with our results. Their work provides further compelling evi-

dence for the value of experimental design techniques, and its computational im-

provements make it more practical to use than our approach, albeit at the cost of

generality.

Bladt et al build on ASL optimal design work in a less directly comparable

way. They examine the extended problem of optimal design for ASL with tissue

T1 as a parameter to be estimated, rather than using a fixed value [169]. They use

Bayesian design optimisation inspired by Woods et al and our work, optimising

inversion times alone and jointly optimising inversion times and label durations.

Their emphasis is not on the improvements from design optimisation, however;

they focus on the trade-off between estimating T1 and perfusion parameters. They

show that the estimation of T1 substantially impairs estimation of other parameters,

and make a convincing argument that it is impractical in shorter acquisitions. They

also explore how population-derived T1 values can reduce bias when using a fixed

T1 value, and compare this with both T1 estimation and other fixed T1 values.

There are other subsequent developments that are less directly similar, due

to not being within ASL, but are relevant nonetheless. Gómez et al use optimal

design to create a bespoke acquisition for rapid estimation of several parameters

simultaneous with angiography [170]. We attempted something related in our own

subsequent work, in which we showed initial results from using our optimal de-

sign framework in joint T1 and T2 relaxometry [4]. However, the work of Gómez et
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al is considerably more advanced in its acquisition methods and validation. Their

approach is inspired by magnetic resonance fingerprinting (MRF), in which acqui-

sition parameters vary constantly across the sequence and lead to a transient signal

that can be used for parameter estimation. However, rather than a pseudorandom

variation of acquisition parameters, they use a Bayesian optimal design approach

inspired by our own to improve time efficiency.

Finally, we note the work of Lahiri et al, which adapts experimental design

for MRF in ASL, comparing it with experimental design for a more conventional

multi-TI ASL sequence [171]. MRF remains a cutting-edge technique, and this is

even more the case for its usage in ASL. However, in a similar fashion to Gómez

et al, Lahiri et al use a transient acquisition as in MRF, but with Bayesian optimal

design instead of a pseudorandom acquisition sequence. Their preliminary results

indicate this may lead to significant improvements in parameter accuracy compared

to MRF without optimisation or “conventional” optimised ASL.

Optimal design for ASL acquisitions has several natural areas for future work.

The most crucial problem is that of reliably gathering an informative prior for use

in the optimisation process: if the prior is unrepresentative, optimisation can harm

the acquisition; if the prior is too vague, optimisation offers limited benefits. As

discussed in Chapter 3, there are two natural ways of doing this. One way would

be to acquire a rapid low resolution pre-scan to calibrate the parameter priors [136].

The other would be to move towards a closed loop of scan/estimate/optimise/...

although this requires a more specialist hardware setup [125].

Another important area for future work is to investigate the performance of

optimised designs in various pathologies, demographics, and acquisitions. This

may best be done in several stages rather than in a small number of large studies, as

best practices in ASL acquisitions are still under active improvement, especially for

multi-TI ASL [23]. Moreover, advanced changes in acquisition can interact with

the details of optimal design; for example, the use of Hadamard-encoded ASL [62],

velocity-sensitive ASL [172], or ASL MRF [82] could all substantially interact with

the design process.
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Eventually, we might hope to see optimal design become an automated part of

scanning procedure in a variety of imaging contrasts. This is a long term prospect,

as it would require the aforementioned validation across a large variety of settings.

Indeed, we cannot yet be certain that the benefits from optimal design will be large

enough to justify widespread use. A significant challenge when varying acquisition

parameters between subjects is that their scans are no longer directly comparable.

Despite its status as a quantitative imaging methodology, ASL has many ways in

which it can produce biased estimates of the underlying perfusion parameters [23].

It is an open question whether this problem is severe enough to prevent widespread

use of per-subject optimal design. Even if this problem is severe, it is also possi-

ble that post-processing could help to reduce its severity [107, 103, 106]. In the

meantime, perhaps optimal design may best be used for designing protocols on a

per-study basis, somewhat similar to how it is often used in the statistics litera-

ture [113]. Nonetheless, optimal design work both by ourselves and other authors

has shown that there is room to improve acquisition parameters in ASL acquisi-

tions. This can certainly be used to inform future acquisition design, and we hope

that future research will allow it to be used more widely.

6.2 Anatomy-driven modelling for spatial regularisa-

tion

In Chapter 4, we present our original approach for improving spatial regularisation

in ASL through a shrinkage prior. Generative Bayesian models have seen marked

and sustained success in ASL processing, even compared to their widespread use

in medical image processing generally [74]. This is partly due to a well-established

culture of use and open-source tools, but also due to their perfect suitability for ASL:

methods which would be less tractable with larger numbers of data points remain

tractable at the resolutions used in ASL, and meaningful priors provide valuable

regularisation in a challenging imaging modality. Our work is primarily an attempt

to strengthen the value of the prior in Bayesian methods for ASL analysis, mak-

ing spatial regularisation more effective while remaining entirely data-driven. We
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derive the method, then explore its performance in synthetic and real world experi-

ments. Experiments suggest our method may have a benefit not only in individual

image quality, but also in group studies of perfusion.

Much of the subsequent work in this area has focused on using various ad-

vanced methods for ASL denoising. This is compelling work, and we discuss it

below, but it has a different focus to our approach, which was intended to avoid the

need for tuning parameters and was inspired more by previous Bayesian inference

methods in ASL and other imaging modalities [74, 99]. This may be partially due

to the limitations of our method, which as initially presented did not incorporate

partial volume correction or local spatial similarity. We discuss this in more detail

below, when talking about future work.

The most direct application of our work in the literature, to date, is our group’s

usage of it in placental diffusion imaging [173]. This is somewhat similar to the

work of Orton et al in the liver [148], but uses our implementation and a more

similar prior formulation to that of Chapter 4. The use of our spatial regularisation

led to dramatic improvements in image quality in the placental imaging work, and

highlights the advantage of not needing to set tuning parameters for analysis.

Our work has also been cited by Ulas et al, in their work on denoising ASL

using deep learning [97]. They argue that their incorporation of the ASL kinetic

model into the loss function may provide more robust results. This is loosely con-

nected to our method, and the other Bayesian approaches that inspired it, inasmuch

as they are also based on the ASL kinetic model. However, the method of Ulas et

al is otherwise very different from our method and its predecessors: we attempted

to remove the need for tuning parameters, whereas Ulas et al introduce a neural

network, which contains thousands of tuning parameters, learned from example

data. We discuss this in more detail, along with several related developments, in

Section 6.3.

Another subsequent development in ASL denoising, although further from our

work, has been the further usage of the total generalised variation (TGV) regular-

isation developed by Spann et al [174]. We used TGV as comparison denoising
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method in our work, but in their original publication, Spann et al also applied it to

the problem of denoising higher-than-usual spatial resolution ASL images to reduce

partial volume effects [92]. In their more recent work, they used similar denoising

in conjunction with a novel undersampled acquisition, showing its capabilities to

improve perfusion estimates substantially.

Building on our work in Chapter 4, a clear direction for future research is

to reconcile our high-level priors with the full wealth of models and techniques

used in ASL processing. In particular, it should be possible to simultaneously

have anatomy-driven large-scale similarities as modelled by ADRIMO side-by-

side with data-driven local smoothing and inference of auxiliary parameters such

as partial volume and multiple compartments, all supported by a Bayesian gen-

erative model. Incorporating shrinkage into the Gaussian process prior approach

explored by Groves et al [99] would solve this, as well as addressing other simpli-

fications in our work concerning partial volume effects and errormap estimation.

We discuss this in more detail in Chapter 4, including how it might be imple-

mented through a change to the covariance matrix used in the Gaussian process

approach. A full reconciliation of these methods remains elusive, but we believe it

is achievable. Handling partial volume correction would be particularly important

for practical use, and ASL post-processing methods have often been focused on this

step [75, 91, 94, 89, 90].

In ASL denoising and spatial regularisation literature, there is a fairly large

divide between Bayesian methods such as BASIL [74] and our work, which use

easily interpretable generative models and do not require manual tuning of param-

eters; and methods inspired more by the literature on natural image denoising. The

latter has increasingly turned to neural networks, and we discuss these more in Sec-

tion 6.3. However, despite excitement in research about such methods, it remains

unclear whether they will offer a practical benefit in ASL processing, due to the

need for training data, challenges in robustness across different datasets, and lack

of interpretability [168]. This lack of clarity is worsened by the lack of a standard-

ised, side-by-side comparison of similar methods. It would be valuable for future
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work to provide this, possibly through establishing an independent leaderboard on

held out data, similar to those used in many computer vision tasks [175]. This could

also allow the comparison of methods under different conditions, for example when

similar training data is provided versus when there is no training data for a particular

scanner and sequence.

6.3 Deep learning for joint denoising and artifact fil-

tering

In Chapter 5, we set out a joint approach to artifact filtering and denoising, with

promising results in real data. Inspired by state of the art results in natural image

denoising, we use a convolutional neural network (CNN) that uses the mean ASL

difference image and its temporal variance. Ours was among the first works on us-

ing CNNs in ASL, and this was a source of novelty in its own right. Our approach

primarily differs from its predecessors and contemporaries in its use of temporal

information, and an explicit consideration of artifacts. Several authors have subse-

quently investigated similar approaches, demonstrating the interest in this area.

As discussed in Chapter 5, work performed by Ulas et al took a different ap-

proach to ours, attempting to directly incorporate the ASL kinetic model in the

network’s loss function [97]. Their network also does not use temporal informa-

tion as an input, instead using only the average difference image. This achieved

significant improvements in parameter estimates and image quality, relative to least

squares regression, although was not directly compared with other denoising meth-

ods. We speculate that incorporation of kinetics might be even more valuable in

a multi-TI ASL acquisition, similar to its value in pre-existing Bayesian methods

for denoising [99]. However, this was not tested. The work of Ulas et al provides

further confirmation of the promise in translating CNN methods from natural image

denoising, although as in our work, issues remain concerning the need for complex

training and potentially poor transfer across pathologies, sequences and scanners.

Subsequent to our work and that of Ulas et al, Xie et al used a two-stream net-

work architecture for ASL denoising [176]. Similarly to Ulas et al, they used mean



6.3. Deep learning for joint denoising and artifact filtering 140

CBF as the input rather than using temporal information like in our method. In their

method, the separate streams were to incorporate local and large-scale inter-voxel

relationships, rather than to model spatial and temporal correlations as in our work.

They demonstrated a substantial improvement compared to several other network

architectures, although did not compare to a traditional non-CNN approach. Xie et

al used a larger number of subjects than ourselves or Ulas et al, with a train/val/test

split of 200/20/60 subjects respectively. This provides more confidence in the re-

sults, and may also be a reason why the more complex architecture performed better

– because it had more data on which to train. This provides yet more evidence for

the potential benefits of these approaches, although, similar to our work and that

of Ulas et al and others, the method suffers a significant disadvantage: it needs

a complex training procedure before use, may not transfer well across different

pathologies, sequences and scanners.

Most recently, Gong et al have presented a CNN approach that attempts to

overcome the problems of complex training procedures and poor transfer across

different datasets [177]. Inspired by recent developments in the computer vision

literature, they formulate denoising as a so-called deep prior problem, in which the

network can be initialised with random weights and used as a prior during parameter

estimation. This effectively allows “training” on a single subject’s data at the time

of parameter inference. This approach also allows for the use of a structural image

to further improve the prior, although they do not study the effect of this in detail.

Strikingly, Gong et al achieve significant improvements over comparison methods

in three subjects, without the need for a separate training step. They also show

that their method can help with reconstructing undersampled data, although they

note that artifact removal remains a challenge, perhaps because it is difficult for the

network to filter these without conventional training on artifact-free examples.

Finally, we note the use of a CNN-based method in a slightly different ASL

application: since our work, Li et al have subsequently attempted to use a deep

learning based method for simultaneous denoising and super-resolution, achiev-

ing promising early results [178]. They use a two-stage architecture with multiple



6.3. Deep learning for joint denoising and artifact filtering 141

losses, preserving high-frequency detail during the super-resolution stage. This is

compared against several other CNN-based approaches for denoising and/or super-

resolution, with their method generally showing comparable or superior perfor-

mance in 30 subjects. It is possible that performance may be over-estimated in this

work, due to cross-validation across slices rather than subjects. According to the

authors’ description, different slices from a given subject may be seen in both train-

ing and validation for a given fold, which might lead to overfitting. This method

also suffers from the usual problem of requiring a complex training procedure and

potentially struggling to transfer across datasets. Nevertheless, it demonstrates the

potential of CNN-based methods in an innovative application, and shows the inter-

est in this area in the ASL literature.

Future work, for all CNN-based methods, will need substantially more valida-

tion, as well as examining the problem of transferability across scanners, patients,

and acquisitions. As discussed in Section 6.2, there has not been a systematic com-

parison of different denoising methods that includes many of the recently developed

methods. Moreover, despite the existence of several artifact filtering methods, there

has been no thorough comparison of them on the same dataset, nor an examination

of which methods work best on which types of ASL data. This would be a natural

next step in the problem of artifact filtering, and could prove to be an invaluable

contribution. Again, we emphasise the success of independent leaderboards with

held-out data in the computer vision literature [175]. Such a leaderboard could al-

low for the fairest comparison of different methods, prevent overfitting, and make

it easier for groups without large datasets to conduct research in this field. How-

ever, it would be a substantial task, and while there is progress in such leaderboards

in medical imaging more broadly (for example the challenges at MICCAI and else-

where [175]), we do not expect to see this in the immediate future for ASL research.

CNNs have become widespread in recent years for a wide variety of computer

vision problems, and justifiably so. However, they suffer from several shortcomings

relative to more traditional methods, and these are particularly harmful for medical

imaging [168]. CNNs require a complex training procedure and training data, and
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may not generalise to different domains. Many techniques exist to improve robust-

ness across different domains and reduce – or even remove – the need for training

data. This has even been explored in ASL data specifically, in the aforementioned

work of Gong et al [177]; however, the problem remains open, both for research at

the level of fundamentals and applications.

Another weakness of CNNs, compared to popular Bayesian approaches for

ASL post-processing [74], is that CNNs do not robustly model uncertainty, and

hence can fail without adequate warning or visible sign of a problem [110]. Sev-

eral researchers have begun to explore this topic, but it largely remains unsolved.

Relatedly, another deficiency of CNN-based approaches is that they are not easily

interpretable [168, 110]. A generative model has a clear and understandable logic

for how MR images are used to infer parameter distributions. This allows us to

reason about unusual cases, understand poor performance, and know the limits of

our model. CNNs learn relationships from data in a way that is mathematically

simple (stacked convolutions and non-linearities) but can be conceptually opaque.

This is another area of active research in the machine learning literature, and it will

be valuable future work to address these problems – to the extent possible – and use

those solutions for medical imaging applications.

6.4 Conclusion

ASL is becoming increasingly widespread, with great excitement about its usage

for research, diagnostics, prognostics and drug evaluation – primarily in the brain,

but increasingly in other organs. Through various improvements in acquisition,

processing and analysis, one can significantly improve the quality of ASL images

and their practical usefulness. This thesis has given an overview of these methods

within the context of so-called intelligent imaging, and has also presented original

work (including theory, simulations and experiments) in detail. We hope that some

of these techniques may be of use in ASL’s exciting future, and we conclude on a

note of optimistic anticipation: blood flow imaging is only beginning to show its

vast capabilities, and seems poised to do more and more in the future.



Appendix A

Analytic solutions for the optimal

design problem of Xie et al

In this appendix we show how the problem of finding a weighted ensemble of local

designs, as posed by Xie et al and described in Chapter 2, can be optimised mostly

analytically, without requiring the use of iterative exchange.

Xie et al use a bounded line search inspired by coordinate exchange, which is

commonly used in classic experimental design problems. In a coordinate exchange

algorithm, at every step, the list of design point coordinates is updated one by one,

replacing each point in turn with another candidate point. These candidate points

are typically taken from a pre-evaluated set of optimal design points which form

the support of the optimal design. This approach is more useful for local optimal

design, in which the support is often relatively sparse. In robust optimal design

through a nonlinear function, as is the case for ASL, the support often has many

more points. Consequently, instead of attempting to find the support in advance, the

replacement point is found via a line search between adjacent points on either side.

The time consuming step in this process is that it must be repeated many times,

for different settings of the parameters, f and θ . As discussed in Chapter 2, this

assumes that the ensemble of local optimal, weighted by the prior, approximates

the global optimum. However, we note that it is possible to exploit the sparsity of

the design support to cast this as a linear mapping: the optimal TIs’ distribution is a

mixture of two normal distributions: the ∆t prior, and a translated version of the ∆t
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prior centred at ∆t + τ . We show this below.

Assuming we seek the distribution of local optima as an approximation to the

global optimum, we note that an analytic solution for local optimisation would suf-

fice for analytic solution of the entire global optimisation. The local utility function

is u(t) = 1
N

det(ΣN
i H(ti)), with H j,k =

d∆M
dθ j

d∆M
dθk

and θ = ( f ,∆t).

Hence u(t) ∝ Σi(
d∆M
d f

)2Σi(
d∆M
d∆t

)2 −{Σi
d∆M
d f

d∆M
d∆t

}2.

If we define A : Ai =
d∆M
d f

and B : Bi =
d∆M
dδ t

, we can express this a metric over

vectors: u(t)∝ (A ·A)(B ·B)−(A ·B)2. This captures the trade-off in optimal design:

one seeks to maximise sensitivity to each parameter (A ·A and B ·B), but measure-

ments should also disentangle the effect of different parameters on the signal (A ·B).

By inspection of the sensitivity functions, d∆M
dθ , the locally optimal design must

have a support of only two points: topt ∈ {∆t,∆t +τ}. If a design point were placed

anywhere other than one of these points, then shifting it to ∆t +τ would necessarily

improve (A ·A)(B ·B) or shifting it to ∆t would necessarily improve (A ·B)2.

Xie et al observed that the locally optimal designs used only these two points,

but neglected to exploit this sparsity. When the priors are taken to be Gaussian,

as in this case, this yields a bimodal distribution of design points – essentially a

mixture-of-Gaussians, responsibilities weighted by the relative sensitivity function

inner-product. This is easiest to evaluate numerically. Consequently, the approach

of Xie et al can be evaluated without the use of an iterative exchange algorithm, and

almost entirely analytically. Unfortunately, as previously discussed, the weighted

ensemble of local optima is a poor approximation to the global optimum, which

motivated our subsequent work in Chapter 3.



Appendix B

Software Packages

There are several pieces of software underpinning the work presented in this thesis.

Here, I briefly recap these, as well as explaining my own contributions. Open source

releases can be found at https://github.com/karnival and https://

cmiclab.cs.ucl.ac.uk/CMIC.

NiftyFit A package for nonlinear, multi-modality model fitting. My contributions

lie in the ASL modelling and statistical modelling of shrinkage priors for other

modalities. NiftyFit is described in detail in its associated publication [15].

NiftyOpt Bayesian optimal experiment design for a constrained duration, using

quadrature and global optimisation. This was the basis of the optimal design work

in Chapter 3.

ASL-TGV An open-source implementation of the total generalised variation fil-

tering described by Spann et al. This was used as a baseline for comparison in

Chapters 4 and 5, prior to Spann et al sharing their implementation. At the time of

writing, ASL-TGV is the only publicly available implementation.

ADRIMO This implementation of ADRIMO underpinned the work in Chapter 4,

and was also the basis of shrinkage priors and fitting for other modalities in several

publications [3, 14, 12].

ASL-DL Based on the Keras framework, ASL-DL was used to implement the con-

volutional neural network architecture of Chapter 5, in addition to its training and

validation.

https://github.com/karnival
https://cmiclab.cs.ucl.ac.uk/CMIC
https://cmiclab.cs.ucl.ac.uk/CMIC


Appendix C

Acronyms and abbreviations

• ABV – Arterial Blood Volume

• ADC – Apparent Diffusion Coefficient

• ADRIMO – Anatomy-Driven Modelling

• ASL – Arterial Spin Labelling

• ATT – Arterial Transit Time

• BASIL – Bayesian Inference for Arterial Spin Labelling MRI

• BOLD – Blood-Oxygenation Level Dependent

• CASL – Continuous ASL

• CBF – Cerebral Blood Flow

• CNN – Convolutional Neural Network

• CT – Computer Tomography

• DCE – Dynamic Contrast Enhanced

• DECIDE – Diffusion-Relaxation Combined Imaging for Detailed Placental

Evaluation

• DL – Deep Learning

• DSC – Dynamic Susceptibility Contrast

• EMF – Electromagnetic Field, Electromotive Force

• EPI – Echo-Planar Imaging

• FDG – Fluorodeoxyglucose

• FLIRT – FMRIB’s Linear Image Registration Tool

• FSL – FMRIB Software Library
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• GF – Growth Factor

• GM – Grey Matter

• GPP – Gaussian Process Prior

• GRASE – Gradient Spin Echo

• GRE – Gradient Echo

• ICA – Independent Component Analysis

• IVIM – Intravoxel Incoherent Motion

• KL – Kullback-Leibler

• KW – Kruskal-Wallis

• MAE – Mean Absolute Error

• MPRAGE – Magnetisation-Prepared Rapid Acquisition GRE

• MR – Magnetic Resonance

• MRI – Magnetic Resonance Imaging

• MVN – Multivariate Normal

• NIG – Normal Inverse Gamma

• NIRS – Near-Infrared Spectroscopy

• PASL – Pulsed ASL

• PCASL – Pseudo-Continuous ASL

• PD – Proton Density

• PDF – Probability Density Function

• PET – Positron Emission Tomography

• PLD – Post-Label Delay

• PSNR – Peak SNR

• PV – Partial Volume

• Q2TIPS – QUIPSS-II with Thin-Slice T I1 Periodic Saturation

• QUASAR – Quantitative STAR Labelling of Arterial Regions

• QUIPSS – Quantitative Imaging of Perfusion Using a Single Subtraction

• RF – Radio Frequency

• RGB – Red/Green/Blue

• RMSE – Root Mean Square Error
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• ROI – Region of Interest

• SAR – Specific Absorption Rate

• SD – Standard Deviation

• SNR – Signal to Noise Ratio

• SPECT – Single Photon Emission CT

• SPM – Statistical Parametric Mapping

• TE – Echo Time

• TGV – Total Generalised Variation

• TI – Inflow Time or Inversion Time

• TR – Repetition Time

• VB – Variational Bayes
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