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Interactive display of surnames distributions in historic and contemporary
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ABSTRACT
We introduce a method to calculate and store approximately 1.2 million surname distributions
calculated for surnames found in Great Britain for six years of historic population data and 20
years of contemporary population registers compiled from various consumer sources. We
subsequently show how this database can be incorporated into an interactive web-
environment specifically designed for the public dissemination of detailed surname statistics.
Additionally, we argue that the database can be used in the quantitative analysis of
surnames in Great Britain and potentially offer valuable insights into processes of contagious
and hierarchical diffusion of populations as well as the regional distinctiveness of
demographic change and stasis.
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1. Introduction

When it comes to hereditary surnames or family
names, two important observations can be made.
First, in many countries, including the United King-
dom, surnames are vertically transmitted through the
patrilineal line from generation to generation (Jobling,
2001). Secondly, as a result of varying socio-spatial
differences in naming practices, surnames can be
traced back to a national or regional origin (Cheshire,
2014; Cheshire et al., 2010; Cheshire & Longley,
2012). Because of these properties, together with their
relatively high level of availability, surnames have
been used in a variety of studies, ranging from inferring
ethnicity (Lan et al., 2018; Mateos et al., 2011) to iden-
tifying probable genetically close individuals for
sampling purposes (Kandt et al., 2016). Similarly, sur-
name analysis has been used to estimate the likely ori-
gins of migrants (Bloothooft & Darlu, 2013; Degioanni
& Darlu, 2001) and more recently to uncover processes
of demographic change and stasis (Kandt et al., 2020).

So far, however, relatively little is done to dissemi-
nate surname research to a wider audience, with only
University College London’s, now outdated, World-
names and Great Britain’s names online databases
being notable exceptions. In what follows, we first
introduce a method that effectively stores approxi-
mately 1.2 million unique surname distributions esti-
mated for historic and contemporary Great Britain.
We subsequently show how this database can be incor-
porated into a contemporary web-environment, how
we can interactively map the calculated surname distri-
butions, and how consumer statistics can be linked to

the calculated surname distributions to create individ-
ual surname profiles. Lastly, we argue that the database
can be used for further research, and can potentially
offer valuable insights into processes of contagious
and hierarchical diffusion of populations as well as
the regional distinctiveness of demographic change
and stasis (see also Van Dijk et al., 2019; Van Dijk &
Longley, 2020).

2. Data sources

Historic Censuses provide a valuable source of infor-
mation on the population of Great Britain and its
change over time. Individual-level records are made
publicly available following 100 years after their collec-
tion date. Higgs and Schürer (2014) have brought
together and standardised digital transcriptions of
most of the censuses of Great Britain for the period
1851–1911 with the Integrated Census Microdata Pro-
ject (I-CeM). Besides standardised birthplace strings
and occupational titles (see Schürer et al., 2015), the
full census microdata also contains full addresses.
Unfortunately, geocoding these historic address-level
data using contemporary street-network data is, albeit
very promising, work in progress (see Lan & Longley,
2019). However, fortunately, addresses are also linked
to parishes, the boundaries of which have been digi-
tised in two sets of consistent parish geographies.

Because contemporary censuses do not disclose
names and addresses, extensive databases of surnames
at the addresses-level of enfranchised adults were
sought from public versions of the electoral register
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from 1997 until 2016, with supplements from consu-
mer data from 2002 onwards to capture those that
opt-out or are not eligible to vote. However, these
‘Consumer Registers’ do not have full coverage of the
adult population and are of unknown provenance. To
bolster their coverage, the data are linked and ‘har-
dened’ through processes of fuzzy address matching
and cross-referencing counts with Office for National
Statistics’ Mid-Year population estimates. Because of
these processes of internal and external validation,
the Consumer Registers are found to be largely repre-
sentative of the majority of the UK’s adult population
(see Lansley et al., 2018, 2019).

3. Estimating, storing, and retrieving
surname distributions of large data sets

3.1. Kernel density estimation

One way to analyse and compare individual surname
distributions over time without being hindered by
changing administrative areas is by point pattern
analysis. We first assign every individual found in the
historic census data to the centroid of the parish with
which they are associated. Similarly, we geocode all
individuals found in the Consumer Registers directly
through the coordinates associated with each postcode.
We subsequently describe the spatial patterns of the
population-weighted point events on a year-by-year
and surname-by-surname basis through a process
called Kernel Density Estimation (KDE). KDE is a
non-parametric method that places a search window
(kernel) over a point and uses the information within
this kernel to estimate point densities and has a variety
of applications, for instance, in school catchment area
analysis (Singleton et al., 2011), health research (Carlos
et al., 2010), as well as surname research (Cheshire &
Longley, 2012).

A KDE applied over two-dimensional space can be
formally described as follows (Shi, 2010, p. 643):

f̂ (x, y) = 1
nh2

∑n
i=i

K
di,(x,y)
h

( )
(1)

where f̂ (x, y) is the estimated density at location (x, y),
n is the number of point events that fall within the
bandwidth h, di,(x,y) is the distance between the location
(x, y) and an event point i. Lastly, K is the density func-
tion that describes the contribution of point i to the
estimated density at location (x, y). The outcome is a
‘smooth, continuous surface where each location in
the study area is assigned a density value irrespective
of arbitrary administrative boundaries’ (Carlos et al.,
2010, p. 1).

For each surname, the isotropic fixed bandwidth is
estimated using a likelihood cross-validation method,
constrained by a minimum bandwidth of 5 kilometres
and a maximum bandwidth of 40 kilometres. For

computational reasons, we estimate the bandwidth on
a sample of the surname population in cases where a
surname has more than 5000 bearers. Although it is
theoretically possible to vary the bandwidth according
to the distribution of the background data to accom-
modate local variations, this is extremely challenging
for large data sets (cf. Zhang et al., 2017). For the his-
toric data, KDEs are only calculated for surnames that
have at least 30 bearers, while for the contemporary
Consumer Registers the surname populations must
consist of at least 50 individuals. All KDE calculations
are executed using the R programming language (R
Core Team, 2018) using the ‘Sparr’ package (Davies
et al., 2018).

3.2. Parallel processing

A major challenge of the KDE approach is its proces-
sing time. KDEs are relatively slow to compute, and
we, therefore, cannot generate them ‘on the fly’ for
interactive display. As such, all kernel density calcu-
lations need to be executed and subsequently stored.
Given the large number of surnames, this means we
would benefit from parallel processing techniques. At
the same time, however, because arguably all individual
KDEs to be processed can be considered as a collection
of data sets of ‘medium’ size (Soundararaj et al., 2019),
we do not need complicated and large distributed clus-
ters for our calculations. As such, to speed up proces-
sing times, all calculations are parallelised using GNU
Parallel (Tange, 2011) and distributed over a high-per-
formance Linux cluster consisting of eight computing
nodes (Intel Xeon E5-2630 v3 processor; 32 cores,
2.4 GHz; 128GB memory). By utilising the Unix shell
pipe to connect multiple processes, a list of available
surnames can be fed to GNU Parallel. In turn, the pro-
gramme parallelises the sequence of retrieving our
input data from a PostgreSQL database (using psql),
sending the retrieved data to the R KDE script, and
finally pushing R’s output to our PostgreSQL database
(using psql). The total number of calculated KDEs for
each year, the number of individuals that are rep-
resented by these KDEs, and the size of the entire
population that is available in our data set is shown
in Table 1 and Table 2 for the Historic Censuses and
the Consumer Registers, respectively.

3.3. Grid deconstruction

Because we deal with over a million surname geogra-
phies, not only processing speed is an issue; we also
require an efficient way of storing these data. Ideally,
all the surname geographies are stored in full, to
avoid information loss. However, a disadvantage of
employing KDEs to describe surname distributions is
that KDEs are calculated over a grid and also outputted
as such; in case of the United Kingdom, a rectangular
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grid for the entire country with a resolution of 1 square
kilometre results in over 870,000 grid cells. For over
one million surname distributions this has a significant
impact on the size of the final database, with exponen-
tially more storage required with an increase in grid
resolution. A conservative estimate is that for every
100,000 surnames around 400GB of storage is required
when unique grids are stored in full.

A possible solution is to extract contours (isolines)
from the raster and vectorise these contours. A major
drawback of this method is that it is an expensive pro-
cedure in terms of processing time. Another potential
solution would be to decrease the grid resolution, how-
ever, this results per definition in information loss.
Arguably a more viable angle is to look into the data
and the structure of the data itself. Because the result-
ing KDEs for a large share of surnames result in empty
grid cells, the grid essentially becomes a sparse matrix.
As such, we do not have to consider all the entries but
rather focus on the location and values of all the non-
empty entries of this sparse matrix. We then can use
the concept of a sparse matrix to minimise the space
required for storing all our surname geographies.

Whilst some packages in the R programming
language allow for efficient in-memory manipulation
of sparse matrices, for example ‘Matrix’ (Bates &
Maechler, 2018), the data output is returned in the

Harwell Boeing sparse matrix file format which is not
ideal for storage in an object-relational database. Simi-
larly, PostgreDynamic, a modified version of the ‘stan-
dard’ object-relational PostgreSQL data model, can
efficiently store sparse matrices but only on a table by
table basis (Corwin et al., 2007). This is not suitable
for our current purpose either as this would result in
the creation of more than a million individual tables.
Also, more recent solutions for dealing with raster
data in an online environment, such as Cloud Opti-
mised GeoTIFFs, cannot be exploited. These solutions
rather focus on the setting up raster files in such a way
that it is possible to serve parts the parts of the file that
are requested by a client, e.g. a certain geographic area,
through ‘streaming’ the required tiles instead of load-
ing the entire raster file.

Given our challenging storage requirements and the
unsuitability of available methods, we develop a
method to compress the raster information by turning
to some of the strategies deployed in sparse matrix
compression. Two well-known strategies to compress
spare matrices are: (1) to store the raster in separate
one-dimensional arrays that contain only contain the
non-zero values and the locations of these non-zero
values within the raster, sometimes known as the
‘Yale sparse matrix format’, or (2) to create a diction-
ary of keys that maps all unique values to all row, col-
umn pairs. The first method is optimised for efficient
access and common matrix operations and the second
method is more efficient when it comes to quickly
modifying the data. We are not interested in matrix
operations, nor are we interested in modifying the
data after the calculations, so both methods are suit-
able. For simplicity reasons, we choose to adopt the
first method.

All our analyses are applied onto the same geo-
graphical area, Great Britain, and this means that for
every surname that is processed the output grid is con-
sistent in resolution, extent, and shape. This means we
only have to store the XY-coordinates of the output
grid once. We first flatten the matrix into one dimen-
sion and store every XY-coordinate together with
their index position within the flattened matrix. For
each surname distribution, we then extract the point
density estimates for each cell in a similar fashion.
We start by rescaling all the density estimates on a
scale ranging from 0 to 100 to make the results of
different years and surname distributions comparable
with one another. We then flatten the matrix and for
every index position, we subsequently retain the
point density estimate. Hereafter we apply our sparse
matrix compression: only index, value pairs are
retained if the value is non-zero. Finally, we write the
resulting data frame to an ordered string as a concate-
nation of all indexes and all values that can be stored in
a PostgreSQL database. Figure 1 graphically summar-
ises this process of matrix (1) standardising, (2)

Table 2. Number of calculated KDEs for the consumer
registers.

Year Source
Surnames
(n > = 50)

Individuals KDE
(surname n)

Consumer
Register
(total n)

1997 Electoral register 41,221 42,079,244 45,128,535
1998 Electoral register 42,271 43,823,946 46,982,475
1999 Electoral register 42,600 44,200,014 47,383,720
2000 Electoral register 42,602 44,017,002 47,224,708
2001 Electoral register 42,030 42,904,961 46,111,068
2002 Consumer sources 43,094 43,967,574 47,284,306
2003 Consumer sources 42,944 42,969,604 46,326,823
2004 Consumer sources 43,363 43,066,049 46,574,935
2005 Consumer sources 43,684 42,591,771 46,247,329
2006 Consumer sources 44,366 42,745,564 46,614,786
2007 Consumer sources 45,301 43,220,899 47,300,978
2008 Consumer sources 46,042 43,550,015 47,798,322
2009 Consumer sources 47,275 44,788,305 49,269,002
2010 Consumer sources 48,692 45,943,563 50,687,293
2011 Consumer sources 48,324 45,251,279 50,135,397
2012 Consumer sources 48,721 44,503,643 49,835,696
2013 Consumer sources 49,737 45,452,932 51,266,951
2014 Consumer sources 50,335 45,843,928 52,247,265
2015 Consumer sources 50,196 45,416,064 52,614,295
2016 Consumer sources 50,404 45,298,145 53,520,333

Table 1. Number of calculated KDEs for the Historic Censuses.

Year Extent
Surnames
(n > = 30)

Individuals
KDE
(surname n)

Historic
Census
(total n)

1851 England, Scotland, Wales 37,941 18,947,318 20,610,325
1861 England, Scotland, Wales 48,894 20,468,217 22,837,378
1881 England, Scotland, Wales 39,845 28,051,183 29,865,602
1891 England, Scotland, Wales 50,097 31,038,153 33,522,822
1901 England, Scotland, Wales 44,807 35,226,626 36,910,767
1911 England, Wales 44,961 33,817,546 36,353,455
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flattening, (3) indexing, (4) compressing, and (5) con-
verting the index, value pairs to its string
representation.

3.4. Grid reconstruction

Whether it is for online interactive visualisation or
analysis purposes, the stored deconstructed grids
need to be dynamically reconstructed. This can easily
be done using the ‘Pandas’ Python library through per-
forming an inner join on the stored index, value pairs
with the XY-coordinates of the grid using index value
as a key (McKinney, 2010). In many cases, however,
we are only interested in part of the data such as the
area with the highest relative density. Similarly, the ras-
ter requires some transformation to make it informa-
tive to a wider audience. We do this by transforming
the portions of the raster with the highest relative den-
sities into vector polygons that can be displayed in an
online environment.

Transforming selected raster points into vector
polygons is not trivial. We start by selecting the points
we are interested in; in this example scaled kernel den-
sity estimates with a score of 40 or higher. The selection
results in two clusters that need to be transformed into
two separate polygons. We cluster the measurements
into groups by using the DBSCAN algorithm from
the scikit-learn Python library (Pedregosa et al.,
2011). Because the 1000 ×1000 m grid resolution
never changes, we know that two adjacent grid centre
points are always within a distance of approximately
1415 metre and we can thus use a distance constrained
neighbourhood search. Now the separate polygons
have been identified, polygons can be generated by cal-
culating the concave hull of the resulting point data
sets. Our approach is illustrated in Figure 2.

The calculation of the concave hull warrants some
additional explanation because, except for a QGIS plu-
gin that first clusters points using a k nearest neigh-
bours’ algorithm, there are to our knowledge no

Figure. 1 Raster grid deconstruction.

Figure 2. Raster grid reconstruction.
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lightweight Python libraries available only considering
a set of points as input and producing a concave hull.
We, therefore, use our own concave hull algorithm to
identify the boundaries of our clusters of points.
Although we employ a similar strategy as existing
algorithms (e.g. Moreira & Santos, 2007), our method
is optimised for our current data model. For each clus-
ter identified in the previous step, we start by creating a
list with all unique x-coordinates. The list is first used
to create a dictionary of key, value pairs with the
unique x-coordinates as keys and with x-coordinate
specific y-coordinates as values. We then order the
list ‘from east to west’ and loop through it while we
use our dictionary to record all the minimum and
maximum y-coordinates, respectively. By acquiring
first all maximum y-coordinates for all unique x-coor-
dinates and subsequently acquiring all minimum y-
coordinates for all unique x-coordinates sorted in
reverse order, we effectively extract the border of our
clusters of points. The specific order in which the algor-
ithm goes through the points, also ensures that the
points are sorted and can be easily transformed into,
for instance, a GeoJSON linestring or polygon.

4. Interactive display of surnames
distributions

4.1. Website infrastructure

To display the calculated surname distributions onto a
website, we link the PostgreSQL database with the cal-
culated surname distributions to a Django framework.
Django is an open-source, modern high-level Python
web framework that reduces the complexity of setting
up a database-driven website. A typical browser request
through this setup is illustrated in Figure 3. The
moment a user requests the data for a particular sur-
name, the browsers sends a request to the Django back-
end. Django evaluates this request, and if all is fine, it
retrieves the data from the PostgreSQL server. Once
the data have been retrieved, our custom Python script
is called to reconstruct the grid and extract a vector
polygon. Django returns the vectorised data, together

with an HTML template, to the server before it is dis-
played in the browser. This means we have a dynamic
website where the content is pulled from the database
only when needed and displayed by inserting the con-
tent into the basic HTML template. Lastly, we use
Bootstrap 4 as a front-end library to style the website
and to ensure that the website is fully functional on
mobile devices. PostgreSQL, Django, Python and Boot-
strap are all open source.

The alpha version of the KDE visualisation that we
have created is, in essence, a rewrite of the Great Brit-
ain’s names online database project using a modern,
responsive framework, with a completely new database,
and greatly expanded data set covering both historic
and contemporary Great Britain. The alpha version
of the website can be found and accessed through
https://data.cdrc.ac.uk/gbnames/.

4.2. Data visualisation

Figure 4 shows a screenshot of the website, after a
search on the surname ‘Batty’. The density contour
(extracted from the KDE) is shown on a simple Open-
StreetMap background – the maps are facilitated by
Leaflet.js, a light-weight JavaScript mapping library.
By using the slider bar, users can go through the sub-
sequent years for which data are available and interac-
tively see the density contours of the surname remain
stable or change over time.

Below the density contours, selected surname stat-
istics are displayed. At the moment, we have included
the ten most frequent female and male forename pair-
ings in the combined historic data sets (1851–1911)
and the combined recent data sets (1997–2016). For
the surname ‘Batty’, for instance, the names ‘Sarah’,
‘Mary’, and ‘Elizabeth’ appear in this top ten in both
time periods (Figure 5). Also, the areas, in the form
of historic Parishes or the more modern census geogra-
phy of the Middle Super Layer Output Layer (MSOA),
in which the surname is most frequently observed are
listed. The centroids of these areas are automatically
mapped when clicked on.

Figure 3. Web application with Django backend. Adapted from: Mozilla (2019).
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Besides the location and forenames, we link the sur-
name searches to some existing consumer indices pro-
duced by the Consumer Data Research, specifically to
the Access to Healthy Assets and Hazard (AHAH)
index, the Output Area classification, broadband
speed, internet usage, and deprivation index. These
data sets are available as open data or for bona fide
research purposes on successful application by

accredited safe researchers to the UK Economic and
Social Research Council Consumer Data Research
Centre (https://www.cdrc.ac.uk/). For each surname,
these indicators are calculated for the most recent data
set based on the modal or average score. For instance,
in 2016, individuals with the surname ‘Batty’ lived in
an output area classified as ‘Suburbanites’ [Figure 6].
In essence, for every surname in our database, we

Figure 4. KDE density contours for ‘Batty’ in 1881.

Figure 5. Surname-specific frequency statistics.

JOURNAL OF MAPS 73

https://www.cdrc.ac.uk/


created a small surname profile specific to that surname
showing modal or average scores that related to its
bearers.

5. Discussion

5.1. Processing and dynamically visualising
large population data sets

We have introduced a method to create a database with
approximately 1.2 million surname distributions for six
years of historic census data and 20 years of contem-
porary Consumer Registers. We showed that the meth-
odology that we developed to compress, and store
raster grids makes it feasible to create a database that
is linked to a modern, dynamic website which can dis-
play surname geographies over time as well as sur-
name-specific surname profiles.

Powered by a completely new database that, to our
knowledge, hosts the largest ever collection of surname
distributions in Great Britain, the fully re-designed
‘GBNames’ website allows for the easy dissemination
of surname research to a wider audience. We have
shown how a large data set comprising of individual-
level data can be effectively processed and augmented
with interesting metrics. The focus on individual sur-
names allows for the exploration of the changing
nature of these spatial data. A major advantage of
this method is that the website at no point requires a
connection to the database that holds the sensitive
individual-level data. Also, even though we are working
with a very large data set, we have shown that for large-
scale calculations one does not necessarily have to
move to software specifically developed to deal with
Big Data problems such as distributed computing

solutions like Hadoop and Spark. Lastly, the
implementation of a custom data compression solution
also ensures that the size of the final database is rela-
tively modest.

Besides visualisation, the calculated surname distri-
butions can also potentially be used in the development
of a place-based perspective of population change (with
a high temporal granularity for the past 20 years). For
instance, we hope to consider whether faster declines in
the shares of long-established populations of local sur-
name bearers are associated with other demographic
characteristics, such as higher levels of neighbourhood
population churn, different community structures or
distinctive patterns of economic activity. The granular-
ity of the database also allows us to consider a large
scale application to study neighbourhood structure
(cf. Longley et al., 2007) and population change (cf.
Van Dijk & Longley, 2020). Particularly interesting
would be to start identifying how these individual sur-
name geographies contribute to the composition of
places, to what extent places are constituted by differ-
ent surname structures, and to what extent a place-
based surname hierarchy exists – a ‘name-based cen-
tral place theory’ – and places and locations can be
profiled in terms of their demography.

5.2. Performance

The calculation of thousands of KDEs is highly compu-
tationally intensive and therefore could not be
implemented through an ‘on the fly’ calculation fol-
lowing every user request. Even if this were to be poss-
ible, for privacy reasons we cannot connect a database
with individual-level data to a public-facing website.

Figure 6. Surname-specific consumer statistics.
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Although we do not have exact benchmarks, the full
implementation of the sequence of retrieving the
data, calculating the KDEs, and saving the resulting
KDE contours would take months to complete without
optimisation and parallelisation. Using specialised
tools for communication with the databases (psql)
and using a separate script for the KDE calculation
(R), speeds up the process significantly but given the
large number of surnames would still be infeasible.
The final solution made use of a high-performance
Linux cluster that allowed for the simultaneous calcu-
lation of approximately 250 KDEs. Using this approach
enabled he full calculation of the KDEs for all surnames
to be completed in approximately eight days.

On the client-side, retrieval of the KDE contours
varied between surnames – with surnames that are
more widespread and had longer contours as well as
surnames that occurred in all years taking more time
to process. In some cases, surnames searches can take
up to 60 seconds to be executed. The relatively time-
consuming part is the grid reconstruction of the indi-
vidual KDEs, with large contours for each year some-
times taking up to five seconds from being requested
from the server to being displayed onto the map. To
mitigate this problem, the raster grids of the 10,000
most frequent surnames have been pre-constructed
and saved in a separate database – even high-frequency
surnames that are widespread, such as Smith, are now
fully retrieved and displayed within two seconds.
Moreover, once a user initiates a search for a surname
that is not present in our pre-rendered database, the
outcome of the calculations is automatically saved in
order to facilitate quick retrieval for any future searches
on its subject name.

5.3. Limitations

Being able to store a large number of KDEs without
having to pre-determine the contour levels offers
some flexibility on the side of the analysis, however,
the bandwidth used to calculate the KDE in the first
place cannot be adjusted. If there are concerns about
how the bandwidth is calculated, the entire process
will have to be repeated. Careful parametrisation of
the KDE calculation is therefore crucial. Also, there
are some concerns stemming from the commercial
nature of the Consumer Registers. The sources of the
data are of unknown provenance and there is likely
some unevenness in their coverage. However, by trian-
gulating these Consumer Registers with data from the
Office for National Statistics, for instance with Mid-
Year Population Estimates (Lansley et al., 2018), and
by developing heuristics and procedures for internal
validation and linkage (Lansley et al., 2019), they are
the best available source of contemporary individually
georeferenced records.

5.4. Concluding remarks

We have demonstrated a novel way in which scale-free
surname distributions of a large number of cases can be
effectively calculated, stored, and retrieved. This makes
it possible to make individual visualisations of surname
geographies coupled with surname-specific consumer
statistics available to the general public. At the same
time, our method keeps the integrity of the calculated
surname distributions intact. As such, the value of
our method is that the same data set can be used for
the study of intergenerational demographic change
and stasis, social mobility, and insights into processes
of contagious and hierarchical diffusion of local
populations.

Software

The calculation of the KDEs requires bash (Unix shell)
to enable parallel processing with GNU Parallel, the R
programming language (with the ‘Sparr’ library), and
PostgreSQL. The website was subsequently built by
using the Python-based open-source web framework
Django, JavaScript (including ‘jQuery’ and mapping
library ‘Leaflet.js’), HTML, and CSS (in combination
with front-end framework Bootstrap 4).
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