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Purpose: Straylight refers to an optical phenomenon that takes places in the eye and leads to a 
deterioration of the retinal image. Past clinical findings suggest an increase of straylight with the eye’s 
axial length, but the aetiology of the phenomenon was unclear. The purpose of this work is to 
demonstrate, through raytracing, simple geometrical optics, and the well-established inverse-angle 
square law for the angular distribution of straylight, why straylight increases when a myopic eye is 
corrected with spectacles.
Methods: The angular dependence of straylight is investigated using geometrical optics. An expression 
relating the eye’s 2nd nodal point, the ocular axial length and the eye’s straylight parameter S is found. 
Subsequently, using a model of the human eye, the location of the 2nd nodal point is computed using ray 
tracing for different axial lengths and refractive corrections. Finally, the results are compared against 
psychophysical data for the straylight parameter, corrected for the subject’s age. 
Results: When correcting axial myopia using spectacles, the eye’s 2nd nodal point shifts towards the retina 
and away from the scattering plane, leading to an increase in straylight. Meanwhile, straylight should 
theoretically decrease in hyperopic eyes. Contact lenses keep the 2nd nodal point relative stable, leading 
to a very minor change in straylight with axial length. Our model has shown good agreement with 
previously taken straylight measurements in real eyes, explaining the observed change of straylight with 
ocular axial length.  
Conclusion: We proposed an explanation for the underlying optical mechanism for the clinically observed 
increase of straylight with axial myopia, when corrected with glasses. Our model predicts that the 
increase can be as high as 0.12 log units for a myopic eye with 10 dioptres, which agrees with prior 
observations.
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Introduction

Ocular straylight is a term describing elastic scattering of light, occurring mainly in the crystalline lens, the 
cornea and the ocular fundus, and directly affects the Point Spread Function (PSF) of the eye. 1–3 This influence 
is distinct from aberrations and diffraction at the pupil, exhibiting a much larger spatial range, affecting angles 
well beyond 2 degrees. 3,4 The visual effect of straylight is perceived as a decrease in the image contrast. 5,6 It 
has been shown that straylight is proportional to the fourth power of the subject’s age, 7,8 but elevated 
scattering can also be the result of specific ocular pathogenies, such as corneal oedema and swelling, 9,10 or 
cataract. 11–13 

Scattering depends on a number of factors: the transparency of the ocular optics, and particularly the lens 
and the cornea, the wavelength, where medium range wavelengths scatter less than short and long, 14,15  and 
finally the dynamic range of the scene, with straylight being more pronounced when glare sources are 
present on a dark background. Moreover, the iris colour, and consequently the pigmentation of the eye, has 
been proven to have an effect on the amount of straylight. 16,17 Last but not least, clinical findings suggest a 
direct correlation between ocular biometry and straylight and particularly ocular axial length. 8 This last 
observation was the motivation behind this work.
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There are two ways to measure straylight in-vivo in the human eye: psychophysically and optically. In 
psychophysical methods the subject has to perform a specific visual task and the amount of straylight is 
determined through their feedback. The direct compensation method is such a method that is also widely 
used in clinical practice 18,19 with repeatable results. 20 The optical methods do not require the subject’s input; 
recently, an optical method called the optical integration method has been suggested for the measurement 
of straylight3 that lead to a compact instrument. 21

The purpose of this work is to examine the effect of axial length on straylight using an optical eye model and 
compare this model to psychophysical straylight measurements from an earlier study, 8 in order to provide 
an explanation for the clinically observed increase of straylight in myopia, as well as the decrease of the 
measured straylight after LASEK surgery. 22 The latter implies that the observed increased straylight in the 
myopic eye is not related to vitreous body defects. 

The key observation behind this work is when using spectacles to correct for axial myopia, the eye’s cardinal 
planes change; it is studied whether this change can explain the observed increase in the perceived straylight 
solely due to these changes in the geometrical characteristics of the eye.

Methods

Definition of the straylight parameter

Let  be the part of the point spread function of an eye associated to straylight. Assuming rotational 𝑃𝑆𝐹𝑠(𝜃)
symmetry, the PSF is approximated by the Stiles-Holladay empirical formula for glare 5,6: 

𝐿𝑒𝑞

𝐸𝑔
= 𝑃𝑆𝐹𝑠(𝜃) =

10
𝜃2

Where  is the equivalent veiling luminance (cd/m2) of a glare source that has illuminance Eg (Lux) and is at 𝐿𝑒𝑞
an angle with respect to the axis along which  is measured. This can be written in a more general form 𝜃 𝐿𝑒𝑞
as 

𝑃𝑆𝐹𝑠(𝜃) =
𝑆
𝜃2 (1)

with  the straylight parameter, which is equal to about 10 for normal eyes and about 100 or more for a 𝑆
cataractous eye. Note that this function has a singularity at , making it unsuitable for approximating the  𝜃 = 0
PSF at small angles. Although more accurate formulas have been developed using psychophysical data, the 
above-mentioned inverse square angle law is remarkably accurate for angles between 3 and 30 degrees. 1,6 

From equation 1 if the PSF is known experimentally, straylight parameter S provides a robust (angle 
independent for angles over 3 degrees) number that can be used to report the severity of straylight.  To 
calculate the straylight parameter the PSF must be first normalised to unity. Assuming only forward scattering 
and rotational symmetry this gives:

∫
𝜋/2

0
𝑃𝑆𝐹(𝜃) 2𝜋𝜃 𝑑𝜃 = 1

Units of PSF in this context are  and the straylight parameter can be calculated as 𝑠𝑟 ―1 𝑆 = 𝜃2𝑃𝑆𝐹(𝜃)
(  in degrees, S in degrees2/sr). 𝜃
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Straylight and axial length

Consider a single-surface eye model where all scattering occurs at a single scattering plane (blue surface 
shown in Figure 1) at the anatomical centre of the crystalline, hereafter referred to as scattering plane. This 
approximation is reasonable for the human eye as most scattering occurs at the crystalline lens and, to a 
lesser extent the cornea. In an emmetropic eye the 2nd nodal point is located approximately at the posterior 
surface of the crystalline lens, while in myopic eyes corrected with spectacles it is closer to the retina. 

Figure 1. Schematic eye model showing scattering plane and the location of the 2nd nodal point.

Figure 2 shows a schematic overview of the eye, where  is the eye’s total length,  the distance of the 2nd 𝐿 𝑁
nodal point from the retina,  the visual angle and  for the special case for the emmetropic eye. For 𝜃 𝐿𝑜, 𝑁𝑜, 𝜃𝑜

the spectacle-corrected myopic eye, light scattered at the scattering plane at an angle  reaches the retina 𝜑
at a point that corresponds to visual angle  originating from the eye’s second nodal point.𝜃

Figure 2. Angles and distances considered in the calculation. 

Assuming the paraxial approximation, angles  and  can be written as follows𝜃 𝜑

𝜃 =
𝑑
𝑁
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𝜑 =
𝑑

𝐿 ― 𝐶

Dividing the two equations we get. 

𝜃
𝜑 =

𝐿 ― 𝐶
𝑁 (2)

where  the distance of the scattering plane from the anterior cornea. Now assume that light distribution at 𝐶
the retina for light scattered at the scattering plane is described by the following equation: 

𝑃𝑆𝐹𝑠(𝜑) =
𝛼

𝜑2 (3)

where  a parameter expressing the total amount of scattering.  Equations 1 and 3 express the same quantity 𝛼
in different coordinate systems and therefore 

𝛼
𝜑2 =

𝑆
𝜃2

Solving for  and using equation 2 one gets𝑆

𝑆 = (𝜃
𝜑)2

𝛼 = (𝐿 ― 𝐶
𝑁 )2

𝛼 (4)

where  is independent of the axial length.  Rewriting the latter for the emmetropic eye ( , ) we 𝛼 𝐿 = 𝐿𝑜 𝑁 = 𝑁𝑜
get

𝑆𝑜 = (𝐿𝑜 ― 𝐶
𝑁𝑜 )2

𝛼 (5)

Dividing equations (4) and (5), applying the logarithm and rearranging gives

log(𝑆) ― log(𝑆𝑜) = 2log ( 𝐿 ― 𝐶
𝑁

𝐿𝑜 ― 𝐶
𝑁𝑜

) = 2𝑙𝑜𝑔(𝑁0(𝐿 ― 𝐶)
𝑁(𝐿0 ― 𝐶)) (6)

This last equation gives the relative increase in scattering with axial length and is zero for the emmetropic 
eye. 

Ray Tracing

The location of the second nodal point in myopia was calculated by ray tracing (ZEMAX) using a model of the 
human eye 23. It was assumed that AL was accompanied by an elongation of the vitreous cavity, no changes 
in the cornea, the Anterior Chamber Depth (ACD) and lens thickness and the correction of the resulting 
refractive error was done by a thin lens placed 12 mm from the cornea (spectacles). The nodal point position 
was calculated for a range of values between -20D to 20D for the corrective lens. Correction at the corneal 
plane (contact lens) was also modelled. 
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An example of an emmetropic eye and a myopic eye corrected using spectacles can be seen in Figure 3. The 
scattered ray forms the same angle with the optical axis in both the emmetropic eye (left) and the myopic 
eye (right) but due to the displacement of the nodal point, it corresponds to a different visual angle.

Figure 3. Simulated emmetropic eye (left) and myopic eye corrected using spectacles (right). S refers to the 
scattering plane, N to the nodal point and P the point of intersect of a scattered ray with the retina. For a 
ray that forms an angle of 30 degrees at the scattering plane, the emmetropic eye on the left will see it at 

32.6 degrees whereas the myopic eye on the right at 38.6 degrees.

Straylight data

Straylight data were acquired psychophysically using the C-Quant instrument (Oculus Optikgerate; Wetzlar, 
Germany). The subject’s refraction is corrected with the spherical equivalent using trial lenses at a distance 
of approximately 12mm, similar to the model used in the optical simulations. Axial length was measured 
using a commercial instrument for ocular biometry (IOL Master, ver. 2; Carl Zeiss Meditec, Jena, Germany). 
The dataset included measurements presented earlier 8 as well as additional data using the same instruments 
and conditions. In this study the current group only considers healthy people (while in the previous study 88 
eyes of pre-refractive surgery patients were included). Straylight data were corrected for age following the 
model by Rozema et al8:

𝐿𝑂𝐺(𝑆) = 𝐿𝑂𝐺(𝑆0) ― (𝑃1 + 𝐿𝑂𝐺10(1 + ( 𝐴
𝑃2)𝑃3)) (7)

where the three parameters were ,  and . Straylight data were collected from a 𝑃1 = 0.931 𝑃2 = 65 𝑃3 = 4
total of 389 volunteers (102 left and 287 right eyes), 158 males and 231 females. The maximum and minimum 
age was 81.1 and 8.5 years old respectively and the mean age was 45.2. The spherical equivalent error ranged 
from -8.75D to 5.8D with a mean of -0.6D. This study adhered to the tenets of the Declaration of Helsinki and 
received ethics committee approval (Ref. nr. 7/6/24). Signed informed consent was obtained from the 
participating subjects prior to their participation. 

Results

The objective of the simulations was to determine the location of the 2nd nodal point for changes of the axial 
length of the eye. Figure 4 below shows the result of our simulations when axial defocus is corrected using 
spectacles and contact lenses. For spectacle correction the nodal point displacement is larger than for contact 
lenses. This is shown in figure 4 (left), where the distance of the nodal point from that of the emmetropic eye 
is plotted against the axial length of the eye. 
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Following the geometrical analysis in the section above, in order to the corrected , the distance of the  log (𝑆)
2nd nodal point from the retina is needed. The displacement of the 2nd nodal point from the retina with axial 
length when corrected with spectacles and contacts is shown in figure 4 (right). A linear least-squares 
regression was used to fit the data and a corresponding equation was extracted. Note that the nodal point 
always moves at the direction of the retina, so for shortened eyes it lies closer to the cornea than for 
elongated eyes.

Figure 4. Position of the 2nd nodal point for eyes with different axial lengths corrected with spectacles and 
contact lenses relative to that of a 23.56 mm emmetropic eye (left). Distance between the 2nd nodal point 

and the retina in axial myopia corrected with spectacles and contact lenses (right).

From the simulations, the 2nd nodal point when spectacles are used follows the relation
, where L is the ocular axial length. Plugging the latter into Equation 6, one gets  𝑁 = 0.1271 ∙ 𝐿 + 13.434

log 𝑆 ― log 𝑆𝑜 = 2log ((0.13 ∙ 𝐿𝑜 + 13.43)(𝐿 ― 6.05)
(0.13 ∙ 𝐿 + 13.43)(𝐿𝑜 ― 6.05)) (7)

where the scattering plane was assumed at the center of the lens, 6.05mm from the anterior cornea, and 𝐿𝑜
. = 23.56𝑚𝑚

The age-corrected straylight data for 389 subjects are shown in figure 5. The black line in the figure represents 
the linear regression line describing the data and the red line is equation 8.
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Figure 5. Experimental data (C-Quant) for S (expressed as log(S)) for different axial lengths. Black line is 
linear regression, red line is calculated from the model above. Dashed line at AL=22.3 depicts the axial 

length where the nodal point and the scattering plane coincide.

Discussion
Based on this analysis we conclude that the small increase of straylight observed in longer eyes can be 
explained on the basis of the different locations of the equivalent scattering plane and the nodal point of the 
eye. The analysis presented in this study assumes that the inherent scattering from the cornea and the 
crystalline lens are not affected by myopia.

Roughly one third of the subjects habitually wore contact lenses, some types of which are known to cause a 
significant increase in straylight.24 Comparing the pre- and postoperative straylight in Lasik patients a 
significant decrease in straylight after the surgery was observed, independently of the habitual correction 
prior to surgery. 22

It must be noted that the test field magnification (e.g. by the spectacles) would not explain this finding as 
straylight is rather independent of stimulus size for this angular range. The phenomenon described here can 
be actually seen as the relative magnification of the PSF with respect to the image. 

This dependence of the measured straylight on the ocular axial length is by no means a measurement artifact; 
it has a true impact on the perceived straylight. A young healthy eye would have a straylight parameter log(S) 
of about 0.9 when measured with the C-quant instrument. 25 The same eye, if it were myopic, with an axial 
length of 27.7mm, or roughly -10D of defocus, the increase in straylight parameter would be 0.12 log units 
when corrected with spectacles, indicating a true functional increase of straylight. A recent study26 on the 
effect of refractive correction on scattering supports that, albeit subtle, there is an increase in straylight when 
using negative powered refractive elements. 

When contact lenses are used to correct for axial myopia, the eye’s second nodal point gets displaced less 
than in the case of spectacles, leading to lower perceived straylight. As an example, the previous myopic eye 
of roughly -10D would have an increase of 0.022 log(S) when contact lenses are used compared to an increase 
of 0.12 log units for spectacles. The same mechanism could be a candidate to partially explain the observed 
change in straylight pre and post-LASEK 22 or in phakic IOL implantations. 27

It is important to emphasize here that the model will not be suitable for shorter eyes. The reason is that, 
while for longer eyes the nodal point moves away from the scattering plane, for shorter eyes the nodal point 
approaches the scattering plane and eventually exceeds it. This means that for hyperopic eyes the corrected 
2nd nodal plane will lie close by or even in front of the scattering plane: This would make the model 
inappropriate since the assumption that scattering happens at a single plane is no longer valid. This is partially 
reflected in fig. 5 where the model appears to deviate from the linear regression line describing the data 
(black line). The vertical dashed line in the figure indicates the axial length for which the nodal point and the 
scattering plane coincide, and thus determines the lowest value for which the model is valid.

Another important point is that in our model, we assumed that the eye’s elongation was due to an elongation 
of the vitreous cavity. There is evidence, however, that other structures of the eye are affected: Axial length 
seems to be proportional to ACD and inversely proportional to lens thickness, 28 yet the vitreous cavity is the 
main structure that gets affected, with the ACD containing only a small fraction of the ocular elongation. 

In the model, it was assumed that a change in the eye’s axial length while keeping the corneal and lenticular 
power constant will lead to defocus. Each millimeter of axial displacement requires a spectacle correction of 
roughly 3 diopters to maintain focus. In the real human eye this is not always the case, since, despite the 
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strong correlation between axial length and myopia, ocular biometry varies considerably between 
individuals. Consequently, two emmetropes can have significant differences in axial length, 29 such as e.g. the 
two extremes in our subject pool with axial lengths 22.2 mm and 24.6 mm. This corresponds to a difference 
in defocus of roughly 6 diopters in the model. For emmetropic eyes, or when defocus is corrected using 
contact lenses, the position of the 2nd nodal point has only a weak dependence on axial length, as seen in 
fig.4 (contact lenses - red line). For the two emmetropic axial length extremes for example, the relative 
displacement of the nodal point will be 0.65 mm, and the increase in log S will be roughly 0.03 log units. The 
presence of those extreme data points in our data pool is expected to have a small effect in our model due 
to the strong correlation of axial length and defocus.

Conclusion
Clinical findings have shown a direct relation between ocular axial length and retinal straylight, and more 
specifically an increase in straylight in myopic eyes. In this work, using geometrical calculations and optical 
simulations we suggested a physiological mechanism that could cause the aforementioned phenomenon; 
the displacement of the 2nd nodal point of the eye when the refractive error is corrected. Our model was in 
accordance with previously acquired psychophysical data of straylight in subjects with axial myopia.
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