
Behind the Intents: An In-depth Empirical Study on Software
Refactoring in Modern Code Review

Matheus Paixão

UNIFOR, Fortaleza, Brazil

matheus.paixao@unifor.br

Anderson Uchôa

PUC-Rio, Rio de Janeiro, Brazil

auchoa@inf.puc-rio.br

Ana Carla Bibiano

PUC-Rio, Rio de Janeiro, Brazil

abibiano@inf.puc-rio.br

Daniel Oliveira

PUC-Rio, Rio de Janeiro, Brazil

doliveira@inf.puc-rio.br

Alessandro Garcia

PUC-Rio, Rio de Janeiro, Brazil

afgarcia@inf.puc-rio.br

Jens Krinke

UCL, London, United Kingdom

j.krinke@ucl.ac.uk

Emilio Arvonio

UNISA, Salerno, Italy

e.arvonio@gmail.com

ABSTRACT
Code refactorings are of pivotal importance in modern code re-

view. Developers may preserve, revisit, add or undo refactorings

through changes’ revisions. Their goal is to certify that the driving

intent of a code change is properly achieved. Developers’ intents

behind refactorings may vary from pure structural improvement to

facilitating feature additions and bug fixes. However, there is little

understanding of the refactoring practices performed by developers

during the code review process. It is also unclear whether the devel-

opers’ intents influence the selection, composition, and evolution of

refactorings during the review of a code change. Through mining

1,780 reviewed code changes from 6 systems pertaining to two large

open-source communities, we report the first in-depth empirical

study on software refactoring during code review. We inspected

and classified the developers’ intents behind each code change

into 7 distinct categories. By analyzing data generated during the

complete reviewing process, we observe: (i) how refactorings are

selected, composed and evolved throughout each code change, and

(ii) how developers’ intents are related to these decisions. For in-

stance, our analysis shows developers regularly apply non-trivial

sequences of refactorings that crosscut multiple code elements

(i.e., widely scattered in the program) to support a single feature

addition. Moreover, we observed that new developers’ intents com-

monly emerge during the code review process, influencing how

developers select and compose their refactorings to achieve the

new and adapted goals. Finally, we provide an enriched dataset

that allows researchers to investigate the context and motivations

behind refactoring operations during the code review process.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
Software evolution.

KEYWORDS
Refactoring, Code Review Mining, Developers’ Intents

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in 17th International
Conference on Mining Software Repositories (MSR ’20), October 5–6, 2020, Seoul, Republic
of Korea, https://doi.org/10.1145/3379597.3387475.

ACM Reference Format:
Matheus Paixão, Anderson Uchôa, Ana Carla Bibiano, Daniel Oliveira,

Alessandro Garcia, Jens Krinke, and Emilio Arvonio. 2020. Behind the In-

tents: An In-depth Empirical Study on Software Refactoring inModern Code

Review. In 17th International Conference on Mining Software Repositories
(MSR ’20), October 5–6, 2020, Seoul, Republic of Korea. ACM, New York, NY,

USA, 12 pages. https://doi.org/10.1145/3379597.3387475

1 INTRODUCTION
Modern code review platforms such as Gerrit [2, 20] is increas-

ingly being adopted in both industrial [44] and open-source [43]

projects. Along code reviews, developers inspect and discuss the

quality of each other’s code changes before accepting them. Code

refactoring plays a key role in modern code review [1, 19]. Refac-

torings are rarely ignored during code review [19]. In addition,

modern code review increases the awareness of developers on

the importance of code refactoring [1, 19]. Refactoring consists of

applying one or more structural code transformations (i.e., refac-

toring operations) [18] as a means to achieve various developers’

intents [23, 29, 41] and goals. The intents may vary from pure

structural improvement to facilitating feature additions or bug

fixes [23, 29, 30, 41].

However, there is little understanding on the refactoring prac-

tices performed by developers during the code review process. For

instance, a recent study [46] have found that Extract Method [18]

operations are commonly employed in code changes intended at

facilitating feature additions and/or bug fixes. However, even for an

apparently simple refactoring type, such as an Extract Method, it

may not be easy to get it right in the first attempt [32, 49]. Moreover,

developers commonly employ more than one refactoring operation

to achieve a certain goal [6]. As a result, refactoring operations may

be revisited, preserved, added or undone in each new revision of

a code review. In addition, the developers’ intents may influence

how they select, compose and evolve refactoring operations during

the code review process.

The understanding of how refactorings are performed along code

reviews with diverse intents is of paramount importance. There is a

growing body of refactoring techniques in the literature [21, 24, 26–

28, 33, 34, 42]. However, it is not clear whether they are well aligned

with the practice of modern code review. Existing empirical studies

tend to analyze refactoring operations employed only when the

developer has the explicit intent of refactoring [6, 40]. Other studies

simply analyze the frequency of refactorings with different moti-

vations [46] or intents [23, 41]. Moreover, existing literature tend

to analyze refactoring changes a posteriori [4, 6, 10, 29, 46], which

https://doi.org/10.1145/3379597.3387475
https://doi.org/10.1145/3379597.3387475


MSR ’20, October 5–6, 2020, Seoul, Republic of Korea
M. Paixao, A. Uchôa, A.C. Bibiano,

D. Oliveira, A. Garcia, J. Krinke, and E. Arnovio

is a method that provide no context to understand how develop-

ers compose and evolve refactoring operations as a code change

evolves. Hence, to the best of our knowledge, there is no study

that performs an in-depth investigation regarding the relationship

between software refactoring and code review, especially when

considering different developers’ intents and their influence on

refactoring and reviewing practices.

In this paper, we address these gaps by analyzing how developers

perform code refactoring in the context of modern code review. We

observe how refactoring differs across changes driven by different

intents. By exploring information available along each review, we

also observe how developers compose and evolve their refactor-

ings throughout each code change. We first collected code review

data of 6 real-world software systems from two large open source

communities. We identified and analyzed 1,780 code reviews that

employed a total of 7,259 refactoring operations identified in 13

commonly used refactoring types [29].

To achieve our study goals, we inspected and classified the devel-

opers’ intents behind each code review that employed refactoring

operations, reaching 7 distinct intents. We further identified and

distinguished code changes with explicit and non-explicit refac-

toring intents. We also identified and analyzed the trends on how

developers compose refactorings while reviewing a code change

with explicit and non-explicit refactoring intents. Finally, we identi-

fied and analyzed five refactoring evolution patterns found during

code review. Our contributions include: (i) findings on how refac-

torings are performed along code reviews with different intents, (ii)

a discussion about the implications of these findings, and (iii) a new

enriched code review dataset [39] that allows researchers to inves-

tigate the context and motivations behind refactoring operations

during code review. We summarize our findings as follows:

(1) As expected, simple refactoring types, such as extracting

and renaming methods, are the most common in changes

intended at adding features. However, these simple opera-

tions are often not applied in isolation. They are often part

of non-trivial sequences of refactoring operations, which: (i)

include complex refactorings, such as moving class members,

and (ii) are added or even undone along a feature-related

change. These observations encourage the investigation of

recommenders that better support developers along reviews

intended at adding features.

(2) As expected, explicit refactoring changes often involve com-

plex refactoring operations, such as moving or extracting

classes. However, our findings contradict observations made

in a recent study [19], which reports developers do not ignore

explicit refactoring-related comments during review. We no-

ticed that: (i) these changes had much less revisions than

others, and (ii) the refactoring operations were rarely refined

or undone along the code review. This is an intriguing find-

ing as recent studies have shown that pure refactoring often

contributes to new code smells [6, 10] or bugs [3, 17]. These

observations also reinforce the importance of applying exist-

ing techniques for supporting developers when performing

explicit refactoring [24, 27, 28, 34].

(3) We observed that new developers’ intents commonly emerge

along a review and influence how developers select and

compose their refactorings. These observations show how

interactive the refactoring process is along code reviews,

i.e., developers tend to revisit, refine, and sometimes undo

their refactorings based on their peers’ feedbacks. This also

demonstrates the importance of refining existing techniques

for refactoring-aware code reviews (e.g., [19]), so that devel-

opers interactively receive information and recommenda-

tions that guide them on refining and selecting refactorings

that contribute to their intents.

2 BACKGROUND AND RELATEDWORK
Modern Code Review is a lightweight, informal, asynchronous,

and commonly tool-assisted practice aimed at detecting and remov-

ing defects in parts of a software project [2]. Examples of defects in-

clude bugs, performance issues, (un)intentional violations of design

and/or architectural principles or rules, and style violations [5, 50].

The modern code review process is initiated by the code owner that

modifies the original code base and submits a new code change to be

reviewed. Other developers on the development team will serve

as reviewers for the code change. Each reviewer inspects the code
change, looking for defects, as described above. After completing

their inspection, each reviewer provides feedback in the form of com-
ments to the code owner. This cycle is repeated until the reviewers

reach an agreement to approve or reject the proposed code change.

Reviews usually take several iterations, consisting of reviewers

providing feedback and the code owner making subsequent changes

in parts of the system under review in response to the feedbacks

until an agreement is reached. In our study, we use review to indicate

the entire process of a single code review, from submitting a new

code change for review to approving or rejecting the integration

of the change into the codebase. In addition, we use revision to

indicate the different iterations during the cycle of a single review.

Refactoring and Developers’ Intents. Software refactoring is
a common development practice that aims at improving the internal

structure of a software system [18]. Previous studies have shown

that developers apply refactoring not only on maintenance tasks

but also in other tasks of the software development lifecycle [23, 41,

46]. Such studies indicated that feature adding and bug fixing are

also intents developers have when they perform refactoring. This

phenomena has became known in the literature as floss refactoring.
The first grasps on the developers’ intents and motivations when

performing refactoring emerged in the studies provided by Murphy-

Hill et al. [29] and Negara et al. [30], in which the authors investi-

gated the differences between manual and automated refactoring.

These studies observed that refactoring operations are commonly

performed in conjunction with other types of changes, mostly as

preparation for introducing a new feature and bug fixing.

Silva et al. [46] monitored Github projects to detect refactoring

operations performed in 124 systems. As these changes were incor-

porated into the systems, the authors performed email interviews

and surveys with the changes authors’ to assess their motivations

behind the refactoring operations. Extracting a method was men-

tioned as the most common refactoring operation, where the main

motivation is the preparation for new feature developments.

In previous work, we performed an investigation on the devel-

opers’ intents behind software changes during code review [36, 37].



Behind the Intents: An In-depth Empirical Study on Software
Refactoring in Modern Code Review MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

We automatically identified significant architectural changes and

investigated the context in which such changes were performed. A

similar investigation was carried on by Tufano et al. [54], where

the authors identified the developers’ intents behind commits that

introduced and removed code smells. In a recent study, we analyzed

refactoring sequences and observed that developers often apply

the same refactoring type during a single commit [6]. However, we

did not investigate how developers compose and apply refactoring

sequences based on their intents.

3 MOTIVATING EXAMPLE
We adopt review 58223 [12] from the couchbase-java-client system
(see Section 4.2) to motivate our empirical study and depict the

phenomenon we investigate. Through the course of this particu-

lar code review, different aspects of the code change have been

discussed, such as tests, licenses, style etc, which led to several

modifications in the source code. However, to remain concise, we

focus on the discussions and source code transformations related

to the developers’ intents and refactoring operations.

Figure 1 presents the refactoring operations performed in the life-

cycle of review 58223 (see Section 4.2 for details on the refactorings

identification procedure). This review took place from 01/04/2016

to 01/19/2016, and it is composed of 15 revisions, which are indi-

cated in the bottom of the figure. The goal for this code change was

to introduce a new set of classes to read specific parts of a JSON

file without the need to process the whole document, where this

internal API could be re-used by different parts of the codebase.

r1 r15

JsonTranscoder

jsonObjectToByteBuf()

objectToByteBuf()

ExM

JsonTranscoder

ExM
byteBufJsonValueToObject()

byteBufToGenericObject()

TranscoderUtils

byteBufToGenericObject()

byteBufToClass() byteBufToClass()
MoM

MoM

LOGGER LOGGERMoA

CouchbaseAsyncBucket

LOGGER
MoA

r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14

ExM: Extract Method

MoM: Move Method

MoA: Move Attribute

Refactoring Operations

Figure 1: Refactoring operations performed during the life-
cycle of review 58223 from couchbase-java-client.

An excerpt of the review’s description reads as “[The new] Sub-
document API allows to mutate and read specific fragments of JSON
inside an existing document without having to transfer the whole
document (...)”. One can clearly infer from the description that the

code owner had the intent of adding a new feature to the codebase.

Hence, the first revision consists mostly of new code being added

to implement the new JSON reading functionality.

In the second revision, we observe the first refactoring operation

performed in this review. Before this review started, the class Json-
Transcoder had a method called jsonObjectToByteBuf() that was
used to parse a JSON object into bytes to be further processed. Since

the developer’s goal was to create a generic set of utility classes

to read JSON files, the original code from jsonObjectToByteBuf()

was extracted into a new and more generic method called object-
ToByteBuf(). Notice that this refactoring operation was driven by

the developer’s goal of adding a new feature, which, at the time

this revision was submitted, did not fully exist yet. Hence, exist-

ing refactoring recommenders that focus solely on structural im-

provement [26, 48, 51] would fail to support the developer in this

refactoring activity.

In the next 10 revisions (from r3 to r12), the code owner modified

parts of the code other than class JsonTranscoder. Thus, the refac-
toring operation discussed above remained part of the code change

until revision 12. In the meantime, reviewers of this code change

provided feedback regarding the codebase structure as a result of

the new feature being added. One of the reviewers pointed out:

“What do you think about adding a DocumentFragment<T> interface
and implementing it as JSON (...) ?”. This comment indicates that

the developers involved in this review recognized an opportunity

to improve the system’s structure while introducing a new feature.

Hence, from this point forward, the developers’ intent for this par-

ticular review changed from solely adding a new functionality to

combining codebase improvement and feature implementation.

As a result, in revision 13, the code owner modified class Json-
Transcoder again. In this new revision, the author first reverted the

class to its original state in the codebase. Hence, the refactoring op-

eration that has been first performed in revision 2 has been undone.

Instead, more complex refactorings have been performed to reflect

the review’s new goal of improving the codebase structure. Method

byteBufToClass() has been moved from class JsonTranscoder to
class TranscoderUtils. Next, method byteBufJsonValueToObject()
has been extracted into a generic method byteBufToGenericOb-
ject(), which has been later moved to class TranscoderUtils. Finally,
attribute LOGGER has been moved from class JsonTranscoder to
classes TranscoderUtils and CouchbaseAsyncBucket.

This example depicts different aspects of how the developers’

intents towards a code change influence the way they employ refac-

toring operations. In addition, it shows how the iterative nature

of the code review process may lead developers to change their

intent during the course of a review. First, we showed how refac-

toring operations may be employed to support the addition of new

features when this is the sole goal of a code change. Next, the feed-

back provided by other developers during the reviewing process

led to changing the original goal for the code change. As a result,

previously performed refactoring operations were undone and new

refactorings were performed to reflect the new intents.

4 STUDY SETTINGS
4.1 Research Questions
RQ1: What are common refactoring types employed under each spe-
cific intent? – RQ1 aims at investigating the refactoring types em-

ployed when developers have different intents for a code change

under review, e.g., feature adding and bug fixing. We measure the

most and least common refactoring types employed, their distri-

butions, and how they vary according to different intents. By an-

swering RQ1, we are able to reveal new observations on the refac-

toring types employed under different intents. This is useful for

researchers when devising refactoring approaches that account

for the developers’ intents. Moreover, by analyzing the developers’



MSR ’20, October 5–6, 2020, Seoul, Republic of Korea
M. Paixao, A. Uchôa, A.C. Bibiano,

D. Oliveira, A. Garcia, J. Krinke, and E. Arnovio

intents, we depict how refactorings are employed to support the

author’s original intent and intents that emerge during code review,

which has not yet been discussed in the literature.

RQ2: How do developers compose refactoring sequences to sup-
port their intents? – RQ2 aims at complementing the knowledge

obtained in the previous question by investigating how developers

compose refactoring sequences, i.e., refactoring operations applied

in conjunction, to support their intents. By answering RQ2, we

reveal new observations about how developers compose refactor-

ing sequences to support their intents during code review. We also

highlight the most common compositions of refactoring sequences

when developers have the explicit intent of refactoring or not.

RQ3: How do code changes that employ refactoring operations
evolve during code review? – RQ3 aims at investigating how refac-

toring operations evolve during the process of code review. By

answering this question, we are able to reveal five different refac-

toring evolution patterns, providing new insights on the refactoring

practices employed during the reviewing process. Previous stud-

ies [4, 6, 10, 46] only assess refactoring application a posteriori,
where one cannot observe such evolution patterns. By studying

refactoring operations while they are applied in code review, we

are able to move forward the empirical knowledge on refactoring

practices.

4.2 Study Steps and Procedures
Step 1: Select software systems that adopt modern code re-
view. We selected systems provided by the Code Review Open

Platform (CROP) [35], an open-source dataset that links code re-

view data with their respective code changes. CROP currently pro-

vides data for 11 systems, accounting for a total of 50,959 code

reviews and 144,906 revisions extracted from two large open source

communities: Eclipse and Couchbase. All systems in CROP em-

ploy Gerrit [20] as their code review tool. Hence, by using CROP,

we have access to a rich dataset of source code changes that goes

beyond other platforms, such as Github. The CROP data include

not only the source code change in itself, but also all the feedback

and comments during review, the change’s description evolution,

links to the issue tracking system and so on. We selected only Java

systems included in the CROP dataset due to limitations of the

RefMiner tool [53] (See Step 2). Table 1 provides details about each

selected system, where the Eclipse and Couchbase systems are pre-

sented in the upper and bottom halfs of the table, respectively. We

also detail the number of merged reviews and revisions in each

system followed by the time-span of our investigation. Finally, we

report the median, maximum and minimum values of kLOC.

Table 1: Software systems investigated in this study

Systems # of Reviews # of Revisions Time Span kLOC
Min Med Max

egit 4,502 11,430 9/09 to 11/17 16.07 70.59 107.661

jgit 4,463 11,891 10/09 to 11/17 34.00 84.25 114.36

linuxtools 3,695 10,892 6/12 to 11/17 89.99 170.28 205.89

java-client 798 2,394 11/11 to 11/17 0.55 9.3 29.16

jvm-core 785 2,184 4/14 to 11/17 1.78 13.68 24.59

spymemcached 383 1,098 5/10 to 7/17 7.19 10.78 13.68

Step 2: Identify refactoring operations during code review.
We used the RefMiner tool [52] to identify refactoring operations

according to 13 refactoring types that are commonly employed

by developers [46]. We have identified refactoring operations by

considering each revision of a code change, where each revision

was compared to its parent, i.e., the codebase’s version before any

revision (including the previous ones) was applied. For details re-

garding this procedure, we recommend a recent empirical study

we performed dedicated to this topic [38]. In studies performed by

RefMiner’s authors, the tool is reported to achieve 98% of precision

and 93% of recall [46, 52], whichmakes it the current state-of-the-art

tool for automated refactoring detection. RefMiner has been con-

stantly developed and evolved, where the latest stable release dates

from May, 2018. However, its latest version has not been employed

in recent studies. On the other hand, its earlier releases have been

used and evaluated in studies by researchers other than the tools’

authors [10, 17, 29], achieving similar scores of precision and recall

as in its original proposed paper. Hence, we chose to employ an

earlier version of RefMiner (version 0.2.0) [52] due to its results in

studies performed by both the tools authors and other researchers.

Table 2 lists the 13 refactoring types identified by RefMiner. We

identified refactoring types that affect different scopes of a code

element: four types that affect a class or interface; six types that

affect methods; and three types that affect an attribute.

Table 2: Refactoring types investigated in this study

Scope Refactoring Type Description

Class or interface

Extract Interface Extract an interface from an existing class

Extract Superclass Extract a superclass from an existing class

Move Class Move a class across packages

Rename Class Update name of an existing class

Method

Extract Method Extract a new method from an existing one

Inline Method Move a method body to an existing method

Move Method Move a method across classes

Pull Up Method Move method from child to parent class

Push Down Method Move method from parent to child class

Rename Method Update name of an existing method

Attribute

Move Attribute Move an attribute across classes

Pull Up Attribute Move attribute from child to parent class

Push Down Attribute Move attribute from parent to child class

We identified 1,780 code changes that employed refactoring op-

erations for a total of 7,259 refactoring operations performed when

considering all selected systems. We also observed that the percent-

age of reviews that perform refactoring operations is consistent

throughout all analyzed systems (from 11% to 14% of reviews).

Moreover, most of the reviews have two or more refactoring opera-

tions, often reaching 4 or more. Consider the code review example

discussed in Section 3, for example. All refactoring operations de-

picted in Figure 1 were automatically identifed by RefMiner. The

complete set of refactoring operations identified for all revisions in

our dataset is available in our replication package [39].

Step 3: Manually inspect and classify the developers’ in-
tents behind code review discussions.We considered all 1,780

reviews that employed refactoring operations to perform a man-

ual inspection and classification of the developers’ intents based

on the review’s description and reviewers’ feedback through com-

ments. We performed our manual classification by adopting a state-

of-the-art procedure to classify the developers’ intent in a code

change [36, 37]. As part of the procedure, we considered all the data

involved in a code review, such as commit messages, discussions

between developers, links to issue tracking systems, and source



Behind the Intents: An In-depth Empirical Study on Software
Refactoring in Modern Code Review MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

code. In this paper, we consider the intent of a code change to be

the goals and motivations of the change’s author(s). Table 3 lists

the developers’ intents we identified in our study. We provide a

description of each intent followed by an excerpt from the reviews’

discussion to serve as example of our classification process.

Table 3: Developer’s intents along code review

Intents Description

Feature Developer is adding or enhancing a feature, e.g., “Add option to replace
selected files with version in the git index.”

Refactoring Developer is refactoring the system, e.g., “Refactor View mapping into
distinct class (...) query handling is moved into a separate class”

Bug Fixing Developer is fixing a bug, e.g., “Fix failing unit tests introduced by (...)”
Feature Removal Developer is removing an obsolete feature, e.g., “Retire

org.eclipse.ui.examples.presentation plug-in”
Platform Update Developer is updating the code for a new platform/API, e.g., “Bump to

BREE 1.6 to be consistent”
Merge Commit Developer is merging two branches, e.g., “Merge branch stable-0.8”
Not Clear There is no evidence to suggest any of the previous.

The manual classification process consisted of two authors ana-

lyzing the data of each code change and identifying the developers’

intent. We employed a two-phase process: 1) two authors solely

and separately inspected and classified all reviews; 2) the authors

discussed all the code changes for which there was a disagreement

in the classification. During the classification process, we identified

reviews with mixed intents, i.e, reviews with more than one intent,

such as Feature/Refactoring, and Feature/Refactoring/Bug Fixing. We

emphasize there was no disagreement on any code change after the

second stage of classification. Consider the code review discussed in

Section 3. Based on the review’s data, as described above, we identi-

fied a Feature/Refactoring intent for this review. The set of manually

classified code reviews that employed refactoring operations are

available in our replication package [39].

Step 4: Validation of code reviews that present a refactor-
ing intent. Due to RefMiner’s limitations, there might be code

reviews in which the developers present a refactoring intent but

no refactoring operation is identified. This would bias our study by

investigating only the code reviews in which RefMiner is capable

of identifying a refactoring operation, and potentially missing on

other reviews with a refactoring intent. To assess this threat to our

study’s validity, we make use of the code reviews’ classification

performed by our previous work [37]. In this study, we classified

code reviews according to their architectural impact. Hence, we

can employ this classification as a partial ground truth for code

reviews that present a refactoring intent regardless of the presence

or absence of refactoring operations. Thus, for each review previ-

ously reported [37] as having a refactoring intent (332 reviews),

we used RefMiner to identify the refactoring operations that might

have been employed. When considering all systems studied in the

previous work, we observed that 196 (59%) of the reviews with

a refactoring intent employed at least one refactoring operation.

Regarding the 136 (41%) remaining reviews, we performed a quali-

tative analysis to investigate the reasons RefMiner was not able to

identify refactoring operations.

As a result, we observed that only 4% of these reviews contained

false positives, i.e., reviews that contained refactoring operations

that RefMiner did not identify. The data and code for 6% of the

reviews was noisy and impure, where we could not qualitatively

identify whether a refactoring operation was employed or not. For

the other 31% of reviews, the developers claimed to be performing

a refactoring where in fact other changes were performed, such as

performance improvements, for example. Hence, based on these

analyses, we assess that our empirical study is only negligibly af-

fected by RefMiner’s limitations. Additional details of this validation

are available in our replication package [39].

5 RESULTS AND DISCUSSION
5.1 Refactoring Types per Review’s Intent
Refactoring operations and intents. We address RQ1 by ana-

lyzing the distribution of the number of reviews that employed

refactoring operations grouped by developers’ intent and refactor-

ing types. Next, we analyze the most and least common refactoring

types employed, including their distributions, and how they vary

according to different intents. Figure 2 illustrates the distribution

of code reviews that employed refactoring operations grouped by

the developer’s intent.

0%

25%

50%

75%

100%

N
u

m
b

e
r 

o
f 

R
ev

ie
w

s

Not Clear

Merge Commit

Bug Fixing

Refactoring

Platform Update

Feature Removal

Feature

Intent

Figure 2: Distribution of reviews that employed refactoring
operations grouped by developer‘s intents and systems

The figure shows that most of the code changes that employ

refactoring operations present a Feature intent, accounting for 54.5%
of all reviews. In 27.3% of the reviews, developers have the sole

intent of Refactoring. Bug Fixing appears as the third most common

intent: developers refactored the system to fix a bug in 11.9% of

the reviews. Finally, the number of reviews identified with the in-

tent of Feature Removal, Platform Update and Merge Commit are
negligible in comparison to the most popular intents previously

discussed. These results indicate that developers most commonly

employ refactoring operations when they do not have an explicit in-

tent of refactoring, i.e., the refactoring is mixed with other changes,

normally for implementing a new feature or fixing a bug. These

observations partly complement previous studies regarding de-

velopers’ intents and motivations behind refactoring [23, 41, 46],

strengthening the empirical evidence in this topic.

Finding 1: Developers most commonly employ refactoring

operations when they aim at introducing a new feature or

enhancing an existing one.

Refactoring types andnon-explicit refactoring intents.Ta-
ble 4 presents the number of reviews that employed refactoring

operations grouped by the developers’ intent and refactoring types.

Each cell represents the number of reviews that employ a certain

refactoring type while having a certain intent. In Table 4, we do

not consider the number of refactoring operations of the same



MSR ’20, October 5–6, 2020, Seoul, Republic of Korea
M. Paixao, A. Uchôa, A.C. Bibiano,

D. Oliveira, A. Garcia, J. Krinke, and E. Arnovio

Table 4: Number of reviews that employ refactoring operations grouped by developers’ intent and refactoring type

Refactoring Types Feature Only Refactoring Only Feature/Refactoring Bug Fixing Only Feature/Bug Fixing Refactoring/Bug Fixing Feature/Refactoring/Bug Fixing

Extract Interface 16 (1.25%) 5 (0.86%) 7 (2.61%) 0 (0%) 2 (2.08%) 0 (0%) 0 (0%)

Extract Superclass 52 (4.05%) 21 (3.62%) 19 (7.09%) 3 (1.72%) 3 (3.13%) 0 (0%) 0 (0%)

Move Class 52 (4.05%) 72 (12.41%) 15 (5.60%) 5 (2.87%) 3 (3.13%) 2 (6.67%) 2 (6.67%)

Rename Class 59 (4.59%) 52 (8.97%) 14 (5.22%) 5 (2.87%) 5 (5.21%) 1 (3.33%) 3 (10%)

Extract Method 543 (42.26%) 108 (18.62%) 58 (21.64%) 84 (48.28%) 43 (44.79%) 12 (40%) 8 (26.67%)

Inline Method 55 (4.28%) 31 (5.34%) 8 (2.99%) 6 (3.45%) 5 (5.21%) 1 (3.33%) 2 (6.67%)

Move Method 122 (9.49%) 89 (15.34%) 43 (16.04%) 17 (9.77%) 9 (9.38%) 4 (13.33%) 3 (10%)

Pull Up Method 46 (3.58%) 28 (4.83%) 15 (5.60%) 3 (1.72%) 3 (3.13%) 1 (3.33%) 2 (6.67%)

Push Down Method 12 (0.93%) 7 (1.21%) 3 (1.12%) 0 (0%) 1 (1.04%) 0 (0%) 1 (3.33%)

Rename Method 215 (16.73%) 92 (15.86%) 45 (16.79%) 46 (26.44%) 15 (15.63%) 5 (16.67%) 4 (13.33%)

Move Attribute 74 (5.76%) 48 (8.28%) 29 (10.82%) 3 (1.72%) 6 (6.25%) 4 (13.33%) 3 (10%)

Pull Up Attribute 29 (2.26%) 18 (3.10%) 10 (3.73%) 2 (1.15%) 1 (1.04%) 0 (0%) 1 (3.33%)

Push Down Attribute 10 (0.78%) 9 (1.55%) 2 (0.75%) 0 (0%) 0 (0%) 0 (0%) 1 (3.33%)

Total 1,285 (100%) 580 (100%) 268 (100%) 174 (100%) 96 (100%) 30 (100%) 30 (100%)

type used in the same review. Instead, we simply check if a review

employs a certain refactoring type or not.

Differently from previous studies (e.g., [29, 40, 46]), our method-

ology enables us to identify intents that emerge during code review

to support the realization of the original intent. We refer to these

intents as mixed intents, i.e., reviews that had at least two different

intents, such as Feature/Refactoring, Refactoring/Bug Fixing, and
Feature/Refactoring/Bug Fixing. Hence, for the remainder of this

study, we discuss single and mixed intents separately. To avoid

misunderstandings, we refer to the single intents as Feature Only,
Refactoring Only and Bug Fixing Only. Finally, we differentiate in-
tents with an explicit intent of refactoring from their non-explicit

counterparts, where the first are presented in a gray background

and the latter are presented in a white background in Table 4.

Table 4 indicates that a significant number of refactoring opera-

tions are concentrated in reviews with the intents of Feature Only,
Feature/Refactoring, Refactoring Only, and Bug Fixing Only. Table 4
allows us to observe that for non-explicit refactoring reviews, i.e.,

Feature Only, Bug Fixing Only, and Feature/Bug Fixing, up to 48%

and 26% of reviews employed Extract Method and Rename Method,

respectively. Other refactoring types are less frequent than method

extraction and renaming. Each of the other refactoring types occurs

in less than 10% of the non-explicit refactoring reviews.

In summary, we observed that extracting and renaming methods

are the most frequent refactoring operations regardless of the in-

tent. This result provides a different perspective on the observations

made by a previous study. Silva et al. [46] listed 11 reasons that moti-

vate developers to apply Extract Method. Most of these motivations

concern the improvement of the system’s internal structure. How-

ever, we observed in our motivating example (see Section 3) that

the motivations for extracting a method can go beyond the listed

ones. In our example, the developers applied an Extract Method

refactoring to support the implementation of a new feature.

Finding 2: Extracting and renaming methods are the most

common refactoring operations regardless of the intent.

Refactoring types and explicit refactoring reviews. For the
reviews with an explicit intent of refactoring, i.e., Feature/Refac-
toring and Refactoring Only, a wider range of refactoring types

are employed when compared to their non-explicit counterparts.

For such reviews, Extract Method is still the most common opera-

tion with 21% of reviews, while Rename and Move method are the

second and third most common operations with 16% of reviews.

For reviews with the Feature/Refactoring intent, developers move

classes across packages in only 5% of the reviews. Classes are more

frequently moved (12%) in reviews with a Refactoring Only intent.

A similar observation applies for the Rename Class refactor-

ing, which is more employed in reviews with Refactoring Only
intent than Feature/Refactoring. Moreover, refactoring operations

involving classes happen more often in Refactoring Only (25%) and

Feature/Refactoring (21%) reviews. As for non-explicit refactoring

intents, class-level refactoring operations range from 7% (Bug Fixing
Only) to 13% (Feature Only).

Finding 3: Developers tend to use a more even distribution

of refactoring types in reviews with an explicit refactoring

intent.

5.2 Refactoring Sequences per Review’s Intent
In RQ1, we observed that developers did not apply isolated refac-

toring operations of different types. Thus, we hypothesize that

refactoring operations might be applied in compositions. Hence,

we performed an analysis to obtain an in-depth understanding on

how refactoring sequences are composed under different intents.

Identification of Refactoring Seqences: We collected refac-

toring sequences that were applied during the review process of

a code change. We considered that a refactoring sequence is com-

posed of two or more interrelated refactoring operations applied

in subsequent revisions of a code review. Two refactoring opera-

tions are interrelated when they are applied in a common set of

code elements (e.g. classes). This procedure has been applied in

recent empirical studies regarding refactoring sequences and com-

positions [6, 7, 47]. We analyzed the refactoring sequences for the

following intents: Feature Only, Refactoring Only, Feature/Refactor-
ing and Bug Fixing Only. We focus our analyses on these intents

because they are the most commonly observed in our dataset (see

Section 5.1). Consider review 58223, as depicted in Section 3. The

refactoring sequence identified for this review is composed of 6

refactoring operations, namely: [Extract Method, Move Method,

Extract Method, Move Method, Move Attribute, Move Attribute].

Table 5 presents the number of refactoring sequences, the num-

ber of refactoring operations that compose the sequences, the num-

ber of reviews, and the number of revisions for each intent. When

considering the 336 reviews and 3,027 revisions that present a Fea-
ture Only intent, we identified 426 refactoring sequences composed

of a total of 1,621 refactoring operations. Our results indicate that



Behind the Intents: An In-depth Empirical Study on Software
Refactoring in Modern Code Review MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

3,437 (47.34%) out of 7,259 refactoring operations were applied in

sequences, where these sequences are distributed in a median of 5

revisions. Besides that, developers applied refactoring sequences on

580 (25.14%) out of 2,307 reviews. Moreover, note that some reviews

had more than one refactoring sequence, such as the Refactoring
Only intent. In this particular case, we noticed that developers ap-

plied refactoring operations in different sets of code elements during

these reviews, which characterize different refactoring sequences.

In addition, we have observed a total of 250 (33.55%) out of 745

refactoring sequences in reviews where developers had the explicit

intent of refactoring (Refactoring Only and Feature/Refactoring).

Table 5: Number of refactoring sequences per intent

Intent Sequences Ref. Operations Reviews Revisions

Feature Only 426 (57.19%) 1,621 (47.16%) 336 (57.93%) 3,027 (65,86%)

Refactoring Only 150 (20.13%) 1,047 (30.46%) 114 (19.66%) 553 (12.03%)

Feature/Refactoring 100 (13.42%) 532 (15.48%) 63 (10.86%) 657 (14.30%)

Bug Fixing Only 69 (9.26%) 237 (6.90%) 67 (11.55%) 359 (7.81%)

Total 745 (100%) 3437 (100%) 580 (100%) 4,596 (100%)

Aimed at understanding how these refactoring sequences are

composed, we created four categories based on the code element’s

scope of each refactoring type. Table 6 presents each category

followed by a description and the refactoring types that compose

the category. In addition, we present the predominance of each

category over the others when refactorings of different categories

are employed in sequence. Finally, we detail the number of classes

each category of refactoring type affects. All these attributes will be

used in this section to provide insights on how developers compose

refactoring types to achieve their intents.

Table 6: Categories of refactoring types

Category Description Refactoring Type Predominance Number of Classes

Hierarchical

Refactorings that

affect at least two

classes of a

hierarchy

Pull Up Attribute

Push Down Attribute

Pull Up Method

Push Down Method

Extract Interface

Extract Superclass

Motion,

Intra-class,

Rename

Multiple Classes

Motion

Moving a code

element within the

software project

Move Attribute

Move Method

Move Class

Intra-class,

Rename

Multiple Classes

Intra-class

Refactorings that

affect a specific class

Extract Method

Inline Method

– Single Class

Rename

Renaming a project

element

Rename Method

Rename Class

– Single Class

Combination: The classification by combination was based on

findings of previous studies, which investigated how refactoring

types are combined in refactoring sequences [6–8, 47]. However,

these studies do not investigate how these combinations relate to

developers’ intents. We classified the refactoring sequences accord-

ing to the categories of their refactoring operations and the order

of their combinations. Consider the refactoring sequence for the

example discussed in Section 3: [Extract Method, Move Method,

Extract Method, Move Method, Move Attribute, Move Attribute].

This refactoring sequence is classified into: {Intra-class, Motion,

Intra-class, Motion, Motion, Motion}.

As a result of this classification, we have found 41 combinations

of these categories in our data. When considering reviews with a

Refactoring Only intent, out of the 150 refactoring sequences, 32

(21.3%) are composed of Motion only refactoring operations; 29

(19.3%) are composed of Motion and Intra-class refactorings. These

results indicate that developers have applied a non-negligible num-

ber (40.6%) of refactoring sequences that affect more than one class,

and they had composed non-trivial refactoring sequences with

different refactoring types when having an explicit intent of refac-

toring. Differently, when considering the other intents, we observed

212 (49.7%) and 38 (55%) Intra-class only refactoring sequences for

the Feature Only and Bug Fixing Only, respectively. These results
suggest that developers more often applied refactoring sequences

on single code elements when the intent was not to explicitly refac-

tor the code.

We have found 100 refactoring sequences in reviews with a

mixed Feature/Refactoring intent. Out of these, 26 are composed of

Motion-only refactoring operations, and 11 are composed of {Mo-

tion, Hierarchical, Motion} refactoring operations. This suggests

that developers regularly (36%) applied refactoring sequences on

more than one class when they had more than one intent. Devel-

opers often applied a specific order of these categories, by first

moving classes, next modifying classes hierarchy, and finally mov-

ing classes to support these intents. This indicates that the order in

which refactorings are employed is affected by the different intents

developers have towards the code change. We provide the complete

categories’ classification in our replication package [39].

Refactoring sequences with Extract Methods or Rename
Methods. On combinations that have the categories Intra-class or

Rename, we observed that 518 (69.53%) have at least one Extract

Method, and 94 (12.61%) have at least one RenameMethod. Previous

work reported that Extract Method and Rename Method are the

most common refactoring types applied when assessed in isola-

tion [10, 46]. However, our results present that these refactoring

types are often applied in conjunction with other refactoring types.

Finding 4: Extract Methods are not performed in isolation,

and they often occurwith other refactoring types in sequences.

Predominance: We defined the predominance category based

on the scope that each category affects. Categories that affect a

large scope predominate over categories that affect a small scope.

Thus, the order of predominance, from the largest to the smallest

scope, is as follows: Hierarchical, Motion, Intra-class, and Rename.

As previously shown, the review discussed in Section 3 presents

a refactoring sequence of [Extract Method, Move Method, Extract

Method, Move Method, Move Attribute, Move Attribute], which

yields a categories’ classification of {Intra-class, Motion, Intra-class,

Motion, Motion, Motion}. According to Table 6, the Motion category

has predominance over Intra-class regardless the refactorings order.

Thus, this refactoring sequence may be classified simply as Motion.

Table 7 presents the predominance of categories for each intent.

Consider the Feature Only intent, for example. We observe that 212

refactoring sequences are classified into predominantly Intra-class,

which accounts for 49.77% of all refactoring sequences with a Fea-
ture Only intent. Developers often applied categories that involved

a large code scope when they had the explicit intent of refactoring.

We have found that 93 (62%) out 150 refactoring sequences with

Refactoring Only intent employed code motion between classes.

In addition, 10 (15%) out these employed refactoring operations

on hierarchical classes, where these refactoring sequences have a



MSR ’20, October 5–6, 2020, Seoul, Republic of Korea
M. Paixao, A. Uchôa, A.C. Bibiano,

D. Oliveira, A. Garcia, J. Krinke, and E. Arnovio

median of 12 refactoring operations. This indicates that develop-

ers often applied refactoring on more than one class in sequences

where the intent is to explicitly improve the structural quality.

Refactoring sequences and Feature Only intent.When con-

sidering the 426 refactoring sequences in reviews with a Feature
Only intent, we have observed that developers employed Motion

and Hierarchical refactoring operations in 140 (32.86%) and 30

(7.04%) of them, respectively.

Finding 5: Developers regularly applied refactoring sequences
that affect multiple classes to support feature addition.

Refactoring sequences and Bug Fixing Only intent. In 25

(36.23%) out of 69 refactoring sequences in reviews with a Bug
Fixing Only intent, developers employed code motion refactoring

operations. This is a surprising observation, as one would expect

that moving code elements between classes is not a common prac-

tice to fix bugs. Previous work have investigated the relationship

between refactoring and bug fixing [4, 17]. However, these stud-

ies have investigated isolated refactorings instead of sequences.

Hence, our study is the first to observe that combinations of Move

Attribute, Move Method and Move Class refactorings are used for

bug fixing. For instance, in review 99067 [15] from jgit, develop-
ers applied a refactoring sequence composed of [Extract Method,

Move Method, Move attribute] involving classes OpenSshConfig,
OpenSshConfig.Host, and OpenSshConfig.State. This refactoring
sequence was applied to fix an existing bug as suggested during

review: “This avoids a few bugs in Jsch’s OpenSSHConfig (...)”.

Finding 6: Developers applied a non-ignorable number of

refactoring sequences that employed code motion when the

intent was Bug Fixing Only.

Number of Classes: This classification is based on the number

of classes that each category can affect in refactoring sequences.

The categories that affect a large scope often affect more classes

than categories that affect a small scope. Thus, the Hierarchical and

Motion categories are considered categories that affect multiple

classes, and the Intra-class and Rename are categories that affect

a single class (see Table 6). This classification takes into account

the order of the application of each category. Hence, consider the

example discussed in Section 3. A refactoring sequence composed

of [Extract Method, Move Method, Extract Method, Move Method,

Move Attribute, Move Attribute], would yield a classification of

{Single Class, Multiple Classes, Single Class, Single Class, Multiple

Classes, Multiple Classes}.

Non-trivial refactoring sequences and explicit refactoring
reviews. Table 8 presents the classification of refactoring sequences
regarding number of classes. One may note that 60% of the refac-

toring sequences with a Feature Only intent have been classified as

{Single Class}. We observed that whenever developers have the ex-

plicit intent of refactoring, the sequences usually start on multiple

classes (54% and 57% for Refactoring Only and Feature/Refactoring,
respectively). In contrast, when developers have other intents, most

sequences effect purely single classes (60% and 59% for Feature Only
and Bug Fixing Only, respectively). This number of sequences that

affect multiple classes in reviews with explicit refactoring intents

leads us to believe that the single-class refactorings employed in

these reviews, such as Extract Method and Rename Method, are

often used to support the refactorings that affect multiple classes.

Finding 7: Nearly half of the refactoring sequences with an

explicit intent of refactoring tend to start on multiple classes.

Interactivity, non-explicit intent and mixed-intent. Curi-
ously, developers needed more revisions (a median of 6) when they

started with categories that involved multiple classes (Hierarchical

and Motion) in refactoring sequences to support the Feature Only
intent. On the other hand, developers also needed more revisions (a

median of 5) in sequences that support the Bug Fixing Only intent.

Besides that, the refactoring sequences with the Feature/Refactoring
intent are composed of a median of 7 revisions. Thus, the reviews

which employed refactoring sequences to support a non-explicit

intent of refactoring and/or more than one intent require more

interactivity among reviewers. This interactivity allows for discus-

sions on how to compose refactoring sequences to attend different

intents, as presented in our motivating example (see Section 3).

Finding 8: Reviews with a non-explicit refactoring and/or

mixed intents tend to present high interactivity during review.

5.3 Refactoring Evolution Across Reviews
We address RQ3 by proposing a new classification to represent

refactoring evolution patterns during code review.We are the first to

investigate this phenomenon; hence, we followed a coarse-grained

strategy when reporting these observations as a first-time visual-

ization of this data. Thus, our classification serves as a baseline for

future studies. This classification consists of performing a sequen-

tial observation of the refactoring operations employed throughout

all revisions in the code review. Consider a code review with three

revisions, for example. We sequentially compared the refactoring

operations performed in the second revision to the refactoring op-

erations performed in the first revision. Next, we compared the

refactoring operations in the third revision to the ones in the sec-

ond revision. This procedure enabled us to observe five possible

refactoring evolution patterns.

We describe each pattern as follows: (i) single, when a review

has only a single revision and at least one refactoring operation; (ii)

new, when at least one refactoring was created in a subsequent revi-

sion and this refactoring has not been undone in future revisions of

the same review; (iii) undone, when at least one refactoring opera-

tion was undone in a subsequent revision of the same review, and

no new operations were identified; (iv) both, when both new and

undone refactoring operations are identified, regardless of the order;

and (v) same, when exactly the same set of refactoring operations

is present in all revisions of a review. These patterns are mutually

exclusive and comprise all code changes in our dataset. Consider

our motivating example depicted in Section 3. No refactoring opera-

tions were employed in the first revision. In the second revision, an

Extract Method refactoring was performed, which characterizes a

new refactoring operation in this review’s lifecycle. However, in re-

vision 13, this Extracted Method was undone, and other refactoring

operations were employed instead. Hence, this review is considered

to have a both refactoring evolution pattern.



Behind the Intents: An In-depth Empirical Study on Software
Refactoring in Modern Code Review MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

Table 7: Predominance of Categories. We report the number of sequences, revisions andmedian of revisions for each category.

Predominance Feature Only Refactoring Only Feature/Refactoring Bug Fixing Only

Sequences (%) Revisions (%) Med Sequences (%) Revisions (%) Med Sequences (%) Revisions (%) Med Sequences (%) Revisions (%) Med

Hierarchical 30 (7.04%) 281 (9.28%) 7.5 15 (10%) 49 (8.86%) 3 16 (16%) 141 (21.46%) 7.5 3 (4.35%) 16 (4.46%) 2

Intra-class 212 (49.77%) 1,387 (45.82%) 5 33 (22%) 125 (22.60%) 3 23 (23%) 139 (21.16%) 5 38 (55.07%) 239 (66.57%) 5

Intra-class, Rename 44 (10.33%) 169 (5.58%) 4 6 (4%) 28 (5.06%) 3.5 11 (11%) 71 (10.80%) 5 3 (4.35%) 7 (1.95%) 2

Motion 140 (32.86%) 1,090 (36.01%) 5 93 (62%) 335 (60.58%) 3 45 (45%) 270 (41.10%) 5 25 (36.23%) 97 (27.02%) 4

Rename 0 (0%) 100 (3.31%) 5.5 3 (2%) 16 (2.90%) 3 5 (5%) 36 (5.48%) 8 0 (0%) 0 (0%) 0

Total 426 (100%) 3,027 (100%) 5 150 (100%) 553 (100%) 3 100 (100%) 657 (100%) 5 69 (100%) 359 (100%) 2

Table 8: No. of classes along sequences.We report the number of sequences, revisions andmedian of revisions for each category.

Complexity Feature Only Refactoring Only Feature/Refactoring Bug Fixing Only

Sequences (%) Revisions (%) Med Sequences (%) Revisions (%) Med Sequences (%) Revisions (%) Med Sequences (%) Revisions (%) Med

Multiple Classes, Single Class 55 (12.91%) 419 (13.84%) 6 38 (25.33%) 129 (23.33%) 2 19 (19%) 109 (16.60%) 6 6 (8.70%) 15 (4.18%) 2

Multiple Classes 63 (14.79%) 553 (18.27%) 6 43 (28.67%) 156 (28.21%) 3 38 (38%) 274 (41.70%) 7 15 (21.74%) 64 (17.83%) 3

Single Class, Multiple Classes 52 (12.21%) 399 (13.18%) 4 27 (18%) 99 (17.90%) 3 4 (4%) 28 (4.26%) 4.5 7 (10.14%) 34 (9.47%) 5

Single Class 256 (60.09%) 1,656 (54.71%) 5 42 (28%) 169 (30.56%) 3 39 (39%) 246 (37.44%) 5 41 (59.42%) 246 (68.52%) 5

Total 426 (100%) 3,027 (100%) 5.5 150 (100%) 553 (100%) 3 100 (100%) 657 (100%) 5.5 69 (100%) 359 (100%) 4

Intents and refactoring evolution patterns. Figure 3 shows
the distribution of reviews grouped by the intents and refactoring

evolution patterns. We observed that the evolution of refactoring

operations in reviews with the Feature Only and Feature/Refactoring
intents tend to follow more complex evolution patterns than re-

views with the explicit intent of Refactoring Only. While nearly 50%

of reviews with the Feature/Refactoring intent have refactoring op-

erations added, undone or both along the revisions, only around

25% of the reviews with the Feature Only intent have refactoring

operations added, undone or both along the revisions. Differ-

ently, reviews with the explicit intent of Refactoring Only tend to

largely remain the same throughout reviewing, with only 23% of

the reviews presenting any change in the refactoring operations.

0%

25%

50%

75%

100%

Refactoring
Only

Feature Only Bug Fixing
Only

Feature
Refactoring

N
u

m
b

e
r 

o
f 

R
ev

ie
w

s

both

undone

new

same

single

Evolution

Figure 3: Distribution of evolution patterns per intent

These results indicate that reviews with a refactoring intent

tend to follow a ‘one and done’ behavior, where most of them are

integrated as soon as they are proposed. On the other hand, feature-

related reviews tend to be iterative, where adaptations of the code

change are commonly observed. We also observed that reviews

with a Bug Fixing Only intent tend to behave similarly to feature-

related ones. However, reviews with a single revision appear to be

more frequent on Bug Fixing Only reviews in comparison to Feature
Only and Feature Refactoring reviews.

Finding 9: Adding a feature tend to present the most diverse

patterns of refactoring evolution during code review.

6 STUDY IMPLICATIONS
Our findings provide three key implications to be further discussed

and that leads to implications for both researchers and tool builders.

Understanding the influence of intents on refactorings.
Many existing techniques for recommending refactorings are de-

signed to support developers in performing pure structural im-

provement with at least three goals: (i) pure refactoring of a specific

module or the entire program [28], (ii) removing code smells [11,

21, 26, 27, 33, 34], or (iii) re-architecting a system [14, 24, 31, 42].

However, our study found that refactorings are less commonly

applied in changes with the sole purpose of either optimizing or

improving the low-level structure of a class (or one or more meth-

ods), its architecture or even a specific module. Developers most

often employ refactorings together with other changes to support

other intents, such as feature additions and bug fixes (Section 5.1).

Moreover, our findings also reveal that the change’s intent exerts an

influence on: (i) the types and scopes of a refactoring (Section 5.1),

(ii) the composition (Section 5.2), and (iii) the evolution (Section 5.3)

of refactoring operations along a change. Previous studies did not

investigate the role of intents on how refactorings are performed,

composed and evolved during the code review process.

There is little support for refactoringwith specific intents.
Our aforementioned findings suggest there is room for propos-

ing recommenders that better support developers in performing

refactoring when the code change involves more than one intent.

For instance, refactoring recommenders that specifically support

feature additions or bug fixes should prioritize refactorings that

improve the structure of the methods or classes that are likely to be

impacted by the new features and/or bug fixes. However, existing

multi-objective refactoring approaches are often defined in terms

of objective functions that capture code or design structure met-

rics [28, 34], which are not fit for most of the scenarios we observed

in our study regarding different intents.

Developers may also need proper guidance in these cases as the

refactoring evolution patterns of such changes tend to be more

complex than those found in Refactoring Only changes (Section 5.3).

Recent advancements on feature mining [25, 45], change impact

analysis [22] and bug location [13] could be explored to streamline

refactorings’ recommendations (and their prioritizations) that are



MSR ’20, October 5–6, 2020, Seoul, Republic of Korea
M. Paixao, A. Uchôa, A.C. Bibiano,

D. Oliveira, A. Garcia, J. Krinke, and E. Arnovio

more likely to be relevant to floss refactoring tasks at hand. For

instance, these techniques can be used to: (i) analyze the textual de-

scription of an upcoming feature and bug fix issues and/or ongoing

discussions along a review, and (ii) determine program locations

that are likely to be affected by upcoming changes.

Enabling automatic support to refactoring along change’s
revisions. Our findings suggest that developers need more interac-

tive support for revisiting, refining and sometimes undoing refac-

toring decisions during the change’s review. First, new intents often

emerge along changes (Section 5.1) that employ refactorings. Sec-

ond, many refactoring sequences have more than three revisions

(Section 5.2). These observations show that the decision-making

process on composing refactorings is indeed not a cut-and-dried

task. Reviewers go through cycles to agree or disagree on a certain

refactoring sequence. They may also need to observe the impact of

a refactoring suggested in a revision first in order to make the next

refactoring decisions before finally approving the change. Qual-

itative studies that explain the influential factors governing this

process need to be performed in the future. Hence, tool builders

need to assist developers in understanding how the code struc-

ture improvement achieved with refactorings is facilitating other

changes, such as feature additions. Thus, a tool to support refac-

toring along changes could also: (i) identify the developer’s intent

through code changes and reviewers’ comments interactively [16],

(ii) highlight how refactorings in a change [19] are related to such

intents, and (iii) recommend the next refactorings to support the

application of their intent.

7 THREATS TO THE VALIDITY
Construct and Internal Validity.The variety of refactoring types
analyzed in our study might not be representative. To mitigate this

threat, we selected refactoring types that have been widely investi-

gated by previous studies [4, 6, 10, 29, 30, 46]. Another construct

threat concerns the order of the refactoring operations that com-

pose a refactoring sequence. To alleviate this, our heuristic for

refactoring sequence identification consider the order of each re-

vision to ensure the refactorings are interrelated. Moreover, we

qualitatively validated each refactoring sequence to guarantee that

all refactoring operations were applied on a common set of code ele-

ments. We employed RefMiner [52] to detect refactoring operations

performed during code review, whose accuracy has been reported

to be high [9, 10]. In total, we detected 13 refactoring types even

though some refactoring catalogs report more than 70 refactoring

types. Thus, it is possible that some of the reviews we considered

not to perform any refactoring actually employed operations that

are not supported by RefMiner. To mitigate this threat, we manually

validated whether for reviews when the developer has an explicit

intent of refactoring they employ any refactoring operation based

on a partial ground truth [36]. As a result, we considered RefMiner

acceptable for our empirical investigation.

Conclusion and External Validity. Regarding the quantita-

tive data analysis, we tabulated and validated all extracted data

in pairs. The analysis followed well-known guidelines of descrip-

tive data analysis [55]. Regarding the qualitative analysis of the

developers’ intents, we employed a two-phase manual classification

procedure based on state-of-the-art empirical studies. In the first

phase, all code changes were classified by two authors. In the second

phase, for all code changes in disagreement, both authors discussed

to reach a unified classification. Our study focuses on investigating

the refactoring activities of Java projects only. Nevertheless, we

highlight that Java is one of the most popular programming lan-

guages in both industry and academia. Additionally, we investigated

six real-world systems from two large open source communities.

8 CONCLUSION AND FUTUREWORK
This paper aimed at better understanding the context and moti-

vations in which developers perform refactorings in modern code

review. First, we have employed code review data of two large open

source communities. Second, we automatically identified occasions

in which developers employed 13 refactoring types during code

review. Third, we followed this automated procedure with a manual

analysis of all code reviews that employed refactoring operations.

The manual analysis consisted of identifying the developers’ in-

tents behind each change, such as new feature, bug fixing, and

refactoring. Fourth, we identified the most common refactoring

sequences employed during code review and analyzed how devel-

opers compose these sequences under different intents. Finally, we

investigated how refactoring operations evolve during code review.

We observed that refactoring operations are most often used in

code reviews that implement new features, accounting for 63% of

the code changes we studied. Only in 31% of the code reviews that

employed refactoring operations the developers had the explicit

intent of refactoring. Such observations indicate that developers

more often mix refactoring operations with other changes instead

of submitting a code review that only performs refactoring. We

also observed that developers compose sequences with more than

one refactoring type to support feature additions. Moreover, we

observed that developers often compose specific refactoring se-

quences to support multiple intents. Finally, we noticed that about

75% of refactoring operations remain unchanged during the review

process for all studied systems. We observed a similar result when

grouping reviews by different intents. However, feature-related

changes tend to present the highest rate of refactoring evolution

while refactoring-related changes presented the lowest rate.

The aforementioned findings serve as recommendations for en-

couraging the research community and tool builders to come up

with a new generation of refactoring tools that best fit the develop-

ers’ intents during refactoring application. Through our results, we

shed light that (Section 6): (i) existing approaches should better sup-

port the application of different refactoring types when developers

apply code changes with mixed intents; and (ii) existing refactoring

tools should be more interactive to support developers on com-

posing and evolving refactoring sequences in a step-wise manner.

Finally, qualitative studies should be performed in the future to

explain other influential factors governing the decision-making

process in refactoring-aware code reviews.

ACKNOWLEDGEMENTS
This study was financed by the CNPq (Brazil) under grants 141285/

2019-2, 141054/2019-0, 434969/2018-4, 427787/2018-1, 409536/2017-

2, 312149/2016-6. This study was also financed by FAPERJ (22520-

7/2016) and CAPES (Brazil), grant 175956 and Finance Code 001.



Behind the Intents: An In-depth Empirical Study on Software
Refactoring in Modern Code Review MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

REFERENCES
[1] Everton LG Alves, Myoungkyu Song, and Miryung Kim. 2014. RefDistiller: a

refactoring aware code review tool for inspecting manual refactoring edits. In

22nd FSE. 751–754.
[2] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-

lenges of modern code review. In 35th ICSE. 712–721.
[3] Gabriele Bavota, Bernardino De Carluccio, Andrea De Lucia, Massimiliano

Di Penta, Rocco Oliveto, and Orazio Strollo. 2012. When does a refactoring

induce bugs? an empirical study. In 12th SCAM. 104–113.

[4] Gabriele Bavota, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, and

Fabio Palomba. 2015. An experimental investigation on the innate relationship

between quality and refactoring. J. Syst. Softw. (JSS) 107 (2015), 1–14.
[5] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Juergens. 2014. Mod-

ern code reviews in open-source projects: Which problems do they fix?. In 11th
MSR. 202–211.

[6] Ana Carla Bibiano, Eduardo Fernandes, Daniel Oliveira, Alessandro Garcia, Mar-

cos Kalinowski, Baldoino Fonseca, Roberto Oliveira, Anderson Oliveira, and

Diego Cedrim. 2019. A Quantitative Study on Characteristics and Effect of Batch

Refactoring on Code Smells. In 13th ESEM. 1–11.

[7] Ana Carla Bibiano, Vinicius Soares, Daniel Coutinho, Eduardo Fernandes, João

Correia, Kleber Santos, Anderson Oliveira, Alessandro Garcia, Rohit Gheyi, Bal-

doino Fonseca, Márcio Ribeiro, Caio Barbosa, and Daniel Oliveira. 2020. How

Does Incomplete Composite Refactoring Affect Internal Quality Attributes?. In

28th IEEE/ACM International Conference on Program Comprehension (ICPC).
[8] Aline Brito, Andre Hora, and Marco Tulio Valente. 2019. Refactoring Graphs:

Assessing Refactoring over Time. In 26nd SANER. 504–507.
[9] Diego Cedrim, Leonardo da Silva Sousa, Alessandro F. Garcia, and Rohit Gheyi.

2016. Does refactoring improve software structural quality? A longitudinal

study of 25 projects. In Proceedings of the 30th Brazilian Symposium on Software
Engineering, SBES 2016, Maringá, Brazil, September 19 - 23, 2016, Eduardo Santana
de Almeida (Ed.). ACM, 73–82. DOI:https://doi.org/10.1145/2973839.2973848

[10] Diego Cedrim, Alessandro Garcia, Melina Mongiovi, Rohit Gheyi, Leonardo

Sousa, Rafael de Mello, Baldoino Fonseca, Márcio Ribeiro, and Alexander Chávez.

2017. Understanding the impact of refactoring on smells: A longitudinal study of

23 software projects. In 11th FSE. 465–475.
[11] Alexander Chávez, Isabella Ferreira, Eduardo Fernandes, Diego Cedrim, and

Alessandro Garcia. 2017. How does refactoring affect internal quality attributes?:

A multi-project study. In Proceedings of the 31st Brazilian Symposium on Software
Engineering, SBES 2017, Fortaleza, CE, Brazil, September 20-22, 2017, José Carlos
Maldonado, Fabiano Cutigi Ferrari, Uirá Kulesza, and Tayana Uchôa Conte (Eds.).

ACM, 74–83. DOI:https://doi.org/10.1145/3131151.3131171
[12] Couchbase. 2020. Review 58223 from the couchbase-java-client system. (2020).

Available at: http://review.couchbase.org/#/c/58223/.

[13] Daniel Alencar Da Costa, Shane McIntosh, Weiyi Shang, Uirá Kulesza, Roberta

Coelho, and Ahmed E Hassan. 2016. A framework for evaluating the results of

the szz approach for identifying bug-introducing changes. IEEE Trans. Softw. Eng.
(TSE) 43, 7 (2016), 641–657.

[14] Leonardo da Silva Sousa, Willian Oizumi, Anderson Oliveira, Alessandro Garcia,

Diego Cedrim, and Carlos Lucena. 2020. When Are Smells Indicators of Architec-

tural Refactoring Opportunities? A Study of 50 Software Projects.. In Proceedings
of the 28th IEEE International Conference on Program Comprehension (ICPC 2020),
co-located with ICSE 2020, Seoul, South Korea, October 2020. ACM, 1–12.

[15] Eclipse. 2019. Example of review 99067 from the jgit software project. (2019).

Available at: https://git.eclipse.org/r/#/c/99067/.

[16] Eduardo Fernandes, Anderson Uchôa, Ana Carla Bibiano, and Alessandro Garcia.

2019. On the alternatives for composing batch refactoring. In 3rd IWOR. 9–12.
[17] Isabella Ferreira, Eduardo Fernandes, Diego Cedrim, Anderson Uchôa, Ana Carla

Bibiano, Alessandro Garcia, João Lucas Correia, Filipe Santos, Gabriel Nunes, Caio

Barbosa, and others. 2018. The buggy side of code refactoring: Understanding the

relationship between refactorings and bugs. In 40th ICSE: Poster Track. 406–407.
[18] Martin Fowler, Kent Beck, John Brant, and Opdykem Willian. 1999. Refactoring:

Improving the Design of Existing Code. 431 pages.
[19] Xi Ge, Saurabh Sarkar, Jim Witschey, and Emerson Murphy-Hill. 2017.

Refactoring-aware code review. In VL/HCC. 71–79.
[20] Gerrit. 2006. Gerrit Code Review Platform. https://www.gerritcodereview.com.

(2006). Accessed in: July 2019.

[21] Mark Harman and Laurence Tratt. 2007. Pareto optimal search based refactoring

at the design level. In 9th GECCO. 1106–1113.
[22] Kim Herzig and Andreas Zeller. 2013. The impact of tangled code changes. In

10th MSR. 121–130.
[23] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2014. An

empirical study of refactoring: Challenges and benefits at Microsoft. IEEE Trans.
Softw. Eng. (TSE) 40, 7 (2014), 633–649.

[24] Yun Lin, Xin Peng, Yuanfang Cai, Danny Dig, Diwen Zheng, and Wenyun Zhao.

2016. Interactive and guided architectural refactoring with search-based recom-

mendation. In 24th FSE. 535–546.

[25] Jabier Martinez, Tewfik Ziadi, Tegawendé F Bissyandé, Jacques Klein, and Yves Le

Traon. 2016. Name suggestions during feature identification: the variclouds

approach. In 20th SPLC. 119–123.
[26] Panita Meananeatra. 2012. Identifying refactoring sequences for improving

software maintainability. In 27th ASE. 406–409.
[27] Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Kalyanmoy Deb,

and Mel Ó Cinnéide. 2014. Recommendation system for software refactoring

using innovization and interactive dynamic optimization. In 29th ASE. 331–336.
[28] Rodrigo Morales, Aminata Sabane, Pooya Musavi, Foutse Khomh, Francisco

Chicano, and Giuliano Antoniol. 2016. Finding the best compromise between

design quality and testing effort during refactoring. In 23rd SANER, Vol. 1. 24–35.
[29] Emerson Murphy-Hill, Chris Parnin, and Andrew P Black. 2012. How we refactor,

and how we know it. IEEE Trans. Softw. Eng. (TSE) 38, 1 (2012), 5–18.
[30] Stas Negara, Nicholas Chen, Mohsen Vakilian, Ralph E Johnson, and Danny Dig.

2013. A comparative study of manual and automated refactorings. In 27th ECOOP.
552–576.

[31] Willian Nalepa Oizumi, Leonardo da Silva Sousa, Anderson Oliveira, Luiz Car-

valho, Alessandro Garcia, Thelma Elita Colanzi, and Roberto Felicio Oliveira.

2019. On the Density and Diversity of Degradation Symptoms in Refactored

Classes: A Multi-case Study. In 30th IEEE International Symposium on Soft-
ware Reliability Engineering, ISSRE 2019, Berlin, Germany, October 28-31, 2019,
Katinka Wolter, Ina Schieferdecker, Barbara Gallina, Michel Cukier, Roberto

Natella, Naghmeh Ivaki, and Nuno Laranjeiro (Eds.). IEEE, 346–357. DOI:
https://doi.org/10.1109/ISSRE.2019.00042

[32] Johnatan Oliveira, Rohit Gheyi, Melina Mongiovi, Gustavo Soares, Márcio Ribeiro,

and Alessandro Garcia. 2019. Revisiting the refactoring mechanics. Inf. Softw.
Technol. 110 (2019), 136–138. DOI:https://doi.org/10.1016/j.infsof.2019.03.002

[33] Ali Ouni, Marouane Kessentini, Mel Ó Cinnéide, Houari Sahraoui, Kalyanmoy

Deb, and Katsuro Inoue. 2017. MORE: A multi-objective refactoring recommen-

dation approach to introducing design patterns and fixing code smells. J. Softw.:
Evol. Process 29, 5 (2017), e1843.

[34] Ali Ouni, Marouane Kessentini, Houari Sahraoui, Katsuro Inoue, and Kalyanmoy

Deb. 2016. Multi-criteria code refactoring using search-based software engineer-

ing: An industrial case study. ACM Trans. Softw. Eng. Methodol (TOSEM) 25, 3
(2016), 23.

[35] Matheus Paixao, Jens Krinke, Donggyun Han, and Mark Harman. 2018. CROP:

Linking code reviews to source code changes. In 15th MSR. 46–49.
[36] Matheus Paixao, Jens Krinke, DongGyun Han, Chaiyong Ragkhitwetsagul, and

Mark Harman. 2017. Are developers aware of the architectural impact of their

changes?. In 32nd ASE. 95–105.
[37] Matheus Paixao, Jens Krinke, DongGyun Han, Chaiyong Ragkhitwetsagul, and

Mark Harman. 2019. The Impact of Code Review on Architectural Changes. IEEE
Transactions on Software Engineering (2019).

[38] Matheus Paixao and Paulo Henrique Maia. 2019. Rebasing in Code Review

Considered Harmful: A Large-Scale Empirical Investigation. In 19th International
Conference on Source Code Analysis and Manipulation (SCAM). IEEE, 45–55.

[39] Matheus Paixao, Anderson Uchôa, Ana Carla Bibiano, Daniel Oliveira, Alessandro

Garcia, Jens Krinke, and Emilio Arvonio. 2020. Replication package for the paper:

“Behind the Intents: An In-depth Empirical Study on Software Refactoring in

Modern Code Review”. (2020). https://zenodo.org/record/3710975 Accessed:

2020-03-16.

[40] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco

Oliveto, and Andrea De Lucia. 2018. A large-scale empirical study on the lifecycle

of code smell co-occurrences. Inform. Softw. Tech. (IST) 99 (2018), 1–10.
[41] Fabio Palomba, Andy Zaidman, Rocco Oliveto, and Andrea De Lucia. 2017. An

Exploratory Study on the Relationship between Changes and Refactoring. In 25th
ICPC. 176–185.

[42] Paula Rachow. 2019. Refactoring Decision Support for Developers and Architects

Based on Architectural Impact. In ICSA-C. 262–266.
[43] Peter C Rigby. 2012. Open source peer review–lessons and recommendations for

closed source. IEEE Software (2012).
[44] Peter C Rigby and Christian Bird. 2013. Convergent contemporary software peer

review practices. In 9th FSE. 202–212.
[45] A-D Seriai, Marianne Huchard, Christelle Urtado, Sylvain Vauttier, and others.

2013. Mining features from the object-oriented source code of software variants

by combining lexical and structural similarity. In 14th IRI. 586–593.
[46] Danilo Silva, Nikolaos Tsantalis, andMarco Tulio Valente. 2016. Whywe refactor?

confessions of GitHub contributors. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering - FSE 2016. ACM
Press, New York, New York, USA, 858–870.

[47] Leonardo Sousa, Diego Cedrim, Alessandro Garcia, Willian Oizumi, Ana Carla

Bibiano, Daniel Tenorio, Miryung Kim, and Anderson Oliveira. 2020. Character-

izing and Identifying Composite Refactorings: Concepts, Heuristics and Patterns.

In 17th International Conference on Mining Software Repositories (ICSE).
[48] Gábor Szőke, Csaba Nagy, Lajos Fülöp, Rudolf Ferenc, and Tibor Gyimóthy. 2015.

FaultBuster: An automatic code smell refactoring toolset. In 15th SCAM. 253–258.

https://doi.org/10.1145/2973839.2973848
https://doi.org/10.1145/3131151.3131171
http://review.couchbase.org/#/c/58223/
https://git.eclipse.org/r/#/c/99067/
https://www.gerritcodereview.com
https://doi.org/10.1109/ISSRE.2019.00042
https://doi.org/10.1016/j.infsof.2019.03.002
https://zenodo.org/record/3710975


MSR ’20, October 5–6, 2020, Seoul, Republic of Korea
M. Paixao, A. Uchôa, A.C. Bibiano,

D. Oliveira, A. Garcia, J. Krinke, and E. Arnovio

[49] Daniel Tenorio, Ana Carla Bibiano, and Alessandro Garcia. 2019. On the cus-

tomization of batch refactoring. In Proceedings of the 3rd International Workshop
on Refactoring, IWOR@ICSE 2019, Montreal, QC, Canada, May 28, 2019, Nikolaos
Tsantalis, Yuanfang Cai, and Serge Demeyer (Eds.). IEEE / ACM, 13–16. DOI:
https://doi.org/10.1109/IWoR.2019.00010

[50] Adrian Trifu and Radu Marinescu. 2005. Diagnosing design problems in object

oriented systems. In 12th WCRE. 10–pp.
[51] Nikolaos Tsantalis, Theodoros Chaikalis, and Alexander Chatzigeorgiou. 2018.

Ten years of JDeodorant: Lessons learned from the hunt for smells. In 25th SANER.
4–14.

[52] Nikolaos Tsantalis, Victor Guana, Eleni Stroulia, and Abram Hindle. 2013. A

multidimensional empirical study on refactoring activity. In 23rd CASCON. IBM

Corp., 132–146.

[53] Nikolaos Tsantalis, Matin Mansouri, Laleh M Eshkevari, Davood Mazinanian,

and Danny Dig. 2018. Accurate and efficient refactoring detection in commit

history. In 40th ICSE. 483–494.
[54] Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Massimiliano

Di Penta, Andrea De Lucia, and Denys Poshyvanyk. 2017. When and why your

code starts to smell bad (and whether the smells go away). IEEE Trans. Softw.
Eng. (TSE) 43, 11 (2017), 1063–1088.

[55] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and

Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

https://doi.org/10.1109/IWoR.2019.00010

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Motivating Example
	4 Study Settings
	4.1 Research Questions
	4.2 Study Steps and Procedures

	5 Results and Discussion
	5.1 Refactoring Types per Review’s Intent
	5.2 Refactoring Sequences per Review’s Intent
	5.3 Refactoring Evolution Across Reviews

	6 Study Implications
	7 Threats to the Validity
	8 Conclusion and Future Work
	References

