

Journal Pre-proof

Handsearching had best recall but poor efficiency when exporting to a bibliographic tool: case study.

Chris Cooper, Tristan Snowsill, Christine Worsley, Amanda Prowse, Alison O'Mara-Eves, Helen Greenwood, Emma Boulton, Amanda Strickson

PII: S0895-4356(19)31063-7

DOI: <https://doi.org/10.1016/j.jclinepi.2020.03.013>

Reference: JCE 10099

To appear in: *Journal of Clinical Epidemiology*

Received Date: 22 November 2019

Revised Date: 2 March 2020

Accepted Date: 19 March 2020

Please cite this article as: Cooper C, Snowsill T, Worsley C, Prowse A, O'Mara-Eves A, Greenwood H, Boulton E, Strickson A, Handsearching had best recall but poor efficiency when exporting to a bibliographic tool: case study. *Journal of Clinical Epidemiology* (2020), doi: <https://doi.org/10.1016/j.jclinepi.2020.03.013>.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Elsevier Inc. All rights reserved.

Handsearching had best recall but poor efficiency when exporting to a bibliographic tool: case study.

Chris Cooper ¹, Tristan Snowsill ², Christine Worsley ³, Amanda Prowse ³, Alison O'Mara-Eves ⁴, Helen Greenwood ⁵, Emma Boulton ³, Amanda Strickson ³.

¹ Department of Clinical, Educational and Health Psychology, University College London, London WC1E 7HB, UK

² Health Economics Group, University of Exeter Medical School, University of Exeter, Exeter, Devon, United Kingdom

³ Tolley Health Economics, Buxton, UK

⁴ EPPi Centre, University College of London, London, UK

⁵ Royal College of Psychiatrists, London, UK

Correspondence to:

Mr. Chris Cooper
University College London
1 - 19 Torrington Place
London WC1E 7HB
United Kingdom
Phone: not available
Fax: not available
E-mail: ucjucc4@ucl.ac.uk

1 Handsearching had best recall but poor efficiency when exporting to a bibliographic tool:
2 case study.

3
4

5 Abstract

6 **Objective:** To compare the effectiveness and efficiency of methods used to identify
7 and export conference abstracts into a bibliographic management tool.

8

9 **Study design and setting:** Case study. The effectiveness and efficiency of methods
10 to identify and export conference abstracts presented at the American Society of
11 Hematology (ASH) conference 2016-2018 for a systematic review were evaluated.

12

13 A reference standard handsearch of conference proceedings was compared to: 1)
14 contacting *Blood* (the journal who report ASH proceedings); 2) keyword searching; 3)
15 searching Embase; 4) searching MEDLINE via EndNote; and 5) searching CPCI-S.
16 Effectiveness was determined by the number of abstracts identified compared with
17 the reference standard, while efficiency was a comparison between the resources
18 required to identify and export conference abstracts compared to the reference
19 standard.

20

21 **Results:** 604 potentially eligible and 15 confirmed eligible conference abstracts
22 (abstracts included in the review) were identified by the handsearch. Comparator 2
23 was the only method to identify all abstracts and it was more efficient than the
24 reference standard. Comparators 1, and 3-5 missed a number of eligible abstracts.

25

26 **Conclusion:** This study raises potentially concerning questions about searching for
27 conferences' abstracts by methods other than directly searching the original
28 conference proceedings. Efficiency of exporting would be improved if journals
29 permitted bulk downloads.

30

31

32

33

34

35 **Background**

36 Searching for reports of studies presented at a conference is an acknowledged
37 approach to study identification in systematic reviews (1-6). Guidance suggests that
38 searching conferences may identify newly emerging studies, or updated findings of
39 on-going studies, potentially ahead of journal publication (2, 3, 7, 8) and that
40 identifying and including conference abstracts may help minimise the introduction of
41 bias into systematic reviews (2, 4, 9). There is some evidence that searching
42 conferences is an effective method of identifying studies which might be missed by
43 other search methods and identifying studies that are reported at conferences but
44 never published (4, 5, 10-13).

45

46 Handsearching has traditionally been the method used to search for reports of
47 studies presented at conferences (6, 25, 26). Handsearching involves a manual,
48 page-by-page, examination of the entire contents of relevant journals, conference
49 proceedings and abstracts (2, 4, 7, 9, 14-16). There is evidence that handsearching
50 is effective when compared to bibliographic database searching and that
51 handsearching can identify studies (or study data) which may be missed by other
52 search methods (4, 5, 7, 13-15, 17-24). Whilst handsearching is known to be an
53 effective method of study identification, it is resource intensive (5).

54

55 When handsearching conference proceedings presented at the American Society of
56 Hematology (ASH) conference (2016-2018) for a systematic review (25), 604 reports
57 of potentially eligible abstracts were identified by a handsearch but there was no
58 option to export all 604 records to a bibliographic management tool in one export.
59 Instead, each of the 604 abstracts had to be individually identified and downloaded
60 one-by-one. This added to the resources required to complete the handsearch of
61 conference proceedings.

62

63 The inability to download all of the 604 potentially eligible abstracts at the same time,
64 as is possible in bibliographic databases (where individual studies or a range of
65 studies can be selected for export), motivated the question: what is the most efficient
66 way to export abstracts identified by handsearching conference proceedings into a
67 bibliographic management tool for further screening? The research team
68 hypothesised potential alternative methods (henceforth comparators) which could
69 lead to an efficient and successful export of abstracts into a bibliographic

70 management tool. This case study reports the evaluation of these comparators
71 compared to the handsearch.

72

73 It is not a straight-forward evaluation to report. When the comparators were tested, it
74 became apparent that, for some methods, the identification of abstracts could not be
75 isolated from the task of exporting abstracts. As such, the research objectives
76 became broader than the problem of exporting conference abstracts to include a
77 focus on the effective identification of conference abstracts reported at ASH.

78

79 **Study objectives**

80 This case study aims to evaluate the effectiveness and the efficiency of methods to
81 identify and download eligible conference abstracts reported at ASH 2016-2018 for a
82 systematic review of intervention effectiveness. The research objectives of this case
83 study are:

84

- 85 1. to determine whether there is a more efficient method for downloading eligible
86 conference abstracts following a handsearch compared to the current technology
87 (i.e., individually downloading records);
- 88 2. to evaluate the effectiveness of comparator methods to identify the same
89 abstracts found by the reference standard handsearch across two stages of study
90 identification ('potentially eligible' and 'confirmed eligible'); and
- 91 3. to evaluate the efficiency of the various methods across two stages of study
92 identification ('potentially eligible' and 'confirmed eligible').

93

94 **Methods**

95

96 **Study design**

97 A case study based on a systematic review is presented (25, 26). This case study
98 was designed as a comparison between reference standard and
99 comparators. The details of the reference standard and comparators are set out
100 below alongside the methods of analysis.

101

102 **Data**

103 Data were conference proceedings reported at ASH 2016-2018 published in the
 104 supplement editions of the journal *Blood*. The editorial team at *Blood* confirmed that
 105 17,759 conference abstracts were reported at ASH for this period. The reference
 106 standard handsearch identified 604 abstracts as potentially eligible for further
 107 screening and 15 abstracts were confirmed eligible for inclusion in the systematic
 108 review based on PICOS eligibility criteria and on the basis of independent double-
 109 screening. The 17,759 total eligible, 604 potentially eligible, and 15 confirmed eligible
 110 abstracts, represent data for this case study.

111

112 **The reference standard**

113 The reference standard is a method derived from recommended best practice
 114 guidance. A handsearch of the ASH conference proceedings was undertaken by one
 115 experienced reviewer (CC). The reviewer handsearched the supplement editions of
 116 the 2016-2018 ASH conference proceedings reported in the journal *Blood* and
 117 available from: [http://www.bloodjournal.org/blood/search-
 118 results?f_ArticleTypeDisplayName=Meeting+Report](http://www.bloodjournal.org/blood/search-results?f_ArticleTypeDisplayName=Meeting+Report)

119

120 The reviewer handsearched on screen, page-by-page looking for any abstracts
 121 reporting the interventions reported in Figure 1, or any potential alternative
 122 references to these interventions, or possible mis-spellings (2, 4, 14, 15). Records of
 123 any additional search terms to those recorded in Figure 1 were kept and then a
 124 keyword search was undertaken using the search function on the journal website
 125 (see journal search function below for detail) to cross-check the handsearch in event
 126 of human error.

127

128 *Figure 1: The search terms for this study*

129

Syntax
Pevonedistat
MLN4924
Decitabine
Dacogen

Azacitidine
Vidaza

130

131 **Comparators**132 *Comparator 1: contacting the journal directly to request exports of the identified
133 records*134 The editorial team of the journal *Blood* were contacted by e-mail to ask if they could
135 download the 604 potentially eligible abstracts from their internal server. This is a
136 very different comparator method compared to the other four in two ways. First, it
137 does not include a search aspect and only taps into the 'download/export' aspect of
138 study retrieval. Secondly, it is probable that this comparator method would have an
139 all-or-nothing outcome: either the journal staff would send all 604 records, or they
140 would not send any. Despite these differences, this comparator method was included
141 because, if successful, the approach represents an efficient way to circumvent the
142 individual download problem that was the original motivation for this work and
143 thereby address objective 1. However, because it is fundamentally different to the
144 other comparator methods, it was evaluated separately.

145

146 *Comparator 2: the search function on the journal website*147 The journal *Blood* includes a search function where the supplement edition of a
148 conference can be keyword searched. This keyword search was utilised in the
149 reference standard, to ensure completeness of the handsearch in the event of
150 human error, but it represented a way to identify the same 604 potentially eligible
151 abstracts for export into a bibliographic screening tool.

152

153 The terms in Figure 1 were searched one-by-one and the abstracts that were
154 identified were downloaded study-by-study to EndNote using the direct export
155 function on the journal website. Further detail on this method is presented in the
156 web-only material.

157

158 *Comparator 3: identifying the specific journal in Embase and searching for abstracts*
159 Embase was chosen over the bibliographic database MEDLINE due to its inclusion
160 of conference proceedings and material (27). The terms for the interventions, and

161 associated Emtree controlled indexing, were searched in Embase using the Ovid
162 interface. This search was limited by publication type to conferences in two ways:
163
164 First, controlled indexing and search fields were searched for abstracts indexed by
165 publication type (line 1 below) and the ASH conference was searched using relevant
166 field codes, namely: cf = conference information and cg = conference publication
167 (line 2 below).
168
169 1. exp conference paper/
170 2. ash.cf,cg.
171 3. 1 or 2
172
173 Secondly, the journal *Blood* was searched for using the journal field code (jn) and the
174 abstracts returned were combined with a search for conference.af. (af = all fields).
175
176 These two searches were combined using the Boolean connector “OR” so both
177 approaches to limiting by publication type were included. The full search syntax,
178 including a search narrative, is presented in web-only material (28),.
179
180 *Comparator 4: a search for the journal Blood was made in PubMed in EndNote*
181 The search terms in Figure 1 were searched using the online search function of
182 EndNote X8. The following search logic was applied:
183
184 Journal – contains – Blood; AND
185 Year – contains – 2016*; AND
186 All fields – contains – the intervention terms in Figure 1**.
187
188 * 2016 was searched first, then 2017 and finally 2018. ** the intervention terms were
189 searched one at a time.
190
191 Abstracts were visually inspected and manually de-duplicated. Study records which
192 reported conference proceedings were retained whilst other journal content (i.e.

193 abstracts not reported at the ASH conference) were deleted. The search strategy is
194 reported in web-only material.

195

196 *Comparator 5: searching a conference proceedings database (CPCI-S)*

197 A search was undertaken in Conference Proceedings Citation Index- Science (CPCI-
198 S), Web of Science (Clarivate Analytics). The search terms in Figure 1 were
199 searched on the topic search field and search terms for ASH or: (American-Society-
200 of-Hematology) were searched on the conference search field. Searches were
201 refined to the years 2016, 2017 or 2018. The search strategy is reported in web-only
202 material.

203

204 **Analysis**

205 Outcomes were recorded at two stages in the study identification process:

206

207 (stage 1) 'potentially eligible' abstracts were identified on the basis of title or
208 abstracts and the study record was retrieved for further inspection; and
209 (stage 2) 'confirmed eligible' abstracts were identified on the basis of screening the
210 abstract to confirm eligibility and inclusion in the systematic review.

211

212 For stage 1, the reference standard handsearch and comparator 2 (journal search
213 function, see below) were undertaken in the week commencing February 4th, 2018.
214 Abstracts were identified and individually (i.e. study-by-study) downloaded to
215 EndNote using the direct export function on the journal website. Google Chrome
216 (version 76.0.3809.132) was the web browser. Comparators 3-5 were undertaken on
217 June 20th, 2019. The search details are reported in web-only material.

218

219 For stage 2, the 604 abstracts identified in the reference standard were downloaded
220 to EndNote and were independently screened by two experienced reviewers (CW
221 and AP). A third experienced reviewer (AS) was available in the event of
222 disagreements.

223

224 **Outcome measurement**

225 The following outcomes were recorded for the reference standard and comparator
226 methods:

227

228 *Number of potentially eligible abstracts (stage 1)*

229 The reference standard identified 604 potentially eligible abstracts which were taken
230 forward for independent double-screening against predetermined inclusion criteria
231 (25). The number of abstracts identified by each of the comparator methods deemed
232 potentially eligible by the reference standard were recorded.

233

234 *Number of abstracts fulfilling inclusion criteria for the systematic review (stage 2)*

235 The number of abstracts identified from the reference standard as confirmed eligible
236 was 15. This represents the final point of comparison where the ability of the
237 comparators to identify these same 15 abstracts is compared.

238

239 *Time*

240 Time was recorded using the stopwatch function on an Apple iPhone 6s. Time was
241 recorded in minutes.

242

243 *Cost*

244 Cost was represented as GBP since this study was undertaken in the UK. An
245 approach similar to Shemilt *et al.* was followed to identify local unit costs (29). A mid-
246 point Grade 7 cost (spine point 40) was chosen, since this represents the median
247 pay of the grade of researcher who might usually undertake the work reported.
248 University College London salaries and on-costs (2018-2019) were used since this
249 represents the lead author's home institution and this was the year the case study
250 was undertaken. These costs included salary, direct salary costs (e.g. pension) and
251 university indirect costs. Similar to Shemilt *et al.* the costs included 'London
252 Weighting' which is an uplift provided to staff to cover additional costs of London.
253 The hourly rate used was £31.38.

254

255 **Evaluation metrics**

256 Metrics were calculated at both stage 1 (handsearching of 'potentially eligible'
257 abstracts) and stage 2 (screening 'confirmed eligible' abstracts). What constitutes an
258 effective, efficient or comprehensive literature search is uncertain (30-32). In this
259 study, the following understandings are used (12, 30).

260

261 *Effectiveness*

262 Effectiveness was determined by comparison with the reference standard
263 handsearch. Two by two tables were created (reported in web only material) and the
264 following metrics were calculated to compare effectiveness:

265

- 266 • Recall (proportion of correctly identified abstracts);
- 267 • Precision (proportion of correctly identified abstracts out of all studies
268 retrieved by the comparator); and
- 269 • F-Measure (a harmonic mean was used). The F1-measure is the harmonic
270 mean of precision and recall; it has no specific weighting towards either, but
271 will generally be closer to the lower of the two. It is the rate of true positives
272 with respect to the arithmetic mean of TP+FP and TP+FN (the denominators
273 for precision and recall respectively) (30, 33).

274

275 *Efficiency*

276 Efficiency was the comparison in resources between the reference standard
277 handsearch and comparator methods, this was calculated as follows:

278

- 279 • Difference in time taken; and
- 280 • Difference in cost of time taken.

281

282 **Findings**
283284 **Objective 1 – efficiency of downloading the handsearch**

285
286 The first study objective was to determine whether there is a more efficient method
287 for exporting potentially eligible abstracts compared to the current technology
288 (individually exporting abstracts). *Blood*'s editorial team were contacted to enquire if
289 they could send the 604 potentially eligible records to the research team. All other
290 comparators could not isolate the export element of this objective from the search
291 element.

292

293 This approach assumed that the journal had superior access to the conference
294 abstracts than was available through the journal interface. For example, that the
295 study records and conference abstracts were available in a bibliographic
296 management tool housed on an internal server. The editorial team were contacted
297 twice to request data: first to make the request and second to chase for a response
298 to the initial e-mail. Contacting the journal took approximately five minutes and cost
299 approximately £2.65.

300

301 The journal could not provide any of the 604 conference abstracts. The editorial
302 team confirmed that they only had access to abstracts via the journal interface.
303 Given that no abstracts were acquired this is not a viable option for future
304 researchers. As such, there is currently no known way to expedite export of ASH
305 conference proceedings following a handsearch.

306

307 Objective 2 – effectiveness of identifying conference abstracts

308

309 The second objective was to evaluate the effectiveness of four comparators to
310 identify the same abstracts as the reference standard handsearch across two stages
311 of study identification. Stage 1: identification of potentially eligible abstracts through
312 searching and, stage 2: identification of confirmed eligible abstracts through
313 screening.

314

315 In Table 1, the results for stage 1 of the identification process – identifying the 604
316 potentially eligible abstracts – are presented. Only comparator 2 (journal search
317 function) recalled the same 604 abstracts as the reference standard, so it is the most
318 effective comparator, while the other comparators were less effective, identifying
319 fewer potentially eligible abstracts overall. Comparator 3 (Embase) and comparator 4
320 (EndNote) recorded modest differences in precision compared to the handsearch.
321 Comparator 3 (Embase) identified four duplicates and one study reported in another
322 journal, and comparator 4 (EndNote) identified 22 duplicate abstracts due to the
323 nature of search method.

324

325 Table 2 sets out differences between the reference standard and comparators as it
326 relates to the identification of the 15 confirmed eligible abstracts. The results for the
327 reference standard and comparator 2 (journal search function) are identical because

328 it was the exact same 604 references to be screened for inclusion in the review. No
329 additional search terms were identified by the handsearch, so no new search terms
330 were searched for using comparator 2 (journal search function).

331

332 The findings presented in Table 2 show that, for comparators 3-5 (Embase, EndNote
333 and CPCI-S), the differences in recall for stage 1 (Table 1) latterly impacted recall for
334 stage 2 (Table 2), since fewer potentially eligible abstracts were identified for
335 screening overall which included differing numbers of confirmed eligible abstracts.

336 The number of missed confirmed eligible abstracts varied by comparator: seven
337 abstracts were missed in comparator 3 (the Embase search); all 15 abstracts were
338 missed in comparator 4 (the EndNote search); and six abstracts were missed in
339 comparator 5 (the CPCI-S search).

340

341 These findings indicate that, not only is there no way to expedite export of abstracts
342 presented at ASH (objective one), but also with the exception of comparator 2
343 (journal search function), all other comparators missed confirmed eligible abstracts.

344 Table 1: Identifying abstracts as potentially eligible for screening and downloading them (stage 1)

	Reference standard	Comparators			
		1. Handsearch	2. Journal search function	3. Embase	4. EndNote
Total number of abstracts	17,759	604		464	22
					201 (of 17,759)
Total number of abstracts identified as potentially relevant	604	604		463	20
					201
Recall (Sensitivity) %		100 (99.39, 100.00)		76.7 (73.07, 79.97)	3.31 (2.03, 5.07)
Precision (Positive Predictive Value) %, (95% CI)		100 (99.2, 100) ^a		99.8 (98.8, 100.0)	90.9 (70.8, 98.9)
F-Measure (95% CI)		1.00 ^b		0.87 (0.8447, 0.8889) ^c	0.06 (0.0368, 0.0878) ^c
Time taken for stage 1, minutes	689 (11 hours 48 minutes)	72		22	20
Cost, GBP £	365.17	38.16		11.66	10.60
					3.18

345

346

347

348

349

350

351

352 Table 2: Identifying abstracts which fulfilled inclusion in the systematic review (stage 2)

	Reference standard	Comparators			
	Handsearch	2. Journal search function	3. Embase	4. EndNote	5. Searching CPCI-S
Total number of abstracts potentially relevant	604	604	468 (of 604)	20 (of 604)	201 (of 604)
Number of abstracts that fulfil inclusion criteria	15	15	8 (of 15)	0 (of 15)	9 (of 15)
Number of abstracts that fulfil inclusion criteria based on 15 from reference standard					
Recall (Sensitivity) %		100 (78.20 to 100.00)	53.3 (26.6 to 78.7)	0 (0.00 to 21.80)	60 (32.29 to 83.66)
Precision (Positive Predictive Value) %		2.48 (1.40, 4.06)	1.71 (0.74, 3.34)	0	4.48 (2.07, 8.33)
F-Measure (95% CI)		0.0485 (0.0246, 0.0723) ^a	0.0331 (0.0106, 0.0555) ^a	0 (cannot be calculated using bootstrap)	0.0833 (0.0323, 0.1350) ^a
Time taken to screen at stage 2, minutes	420 (0.696 per abstract)	420 (0.696 per abstract)	324 (5 hours 24 minutes)	13	66 (1 hour six minutes)
Cost to screen, GBP £	219.66	219.66	177.82	6.76	34.32

353 **Objective 3 – efficiency of identifying conference abstracts**

354

355 The third objective was to evaluate the efficiency of the comparators compared to
 356 the reference standard handsearch. Table 1 demonstrates that comparator 2 (journal
 357 search function) was more efficient compared to the reference standard (72 vs. 689
 358 minutes) and was accordingly cheaper to undertake overall.

359

360 Comparators 3-5 (Embase, EndNote, CPCI-S) were more efficient in both time and
 361 cost when compared to the reference standard, but they all missed confirmed eligible
 362 abstracts. In other words, the efficiency was not simply a function of increased
 363 precision - eligible abstracts were missed alongside the ineligible. Since the purpose
 364 of the comparators was to identify all 15 confirmed eligible abstracts identified by the
 365 handsearch, comparators 3-5 are deemed ineffective overall. The F-Measure
 366 illustrates the difference between comparators and the harmonised effectiveness
 367 and efficiency findings, further suggesting that comparator 2 (journal search function)
 368 was optimal when compared to the other comparators.

369 **Discussion**

370

371 This work was initially conceived to address the question: how does a researcher
 372 efficiently export potentially eligible conference abstracts identified by handsearching
 373 the ASH conference to a bibliographic management tool for screening? The aim was
 374 ultimately revised since the task of identifying abstracts in the comparators could not
 375 be separated from the act of exporting eligible abstracts. The variation in recall
 376 between the reference standard and comparators, and the finding that comparators
 377 3-5 (Embase, EndNote, CPCI-S) missed eligible studies, is the main finding of this
 378 work. This raises some potentially concerning questions about searching for
 379 conference abstracts by methods which do not involve a direct search of conference
 380 proceedings (either by handsearch or keyword searches). We do not know the
 381 extent to which existing completed reviews may have missed conference abstracts if
 382 they used one of the (potentially sub-optimal) comparators.

383

384 **Generalisability of the findings**

385 It is important to highlight the primary limitation of this work. The work presented
 386 here is the evaluation of one individual case study. The findings may not generalise
 387 to other searches in ASH, or other conferences, or in other disciplines. The finding

388 that comparator 2 (journal search function) was as effective but more efficient should
389 be firmly situated in these limitations. The findings are not an argument to
390 discontinue handsearching in systematic reviews.

391

392 It is anticipated that the findings set out here are specific to the date that the
393 searching for comparators 3-5 were undertaken. Namely, as more content from ASH
394 is added to bibliographic databases, a greater number of eligible abstracts would be
395 identified. Changes in recall and precision in the comparators compared to the
396 handsearch over time are expected. It is worth noting that many conferences are not
397 published either separately on-line or in journals: work on how to identify such
398 studies may be particularly valuable'.

399

400 **Efficiency findings**

401 Comparator 2 (journal search function) was simple and easy to use but, without the
402 ability to select a range of abstracts (as is possible in bibliographic databases), the
403 interfaces are not 'user friendly' for systematic reviews where multiple abstracts are
404 likely to be downloaded. Most bibliographic database hosts have evolved to meet the
405 needs of systematic reviewers and most database hosts facilitate complicated
406 search strategies and the need to download a number of abstracts (34). Whilst the
407 focus in this case study was on the journal *Blood*, an informal look at other journals
408 which report conferences in supplement editions, suggests that the inability to
409 download a number of abstracts is a common issue. Whilst it is acknowledged that
410 journals and journal supplements serve a different purpose to bibliographic
411 databases, increasing the ease with which conferences can be searched (if not
412 handsearched) would be welcome, and the ability to select a number of abstracts for
413 downloading rather than individual abstracts, may contribute to improved efficiencies
414 in downloading conference abstracts and other material.

415

416 As it relates to efficiency, a question may be asked as to why it is necessary to
417 export potentially eligible abstracts for screening, when the screening could have
418 been undertaken during handsearching. The simple explanation in this case study
419 (which is common to other reviews undertaken by the authors) was data
420 management: so that a clear record of the studies/abstracts identified and processed
421 in the review was maintained, and the research team had access to the bibliographic

422 data from each study for review and citation. As is set out above, the efficiency
423 questions are to some extent unresolved, and other researchers may be less
424 interested in the downloading of abstracts reported at conferences, but the
425 practicable finding in recall between comparators is a key finding of this work.

426

427 **Is handsearching still valid? Yes.**

428 The finding that comparator 2 (journal search function) was as effective but more
429 efficient does not necessarily generalise to other conferences. Comparator 2 may,
430 however, provide some preliminary evidence that keyword searching might suit the
431 needs of rapid reviews, which may accept less certainty in the comprehensiveness
432 of their literature searching in exchange for more efficient searches (35). The risks of
433 keyword searching compared to handsearching requires further examination.

434

435 The claimed advantages of handsearching have been recently summarised in a
436 review of supplementary search methods (5). The advantages which relate to this
437 case study specifically, include: identifying abstracts which have not yet been
438 published or where there may be a delay between conference presentation and
439 publication (8); handsearching may identify data which may not be reported in the
440 abstract, for instance, where relevant data is reported in a figure or table, but not in
441 the abstract (5, 17); and handsearching (as defined by the Cochrane handbook (4))
442 would include searching letters and other content not necessarily available to
443 keyword searching (5, 14, 15, 19, 21).

444

445 The disadvantages of handsearching were also highlighted (5): namely, that
446 handsearching is a resource intensive method of study identification (14, 24) and
447 that handsearching may offer low precision (17, 21). This case study adds further
448 evidence to these findings,. Adams *et al.* also identified that handsearching missed
449 studies identified by bibliographic databases searching, which they associated with
450 handsearcher fatigue. As with all searching for systematic reviews, cross-over
451 between searches may mask the effect of the primacy of one search method over
452 another and a clear demonstration of 'true' effectiveness (6, 17).

453

454 Handsearching remains a valuable method of study identification in systematic
455 reviews. The findings do, however, underline that the resources required to

456 handsearch conferences may limit the practicable use of handsearching to
457 systematic reviews which require comprehensive literature searches, where
458 precision in the estimate from statistical meta-analysis is important, and
459 demonstrable confidence that 'all' studies have been identified is required.

460

461 **Conference abstract inclusion?**

462 The work reported is based on recommended best practice (2, 36). The findings of
463 this study support the importance of handsearching the ASH conference since 15
464 conference abstracts fulfilled inclusion criteria in the systematic review. These 15
465 abstracts represented 11.1% of includes. Studies reported at conferences represent
466 a challenge to the practice of undertaking a review (37). Whilst guidance
467 recommends searching conferences for a comprehensive literature search, guidance
468 and studies also urge caution when including conference abstracts since the
469 abstracts themselves rarely provide sufficient data to merit inclusion or permit quality
470 appraisal (2, 7, 9, 38, 39). Studies have also found differences between findings
471 presented at conferences and in peer-reviewed publications reported in journals
472 which raises concerns about the validity of their reporting and the use of this type of
473 study report in reviews (39-43).

474

475 Conference abstracts can, however, alert researchers to further unique studies, in
476 particular those which may not otherwise be published, and highlight newly emerging
477 data for studies which may or may not have already been identified. Whilst there are
478 issues with the abstracts themselves, the need to identify studies reported at
479 conference remains an important part of systematic reviews assessing the efficacy of
480 clinical interventions.

481

482 **Limitations**

483 The measure of effectiveness was ultimately the ability of the comparators to identify
484 the same 15 abstracts which eventually fulfilled inclusion into the systematic review.
485 The interpretation that it is necessary to identify all 15 abstracts may over-state the
486 contribution of these 15 (or individual) abstracts to the synthesis and overestimate
487 the impact of the findings in this study. As is set out above, conference abstracts
488 present a multitude of problems to the researcher, not least the paucity of data and
489 the inability to appraise study quality. Determining the value of the 15 confirmed

490 eligible abstracts as a way to interpret the findings (beyond the fact that they met
491 inclusion in the review) is difficult to empirically demonstrate. Where the abstracts
492 contribute data, repeating the various meta-analyses and including and excluding the
493 15 conference abstracts as a form of sensitivity analysis, would likely only marginally
494 alter the confidence intervals and not influence the overall estimate of effectiveness.
495 Any certainty as to the real value of these abstracts would therefore be speculative
496 beyond the fact that, in a review of intervention effectiveness, it is important to
497 identify all relevant studies and study data to minimise bias.

498

499 The handsearch of abstract books was undertaken by only one researcher. Milne
500 and Thorogood have suggested that independent double-handsearching could
501 minimise the risk of error (24) but the resources available for this study prohibited
502 this. It is acknowledged that two researchers independently handsearching abstracts
503 would have improved the rigour however, the handsearch was cross-checked with a
504 keyword search, and found the same abstracts.

505

506 Individual Cochrane groups undertake regular handsearching of conferences, the
507 results of which are loaded into group trials registers and Cochrane's Central
508 Register of Controlled Trials (CENTRAL). CENTRAL was searched to check if any of
509 these 15 abstracts were already indexed. Only four abstracts of the 15 were indexed
510 (44-47). The data file is reported in web-only material. This search was not included
511 as a comparator, but it is worth considering, since Cochrane groups are tasked with
512 handsearching journals to identify reports of studies. The findings of this case study
513 more generally might also indicate a subtle revision to MECIR conduct standard 28,
514 namely that databases of conference abstracts may not be a complete resource for
515 the identification of studies reported at conferences (48).

516

517 We considered the idea of including web-scraping as a comparator. The legal
518 position as to accessing data in this way and copyright generally were unclear. It
519 would seem an area for further study if the legal position can be clarified.

520

521 **Conclusion**

522 The findings of this case study suggest that, in the case of the ASH conference, the
523 efficiency of downloading abstracts could be improved if it were possible to identify

524 and export a range of potentially eligible abstracts. This finding appears relevant to
525 other journals which offer conference abstracts in supplement editions online.

526

527 The revised scope of this case study highlights the main finding. Four potential
528 comparators to a handsearch of conference abstracts for the ASH conference
529 missed substantial numbers of potentially eligible and confirmed eligible abstracts.
530 Further research is required to examine if this finding relates to other conferences or
531 research disciplines. This finding suggests that, for researchers undertaking
532 searches of the ASH conference, the only reliable method to identify eligible
533 abstracts was a search of the original supplement editions.

534

535 Only comparator 2 (journal search function) was as effective in identification and
536 recall as the reference standard handsearch, and it was more efficient. The other
537 four comparators, whilst more efficient than both the reference standard and
538 comparator 2, missed eligible abstracts so were deemed less effective.

539

540 **Acknowledgements**

541 We acknowledge the input of Francine Wood, UCL subject librarian, and her
542 suggestions as to potential comparators. We thank the editorial team at the journal
543 *Blood* for their assistance with our emails. We acknowledge the feedback and
544 comments on a draft of this study from Robin Featherstone, Cochrane Information
545 Specialist. We thank Rachel Hibbs and Joanne Noble-Longster for their valuable
546 comments and edits to the draft manuscript.

547

548 The work set out in this study was initially presented as a poster which was
549 presented under the same title at ISPOR 2019 (Copenhagen) (49).

550

551 **Funding**

552 The systematic review related to this study was sponsored by Takeda
553 Pharmaceuticals, Cambridge MA, USA. The case study presented here was
554 undertaken without any specific sponsorship or funding.

555

556 **Declaration of interest**

557 CC, CW, AP and AS all received funding to undertake the original systematic review
558 from Takeda Pharmaceuticals. CC has received funding for teaching from *Clarivate*
559 Analytics in 2016. None of these declarations impact upon this article, since no
560 funding was received to undertake the work reported here, but we acknowledge
561 these items here for completeness.

562

563

564 Contribution of authors:

565

- 566 • **Chris Cooper:** Conceptualization, Methodology, Validation, Formal Analysis,
567 Investigation, Data Curation, Writing – Original Draft, Writing – Review &
568 Editing, Visualization.
- 569 • **Tristan Snowsill:** Conceptualization, Methodology, Validation, Formal
570 Analysis, Data Curation, Writing – Review & Editing.
- 571 • **Christine Worsley:** Methodology, Validation, Formal Analysis, Investigation,
572 Data Curation, Writing – Review & Editing;
- 573 • **Amanda Prowse:** Methodology, Validation, Formal Analysis, Investigation,
574 Data Curation, Writing – Review & Editing;
- 575 • **Alison O'Mara-Eves:** Conceptualization, Methodology, Writing – Review &
576 Editing;
- 577 • **Helen Greenwood:** Visualization, Writing – Review & Editing;
- 578 • **Joanne Noble-Longster:** Writing – Review & Editing;
- 579 • **Emma Boulton:** Review & Editing, Project Administration; and
- 580 • **Amanda Strickson:** Data Curation, Writing – Review & Editing, Supervision.

581

582

583

584

585

586

587

588

589

590
591
592
593
594
595
596
597
598
599
600
601
602
603

604 1. Institute of Medicine Committee on Standards for Systematic Reviews of
605 Comparative Effectiveness R. In: Eden J, Levit L, Berg A, Morton S, editors. *Finding What*
606 *Works in Health Care: Standards for Systematic Reviews*. Washington (DC): National
607 Academies Press (US)
608 Copyright 2011 by the National Academy of Sciences. All rights reserved.; 2011.
609 2. Centre for Reviews and Dissemination. *Systematic reviews – CRD's guidance for*
610 *undertaking reviews in healthcare*. York: Centre for Reviews and Dissemination, University
611 of York; 2009. Available from: https://www.york.ac.uk/media/crd/Systematic_Reviews.pdf.
612 3. Collaboration for Environmental Evidence. *Guidelines for Systematic Review and*
613 *Evidence Synthesis in Environmental Management: Environmental Evidence*; 2013.
614 Available from: <http://www.environmentalevidence.org/wp-content/uploads/2017/01/Review-guidelines-version-4.2-final-update.pdf>.
615 4. Lefebvre C, Manheimer E, Glanville J. Chapter 6: Searching for studies. 2011 [cited
616 Accessed 7th December 2017]. In: *Cochrane Handbook for Systematic Reviews of*
617 *Interventions* [Internet]. The Cochrane Collaboration, [cited Accessed 7th December 2017].
618 Available from: <http://handbook.cochrane.org/>.
619 5. Cooper C, Booth A, Britten N, Garside R. A comparison of results of empirical
620 studies of supplementary search techniques and recommendations in review methodology
621 handbooks: a methodological review. *Systematic Reviews*. 2017;6(1):234.
622 6. Cooper C, Booth A, Varley-Campbell J, Britten N, Garside R. Defining the process to
623 literature searching in systematic reviews: a literature review of guidance and supporting
624 studies. *BMC Medical Research Methodology*. 2018;18(1):85.
625 7. National Institute for Health Care Excellence (NICE). *Developing NICE guidelines: the manual* 2014. Available from: <https://www.nice.org.uk/media/default/about/what-we-do/our-programmes/developing-nice-guidelines-the-manual.pdf>.
626 8. Mathieu S, Baron G, Soubrier M, Ravaud P. Timing of publication of abstracts of
627 randomized controlled trials presented in congresses: The example of the European League
628 against Rheumatism meeting. *Joint Bone Spine*. 2018;85(1):109-14.
629
630
631

632 9. The Institute of Medicine. *Finding What Works in Health Care: Standards for*
 633 *Systematic Reviews*. . Washington, DC: The National Academies 2011.

634 10. Paez A. Gray literature: An important resource in systematic reviews. *Journal of*
 635 *Evidence-Based Medicine*. 2017;10(3):233-40.

636 11. Mahood Q, Van Eerd D, Irvin E. Searching for grey literature for systematic reviews:
 637 challenges and benefits. *Research Synthesis Methods*. 2014;5(3):221-34.

638 12. Cooper C, Lovell R, Husk K, Booth A, Garside R. Supplementary search methods
 639 were more effective and offered better value than bibliographic database searching: A case
 640 study from public health and environmental enhancement. *Research Synthesis Methods*.
 641 2018;9(2):195-223.

642 13. Blumle A, Antes G. [Handsearching for randomized controlled clinical trials in
 643 German medical journals]. *Deutsche medizinische Wochenschrift*. 2008;133(6):230-4.

644 14. Armstrong R, Jackson N, Doyle J, Waters E, Howes F. It's in your hands: the value of
 645 handsearching in conducting systematic reviews of public health interventions. *Journal of*
 646 *Public Health*. 2005;27(4):388-91.

647 15. Hopewell S, Clarke M, Lusher A, Lefebvre C, Westby M. A comparison of
 648 handsearching versus MEDLINE searching to identify reports of randomized controlled
 649 trials. *Statistics in Medicine*. 2002;21(11):1625-34.

650 16. Young T, Hopewell S. Methods for obtaining unpublished data. *The Cochrane*
 651 database of systematic reviews. 2011;9(11).

652 17. Adams CE, Frederick K. An investigation of the adequacy of MEDLINE searches for
 653 randomized controlled trials (RCTs) of the effects of mental health care. *Psychological*
 654 *Medicine*. 1994;24(3):741-8.

655 18. Adams J, Hillier-Brown FC, Moore HJ, Lake AA, Araujo-Soares V, White M, et al.
 656 Searching and synthesising 'grey literature' and 'grey information' in public health: critical
 657 reflections on three case studies. *Systematic Reviews*. 2016;5(1):164.

658 19. Croft AM, Vassallo DJ, Rowe M. Handsearching the *Journal of the Royal Army*
 659 *Medical Corps* for trials. *Journal of the Royal Army Medical Corps*. 1999;145(2):86-8.

660 20. Hay PJ, Adams CE, Lefebvre C. The efficiency of searches for randomized controlled
 661 trials in the *International Journal of Eating Disorders*: a comparison of handsearching,
 662 EMBASE and PsycLIT. *Health Libraries Review*. 1996;13(2):91-6.

663 21. Jadad AR, McQuay HJ. A high-yield strategy to identify randomized controlled trials
 664 for systematic reviews. *The Online journal of current clinical trials*. 1993;33.

665 22. Langham J, Thompson E, Rowan K. Identification of randomized controlled trials
 666 from the emergency medicine literature: comparison of hand searching versus MEDLINE
 667 searching. *Annals of emergency medicine*. 1999;34(1):25-34.

668 23. Mattioli S, Farioli A, Cooke RMT, Baldasseroni A, Ruotsalainen J, Placidi D, et al.
 669 Hidden effectiveness? Results of hand-searching Italian language journals for occupational
 670 health interventions. *Occupational and Environmental Medicine*. 2012;69(7):522-4.

671 24. Milne R, Thorogood M. Hand searching the *Journal of Epidemiology and Community*
 672 *Health* as part of the Cochrane Collaboration. *Journal of Epidemiology and Community*
 673 *Health*. 1996;50(2):178-81.

674 25. Christine Worsley, Amanda Prowse, Amanda Strickson, Chris Cooper. Pevonedistat
 675 hydrochloride (TAK-924/MLN4924) in combination with azacitidine, and comparators, for
 676 the first-line treatment of patients with higher-risk myelodysplastic syndromes and higher-
 677 risk chronic myelomonocytic leukaemia York: CRD; 2019 [Available from:
 678 https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42019124715.

679 26. Heale R, Twycross A. What is a case study? *Evidence Based Nursing*. 2018;21(1):7-
 680 8.

681 27. Elsevier. Embase content 2019 [Available from:
 682 [https://www.elsevier.com/solutions/embase-biomedical-research/embase-coverage-and-
 683 content](https://www.elsevier.com/solutions/embase-biomedical-research/embase-coverage-and-content).

684 28. Cooper C, Dawson S, Peters J, Varley-Campbell J, Cockcroft E, Hendon J, et al.
 685 Revisiting the need for a literature search narrative: A brief methodological note. *Res Synth
 686 Methods*. 2018;9(3):361-5.

687 29. Shemilt I, Simon A, Hollands GJ, Marteau TM, Ogilvie D, O'Mara-Eves A, et al.
 688 Pinpointing needles in giant haystacks: use of text mining to reduce impractical screening
 689 workload in extremely large scoping reviews. *Research Synthesis Methods*. 2014;5(1):31-49.

690 30. Cooper C, Varley-Campbell J, Booth A, Britten N, Garside R. Systematic review
 691 identifies six metrics and one method for assessing literature search effectiveness but no
 692 consensus on appropriate use. *J Clin Epidemiol*. 2018;99:53-63.

693 31. Booth A. How much searching is enough? Comprehensive versus optimal retrieval
 694 for technology assessments. *International journal of technology assessment in health care*.
 695 2010;26(4):431-5.

696 32. Neyer S, Graduiertenakademie TN-I. Umfassende Literaturrecherchen—ein
 697 Kurzüberblick Comprehensive literature searches—an overview.

698 33. Manning CD, Raghavan P, Schütze H. *Introduction to Information Retrieval*:
 699 Cambridge University Press; 2008.

700 34. Bethel A, Rogers M. A checklist to assess database-hosting platforms for designing
 701 and running searches for systematic reviews. *Health Information & Libraries Journal*.
 702 2014;31(1):43-53.

703 35. Wagner G, Nussbaumer-Streit B, Greimel J, Ciapponi A, Gartlehner G. Trading
 704 certainty for speed - how much uncertainty are decisionmakers and guideline developers
 705 willing to accept when using rapid reviews: an international survey. *BMC Medical Research
 706 Methodology*. 2017;17(1):121.

707 36. Lefebvre C, Manheimer E, Glanville J. Chapter 6: Searching for studies. *Cochrane
 708 Handbook for Systematic Reviews of Interventions*. (5.1.0) ed: The Cochrane Collaboration;
 709 2011.

710 37. Scherer RW, Saldanha IJ. How should systematic reviewers handle conference
 711 abstracts? A view from the trenches. *Systematic Reviews*. 2019;8(1):264.

712 38. Saric L, Dosenovic S, Saldanha IJ, Kadic AJ, Puljak L. Conference abstracts
 713 describing systematic reviews on pain were selectively published, not reliable, and poorly
 714 reported. *Journal of Clinical Epidemiology*. 2019.

715 39. Hopewell S, Boutron I, Altman DG, Ravaud P. Deficiencies in the publication and
 716 reporting of the results of systematic reviews presented at scientific medical conferences.
 717 *Journal of Clinical Epidemiology*. 2015;68(12):1488-95.

718 40. Scherer RW, Langenberg P, von Elm E. Full publication of results initially presented
 719 in abstracts. *The Cochrane database of systematic reviews*. 2007(2):Mr000005.

720 41. Dundar Y, Dodd S, Dickson R, Walley T, Haycox A, Williamson PR. Comparison of
 721 conference abstracts and presentations with full-text articles in the health technology
 722 assessments of rapidly evolving technologies. *Health technology assessment (Winchester,
 723 England)*. 2006;10(5):iii-iv, ix-145.

724 42. Saric L, Vucic K, Dragicevic K, Vrdoljak M, Jakus D, Vuka I, et al. Comparison of
 725 conference abstracts and full-text publications of randomized controlled trials presented at
 726 four consecutive World Congresses of Pain: Reporting quality and agreement of results.
 727 *European Journal of Pain*. 2019;23(1):107-16.

728 43. Weintraub WH. Are published manuscripts representative of the surgical meeting
 729 abstracts? An objective appraisal. *Journal of Pediatric Surgery*. 1987;22(1):11-3.

730 44. Zonghong Shao, Hui Liu, Hao Jiang, Hongyan Tong, Ruixiang Xiang, Linhua Yang,
731 et al. FINAL Results of an Phase, Multicenter, Randomized, Controlled OPEN LEVEL Trial:
732 Decitabine Therapy in Patients with Myelodysplastic Syndromes. ASH. 2018.

733 45. Finelli C, Clissa C, Follo MY, Parisi S, Fogli M, Mongiorgi S, et al. Comparison of
734 Two Different Therapeutic Regimens with Azacitidine and Lenalidomide (Combined versus
735 Sequential) in Higher-Risk Myelodysplastic Syndromes. Update of Long-Term Results of a
736 Randomized Phase II Multicenter Study. Blood. 2018;132(Suppl 1):4365-.

737 46. Finelli C, Clissa C, Follo M, Stanzani M, Parisi S, Mongiorgi S, et al. Azacitidine and
738 lenalidomide (combined vs sequential treatment) in higher-risk myelodysplastic syndromes.
739 long-term results of a randomized phase II multicenter study. Blood Conference: 58th Annual
740 Meeting of the American Society of Hematology, ASH. 2016;128(22).

741 47. Garcia-Manero G, Dauer NG, Montalban-Bravo G, Jabbour EJ, DiNardo CD,
742 Kornblau SM, et al. A phase II study evaluating the combination of nivolumab (Nivo) or
743 Ipilimumab (Ipi) with azacitidine in pts with previously treated or untreated myelodysplastic
744 syndromes (MDS). Blood Conference: 58th Annual Meeting of the American Society of
745 Hematology, ASH. 2016;128(22).

746 48. Higgins JPT, Lasserson T, Chandler J, Tovey D, Churchill R. Methodological
747 Expectations of Cochrane Intervention Reviews London2016 [Available from:
748 <http://methods.cochrane.org/mecir>.

749 49. Cooper C, Worsley C, Prowse A, O'Mara-Eves A, Greenwood H, Boulton E, et al.,
750 editors. COMPARISON OF FIVE METHODS FOR DOWNLOADING CONFERENCE
751 ABSTRACTS - A CASE STUDY. ISPOR Europe 2019, Copenhagen, Denmark; 2019:
752 <https://www.ispor.org/heor-resources/presentations-database/presentation....>

753

754

755

What's New**Key findings:**

The effectiveness and efficiency of methods to identify and export conference abstracts presented at the American Society of Hematology (ASH) conference 2016-2018 for a systematic review were evaluated. Handsearching was the reference standard method which was compared to:

comparator 1: contacting the publisher to request abstracts;
 comparator 2: keyword search of supplement editions;
 comparator 3: searching Embase (ovid interface);
 comparator 4: searching PubMed via Endnote X8;
 comparator 5: searching Conference Proceedings Citation Index- Science (CPCI-S).

Only keyword searching (comparator 2) identified all eligible abstracts identified by the handsearch and it was more efficient than handsearching. All other comparators missed eligible studies.

No alternative methods to download conference abstracts in bulk – as opposed to abstract-by-abstract and individually – were identified.

What this adds to what is known:

The findings of this case-study may raise concerns about the coverage of the conference proceedings by the comparators set out above and their use to identify conference abstracts instead of handsearching. The comparators tested represent 'real world' options for use in systematic reviews, yet these findings suggest that many are sub-optimal.

There is a trade-off between effectiveness and efficiency that is likely to be inherent in decisions made about searching for conference proceedings, the extent of which has not been quantified and made explicit until now.

What are the implications:

Our findings are based on a single case-study and they may not generalise to other interventions reported at ASH, other conferences, or other topics. It is unlikely, however, that this is an isolated issue; further research might explore this.

Researchers should consider the potential risk of the trade-off between efficiency and effectiveness when designing their conference search strategy. Further research is also indicated on how conference abstracts are identified and included in databases, since this may affect recall (as identified in this study) and alter decision-making when deciding to handsearch.

The ability to bulk download eligible study abstracts from journal web-sites would also improve efficiency.

We do not know the extent to which existing completed reviews may have missed conference abstracts if they used one of the (potentially sub-optimal) comparators.

Declaration of interest

CC, CW, AP and AS all received funding to undertake the original systematic review from Takeda Pharmaceuticals. CC has received funding for teaching from *Clarivate* Analytics in 2016. None of these declarations impact upon this article, since no funding was received to undertake the work reported here, but we acknowledge these items here for completeness.

Funding

The systematic review related to this study was sponsored by Takeda Pharmaceuticals, Cambridge MA, USA. The case study presented here was undertaken without any specific sponsorship or funding.