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Abstract 
 
Recent advances in Model-based fMRI approaches enable researchers to investigate 
hypotheses about the time course and latent structure in data that were previously 
inaccessible. Cognitive models, especially when validated on multiple datasets, allow for 
additional constraints to be marshalled when interpreting neuroimaging data. Models can 
be related to BOLD response in a variety of ways, such as constraining the cognitive model 
by neural data, interpreting the neural data in light of behavioural fit, or simultaneously 
accounting for both neural and behavioural data. Using cognitive models as a lens on fMRI 
data is complementary to popular multivariate decoding and representational similarity 
analysis approaches. Indeed, these approaches can realise greater theoretical significance 
when situated within a model-based approach. 
 
 
 
 

Highlights 
 
Cognitive models can formalise theories to make assumptions and predictions clearer. 
 
Cognitive models offer additional constraints when interpreting the BOLD response. 
 
Models can go from behaviour to BOLD, vice versa, or address both simultaneously. 
 
Model-based approaches can incorporate pattern similarity and decoding approaches. 
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Introduction 
 
Memory by definition involves processes that extend over time and involve generalisation 
or similarity structure. Formal models offer a way to characterise these processes and 
better understand their brain basis. As I will review, there are a number of cases in which 
fMRI researchers could not have made an advance without a model-based analysis 
approach. 
 
Models can play a number of constructive roles in psychology, neuroscience and science 
more broadly. One function is simply organising one's ideas and making assumptions clear. 
Each step needs to be detailed, which can reduce wiggle room relative to purely verbal 
theories. Whatever wiggle room is left (e.g., tuneable parameters) is made explicit. 
 
As a consequence, what is predicted under different circumstances is made clear. Rather 
than debate what a theory predicts, a model can be simulated. For example, early work 
showing an advantage in processing category prototypes led researchers to believe that 
abstract prototypes were stored in memory, but subsequent work demonstrated such 
effects were compatible with exemplar models that store no abstractions in memory [1]. 
More recently, models have played a related role in the design and interpretation of fMRI 
studies of memory [2,3]. Models can play a constructive role in directing empirical 
investigations. 
 
Science often progresses by evaluating competing theoretical accounts. Models afford the 
possibility of model comparison in which competing accounts can be pitted against one 
another and the model that performs best can be favoured.  For example, Mack and 
colleagues [4] formally evaluated whether the representations in an exemplar or prototype 
model best matched the BOLD response and found the exemplar model was more 
consistent (also see [5]). Recent work evaluating whether the hippocampus learns to 
associate objects and words incrementally or in an all-or-none fashion used a related 
approach that favoured the all-or-none account [6]. 
 
Models can serve a powerful integrative role by linking seemingly disparate findings through 
common computational mechanisms. For example, a simple model of familiarity and 
recognition memory captured findings from both fMRI studies of visual categorisation and 
word list memory [7]. In my own work, the same clustering approach to understanding 
human learning has been applied to a number of fMRI studies [8–12], which helps to 
theoretically link studies.  Recent work [13] has extended these same model mechanisms to 
offer an alternative explanation for place and grid cell responses in rodents and humans. 
This account makes novel predictions for how cell responses should change under different 
experimental conditions. 
 
The aforementioned models can be considered cognitive models. These models are 
hypothesised to involve the same processes and representations as the human mind. 
Cognitive models reside at Marr's [14] algorithmic level and are well-placed to help explain 
how the brain implements higher-level computations [15]. Below, I will discuss the various 
ways that cognitive models can be related to fMRI data.  
 



In addition to using cognitive models, neuroscientists also use formal models as purely data 
analysis tools. For example, the Generalised Linear Model (GLM) itself is a formal model that 
has assumptions and tuneable parameters that are fit to data. Of course, the GLM is not a 
model of how people process and represent information. Other examples of data analysis 
tools include Dynamic Causal Modelling [16], techniques to measure the intrinsic or 
functional dimensionality of fMRI data [17], and Multi-Voxel Pattern Analysis (MVPA). 
 

 
Figure 1: The top row illustrates approaches that are not model-based in that they don’t leverage a cognitive model of the 
task. For example, in the top-left panel, a standard analysis might identify voxels that are more active for faces than for 
house stimuli, whereas in the top-right panel a decoder might try to classify whether the participant is viewing a house or a 
face stimulus on each trial. In the bottom row, a cognitive model is at the centre of the analysis. In the bottom-left panel, 
some measure from the cognitive model (which is usually fit to behavioural data), such as item familiarity, learning update, 
etc., is entered into the GLM. Such an analysis will identify voxels that show a similar activation profile to the model 
measure. In contrast, in the bottom-right quadrant, a classifier is applied to the brain to try to decode some internal 
measure from the cognitive model. In this case, models are favoured to the extent that their internal state is decodable [4]. 

MVPA decoding approaches apply a machine classifier to "mind read" from the BOLD 
response whether a participant, for example, is viewing a house or a face [18]. Although 
these are not psychological models, they can be used to make interesting behavioural 
predictions. For example, participants tend to have faster response times for stimuli that are 
further from the classifier's decision bound, which indicates the classifier is more confident 
about its decision [19]. Decoding approaches can also be used to determine when people 
are engaging in replay [20–23]. The line between what is a cognitive model and a data 
analysis tool can be blurred at times. 
 

Linking cognitive models to the BOLD response 
 
In a typical task fMRI analysis, experimental conditions are contrasted with one another. For 
example, one may contrast voxels that are more active for face than for house stimuli. The 
simplest model-based analysis replace the stimulus condition with some model measure 
(e.g., prediction error) that varies across trials [24]. By entering this regressor (e.g., 
prediction error) from the cognitive model into the GLM, one can evaluate which voxels co-
vary with the cognitive construct. As shown in Figure 1, both the typical contrast approach 
and simple model-based analyses are univariate. Instead, standard MVPA analyses start 
from a collection of voxels (multivariate) and aim to predict some experimental condition, 



such as whether the participant is viewing a house or a face. One innovation is to make the 
target of decoding a model measure, such as item familiarly according to a cognitive model 
[4]. The four quadrants shown in Figure 1 are not an exhaustive taxonomy of how to relate 
models to the BOLD response (for a more complete treatment, see [25,26]). 
 
Perhaps because it's relatively straightforward, the univariate model-based approach is 
most common in the field. Typically, a model is fit to behavioural data and then used as a 
lens on the fMRI data. For example, an associative learning model was fit to behavioural 
data from a task where people formed impressions of various social groups through trial-by-
trial feedback [27]. The fitted model provided a GLM trial-by-trial measure of valence or 
prejudice for each group, which tracked activity in the anterior temporal lobe in the model-
based analysis. Model-based analysis was critical for capturing changes in memory across 
study trials. 

 
Figure 2: Panels a and b show model-based regressors for a measure of recognition strength (i.e., familiarity) and error 
correction (i.e., learning update). These model-based regressors track hippocampal activity at the stimulus presentation and 
feedback phases of trials, respectively [8]. In contrast, a standard contrast of exception>rule-following items (panels e and 
f) results in no statistically significant voxels, because this contrast does not track the time course of hippocampal activity. 

In a category learning study [8], a model-based analysis with a clustering model of learning 
was critical to capturing two time courses, one across trials and one within. This study 
examined the hippocampus's role in acquiring categories in which most items followed a 
rule but some items (exceptions) did not. A clustering model [28] was fit to the behavioural 
data (i.e., the learning curves) and two model-based measures were entered into the GLM, 
one for recognition strength or familiarity and one for error correction or learning update. 
As shown in Figure 2, the hippocampus tracked the model's recognition measure at stimulus 
presentation and the error measure at feedback presentation. Interestingly, a standard 
analysis contrasting exception and rule-following items found no significant difference -- the 
cognitive model proved critical to capturing how hippocampal response changes over the 
course of study trials.  
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The same modelling approach can also be used to localise two simultaneous processes (by 
using two different model-based measures) within the same phase of a trial to draw 
distinctions between the function of anterior and posterior hippocampus [9]. Another way 
to scale up this basic univariate modelling approach is to adopt an encoder approach in 
which the fitted cognitive model provides a number of model-based regressors to enter into 
the GLM with the goal of explaining the most variance possible within brain regions of 
interest [29]. In the encoding approach, rather than trying to identify voxels that 
significantly regress on some specific model-based measure (e.g., prediction error), the goal 
is for multiple model measures to capture the most overall variance possible in the GLM. 
 
Other model-based work [30,31] reverses the flow of information to incorporate brain 
measures directly into the operation of the model to better predict behaviour. For example, 
Kragel and colleagues [30] used a variant of the Context Maintenance and Retrieval (CMR) 
model of free recall [32] that took signals from the Medial Temporal Lobe (MTL) to 
determine whether contextual reactivation was successful at each potential recall event. 
The model that incorporated the BOLD input performed better than a baseline model in 
predicting behaviour. 
 
Rather than link from model to brain or brain to model, joint modelling approaches [33,34] 
simultaneously model the mutual constraints between behavioural and brain measures 
through an intermediary cognitive model. This approach can deal with multiple brain 
measures (e.g., fMRI and EEG) and can make predictions about missing measures based on 
covariance with the observed measures. 
 
There are number of other creative ways to link cognitive models to BOLD response. One 
way is to link a key event, as indexed by the cognitive model, to an operation in the brain. 
For example, a recent study finds that prediction errors during study are predictive of later 
replay events [20]. In other work, a Bayesian model determined the probability that an item 
would be remembered, which correlated with hippocampal activity during encoding [35]. 
 
Finally, a cognitive model's fitted parameters can be related to the BOLD response instead 
of a trial-by-trial measure from the model. During category learning, models [28,36] predict 
that goal-relevant aspects of the stimuli will receive greater weight or attention. A recent 
study found that the learned attentional weights from category learning models fit to 
behaviour were predictive of how well those stimulus aspects could be decoded from the 
BOLD response [37]. Related, in a study exploring vmPFC-hippocampal interactions during 
concept learning [12], the pattern of goal-directed representation compression in vmPFC 
paralleled the attention weights from a model fitted to behaviour. 
 

Models can uncover useful latent states 
 
Models can be useful in inferring latent states that can help explain behaviour and its brain 
basis. One example of a latent variable are the clusters in the aforementioned learning 
models [28,38] which detail how related items are stored together in memory. Models 
operationalise these hypothesised representational structures, which can be useful in 
analysing BOLD response.  
 



Inferring latent state is more complex when researchers aim to characterise complex mental 
operations that unfold through time [39]. One popular approach is to use hidden Markov 
models (HMMs) to infer what operations people are currently undertaking and using this 
characterisation to interpret the BOLD response [40,41]. 
 
The importance of inferring latent state is also becoming appreciated in related fields, such 
as reinforcement learning [42]. Many of the same conceptual issues and brain systems are 
implicated in these tasks as in goal-directed concept learning.  For example, strategic 
exploration relies on hippocampal-prefrontal cooperation [43] as is found during memory 
tasks [12]. 
 

Comparing model and brain representations 
 
In addition to MVPA decoding, multivariate pattern analysis can be used to compare 
proposed (e.g., model) representations and voxel representations [44]. This pattern 
comparison analysis is popularly known as Representational Similarity Analysis (RSA, [45]). 
RSA correlates two similarity matrices, one from the cognitive model and one from the 
brain, to assess how well the two similarity spaces align. RSA can be used as confirmatory 
evidence that a model provides the correct representational account of a brain region or in 
an exploratory fashion such as in a whole-brain searchlight analysis. One application of RSA 
is to compare proposed memory representations acquired by models of concept learning to 
brain regions thought to implement those functions [4,46]. For example, RSA analyses found 
that hippocampal representations of objects are modulated by changes in the task goal [10]. 
 
For an RSA to be model-based, one of the similarity matrices should be generated by a 
cognitive model. RSA can involve the evaluation of several cognitive models. A variety of 
models can be considered and the model whose representations best align with the brain 
can be favoured [46]. However, not all RSAs are model-based and the dividing line can be 
blurry. For example, technically, finding that hippocampus CA1 codes distance to a goal [47] 
is not model-based (because distance is specified by the task), whereas coding distance to 
some model quantity, such as distance to a category prototype [48], is model-based 
(because the prototype is specified by the fitted cognitive model). For a model-based 
analysis to be useful, it should add something beyond a standard analysis. Ideally, a model-
based analysis would improve both data fit and our understanding of the domain. For 
example, a model may largely code distance to goal, but diverge in informative ways under 
certain circumstances that could be empirically verified and in turn deepen our 
understanding of the domain. 
 
Certainly, univariate analyses can be rigorous, interesting, and motivated but not model-
based. The same is true in RSA. For example, a recent study [49] used similarity matrices 
designed to capture perceptual or conceptual similarity to hone in on the function of 
perirhinal cortex and other regions. This work is exciting and valuable, but because the 
similarity matrices were derived from human ratings rather than generated by a model of 
perceptual or conceptual processing, the analysis is not model-based. 
 

Conclusions 
 



Adopting a model-based approach to fMRI analysis can offer a number of advantages. In 
some cases, one can evaluate hypotheses that otherwise would not be possible with a 
standard analysis approach. Models, which are formalised as theories, offer the hope that 
results will be theoretically grounded. As related models are applied across data sets, 
models may promote a more systematic and cohesive science. Cognitive models are well 
positioned to integrate findings across levels of analysis [15]. 
 
I have reviewed a number of ways to relate cognitive models to the BOLD response. 
Possibilities include fitting models to be behaviour and incorporating derived trial-by-trial 
measures into the GLM, model decoding approaches [4], using BOLD response to drive the 
behavioural predictions of the model, joint modelling to simultaneously address brain and 
behavioural measures, and RSA comparisons of model representations and BOLD response. 
Which approach is suitable is largely a function of the study's design and the researcher's 
aims. 
 
One key question to consider is why do model-based analyses work? Models are not 
magical, nor guaranteed to be helpful, so why are there so many cases in which model-
based analyses succeed in pulling more from the data than would be possible through a 
standard analysis? The answer is that models have the ability to incorporate constraints that 
are outside the immediate study. In my own work, models are developed over years and 
honed while being applied to multiple behavioural and fMRI datasets. In this sense, the 
models have a reality and value outside their immediate application, which is critical 
because a model-based analyses is only as credible as the model used. 
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Annotated References 
 
*Berens et al. (2018) The authors compare two competing models of hippocampal-
mediated learning and find evidence in favour of an all-or-none account. 
 
*Mack et al. (2019) The authors explore vmPFC-hippocampal interactions and find that 
vmPFC establishes a goal-oriented compression code to support hippocampal learning.  
 
*Momennejad et al. (2019) The authors show that replay events are predicted by error 
during previous study. 
 
*Turner et al. (2019b) The authors review joint modelling approaches in which a cognitive 
model simultaneously addresses behavioural and neural measures. 



 
*Braunlich & Love (2019) Individual differences in attention weights from learning models 
fitted to behavioural data predict how well stimulus information can be decoded from the 
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