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Title 1 

Happy faces selectively increase the excitability of cortical neurons innervating frowning muscles 2 

of the mouth. 3 

 4 

Abstract  5 

Although facial muscles are heavily involved in emotional expressions, there is still a lack of 6 

evidence about the role of face primary motor cortex (face M1) in the processing of facial 7 

recognition and expression. This work investigated the effects of the passive viewing of different 8 

facial expressions on face M1 and compared data with those obtained from the hand M1. Thirty 9 

healthy subjects were randomly assigned to two groups undergoing transcranial magnetic 10 

stimulation (TMS) of face or hand M1. In both groups, short-latency intracortical inhibition (SICI) 11 

and intracortical facilitation (ICF) were probed in the depressor anguli oris (DAO) and first dorsal 12 

interroseus (FDI) muscles 300 ms after presentation of a picture of a face that expressed either 13 

happy, sad or neutral emotions. Statistical analysis of SICI showed a non-significant effect of 14 

muscle (F1,28= 1.903, p= 0.179) but a significant effect of emotion (F2,56=6.860, p=0.004) and a 15 

significant muscle X emotion interaction (F2,56=5.072, p=0.015). Post hoc analysis showed that 16 

there was a significant reduction of SICI in the DAO muscle after presentation of a face with a 17 

happy expression compared with a neutral face (p<0.001). In the FDI, a significant difference was 18 

observed between neutral and sad expressions (p=0.010) No clear differences in ICF were detected. 19 

The different responses of face and hand muscles to emotional stimuli may be due to their 20 

functional roles in emotional expression versus protection of the body. 21 

 22 

Key words: face primary motor cortex, hand primary motor cortex; TMS; emotional motor control; 23 

volitional motor control; face expressions. 24 
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 Introduction 49 

In humans, the ability to recognize and react to facial expressions rapidly is crucial for survival and 50 

social communication (Blair 2003, 2004). Neurobiological models propose that the recognition of 51 

face expressions involves the coordinated participation of multiple cortical areas such as the inferior 52 

occipital gyrus and the superior temporal sulcus (Haxby et al. 2000; Rossion et al. 2003; Calder and 53 

Young 2005; Engell and Haxby, 2007). The recognition of facial expression is automatic and fast; 54 

indeed, it takes only 300 ms to process the emotional content of a picture (Smith and Smith 2019). 55 

Over the same period, information is also sent to the motor and premotor areas (Cuthbert et al. 56 

2000). Previous work has shown that recognition of facial expression depends not only on activity 57 

in the right occipital face area, but also involves activity in right somatosensory cortex, confirming 58 

the idea that facial expression recognition is not solely a visual task (Pitcher et al. 2008). In addition 59 

to visual and contextual routes to emotion recognition, a new theoretical model called 60 

“sensorimotor stimulation” has recently proposed that people subliminally recreate in their own 61 

motor system the commands involved in the facial expression being viewed (Wood et al. 2016a, b). 62 

This subthreshold activity, in theory, triggers partial, often unconscious, activity in other neural 63 

systems involved in experiencing the corresponding emotion, and from which the viewer implicitly 64 

infers the expresser's internal state (Wood et al. 2016a, b; Gallese 2005). However, activation of the 65 

somatosensory stimulation system depends on several factors, such as the difficulty of the task as 66 

well as individual and behavioral features (Wood et al. 2016a).   67 

Several studies in healthy volunteers have demonstrated that viewing facial expressions triggers a 68 

cascade of central and peripheral physiological processes associated with action preparation 69 

(Dalgleish 2004; Vuilleumier and Pourtois 2007) involving anatomo-functional connections 70 

between the limbic associative cortex and the premotor/motor areas, via the cingulate and prefrontal 71 

cortical regions (Vuilleumier and Pourtois 2007). Interestingly, several human studies using 72 

transcranial magnetic stimulation (TMS) of the hand primary motor cortex (M1) demonstrated an 73 

increase in corticospinal tract excitability in response to emotional stimuli relevant for action of the 74 

whole body such as pleasant or unpleasant scenes (Oliveri et al. 2003; Baumgartner et al. 2007; 75 

Hajcak et al. 2007; Schutter et al. 2008; Coombes et al. 2009; Hortensius et al. 2016). Moreover, 76 

previous studies demonstrated that the pre-SMA plays a role in facial happiness recognition 77 

(Rochas et al. 2013). However, only one previous study employed emotional facial expressions 78 

such as fear and found an increase of M1 excitability in the abductor pollicis brevis muscle (Shutter 79 

et al. 2008).  80 
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Given their role in emotional expression, it seems odd that there have been few studies (but see 103 

Muri 2016) of the effect of viewing facial emotions on facial muscles themselves. Indeed, facial 104 

expressions are part of stereotyped physiological responses to peculiar affective states involving 105 

both the autonomic and somatic systems and are controlled by the so-called “emotional motor 106 

system” (Holstege 1992; Holstege et al. 1996), which appears to be quite separate from the 107 

corticobulbar system that mediates volitional movement. Thus, patients have been described in 108 

whom focal lesions to a variety of areas including the contralateral thalamus, anterior striato-109 

capsular region, medial part of frontal lobes (Bogousslavsky et al. 1988; Trosch et al. 1990; Ross 110 

and Mathiesen 1998; Hopf et al. 1992) and the ipsilateral pons and medulla (Khurana et al. 2002; 111 

Cerrato et al. 2003) can have isolated emotional facial palsy in the absence of effects on voluntary 112 

contraction of the same muscles. The same division is seen in the much more frequent condition of 113 

voluntary facial palsy, with sparing of emotional movements, that can occur after brainstem lesions 114 

(Trepel et al. 1996; Bouras et al. 2007).  115 

Previous work using TMS has shown that it is possible to study motor control of facial muscles 116 

(Cruccu et al. 1990; Paradiso et al. 2005; Cattaneo and Pavesi 2014) in a variety of muscles such as 117 

lip depressors (Meyer et al. 1994), muscles active in pursing of lips (Triggs et al. 2005), the 118 

buccinator muscle (Urban et al. 1997), and the depressor anguli oris (DAO) (Pilurzi et al. 2013). 119 

Pilurzi et al (2013) also showed that it was possible to evaluate short-latency intracortical inhibition 120 

(SICI) and facilitation (ICF) in both the ipsilateral and the contralateral motor representations of the 121 

DAO (Pilurzi et al. 2013).  122 

In the present study we have therefore used these methods to examine the effect of viewing faces 123 

expressing different emotions on the excitability of the face area of human motor cortex. We 124 

compared the results with the effect of the same stimuli on the excitability of the motor cortex hand 125 

area, since hand muscles may also be involved in expressing different emotions. 126 

 127 

Methods 128 

Participants 129 

Thirty healthy subjects (21 females and 9 males; mean age 26.47± 5.09 years), all right-handed 130 

according to the Oldfield inventory scale (Oldifield 1971), participated in the study. An informed 131 

written consent was obtained from all subjects and the experimental procedure was approved by the 132 
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local ethical committee (Bioethics Committee of ASL. n. 1 – Sassari, ID 2075/CE/2014) and 165 

conducted in accordance with the Helsinki Declaration. None of the participants had history and/or 166 

current signs/symptoms of neurological and/or psychiatric diseases. Recordings were carried out in 167 

a quiet room while subjects were seating in a comfortable chair and were asked to stay relaxed but 168 

alert during the experiment. 169 

EMG 170 

EMG was recorded from right DAO and first dorsal interosseous (FDI) using a 9 mm diameter Ag-171 

AgCl surface electrodes. For the DAO recording, the active electrode was placed at the midpoint 172 

between the angle of the mouth and the lower border of the mandible, the reference electrode over 173 

the mandible border, 1 cm below the active electrode, and the ground electrode over the right part 174 

of the forehead. For the FDI EMG recordings, the active electrode was placed over the muscle 175 

belly, the reference electrode at the second metacarpo-phalangeal joint and the ground electrode 176 

over the forearm. EMG signals were recorded (D360 amplifier, Digitimer Ltd, Welwyn Garden 177 

City, UK), amplified (x1000), filtered (bandpass 3-3000 Hz) and sampled at 5 KHz using a 1401 178 

power analog-to-digital converter and Signal 6 software (Cambridge Electronic Design, Cambridge, 179 

UK). The DAO and the FDI muscles were chosen as models for the face and hand muscles, 180 

respectively, since the protocols used in the present study have been already standardized (Pilurzi et 181 

al. 2013; Rossini et al. 2015). 182 

TMS 183 

TMS was performed using a 70 mm figure-of-eight shaped coil connected to a Magstim 200 184 

stimulator stimulators through a Bistim module (Magstim Co., Whitland, and Dyfed, UK). The 185 

optimal stimulation site for the DAO and FDI, defined as the cortical spot where larger motor 186 

evoked potentials (MEP) were obtained, was carefully searched and then marked with a soft tip pen 187 

over the scalp, to maintain the same coil position throughout the experiment. For the DAO, the 188 

handle of the coil pointed posteriorly and laterally, at approximately 30-45 deg to the 189 

interhemispheric line (Pilurzi et al. 2013, 2020; Ginatempo et al. 2019), while for FDI it was 190 

pointing backwards and laterally at 45° away from the midline (Rossini et al. 2015). The resting 191 

motor threshold (RMT) was defined as the lowest TMS intensity that elicited, in the relaxed muscle, 192 

MEPs of at least 0.05 mV in at least 5 out of 10 consecutive trials and was expressed in percentage 193 

of the maximum stimulator output  (Rossini et al. 2015). Paired-pulse TMS protocol was delivered 194 

with the same coil, the stimuli consisted of a subthreshold conditioning stimulus (CS) preceding a 195 
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suprathreshold test stimulus (TS) by an interstimulus interval (ISI) of 3 ms for short-latency 196 

intracortical inhibition (SICI) and 10 ms for intracortical facilitation (ICF). In both cases the CS 197 

intensity was set at 80% RMT and the TS intensity at 120% RMT. SICI and ICF were expressed as 198 

the ratio of MEP amplitude evoked by the conditioned to the unconditioned MEP. 199 

Facial emotional expressions stimuli (FES) 200 

The visual stimuli consisted of photographs of ten actors taken from the Karolinska directed 201 

emotional faces set (Lundqvist et al. 1998). Each actor (10 in total, 5 women) displayed a neutral, 202 

sad or happy facial expression for a total of 30 visual stimuli. All stimuli were projected on a 17” 203 

CRT monitor, with a 1280x1024 resolution and a 70 Hz refresh rate, by using PsychToolbox 204 

software (Brainard 1997), running in MATLAB environment (Version 2015b, MathWorks, Inc., 205 

Natick, MA, United States). The present experimental procedure employed the same protocol used 206 

by Schutter and colleagues (2008). Previous ERP studies of Smith and Smith (2019) suggested that 207 

decoding of face identity and expression is maximal in a 90–170 ms time-period post-stimulus 208 

whereas Carlsen et al (2011, 2013) give a slightly wider interval of 80 – 200ms for the read-out of 209 

face exemplar information from whole brain . Since Adolphs (2002) suggest that additional time is 210 

required to develop conceptual knowledge of the emotion signaled by the face ( >300 ms), we chose 211 

a time interval of 300 ms between the onset of the visual stimulus and the TS. The inter-trial 212 

interval varied randomly between 4800 and 5200 ms. 213 

 214 

Experimental design 215 

The study comprised a main experiment (experiment 1) and one control experiment (experiment 2). 216 

Experiment 1: Influence exerted by facial emotional expressions stimuli (FES) on the M1 217 

innervating facial and hand muscles. 218 

Experiment 1 was planned to investigate a possible effect of the passive viewing of emotional 219 

stimuli on hand M1 and face M1, recording the TMS-induced MEPs in the FDI and DAO muscles, 220 

respectively. In order to reduce the number of the stimuli delivered to each subject, all subjects were 221 

divided up into two groups: paired-pulse in DAO (5 males and 10 females, 26.67±4.47 years old) 222 

and paired-pulse in FDI (4 males and 11 females, 26.87±2.77 years old). Both SICI and ICF were 223 

tested in DAO and FDI M1s after 300 ms from the delivery of FES (neutral, sad and happy faces). 224 
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Twenty unconditioned and 20 conditioned MEPs for each ISI and condition were recorded in 244 

randomized order.  245 

Experiment 2. Arousal rating of FES 246 

All Participants were asked to rate each picture on a visual analog scale (VAS) based on their 247 

affective response to the FES used in experiment 1. Participants were asked how they felt after 248 

seeing each facial expression and to rate the level of arousal on the VAS indicating a number from 1 249 

(no visceral response) to 9 (very strong visceral response). The mean of the rating for each 250 

emotional condition was calculated and used for the statistical analysis. 251 

Statistical analysis 252 

Raw amplitude and amplitude ratio of conditioned to unconditioned MEPs, were used as variables. 253 

Statistical analysis was performed with SPSS 20 software (SPSS Inc, Chicago, IL, USA). Mixed 254 

and repeated measures (RM) analysis of variance (ANOVA) and planned post hoc t-tests with 255 

Bonferroni correction for multiple comparison were used. Compound symmetry was evaluated with 256 

the Mauchly’s test and the Greenhouse-Geisser correction was used when required. Significance 257 

was set for p values < 0.05. Value are expressed as mean ± standard deviation. 258 

Experiment 1: A preliminary RM- ANOVA on raw TS MEP amplitude was performed separately 259 

for each MUSCLE GROUP (DAO and FDI) with EMOTION (happy, sad and neutral) as within- 260 

subjects factor. In case of no significant effect of emotion on MEP amplitude was detected, a two-261 

way mixed-ANOVA separately for SICI and ICF, was performed using amplitude ratio as variable 262 

with EMOTION (happy, sad and neutral) as within-subjects factor and MUSCLE GROUP (FDI and 263 

DAO) as between-subjects factor.  264 

Experiment 2: a two-way RM-ANOVA on the rating was performed with EMOTION (happy, sad 265 

and neutral) as within-subjects factor and MUSCLE GROUP (FDI and DAO) as between-subjects 266 

factor. When a significant effect was detected in the Experiment 1, a correlation analysis was 267 

performed between the rating attributed to each FES and the amplitude of MEP for TS, SICI and 268 

ICF ratio, using Spearman’s correlation coefficient. 269 

 270 

Results 271 
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Experiment 1: Influence exerted by facial emotional expressions stimuli (FES) on the M1 272 

innervating facial and hand muscles. 273 

The RMT in the DAO face M1 was 52.3 ±14.5% maximum stimulator output while in the FDI M1 274 

was 41.6±8.3% of the maximum stimulator output. A preliminary analysis of the test MEP 275 

amplitude to a single TMS pulse alone showed no significant effect of EMOTION for either 276 

MUSCLE GROUP (DAO: F1,28 = 2.948, p=0.070, effect size (ES)=0.525; FDI: F1,28 = 0.053 277 

p=0.944, ES=0.057) (Figure 1). Given the lack of effect on the test MEP amplitude, we then 278 

proceeded to analyse effects of the visual stimuli on the SICI and ICF ratios. 279 

A mixed ANOVA on SICI ratio showed a non-significant effect of MUSCLE GROUP (F1,28= 280 

1.903, p= 0.179, ES=0.266) but a significant effect of EMOTION (F2,56= 6.860, p= 0.004, 281 

ES=0.859) and an interaction between the two factors (F2,56= 5.072, p= 0.015, ES=0.735). 282 

Specifically, the main effect of emotion was driven by viewing sad and happy expressions 283 

compared with neutral faces (neutral versus sad: T29= 3.1964; p=0.009; neutral versus happy 284 

T29=3.6514; p= 0.001) in both muscles. In particular, post-hoc analysis of the interaction between 285 

the two factors detected a significant reduction of SICI in the DAO muscle when viewing happy 286 

expressions compared with neutral expressions (p<0.001). In the FDI, a significant difference was 287 

observed between neutral and sad expressions (p= 0.010) (Figure 2). Moreover, SICI in DAO was 288 

reduced more than SICI in FDI viewing happy expressions (FDI versus DAO: T29= 2.390; p= 289 

0.026). 290 

The mixed ANOVA on ICF ratio showed a non-significant effect of MUSCLE GROUP (F1,28= 291 

0.001, p= 0.972, ES=0.050), EMOTION (F2,56= 1.556, p= 0.218, ES=0.318) and no interaction 292 

between the two factors (F2,56= 1.673, p= 0.198, ES=0.330) (Figure 3). 293 

Experiment 2. Arousal ratings of FES 294 

A two–way RM-ANOVA detected a significant effect of EMOTION (F2,56= 36.570; p<0.001; 295 

ES=1.00) but a non-significant effect of MUSCLE GROUP (F1,28= 0.001; p=0.980; ES=0.050) or 296 

interaction among the factors (F2,56= 0.116; p=0.839; ES=0.065). The post-Hoc analysis showed 297 

that the lowest rating was observed following neutral stimuli, although all the FES were 298 

significantly different from each other (neutral: 1.55±0.34; sad: 2.85±0.26; happy: 4.51±0.29; all 299 

p<0.05). Spearman analysis failed to detect any significant correlation between rating values and 300 

SICI ratio (all p>0.05).  301 
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 314 

Discussion 315 

The present study demonstrated, for the first time, a significant relationship between passive 316 

viewing of facial expressions and excitability of inhibitory and excitatory connections in face M1. 317 

Moreover, there was a clear difference between the effects on face and hand M1 with facial 318 

expressions of happiness affecting excitability of face M1 whereas sadness influenced hand M1.  319 

Our main finding of reduced SICI in the FDI following vision of sad faces, compared to neutral and 320 

happy faces, is in line with previous work (Hajcak et al. 2007; Schutter et al. 2008; Coombes et al. 321 

2009) and favors the hypothesis that activation of the fight/flight response, induced by unpleasant 322 

stimuli, is responsible for increased excitability (i.e. reduced inhibition) of the hand M1 (Hajcak et 323 

al. 2007; Schutter et al. 2008). In addition, neuroimaging studies demonstrated that during passive 324 

viewing of unpleasant stimuli such as sad, fear and disgusting stimuli, brain structures involved in 325 

detection and reaction to danger are constantly active (Morris et al. 1999) to prepare the organism 326 

for a rapid action crucial for survival (Anderson and Phelps 2001). According to this logic, the link 327 

between positive emotions and hand motor behavior would appear to be less relevant since there is 328 

no associated value in evolutionary terms (Baumgartner et al. 2007). 329 

In contrast with the study from Schutter et al. (2008), we did not observe any effect on the test 330 

MEP. Their study used the abductor pollicis brevis as the target muscle and the same hand was used 331 

to press a button to identify the facial expression (Schutter at al. 2008) while in our experiments, the 332 

subjects had to view the faces passively. The lack of any specific task may account for the absence 333 

of any effect on the FDI MEP, since it has been reported that the processing of faces depends on the 334 

task required of participants when they view them (Smith and Smith 2019). 335 

In contrast to the results in FDI, the excitability of face M1 projecting to the DAO muscle was 336 

unaffected by sad faces. It is possible that aversive stimuli elicit more bodily than facial responses, 337 

since changes in the program of action may be more important than changes in facial expressions.  338 

 339 

Anatomical considerations 340 

Face movements are directly linked to emotions and play a major role in non-verbal communication 341 

and in social behavior (Müri 2016). The anatomy of brain areas that send inputs to the facial 342 
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nucleus was explored in some detail by Morecraft et al. (2001) (see also reviews by Cattaneo and 365 

Pavesi 2014; Muri 2016). Five cortical areas project onto the facial nucleus: face M1, the ventral 366 

lateral premotor cortex (LPMCv), the supplementary motor area (SMA or M2), the rostral cingulate 367 

motor cortex (M3) and the caudal area of the anterior mid-cingulate (M4). Volitional inputs to 368 

lower facial muscles are thought to come mainly from M1 and LPMCv whereas emotional inputs 369 

come from M3. Within the volitional system, the LPMCv receives connections from cingulate and 370 

parietal territories mostly related to face and mouth movements as well as with the anterior and 371 

mid-dorsal part of the insula, whose electrical stimulation is known to evoke disgust-related 372 

behaviors (Caruana et al. 2011) and affiliative facial expressions (Jezzini et al. 2012). The LPMCv 373 

also receives input from the areas of prefrontal cortex involved in visual coding of biological 374 

motion and facial expressions (Petrides and Pandya 2002; Gerbella et al. 2010, 2011; Ferrari et al. 375 

2017), which are known to contain neurons responding to visual stimuli of faces and of facial 376 

communicative gestures (Ó Scalaidhe et al. 1997, 1999; Ferrari et al. 2017). Thus, the volitional 377 

system will also be affected by visual inputs. We speculate that the change in SICI within M1 378 

produced by viewing happy faces may utilize this pathway and that the influence on LPMCv is 379 

conveyed to face M1 by the known connections between these structures. 380 

The anatomy of visual influences on hand movement is quite different. The medial PMCv 381 

(MPMCv) projects to the hand area of M1 and receives visual inputs mainly from the anterior 382 

inferior-parietal area (Rozzi et al. 2006; Borra et al. 2008; Bonini et al. 2010, Ferrari et al. 2017). 383 

The influence of happy faces on the DAO, which is a muscle usually associated with sadness, was 384 

unexpected. Indeed, several studies demonstrated that happy faces produce EMG activity in the 385 

"smiling" muscles, such as zygomatici and orbicularis oculi, while negative expressions produce 386 

activity in the corrugator supercilia muscle (Müri 2016). However, these muscles are not easy to 387 

study with TMS protocols: perioral muscles have a wider cortical representation and a lower 388 

threshold to TMS than other muscles of the face (Cattaneo and Pavesi 2014). Moreover, all the 389 

TMS protocols used in the present work have been already standardized in the DAO (Pilurzi et al. 390 

2013), which is the reason why this muscle was chosen as a model, although it has seldom been 391 

investigated in the face expression studies. We speculate that the influence exerted by viewing 392 

happy faces on face M1, via the LPMCv, is not muscle-specific and may well involve facial 393 

muscles other than the DAO, which were not investigated in the present study.  394 
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Conclusions 404 

The present findings provide evidence that the M1 face area innervating the frowning muscles of 405 

the mouth is selectively modulated when viewing faces expressing happiness. In contrast, viewing 406 

faces expressing sadness selectively modulates hand M1. The different responses of face and hand 407 

muscles may relate to the different physiological role of these muscles: the former mainly involved 408 

in social communication, the latter in the protection of the body from aversive stimuli. This work 409 

may pave the way for future studies aimed at clarifying the physiopathology of facial muscle 410 

disorders, in which not only the voluntary but also the emotional motor systems are involved. 411 

 412 
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Figure Legends 584 

Figure 1: Influence exerted by facial emotional expressions stimuli (FES) on MEP amplitude 585 

for both FDI and DAO muscle. 586 

The graph shows amplitude of unconditioned MEP, for both FDI and DAO muscles, following 587 

visual stimuli of happy, sad and neutral face expressions. No clear effect of the different visual 588 

stimuli was detected for each muscle group. The graph represents means + SEM. 589 

 590 

Figure 2: Influence exerted by facial emotional expressions stimuli (FES) on the SICI protocol 591 

for both FDI and DAO muscle. The graph shows MEP amplitude expressed as a percentage of 592 

unconditioned  MEP, for both FDI and DAO muscle during SICI protocol following happy, sad and 593 

neutral visual stimuli. SICI protocol showed a significant reduction following happy in DAO 594 

muscle while in FDI following sad conditions. The graph represents means + SEM. *p < 0.05. 595 

 596 

Figure 3: Influence exerted by facial emotional expressions stimuli (FES) on the ICF protocol 597 

for both FDI and DAO muscle. The graph shows MEP amplitude expressed as a percentage of 598 

unconditioned MEP, for both FDI and DAO muscle during ICF protocol following happy, sad and 599 

neutral visual stimuli.  No clear modulation was detected for both muscle. The graph represents 600 

means + SEM. *p < 0.05. 601 












