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In theory the most powerful technique for functional localization in cognitive neuroscience, lesion-deficit mapping is in practice dis-

torted by unmodelled network disconnections and strong ‘parasitic’ dependencies between collaterally damaged ischaemic areas.

High-dimensional multivariate modelling can overcome these defects, but only at the cost of commonly impracticable data

scales. Here we develop lesion-deficit mapping with metabolic lesions—discrete areas of hypometabolism typically seen on interictal
18F-fluorodeoxyglucose PET imaging in patients with focal epilepsy—that inherently capture disconnection effects, and whose

structural dependence patterns are sufficiently benign to allow the derivation of robust functional anatomical maps with modest

data. In this cross-sectional study of 159 patients with widely distributed focal cortical impairments, we derive lesion-deficit maps

of a broad range of psychological subdomains underlying affect and cognition. We demonstrate the potential clinical utility of the

approach in guiding therapeutic resection for focal epilepsy or other neurosurgical indications by applying high-dimensional model-

ling to predict out-of-sample verbal IQ and depression from cortical metabolism alone.
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Introduction
Our knowledge of the macroscopic organization of brain

function is largely built on functional imaging, now conveni-

ently summarized in meta-analytic databases (Laird et al.,

2005; Robinson et al., 2009; Yarkoni et al., 2011;

Gorgolewski et al., 2015). For all their number and consist-

ency, such correlative studies cannot distinguish brain

regions necessary for a given behaviour from those whose

activity is merely coincident with it (Rorden and Karnath,

2004). Furthermore, where a global multifaceted ability—

such as intelligence—is indexed by distributed phasic, task-

related neural activity, both positive and negative correla-

tions with performance are equally interpretable: the former

as ‘enhanced recruitment’, the latter as ‘enhanced efficiency’
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(Nachev et al., 2009). These inferential vulnerabilities not

only undermine claims about brain function, they also hin-

der attempts to derive clinically predictive models.

The strongest evidence for the necessity of a brain region

for a given behaviour is the emergence of a specific deficit

following its inactivation. In humans, such ‘lesion-deficit’

mapping tends to rely on the most common form of focal

brain injury: stroke-induced ischaemic damage (Bates et al.,

2003; Karnath et al., 2004; Glascher et al., 2010; Mah

et al., 2014; Xu et al., 2017). Though ischaemic lesions are

abundant, the complex spatial covariance structure imposed

by their vascular origins has recently been shown to distort

lesion-deficit maps derived with conventional inferential

techniques.

Within the mass-univariate frameworks in widespread use,

critical brain regions are, at best, statistically indistinguish-

able from areas of collateral damage within the same vascu-

lar territory, and at worst, falsely attributed to non-critical

substrate (Inoue et al., 2014; Mah et al., 2014; Xu et al.,
2017).

Even when a spatial locus is accurately identified, the crit-

ical neural substrate may be remote from it, inactivated

through white matter disconnection rather than direct injury.

The authority of current stroke-based lesion-deficit maps has

consequently been eroded, ceding power to high-dimensional

multivariate models capable of neutralizing the distorting

effects of the lesion architecture, and of identifying multi-

focal, network-based patterns of neural dependence

(Yourganov et al., 2015, 2016; Pustina et al., 2018). The

success of such models, however, is highly sensitive to the

scale of available data, which often sets a hard upper limit

on real-world applicability.

The problem high-dimensional modelling mitigates is best

avoided altogether. Here, we introduce a novel alternative

approach to lesion-deficit mapping that amplifies its

inferential power while reducing the risk of spatial covari-

ance-induced distortion.

Instead of structural lesions, we use metabolic lesions—

focal areas of chronic cerebral hypometabolism, identified

with interictal 18F-fluorodeoxyglucose PET (18F-FDG PET),

that often occur in patients with non-lesional focal epilepsy

and are reasonably presumed to reflect underlying cerebral

focal hypofunction (Rosenow and Lüders, 2001).

Unlike structural lesions, metabolic lesions are defined

downstream of the pathological process that produces them,

integrating specifically at the cortical level both direct and

connective causes of neural dysfunction. It is reasonable to

expect the spatial dependencies here to follow the structure

of the underlying functional anatomy, for each focal meta-

bolic defect is rendered visible through dysfunction of the

functionally-connected neural network it impairs as a whole.

As cerebral glucose metabolism is a continuous variable,

lesions can be meaningfully modelled as graded deviations

from expected activity, a refinement of the crude binary ap-

proach structural lesions compel. Not only hypofunction but

also abnormal or compensatory hyperfunction may be

revealed. In common with all clinical populations, the

distribution of dysfunction will not be homogeneous, and

interference from non-anatomically distributed pathological

factors such as level of education cannot be fully eliminated,

but appropriate modelling can mitigate such nuisance

effects.

Here we develop this approach within a population with

focal epilepsy under the care of our unit, and apply it to the

mapping of multiple subdomains of affect and cognition.

A cohort of 159 individuals was identified in whom no

structural brain lesions were detectable on high-resolution

MRI. Neuropsychological evaluation and 18F-FDG PET are

routinely performed in these circumstances in consideration

of possible neurosurgical treatment of the epilepsy.

We sought to quantify the relation between focal cortical

metabolism and neuropsychological scores within two dis-

tinct sets of voxel-wise ‘metabolic lesion-deficit’ models, gen-

erating inferential maps of the neural dependents of distinct

cognitive and affective subdomains, and high-dimensional

predictive maps of individual cognitive performance. Our

objective is to derive a robust new anatomical map of

human cognition, validated—and rendered potentially clinic-

ally useful—by its individually predictive power.

Materials and methods

Cohort

We retrospectively reviewed imaging and clinical data on 189
patients undergoing clinical evaluation for epilepsy surgery at
the National Hospital for Neurology and Neurosurgery, Queen
Square, between June 2006 and February 2011. The decision to
operate is informed by a comprehensive standardized set of
imaging, clinical and neuropsychological assessments, allowing
us to survey a relatively unbiased sample. We identified a cohort
of patients with no evidence of structural pathology on high-
resolution 3 T MRI, in whom interictal 18F-FDG PET imaging
had been performed, and contemporaneous neuropsychological
data were available. Thirty individuals were excluded because
the 18F-FDG PET was either technically inaccessible or of poor
quality. The remaining 159 cases underwent subsequent
analysis.

The median age at the time of cognitive testing was 32.0
[standard deviation (SD) = 9.5] years. Forty-nine per cent (78/
159) of patients were male, 111 patients (70%) were right-
handed, 16 (10%) were left-handed, three (2%) were ambidex-
trous and the handedness of the remaining 29 was missing from
the psychological record. This work has received ethical approv-
al from the HRA and the local research ethics committee for
consentless analysis under irrevocable anonymization. This
study is reported in accordance with the STROBE checklist (von
Elm et al., 2007).

Neuropsychology

The neuropsychological evaluations were undertaken on clinical
grounds as part of presurgical investigations. A common set of
neuropsychological instruments were flexibly deployed as dic-
tated by the identified cognitive deficits. Raw test scores were
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tabulated from the handwritten instrument forms. Data were
analysed with custom scripts in MATLAB 2015b (The
MathWorks Inc, Natick, MA, USA). Of the 47 different instru-
ments used in these subjects, we selected 16 commonly used
measures that also provide a reasonably wide psychological
coverage. These tested four broad psychological areas: compo-
nents of the Wechsler Adult Intelligence Scale III (WAIS)
(Wechlser, 2008), memory (list learning, design learning,
Warrington Recognition Memory test for Words, Warrington
Recognition Memory test for Faces) (Warrington, 1984), flu-
ency (phonemic and semantic), and affect (using the Hospital
Anxiety and Depression Scale (HADS) (Zigmond and Snaith,
1983) (Supplementary Table 1). A mean of 76.3% (SD 14.1) of
patients underwent each psychological test. Therefore, we devel-
oped a robust strategy for dealing with missing data so as to
minimize bias. A complete-case approach to missing data—
where only subjects with full datasets are analysed—is both inef-
ficient and prone to producing biased results (van der Heijden
et al., 2006). We singly imputed missing psychological data
using probabilistic principal component analysis (PPCA) (Ilin
and Raiko, 2010). PPCA is a standard multivariate technique
that extends traditional PCA by adding a Gaussian noise term
(Tipping and Bishop, 1999). This allows the principal compo-
nents to be calculated in the presence of missing data by itera-
tive maximization of the log-likelihood of the PPCA model.
Once the PPCA model is estimated, missing data can be back-
projected from the components. We chose PPCA, rather than
other missing data approaches, because it is more accurate in
highly correlated datasets (such as psychological scores) and
more robust to a non-random distribution of missing data
(Dray and Josse, 2014).

Imaging

Acquisition
18F-FDG PET/CT data were acquired on GE Discovery ST and
GE Discovery VCT PET/CT scanners. Thirty minutes after the
injection of 250 MBq 18F-FDG, a CT for attenuation correction
was acquired followed by 15 min of PET acquisition. The
resulting PET data were reconstructed using ordered-subset ex-
pectation maximization (OSEM) iterative reconstruction (three
iterations, 20 subsets) with CT attenuation correction and sub-
sequently filtered with a 4 mm Hanning filter to form trans-
axial PET images with a 1.95 � 1.95 � 3.27 mm voxel size.

Imaging data processing

All imaging data were analysed using SPM12 (http://www.fil.
ion.ucl.ac.uk/spm/). The source 18F-FDG PET acquisitions were
converted to NifTI (Neuroimaging Informatics Technology
Initiative) format and non-linearly registered to a standardized
18F-FDG PET template that has been validated in the presence
of brain atrophy in a dementia cohort (Della Rosa et al., 2014;
Perani et al., 2014). Registration was performed using SPM12’s
‘old normalise’ algorithm, which performs a 12-parameter affine
registration followed by a separate estimation of non-linear
deformations defined by a linear combination of 3D discrete co-
sine transform basis functions (Ashburner and Friston, 1999,
2000). This algorithm was chosen over the ‘new normalise’ al-
gorithm, which relies on prior grey and white matter maps opti-
mal for images where grey/white contrast is maximal (for
example T1 MRI) rather than 18F-FDG PET. Images resliced to

3 mm isotropic voxels were written in ICBM/MNI space, their
intensities adjusted for the degree of non-linear spatial warping
(i.e. modulated for volume changes).

Prior to statistical analysis, images were masked to include
only consistently high-intensity voxels falling within grey mat-
ter. We used a binary optimal-threshold mask designed to
maximize the correlation between the included voxels and the
average 18F-FDG PET image: this has been shown to reduce
false negatives in the context of regional brain atrophy
(Ridgway et al., 2009).

To account for variations in 18F-FDG administered activity,
timing of injection, and pharmacodynamics, we estimated the
background 18F-FDG PET signal per scan, for later use in opti-
mizing the inferential models. For maximum robustness, the
background signal was estimated with the aid of measures from
high-intensity areas, white matter, and ventricular compartments.
High-intensity activity was indexed as the sum of all raw 18F-
FDG PET counts within the optimal-threshold mask; white mat-
ter and ventricular activity as the sum of the voxels falling within
each respective tissue compartment (derived from the
Neuromorphometrics atlas included with SPM). These three sig-
nal estimates—global, ventricular and white matter—were used
in subsequent statistical modelling to remove background effects.
All images were smoothed with a 6-mm full-width at half-max-
imum (FWHM) Gaussian filter immediately prior to statistical
analysis.

Statistical analysis

Because the spatial covariance structure of ischaemic lesions
has been shown to distort mass-univariate lesion-deficit in-
ference, we first examined whether the spatial covariance
structure of the 18F-FDG PET signal-derived metabolic le-
sion maps in this cohort were similarly distorted. Following
this, we performed mass-univariate metabolic lesion-deficit
inference for a range of neuropsychological deficits, and
metabolic lesion-deficit clinical prediction: the former with-
in the SPM statistical framework, the latter with Bayesian
multiple regression with Markov Chain Monte Carlo
estimation.

Spatial covariance modelling

Generation of metabolic and ischaemic lesion maps

To isolate the functionally relevant signal, confounding effects
were first removed from the raw 18FDG PET count data by
entering the images into a voxel-wise multiple regression model
in SPM with the previous confounding variables alone. The
residuals were written as images composed of 3 mm isotropic
voxels and, for computational reasons, subsequently smoothed
by a 10 mm FWHM Gaussian filter and then downsampled to
10 mm isotropic. The resultant images were masked with the
optimal-threshold mask, leaving 1906 grey matter voxels per
image. Unlike stroke where voxels are assigned to a binary cat-
egory (lesioned versus unaffected), metabolic lesions are
described on a continuous scale by the degree of metabolism
(lesions corresponding to hypometabolism). To allow compari-
son of the spatial covariance of metabolic lesions with stroke
lesions, we generated binary metabolic lesion maps by dichoto-
mizing voxel intensities at a threshold of 2 SD below the median
of each voxel (Supplementary Fig. 1) similarly to thresholding
procedures in previous clinical studies (Foster et al., 2007).
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Ischaemic lesion maps were used as a comparator: 1333 auto-
matically segmented, binary stroke lesion maps reported in Xu
et al. (2017). These images, written as 1 mm isotropic voxels,
were identically smoothed with a 10 mm FWHM Gaussian fil-
ter, and then downsampled to 10 mm isotropic voxel size. The
optimal-threshold mask was thereafter applied so that the result-
ing voxels were spatially identical with those in the 18FDG PET
signal-derived metabolic lesion maps

Local dependency

Given a lesion involving a specific voxel, the conditional probabil-
ity of each of six neighbouring voxels also being affected can be
empirically calculated and represented as six vectors where magni-
tude corresponds to the conditional probability, and direction cor-
responds to the relative location of the neighbouring voxel. The
mean of these vectors—the normalized vector sum, also known as
the mean resultant length—is a single conditional dependency vec-
tor that points towards the expected direction of greatest local de-
pendence (and therefore of potential inferential distortion). The
magnitude of this vector is a probability and is, therefore,
bounded between 0 and 1. Isotropic local dependencies will result
in small randomly distributed mean vectors, whilst anisotropic
dependencies will result in larger systematically directed vectors.
Voxel-wise conditional dependency vectors were estimated for
both metabolic and ischaemic lesions and were visualized to iden-
tify local dependency patterns across the brain (Fig. 1), before
their magnitudes were subjected to a Kolmogorov–Smirnov test as
a proxy for testing the degree of isotropy of different lesion types
(Supplementary Fig. 2). Data visualization was performed in
Paraview (https://www.paraview.org/).

Global dependency

In addition to anisotropic dependencies with directly neighbour-
ing voxels, longer-range voxel-voxel associations may also be
anisotropic, again potentially distorting lesion-deficit inference.
Given the high number of voxel-voxel comparisons involved,
we characterized these associations in a simpler manner by bin-
ning each possible pairing of grey matter voxels by their relative
Euclidian displacement in three dimensions and then calculating
the median voxel-voxel correlation within each spatial bin. The
resulting 3D image represents the association (correlation coeffi-
cient, rho) of any two voxels being affected by the same lesion
as a function of their displacement in three dimensions. We
postulated that, for metabolic lesions, the sample voxel-voxel
correlation would vary uniformly with extended distance over
the three spatial dimensions, whereas ischaemic lesions would
show a heterogeneous variation across the three planes.
Additionally, for this analysis, we separately used voxels from
the left and right hemispheres, to avoid missing potential differ-
ential hemispheric biases which are often seen in focal patholo-
gies such as ischaemic stroke (Fig. 2). Data visualization was
performed in Paraview (https://www.paraview.org/).

Mass-univariate functional lesion-deficit analysis

Standard voxel-based morphometry methods were used for the
mass-univariate analysis using the original 18F-FDG PET images
(not the arbitrarily thresholded metabolic lesion maps generated
for the investigation of spatial covariance). At each voxel, the
18F-FDG PET count, a dependent variable, was entered into a
multiple regression with a single variable of interest (a psycho-
logical score) and confounding variables as independent variables.
Confounding variables were standardized across all models, and

included age, handedness, and the three estimates of scan-specific
background activity (global, white-matter, and ventricular). After
model estimation, two one-tailed t-tests were performed on the re-
gression coefficients (slopes), with the resulting SPMs thresholded
at P 50.025 FWE (cluster-based family-wise correction, P
50.0001 uncorrected cluster forming threshold). The usual
threshold alpha (0.05) was halved because two unidirectional
tests were performed for each behavioural variable of interest.
For simplicity, in the main text we therefore describe this as
P50.05 FWE two-tailed. The analysis was repeated for each be-
havioural variable, resulting in a pair of SPMs for each behav-
ioural variable of interest. Anatomical labels were largely based
on the peak voxel within the cluster as labelled by the
Neuromorphometrics atlas available within SPM12 (http://www.
neuromorphometrics.com/), but were manually checked and
rationalized by two experienced neurologists. Data visualization
was performed in Surf Ice (https://www.nitrc.org/projects/surfice/).

Multivariate functional lesion-deficit analysis

We used multivariate analyses to quantify the prediction of psy-
chological scores from 18F-FDG PET imaging and to identify
the correspondence between mass-univariate and multivariate
maps of the same data. A cross-validated Bayesian penalized re-
gression framework was used (BayesReg) (Makalic and
Schmidt, 2016). For two example behavioural variables (WAIS
verbal IQ and HADS depression score), we individually speci-
fied a regression model with the behavioural variable of interest
as a dependent variable and the 18F-FDG PET data voxels as
1906 independent variables. The large number of independent
variables relative to the number of cases impairs the perform-
ance of standard regression models, inducing instability and
poor generalization. We therefore used penalized regression,
which suppresses large model parameter estimates. In the
Bayesian setting, this can be done by applying shrinkage priors:
a hyperparameter on the regression coefficients whose prior dis-
tribution has a substantial mass around zero. We used the de-
fault Lasso prior in the BayesReg package, which uses an
adaptive Laplace prior distribution over the betas. As high-di-
mensional models are analytically intractable, marginal likeli-
hoods and posterior parameter estimates were estimated using
Markov Chain Monte Carlo (MCMC) sampling using a Gibbs
procedure. Posterior parameter values were derived by integrat-
ing 5000 MCMC samples [after 1000 samples burn-in and
every fifth sample was included (thinning)]. Chains were
assessed for adequate convergence. The generalizability of the
model predictions was assessed using out-of-sample cross-valid-
ation. This was performed by training the model on a randomly
selected 85% of the data and assessing predictive performance
on the remaining 15%, i.e. a 15% hold-out procedure, which
was repeated 50 times each using different random splits of the
data. Model accuracy performance is presented as the average
out-of-sample root mean squared error over the 50 runs.

Data availability

Open-source software is available from the resources as cited,
or from the authors on request. Summary SPM images are also
available but not raw images owing to restrictions arising from
patient confidentiality.
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Figure 1 Covariance structure of metabolic lesions: local dependency. The short-range lesion-dependency structure is shown for

1333 binary ischaemic (top) and 159 binary metabolic (bottom) lesion maps. Given any lesioned voxel location, the conditional probability of each

of six neighbouring voxels also being affected was summed into a single vector pointing towards the direction of greatest local dependence (and

therefore potential inferential distortion). The resultant voxel-wise conditional dependency vectors are 3-dimensionally rendered as arrow glyphs

against orthogonal slices through a canonical white matter surface in MNI space. Larger magnitude is represented with warmer colours and

larger glyphs. Ischaemic lesions show a striking pattern: lesioned voxels are strongly and systematically influenced by damage to other voxels

within the proximal arterial distribution. In contrast, voxels within metabolic lesions show minimal and relatively unstructured local dependencies

from which more robust lesion-deficit inferences can be drawn.
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Results

Spatial distribution of metabolic
lesions

Signal-normalized and transformed into standard stereotac-

tic space, the PET images disclosed anatomically circum-

scribed regions of reduced metabolism naturally intelligible

as metabolic lesions. Other than an expected slight predilec-

tion for temporal regions, where epileptogenicity is more

common, the observed distribution was reasonably uniform

in comparison with previously published stroke data

(Supplementary Fig. 1). Coverage extended across the entire

brain, enabling the evaluation of lesion-deficit relationships

at all loci.

Covariance structure of metabolic
lesions

Damage to a given voxel depends on damage to its neigh-

bours: lesions naturally occur in patches. Whereas the
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Figure 2 Covariance structure of metabolic lesions: global dependency. The long-range correlation structure is shown for 1333 binary

ischaemic and 159 binary metabolic lesion maps. To avoid missing potential differential hemispheric biases, the left and right hemispheric voxels

are presented separately. The correlation between every pair of grey matter voxels was binned according to degree of displacement in the x, y

and z planes. Isocontours of the median correlation coefficient (rho) are presented as a function of displacement. Metabolic lesions are spatially

isotropic, whilst ischaemic lesions show asymmetric elongated spatial correlations in the y and z planes especially. It is the anisotropy of the latter

that distorts mass-univariate lesions-deficit analysis.
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local dependencies of focal blood oxygenation level-de-

pendant (BOLD) activation approximate Gaussian fields,

structural—especially vascular—lesions are non-randomly

shaped by the pathological process. Unless explicitly mod-

elled within a high-dimensional multivariate framework,

such non-random dependencies will tend to distort the

inferred lesion-deficit relation, in a manner that will de-

pend on the underlying neural substrate of interest and so

cannot be trivially corrected (Mah et al., 2014).

Lesioned voxel dependencies may be empirically character-

ized at two spatial scales: local and global. At the local scale,

we may calculate the directional dependence between a given

voxel and its six immediate neighbours, across all lesions,

yielding a summed vector that points in the direction of

greatest dependence and therefore of greatest potential dis-

tortion. Where the dependence exhibits no directional prefer-

ence, the magnitude of this vector will tend to zero, and its

direction will be random across voxels; where a directional

preference is present, the magnitude will be greater than

zero as a function of the extent of dependence and its direc-

tionality, and the direction will tend to vary non-randomly

across voxels. A comparison of our metabolic lesions with

stroke lesions shows substantially less local isotropy of de-

pendence, and therefore less potential distortion (Fig. 1 and

Supplementary Fig. 2).

At the global scale, we may calculate the dependence be-

tween all pairings of voxels as a function of their proximity,

separately for each spatial plane. As in the local case, if the

dependence exhibits no spatial bias, its relationship with

proximity should be identical across all planes; if not, then

the relationship will be exaggerated in the favoured plane. A

comparison between the two kinds of lesions again shows

substantially lesser, here global, isotropy (Fig. 2).

The maximal permissible anisotropy cannot be formally

determined because it depends on the unknown structure of

the underlying neural organization. But given that the an-

isotropy of stroke lesions—the most common aetiology—

has been shown to distort even simple hypothetical lesion-

deficit relationships, substantially reduced anisotropy ought

to enhance the fidelity of the resultant maps.

Metabolic lesion-deficit anatomical
mapping

A comparatively benign lesion covariance structure having

been established, we proceeded to derive lesion-deficit maps

based on voxel-wise mass-univariate inference. The sample

distributions of a broad range of neuropsychological scores

yielded sufficient variance to investigate their neural sub-

strates (Supplementary Table 1). Lower cognitive scores gen-

erally correspond to greater cognitive impairment except for

the HADS scores, where higher scores reflect greater anxiety

and depression.

The inferred maps exhibited two cardinal characteristics.

First, compared with maps derived from structural lesions

(Karnath et al., 2004; Gläscher et al., 2009, 2010) the

distribution of critical regions was larger and more widely

disseminated. Second, not only positive but also extensive

negative correlations of metabolic activity with neuropsycho-

logical performance were observed.

Wechsler Adult Intelligence Scale

A core network of strongly lateralized fronto-parietal areas

emerged (Figs 3, 4 and Table 1). Critical areas for verbal IQ

included the left supramarginal/angular gyrus complex, to-

gether with the right presupplementary motor area and mid-

dle frontal gyrus. The WAIS-Similarities subtest showed

similar neural dependents, but covering a wider expanse of

right middle frontal gyrus, and including right angular gyrus

rather than the left supramarginal/angular gyrus complex.

Attentional aspects of working memory, as indexed by the

numerical WAIS-Arithmetic and WAIS-Digit span tests,

were limited to the left supramarginal/angular gyrus, more

posteriorly than the verbal IQ network.

The activity of a remarkably consistent set of brain regions

was negatively related to psychological scores: bilateral med-

ial orbitofrontal cortex for verbal IQ, performance IQ,

WAIS-Similarities, WAIS-Vocabulary, WAIS-Matrix reason-

ing, extending to include left anterior insula and anterior cin-

gulate for performance IQ and matrix reasoning.

Memory

A set of lateralized, fronto-parieto-temporal areas was identi-

fied as critical to memory as indexed by Warrington

Recognition Memory test (Fig. 5 and Table 1). Delayed de-

sign recall identified a large frontal area centred on the right

middle-frontal gyrus and the right angular gyrus. A negative

relationship was found with the left mesial temporal region,

centred on the left fusiform gyrus. No significant regional

changes in activity were detected for immediate list or design

recall, and delayed list recall.

Areas critical to verbal memory were localized to the tem-

poro-parietal junction bilaterally, centred on the superior

and middle temporal gyri, and also the left inferior temporal

and fusiform gyri. Recognition memory for faces was strong-

ly lateralized to the right temporo-parietal area, involving the

right supra-marginal, and middle and inferior temporal gyri.

Fluency

Phonemic fluency was dependent on activity in bilateral

supramarginal gyrus and right angular gyrus (Fig. 6 and

Table 1). The only area positively associated with both

phonemic and semantic fluency was the left middle occipital

gyrus. Both types of fluency, however, were negatively asso-

ciated with activity in the medial orbitofrontal cortex.

Affect

Depression was positively associated with metabolic activity

in the left anterior insula and anterior cingulate, and nega-

tively associated with activity in the left middle temporal

gyrus (Fig. 6 and Table 1). At least 28 (17.6%) patients

were diagnosed as having active, ongoing affective distur-

bances where treatments including medication or therapy
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were already being taken or were suggested following psy-

chiatric assessment (Supplementary Table 2). No significant

regional changes in activity were detected for anxiety.

Metabolic lesion-deficit clinical
prediction

The cognitive function of any individual patient is plaus-

ibly determined by the sum and interactions of a

multiplicity of neural substrates. To predict it requires a

high-dimensional multivariate approach, modelling the

metabolic activity of each voxel in the brain as an inde-

pendent predictor (Inoue et al., 2014; Mah et al., 2014).

The complex multivariate distribution of stroke damage

renders analogous models difficult to estimate with struc-

tural lesion data (Mah et al., 2014; Xu et al., 2017). We

hypothesized that multivariate functional-lesion modelling

would be relatively efficient here, requiring significantly

Verbal IQ
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Similarities

Supramarginal
gyrus

Angular
gyrus

Pre-supplementary 
motor area

Middle frontal
gyrus

Medial 
orbitofrontal

cortex

vACC

dACC

3.8

3.1

-3.1

-3.8

t statistic

Digit Span

Arithmetic

Supramarginal
gyrus

Angular
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Figure 3 Metabolic lesion-deficit mapping of the components of the Wechsler Adult Intelligence Scale (WAIS): verbal IQ.

Voxel-wise statistical parametric lesion-deficit maps of WAIS verbal IQ and subcomponents are three dimensionally rendered onto a canonical

white matter surface in MNI space. Only voxels surviving the P5 0.05 two-tailed FWE correction for multiple comparisons are shown. Voxels

are coloured according to their corresponding t-statistic, with positive associations (where hypometabolism corresponds to an impairment of

cognitive scores) displayed on a red-yellow scale and negative associations displayed on a blue-green scale. Three different rotations of each map

are shown per row of images next to the test labels. dACC = dorsal anterior cingulate cortex; vACC = ventral anterior cingulate cortex.
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fewer images. Focusing on two areas owing to the high

computational demands of the approach, we demonstrated

the feasibility of predicting WAIS verbal IQ and HADS de-

pression score with high-dimensional models. High-dimen-

sional Bayesian penalized multiple regression of metabolic

data predicted individualized out-of-sample verbal IQ and

HADS depression score remarkably well, exhibiting out-

of-sample root mean squared errors of ±13.8 (SD 1.7) and

±3.2 (SD 0.47), respectively.

The predictive fidelity of the multivariate models lends

credibility to their anatomical feature weightings, which

closely correspond to those identified in the lesion-deficit

anatomical mapping (Fig. 7). A close correspondence is con-

gruent with the benign covariance structure of metabolic

lesions observed in the preceding analysis.

Discussion
Resting metabolic lesion-deficit mapping opens a new perspec-

tive on the macroscopic organization of the brain that com-

bines the inferential strength of structural lesion mapping with

the spatial resolution and robustness of functional imaging. In

common with the former, it identifies regions critical to cogni-

tive function. In common with the latter, it permits simplifying

assumptions about the spatial structure of neural patterns to

be introduced with less danger of anatomical distortion.

The resultant maps can sustain strong claims to functional

necessity naturally confined to grey matter, greatly simplify-

ing the interpretation of disruption that with structural

lesions confusingly spans both processing and connective

neural substrate.

Applied to the anatomical basis of the cognitive domains,

the approach casts further light on an organization

increasingly recognized to be more distributed than discrete

(Jung and Haier, 2007; Duncan et al., 2000). Recent large-

scale structural lesion-deficit analyses have yielded remark-

ably extensive, spatially continuous patterns, with right insu-

lar and temporoparietal cortex critical to perceptual

organization, and large areas of left insular and parietal lobe

critical to verbal comprehension (Gläscher et al., 2009,

2010). Wernicke’s area in verbal comprehension, and the

left angular gyrus in the numerical components of the

WAIS, were notably absent in these studies.

One source of the historical diversity of inferred ana-

tomical patterns is the distorting effect of the vascular

tree in the dominant lesion aetiology—stroke (Inoue

et al., 2014; Mah et al., 2014). The multi-focal network

identified in our study may reflect greater robustness to

such distorting effects. We found the left inferior parietal

lobule (IPL) to be implicated in most verbally tested com-

ponents of the WAIS, and the only area identified when

testing vocabulary only. Components requiring greater

manipulation or evaluation of words—verbal IQ and sim-

ilarities subtests—showed dependence on areas of dorso-

medial and dorsolateral frontal cortices. These findings

are in accord with the wider neuroscientific literature,

which implicates the IPL in auditory and written verbal

understanding and semantic interpretation (Stoeckel

et al., 2009; Seghier, 2013), the presupplementary motor

area in task conditional complexity (Nachev et al., 2008),

and the dorsolateral frontal cortex in planning and work-

ing memory (Rowe et al., 2000).

The neural dependents of WAIS subsets included bilateral

parietal areas, but were strikingly lateralized frontally. That

more posterior regions of the IPL, centred on the angular

gyrus, were critical to numerically based tests of the atten-

tional aspects of working memory endorsing the long-held

Performance 
IQ

Matrix 
reasoning

Medial 
orbitofrontal 

cortex

vACCInsula

3.8

3.1

-3.1

-3.8

t statistic

Figure 4 Metabolic lesion-deficit mapping of the subcomponents of the Wechsler Adult Intelligence Scale (WAIS): perform-

ance IQ. Voxel-wise statistical parametric lesion-deficit maps of the WAIS performance IQ and matrix reasoning subcomponent are shown.

Image characteristics and abbreviations are as in Fig. 3.
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relation between this area and numeracy (Seghier, 2013).

Fluency exhibited a broadly similar pattern, involving bilat-

eral IPL but also more posterior occipito-temporal regions

(Fig. 6).

Within the broad domain of memory, dependence on the

right angular gyrus in design learning coheres with lesion

studies of spatial attention and neglect (Singh-Curry and

Husain, 2009); this task further invoked right prefrontal cor-

tex as one might expect from a load on working memory

(Rowe et al., 2000). Bilateral temporo-parieto-occipital areas

were implicated in visual recognition of words, and a similar

area on the right in face recognition. The left fusiform gyrus

was key for word recognition, but was concurrently hyper-

metabolic when testing in patients with impaired design

learning (Fig. 5).

Whereas structural lesions merely identify areas of spatial-

ly discrete dysfunction, whole brain 18F-FDG PET allows us

to identify areas of hyperfunction, proportional to the be-

havioural deficit. Such activity may be compensatory to a

deficit elsewhere, focal preservation in the face of globally

reduced function, a pathological correlated reorganization of

resting state activity, or subclinical epileptic activity at the

time of the scan. As patients were not performing a task at

the time of imaging, this phenomenon is not explained by

failure of task-related deactivation of the default mode net-

work (Raichle et al., 2001). The medial orbitofrontal cortex,

anterior cingulate and left insula were consistently hyperme-

tabolic in subjects with impairment of verbal IQ, perform-

ance IQ, vocabulary and matrix reasoning, and phonemic

and semantic fluency more or less indifferently to the task.

This may be explained by focal preservation of orbitofrontal

metabolic signal in patients with hypometabolism elsewhere,

which appears as increased signal due to global signal nor-

malization. But given that depression scores were also

Table 1 Statistical peak activations from mass univariate analyses

Test group Test component Peak voxel, x y z Region t-statistic P

Memory Design Learning 45 18 33 Right middle frontal gyrus 4.53 50.001

48 –51 39 Right angular gyrus 4.32 0.002

–33 –30 –27 Left fusiform gyrus –4.65 0.001

Warrington Recognition

Memory test for Words

–39 –42 –12 Left fusiform gyrus / left superior temporal gyrus 4.54 0.004

–51 –63 –30 Left inferior temporal gyrus 4.50 0.009

69 –33 18 Right superior temporal gyrus/ middle temporal gyrus 4.24 0.004

Warrington Recognition

Memory test for Faces

60 –27 24 Right supramarginal gyrus, right middle temporal gyrus 4.73 0.001

WAIS Vocabulary –48 –48 36 Left supramarginal gyrus 4.32 0.008

18 27 –9 medial orbitofrontal cortex –5.45 50.001

Similarities 15 15 36 Right pre-supplementary motor area / dorsal anterior
cingulate cortex

4.89 50.001

51 –60 27 Right angular gyrus 4.26 0.019

18 27 –9 Medial orbitofrontal cortex –4.36 0.001

Arithmetic –48 –45 33 Left supramarginal gyrus 4.29 0.007

Digit Span –48 –45 39 Left supramarginal gyrus / left angular gyrus 4.87 0.002

6 21 –12 Medial orbitofrontal cortex, ventral anterior cingulate cortex –5.12 50.001

Matrix Reasoning –39 –3 0 Medial orbitofrontal cortex, left anterior insula –4.93 50.001

–9 27 –9 Ventral anterior cingulate cortex –4.47 50.001

Verbal IQ –48 –48 36 Left supramarginal gyrus 5.08 50.001

15 15 39 Right pre-supplementary motor area / dorsal anterior
cingulate cortex

4.78 0.008

15 27 –9 Medial orbitofrontal cortex / ventral anterior cingulate cortex –5.01 50.001

Performance IQ –9 24 –9 Medial orbitofrontal cortex, left anterior insula –4.16 50.001

–39 –3 0 Ventral anterior cingulate cortex –4.03 0.005

HADS Depressiona –30 12 –12 Left anterior insula, ventral anterior cingulate cortex –5.13 0.001

–45 –63 9 Left middle temporal gyrus 4.97 0.023

Fluency Semantic –45 –84 24 Left middle occipital gyrus 4.18 0.003

3 18 –12 Medial orbitofrontal cortex –5.88 50.001

Phonemic –48 –45 39 Left supramarginal gyrus / angular gyrus 4.59 0.001

54 –36 36 Right supramarginal gyrus 4.36 0.006

–45 –81 27 Left middle occipital gyrus 4.31 0.000

3 15 –15 Medial orbitofrontal cortex –5.53 50.001

Summary results are presented for each cognitive test. The peak voxel in each cluster that survives P5 0.05 two-tailed FWE correction is shown. The direction of the association

is given by the sign of the t-statistic. Cognitive impairment is indexed with decreasing cognitive score for all tests. A positive t-statistic implies that hypometabolism corresponds to

an impairment of cognition.
aDepression is indexed by the HADS in which higher scores are usually pathological, but the score has been reversed to align the interpretation with the other cognitive scores: a

positive t-statistic implies that hypometabolism corresponds to an impairment of affect.
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positively correlated with broadly the same areas, patho-

logical reorganization seems the likeliest explanation.

The predominance of elevated metabolism in depression in

our study (Fig. 6) may explain the inconsistency of previous-

ly reported structural lesion-deficit localizations (Drevets,

2001; Nickel and Thomalla, 2017). Our findings are of par-

ticular interest given that chronic stimulation of the subge-

nual cingulate is an emerging treatment for depression

(Delaloye and Holtzheimer, 2014).

Loss-of-function studies in humans are inevitably compli-

cated by their pathological origins. Though epilepsy may arise

from most areas of cortex and is remarkably diverse in its

aetiology, even a large, unselected cohort such as ours cannot

be expected to sample the full breadth of anatomical substrate

evenly, though it is bound to be broader than neurodegenera-

tive, disease-specific studies (Foster et al., 2007; Perani et al.,

2014). In spite of this, the distribution of functional lesions in

this cohort was reasonably homogeneous (Supplementary Fig.

1). Comparison with binary ischaemic lesions is also compli-

cated by the continuous nature of metabolic lesions, charac-

terized in degrees of dysfunction. This aspect nonetheless

improves the statistical efficiency of mass-univariate analysis,

and reflects the natural continuity of cognitive function itself.

Patients with epilepsy experience phasic neurological dys-

function—seizures—of variable extent and duration. Focal

patterns of cerebral dysfunction could be modified by these,

by interictal epileptic discharges, and other global effects

such as anti-epileptic medication (Theodore, 1988). We

explicitly included linear global confounds in the statistical

models to account for such effects. The observed neuro-

psychological patterns across the cohort exhibit similar struc-

ture to the wider population, suggesting that the fundamental

neural mechanisms are likely to be broadly representative.

Equally, task-related functional imaging studies in epilepsy

patients do not support any major reorganization of the

neural substrate, certainly not at the scale of interest here.

Finally, large clinically acquired datasets inevitably suffer

from heterogeneously collected and missing data, here mani-

fest by individual clinical selection of appropriate cognitive

tasks for each subject. These concerns were mitigated as

scores were recorded by a small cadre of clinically highly-

trained neuropsychologists using standardized cognitive tasks

designed for patients considering epilepsy surgery.

Furthermore, we used a robust approach to non-random

missing data—imputation with probabilistic PCA—to ensure

that our findings were protected from bias as far as possible.

While the focus here has been on improving the principal

current concern of lesion-deficit inference—its specificity—

future work should aim to improve its sensitivity. No critical

regions were detected for some psychological elements, such

as anxiety scores, and compared with ischaemic lesion maps

some regions were notably absent (such as Wernicke’s and

Broca’s area for the verbal IQ). This may be due to non-lin-

ear relationships between metabolism and psychological

score, the opportunity for neural adaptation to chronic slow-

ly evolving metabolic lesions, or lack of psychological
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Figure 5 Metabolic lesion-deficit mapping of memory. Voxel-wise statistical parametric lesion-deficit maps of individual memory tests.

Image characteristics and abbreviations are as in Fig. 3.
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variation within our cohort. Alternatively, the broad cogni-

tive and affective behavioural measures used may poorly

represent neural architecture in isolation: verbal IQ is

mediated by educational attainment (and vice versa) and ver-

bal IQ or its subtests are not designed to measure verbal

skills well in isolation of IQ. Because most of these elements

Phonemic 
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Figure 6 Metabolic lesion-deficit mapping of fluency and affect. Voxel-wise statistical parametric lesion-deficit maps of fluency and de-

pression (HADS). Higher depression scores are pathological, but the score has been reversed in the above images to match other psychological

scores used: a positive correlation implies that hypometabolism corresponds to an impairment of affect (greater depression) and is shown on a

red-yellow scale. Image characteristics and abbreviations are as in Fig. 3.
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Figure 7 Metabolic lesion-deficit clinical prediction of WAIS-verbal IQ and depression. Penalized Bayesian multiple regression was

used to predict WAIS verbal IQ (VIQ) and depression (HADS) reasonably well from 18F-FDG PET data. Although the model is evaluated in terms

of predictive accuracy, it is interesting to compare the support for these multivariate predictions—the weighting of each voxel in the model—

with the weightings assigned in the univariate case. Multivariate weightings (right) presented as the t-statistic are broadly similar to the univariate

weightings (left, reproduced from Figs 3 and 5), providing further support that the univariate maps represent genuine, undistorted structure-func-

tion maps.
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are highly correlated, they cannot be entered together as in-

dependent variables for lesion-deficit mapping and so require

an intermediate data compression step such as factor ana-

lysis or ideally an informed generative model of the psycho-

logical attribute in question.

Conclusion
We have developed a novel metabolic lesion-deficit mapping

technique based on interictal 18F-FDG PET in patients with

focal epilepsy. Unlike conventional structural lesion-deficit

mapping, our approach is not distorted by vascular territo-

ries, yielding arguably the first spatially unbiased estimates

of brain regions critical to a broad range of psychological

subdomains underlying affect and cognition. Not only do

these maps provide powerful evidence of the underlying

functional specialization of the human brain, they also pro-

vide the potential to be developed into a clinical tool that

could predict psychological scores from brain metabolic

data. Further work could simulate surgical lesions within

this model, and quantify its power to forecast the behaviour-

al effects of any surgical intervention before it takes place.
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