
 

 

ABSTRACT 
The Journal of Forensic Radiology and Imaging was launched in 2013 with the aim to collate the 
literature and demonstrate high-quality case studies on image-based modalities across the 
forensic sciences. Largely, the focus of this journal has been on the transmissive aspect of 
forensic imaging, and therefore a significant number of high-quality case studies have been 
published focusing on computed tomography and magnetic resonance imaging. As a result, the 
‘and imaging’ aspect is often neglected. Since 2013, technology has fundamentally evolved, and 
a number of new techniques have become accessible or have been demonstrated as 
particularly useful within many sub-disciplines of forensic science. These include active and 
passive surface scanning techniques, and the availability of three-dimensional printing. 
Therefore, this article discusses non-contact techniques, their applications, advantages, and 
considerations on the current state of play of imaging in forensic science. 
 
HIGHLIGHTS 

• We discuss the application of 3D imaging within the context of forensic science. 
• We highlight the available documentation techniques assessing their advantages and 

disadvantages. 
• This article provides several recommendations for future best practice. 

 
1. Introduction 

In 2013, the Journal of Forensic Radiology and Imaging (JOFRI) was launched to help collate 
the literature on imaging-based modalities across the forensic sciences. This was achieved by 
presenting high-quality case studies and specialist reviews with the underlying theme of non-
invasive documentation techniques. Arguably, the use of imaging techniques within this 
discipline and the development of this journal was instigated by the large amount of research 
undertaken on virtual autopsies. However, now five years on, the use of imaging has rapidly 
developed across many sub-disciplines within the forensic sciences.  
 
The focus of JOFRI has been on living and deceased individuals, and the application of non-
contact transmissive imaging. Therefore, a large body of the literature published has focused on 
both computed tomography (CT) and magnetic resonance imaging (MRI). This is unsurprising 
as JOFRI has ‘forensic radiology’ in its title. However, it is the opinion of the authors that the 
‘and imaging’ aspect is often neglected, despite there being substantial overlap between 
reflective and transmissive techniques. 
 
Numerous forensic science sub-disciplines have utilised these imaging techniques often in an 
inter-disciplinary manner. These include, but are not limited to, anthropology, archaeology, 
odontology, crime scene investigation, footwear mark recovery and analysis, courtroom 
visualisation, and ballistic comparison. Given that these rapidly evolving techniques are situated 
within the changing face of forensic science, this article has collated the current developments 
within the discipline, focussing on the use of non-contact techniques. Consequently, the aim of 
this review is to be informative with regards to the different techniques available and how they 
are currently being used, but to also suggest future directions and potential issues that should 
be taken into consideration. 



 

 

 
2. Types of Imaging Modalities 

The multitude of imaging modalities can be classified by acquisition type as illustrated in Figure 
1. The recording processes reviewed here are all non-contact, and further categorised as either 
transmissive or reflective, as discussed below. 
 
 

 
Figure 1. Flowchart demonstrating the different imaging modalities available in forensic science documentation. 

 
2.1. Reflective 

Reflective techniques work by reflecting a light source onto a subject and recording the reflected 
data. As such, the surface of a subject must be exposed. The quality of the data recorded is 
affected by surface features and conditions, such as whether the surface is smooth/rough or 
wet/dry as well as the shape, temperature and accessibility of the subject (Sansoni et al. 2009). 
The primary advantages of reflective techniques are the short acquisition time, lower cost of 
equipment and high quality of the data (Sansoni et al. 2009). The advantages and limitations of 
several recording techniques are summarised in Table 1. While many reflective acquisition 
techniques are easy to operate, skilled users are required to manipulate the data and create the 
3D models. 
 

2.1.1. Laser Triangulation 
Laser-based techniques are one of the most commonly used active methods in 3D 
documentation as they are more affordable and easier to operate (Kuzminsky and Gardiner 
2012). In triangulation systems there are two known positions, the positioning laser and the 
detector (Errickson et al. 2017). The laser is projected onto a surface, and as it returns to the 
detector, the angle of return allows the topography of the documented object to be accurately 
recorded as a cloud of points. The triangulation method is more appropriate for recording 
smaller objects where a sample is normally placed onto a turntable and the surface is captured 



 

 

from various angles. A 3D surface mesh is generated, which contains geometry and 
morphology data of the subject. These meshes can be cleaned and stitched together to form a 
complete 3D model of the entire surface. In some systems (such as the NextEngine) the surface 
is also photo-captured to document the texture/colour, which in turn can be applied to the final 
model (Kuzminsky and Gardiner 2012). 
  
Although laser triangulation is accurate and mostly insensitive to surface light and texture 
(Sansoni et al. 2009), there are a number of limiting factors that should be considered (see 
Komar et al. 2012 for a further discussion). First, the method can create superfluous data 
(referred to as noise), due to ambient light, reflection off irregular surfaces, or an increase in 
points in the capture process (Edwards and Rogers 2017; Errickson et al. 2017). This problem 
is exemplified when reflective surfaces (such as mirrors) are recorded (Hołowko et al. 2016), 
because such data must be amended in the post-processing stage. In forensic science, this 
editing stage must be fully documented as it may later create problems with admissibility in a 
court of law. 

Additionally, there is a need for a power source for data acquisition. When documenting smaller 
objects, it is common place for the object to be transported to the institution. However, this may 
be difficult to do with forensic evidence. Further, it may not be cost effective for individual police 
units to have their own equipment. While initial equipment costs today are much more 
affordable, most police units do not have the budget (of around £3000) available for this. Finally, 
it is suggested that those using the equipment are appropriately trained. It has been 
demonstrated quantitatively that better results are achieved with increased level of operator 
experience (Errickson et al. 2015). 

2.1.2. Laser Time of Flight 
For larger areas, such open fields and rooms within a building, ground-based laser scanners are 
suitable (terrestrial laser scanners). These scanners use either a pulsed (time of flight) or 
continuous frequency modulated (phase-shift) laser that measures a distance to the surface of 
an object (Newnham et al. 2015). Once the scanner is in position, it will automatically send a 
laser around the investigative environment while rotating horizontally and vertically, capturing 
the surrounding visible surfaces as a point cloud. When applying this technique to large areas, 
the scanner needs to be moved around the scene to ensure the laser scan captures previously 
unseen surfaces. As a result, individual scans are manually stitched together to create a full 
representation of the whole scene. 
 
Although these systems are much larger than hand-held scanners, they are considered portable 
and capable of performing rapid, true-colour 3D digitisation (Buck et al. 2013). On the other 
hand, terrestrial based scanners can cost upwards of £30,000 for the basic digitising equipment. 
  

2.1.3. Structured Light 
Structured light scanning has primarily been utilised for documenting hand-held objects. The 
technique uses a combination of cameras and projectors, initially calibrated by projecting 
patterns of light onto the surface of a known patterned board. When the patterns are then 



 

 

projected onto an object’s surface, the pattern deforms enabling the topographic surface to be 
accurately documented (see Errickson 2017; Errickson et al. 2017). Structured light scanning 
has the ability to capture geometric, morphometric, and colour surface data (Sansoni 2009). 
Like the laser-based methods, Thompson and Norris (2018) demonstrated that structured light 
scanning is non-destructive, has fast acquisition and processing times, is portable, accurate, 
and reliable. The high computational power required to process the scan data is noted as a 
limitation (McPherron 2009). Further, although most scanning is undertaken in a controlled 
environment, external light can disrupt the scanning process. 
 

2.1.4. Photogrammetry 
This technique can encompass single- or multiple-camera documentation. Single camera 
photogrammetry (sometimes referred to as structure from motion (SfM)) works by taking 
multiple overlapping images from digital cameras (often in the form of a video). On the other 
hand, multiple-camera documentation uses two or more overlapping 2D photographs of an 
object (Michienzi et al. 2018). These data sets via photogrammetric software will produce a 
point cloud that can be manipulated and measured (Carlton et al. 2018). 
 
Single camera photogrammetry differs from multiple-camera photogrammetry in that the 
software uses a set of algorithms to automatically detect and match features. The software then 
triangulates from these features to form a point cloud and thus a 3D model (Peterson et al. 
2015). Single camera capture does not require targets or reference makers to be placed on the 
subject (Carlton et al. 2018), where multi-camera documentation can use reference markers 
placed on or around a subject, but they should only be used after the recording and/or recovery 
of other physical evidence (Ebert et al. 2016). Given the ease-of-use and high accuracy 
associated with photogrammetry, it is a popular technique (Carlton et al. 2018). For both 
techniques, a texture map can be applied for a photo-realistic appearance (Sansoni et al. 2009), 
and the utility of creating 3D models has been illustrated through case examples (Peterson et al. 
2015).  
 
Limitations of photogrammetry include that hidden or covered parts are not captured (Ebert et 
al. 2016), and that the condition of the surface affects the recording. For example, data capture 
can be problematic if a surface is covered in hair, is reflective or wet (Urbanova et al. 2015, 
Ebert et al. 2016). The documentation of smooth surfaces are also challenging as demonstrated 
by Peterson et al (2015) when imaging a pocket knife. In addition, the scale for the 
photogrammetric technique is manually added to the data (normally using reference target 
points from the initial capture), this therefore has the potential of incorporating error into the data 
set. 
 

1.1. Transmissive 
Transmissive imaging techniques work by passing through a sample to capture volumetric data, 
as such the major advantage is that a sample does not need to be uncovered or unpackaged, or 
in the case of human cadavers, macerated. Transmissive imaging facilitates viewing of internal 
features, such as bones or organs in humans, but also objects within other objects, such as 
items inside a suitcase. The surface of a subject may be documented, but with differing quality. 



 

 

The two transmissive techniques discussed are computed tomography (CT) and magnetic 
resonance imaging (MRI). These are more complex than reflective techniques and require 
specialist radiographers to perform the image acquisition, however, the image processing may 
be carried out by skilled users. 
 

1.1.1. Computed Tomography (CT) 
Multidetector CT (MDCT) or multislice CT (MSCT) scanning works by passing a beam of 
ionising radiation through a sample/subject, this radiation is then detected and converted into a 
digital signal, which is stored as Digital Imaging and Communications in Medicine (DICOM) 
data. The 2D slices/images can be converted into 3D volumetric data and viewed as a surface 
volume render (Franklin et al. 2016). CT works by separating areas of differing densities (based 
on x-ray attenuation), and as such pre-set algorithms can differentiate between different 
materials (or tissues) based on their density, e.g. metal versus bone, versus fat. The user can 
then segment the 3D volumetric data to further separate materials (e.g. using thresholding), in 
order to generate an exportable surface model such as an STL file. 
  
Post-mortem CT (PMCT) is common place in several forensic institutes (Weiss et al. 2017) due 
to its superior visualisation capabilities, however, the technique is limited in several aspects. 
First, it works well for visualising bones, but less so for soft tissues (Bornik et al. 2018). The 
equipment is large and expensive (Bornik et al. 2018), although there is provision of a mobile 
CT scanner in the UK (Rutty et al. 2007). Additionally, CT scans are influenced by metal 
artefacts such as gunshot or dental amalgams (Bornik et al. 2018), and lastly, samples must be 
transportable and fit inside the CT gantry. Since the technique images in slices, the quality of 
the models from CT is limited and affected by the scan resolution, the parameters involved in 
scan acquisition (Guyomarc'h et al. 2012), and the user segmentation procedure (Carew et al. 
2018).  
 
Sub-techniques of CT may counteract some of the limitations, for example, dual-energy CT has 
been shown to reduce the effect of metal artefacts, as well as improve soft tissue visualisation 
(Norman et al. 2017). Dual-energy CT also holds the potential to differentiate between different 
drugs in body-packing cases (Alkadhi and Leschka 2013). Additionally, micro-CT can be 
employed for greater resolution and fine detailing (although only with small-sized specimens). 
Lastly, since CT uses ionising radiation it has safety and ethical limitations around living 
subjects. 
 

1.1.2. Magnetic Resonance Imaging (MRI) 
Magnetic Resonance Imaging (MRI) creates high resolution multiplanar images and is also 
commonly used in forensic medicine (Aalders 2017). Unlike CT, MRI is a non-ionising imaging 
technique, making it a potential safer option for imaging the living. MRI uses radio waves to 
excite protons in the body, the spinning of these protons gives off electric signals known as 
nuclear magnetic resonance (NMR), which can be measured (Yoshioka et al. 2009). The 
application of a strong magnetic field and magnetic field gradients provides spatial information 
for the NMR signal (Yoshioka et al. 2009); by pulsating the radio waves, the differences in 



 

 

signals from hydrogen atoms in various tissue types can be visualised as images (Aniq and 
Campell 2011). 
 
MRI works well for hydrogen atoms, principally those within water in the body (Errickson et al. 
2014). As such, MRI is effective for imaging soft tissues such as muscle or fat, but it does not 
work as effectively for hard tissues such as bone. MRI is comparable to traditional autopsy for 
visualising soft tissue and brain traumas (Ampanozi et al. 2010). Additionally, MRI may be 
combined with angiography (MRA) to provide differing visualisation of tissues (Errickson et al. 
2014). 
 
Limitations to MRI include the high acquisition time, although new methods such as parallel 
imaging or using higher field strengths are overcoming this (Aniq and Campell 2011), and the 
sensitivity of the technique requires the subject to remain still during imaging (although not an 
issue for imaging the deceased). The presence of ferromagnetic metallic objects (e.g. dental 
restorations or orthopaedic implants) can cause safety concerns and artefacts in images (Maller 
et al. 2012). Additionally, MRI is generally not suitable for imaging skin or surface details, due to 
the high signal to noise ratio and limited resolution, however it is possible through using 
specialist MRI coils (Vogt and Ermet 2006). It is advisable to perform a CT scan prior to MRI of 
deceased individuals to search for the presence of ferromagnetic objects, such as jewellery, 
debris or shrapnel which can often be present in post-mortem situations (Ruder et al. 2014). 
Ballistic projectiles are usually not ferromagnetic, and it is noted that MRI is adept at imaging 
bullet tracks. 
 

1.2. Multimodal Imaging 
Multimodal imaging further expands the utility of 3D digital imaging, by combining data from 
multiple techniques to form one conjugated model. For example, Villa et al. (2018a) explain that 
it is possible to combine multiple techniques, without the need for simultaneous acquisition or 
the use of reference markers. Furthermore, it is possible to combine surface and internal 
volumetric data, for example combining photogrammetry with CT to create unabridged 3D 
models that are to scale and exhibit ‘true’ colour (Villa et al. 2018a). 
 
Multimodal imaging was identified by Aalders (2017) as one of the four important issues in 
imaging, further it has been proposed that the concurrent use of contact and non-contact 
techniques may overcome issues with accuracy (Sansoni et al. 2009). Additional possibilities for 
multimodal imaging, include combining macroscopic imaging with microscopic or molecular 
techniques (Aalders et al. 2017). 
 
Table 1 Overview of advantages and limitations of 3D recording techniques (Adapted from Sansoni et al. 2009) 

Technique Advantages Limitations 

Laser triangulators  
Relative simplicity 
Performance generally independent of ambient light  
High data acquisition rate 

Safety constraint associated with the use of laser 
source 
Limited range and measurement volume 
Missing data in correspondence with occlusions and 
shadows 
Cost 



 

 

Structured Light Scanning 

High data acquisition rate 
Intermediate measurement volume 
Performance generally dependent of ambient light 
Relatively small data files in comparison to other 
techniques 

Safety constraints, if laser based 
Computationally middle-complex 
Missing data in correspondence with occlusions and 
shadows 

Photogrammetry Simple and inexpensive 
High accuracy on well-defined targets 

Computationally demanding 
Sparse data covering 
Limited to well defined scenes 
Low data acquisition rate 

Structure from Motion (SfM) Simple and inexpensive 
Can document large areas in a short time frame 

Can be a complex technique 
Sparse data covering 
Based on resolution of images taken 

Time-of-Flight 
Medium to large measurement range 
Good data acquisition rate 
Performance generally independent of ambient light 

Cost 
Accuracy is inferior to triangulation at close ranges 

Computed Tomography (CT) 
High resolution 
Volumetric data 
Good definition of skeletal elements 
Independent of exterior conditions (e.g. light) 

Cost 
Complex technique 
Computationally demanding 
Affected by metallic artefacts 
Ionising radiation 

Magnetic Resonance Imaging 
(MRI) 

High resolution 
Independent of exterior conditions (e.g. light) 
Good definition of tissues 

Cost 
Complex technique 
Computationally demanding 
Generally poor definition of skeletal elements 
Affected by metallic artefacts 

  
2. Application of techniques 

The application of digital imaging techniques to several forensic sub-disciplines is discussed. 
 

2.1. Forensic anthropology 
Utilising imaging techniques to digitise and reconstruct forensic osteological samples is known 
as virtual forensic anthropology (Franklin et al. 2016), several areas of applications are 
discussed below. 

2.1.1. Biological profiling 
Digital imaging can be used for the application of traditional biological profiling techniques, as 
well as the development of new techniques, for example using the cranial sinuses (Aalders et al. 
2017). There is a multitude of literature on biological profiling in forensic anthropology using 
digital data (see Villa et al. 2016), primarily from CT but also several using MRI. For example, 
Martinez Vera et al. (2017) studied MRI images of the manubrium for age estimation with 
promising results, this is particularly useful since MRI is a non-ionising technique and offers a 
more ethical solution for age estimation of the living (e.g. in legal maturity cases). Sex 
estimation techniques have recently been reviewed by Krishan et al (2016), and although there 
are many methods that are useful, including geometric morphometrics, re-evaluation of 
traditional methods and validation of newer techniques should be achieved. 
 
Further applications include the possibility of using photogrammetry for estimating the height of 
individuals (Michienzi et al. 2018), or superimposing 3D models of skulls generated using 
photogrammetry, onto photographs of missing people (Santoro et al. 2017). This latter method 
found that it was possible to match photos of living individuals to 3D images of skulls and could 
be applied in missing person cases or with unidentified remains (Santoro et al. (2017). 
 

2.1.2. Weapon identification  



 

 

A weapon (or weapon-type) may be identified from, or ‘matched’ to, a 3D model of a bone 
injury. This may be achieved by morphologically identifying the shape of the object, interpreting 
volume renderings, or with the use of stereolithography (de Bakker et al 2013). For example, 
Woźniak et al. (2012) created a 3D model from ante-mortem CT scans of a victim and scanned 
suspected weapons, they successfully matched the injury pattern to an object using 3D 
modelling to the demonstrate results. The accuracy of these techniques has since been 
addressed, and the possibility of using techniques such as micro-CT scanning to facilitate 
quantitative data has been demonstrated (Norman et al 2018); which is advantageous as it has 
the potential to reduce interpretation bias. Similarly, 3D printed replicas have been shown to be 
reliable forms of documentation (Edwards & Rogers 2017), however further research focusing 
on the methodological approach is necessary. 
 

2.2. Scene capture 
A variety of 3D recording techniques have been employed for the documentation, analysis and 
presentation of a crime scene. 3D data capture methods provide precise scene recording that 
does not suffer from the spatial distortion effects associated with 2D photographic recording 
(Raneri 2018). Raneri (2018) reports that over the past two decades investigators have had 
access to 3D imaging equipment but were struggling to use and apply the data. However, with 
the advent of equipment that is faster and easier to use, and the recent advances in software, 
police forces can now regularly capture and more importantly utilise 3D data for crime scene 
documentation (Raneri 2018). 
 
Empirical research has investigated the accuracy of 3D scene recording, for example a 
comparison of measurement data from two different methods for documenting crime scenes (a 
tape measure and a 360 camera with photogrammetry), found the manual method to be more 
accurate but the software application method more precise (Sheppard et al. 2017). Additionally, 
drone-based aerial photography was found to produce high-quality images and therefore 
accurate large-scale 3D models of mock forensic scenes (Urbanova et al. 2017a). The authors 
recommended processing aerial and ground imagery separately, and in parallel to using scene 
markers if precise detail (e.g. of physical evidence or human remains) is required. 
 
A scene or sequence of events may be reconstructed in accident investigations, for example 
photographs of incidents from different spatial angles can be used to reconstruct the 3D 
geometry of a scene and aid in scene interpretation (Verolme and Mieremet 2017). Further, 3D 
scan data may be combined with CCTV or eyewitness photographs, which can for example aid 
with identifying the spatial position of an individual or for profiling individuals (e.g. to estimate 
height) (Raneri 2018). A simulated bus explosion was successfully documented and 3D 
modelled using photogrammetry, it was noted that the 3D reconstructions allowed for a clear 
and understandable view of the scene and the ‘victims’ (Villa et al. 2018b). 
 
Further applications include crime scene and traffic recording using photogrammetry (Michienzi 
et al. 2018); 3D modelling of shooting incidents (Ward and Sheridan 2018); 3D scanning of 
weapons at a crime scene, for comparison with wounds on a victim or of impressions found at 



 

 

the scene (Raneri 2018). Further, 3D imaging at a crime scene can also facilitate analysis of 
evidence in the 3D space whilst at a scene (Raneri 2018). 
 

2.3. Forensic Medicine 
The use of digital imaging with autopsy investigations is well-documented and not discussed in 
this review. However, novel applications within forensic medicine are emerging, for example, 
Ebert et al. (2016) state that digital surface documentation of cadavers complements traditional 
photography and is commonplace in Switzerland. While forensic 2D photo-documentation is the 
gold standard for recording injuries (Michienzi et al. 2018), photogrammetry in particular is noted 
to be beneficial for external body documentation (Urbanova et al. 2015). While laser scanning is 
discouraged for use on living individuals due to safety concerns, slow speed of capture and 
difficulty in imaging surfaces of dark colours (Shamata and Thompson 2018b). 
 

2.3.1. Surface injuries 
Back in 2000 photogrammetry was used to match tyre treads to a facial injury with results found 
to be superior than the traditional 2D photographic overlay method (Thali et al. 2000). Recently, 
abundant research on 3D documentation of surface injuries has been emerging, indeed Ebert et 
al. (2016) observe that injuries with shape, such as those from “weapons, tools, shoes, dental 
imprints, forged coins or drugs”, have the potential to be matched with objects. 
 
Indeed, photogrammetry has been used to match surface injuries with instruments and to 
reconstruct patterned injures (Michienzi et al. 2018). It has been demonstrated that this 
technique can produce high-resolution, realistic, and to-scale 3D surface models (Urbanova et 
al. 2015). A case-report by Davy-Jow et al. (2013) used laser scanning and photography to 
document evidence of abuse and starvation. Furthermore, a forensic 3D approach (using 
computer aided design (CAD) supported photogrammetry) was used to model a skin injury and 
a weapon, facilitating pattern matching of an injury with shape of the weapon (Thali et al. 2003). 
Michienzia 2018 found that they could measure injuries more accurately with photogrammetry 
than with standard forensic photography. 
 
Useful guidelines for scanning bodies are included in Ebert et al. (2016) and Shamata and 
Thompson (2018b), the latter of which found structured light three-dimensional surface scanning 
to be appropriate for scanning different body areas, and provides notes on ideal number of 
scans, scanning approaches for different body areas, and for eliminating background noise. 3D 
surface documentation of living people is useful to document pattern skin injuries, such as 
footwear marks, bite marks, bruises and object imprints, particularly when 2D photographs or 
sketches are insufficient (Ebert et al. 2016). Furthermore, structured light three-dimensional 
surface scanning has been investigated for documenting and measuring surface injuries on 
living participants (Shamata and Thompson 2018a). In this case, 3D wound models were found 
to have extra features over 2D photographs and no statistically significant difference was seen 
between the 3D and traditional wound measurements. Future work proposed by Shamata and 
Thompson (2018a) includes scanning open injuries to ascertain depth information. 
 



 

 

Campana et al. (2016) explored 3D documentation of surface injuries, using a combined 
method integrating CT, MRI, photogrammetry and structured-light 3D scanning to create 
comprehensive 3D models. Their recommendations included, placing reference markers at 
varying heights when on flat surfaces (to expand the area of interest), use of a vacuum mattress 
(also used by (Ebert et al. 2016)), ensuring the injury is in centre of photographs with markers 
placed around it (to minimize distortion), and taking one photograph perpendicular to subject. 
Campana et al. (2016) found their method to be suitable for documenting individual patterns or 
body parts, but less suitable for entire bodies. 
 
Additionally, it has been proposed that further insight may be achieved by combining 
radiological and non-radiological techniques, for example, using spectrometry and fluoroscopy 
for dating bruises (useful in abuse cases), dating fractures and subdural hematomas (Aalders et 
al. 2017). Further areas of potential research where 3D imaging could be useful include, dating 
fractures in different post-mortem scenarios, investigating the effects of decomposition and for 
establishing post-mortem intervals (PMI) (Aalders et al. 2017). 
 

2.3.2. Taphonomy 
Taphonomic changes in cadavers can be seen over time, while traditionally photographs have 
been used to document these changes, recently researchers have investigated using 3D 
recording techniques. Carlton et al. (2018) used SfM and GIS (Geographic Information System) 
to document decomposition on human cadavers and found these tools to be useful and efficient 
for recording the decomposition and taphonomy. Zhang et al. (2014) employed terrestrial laser 
scanning for obtaining 3D ‘volumetric’ data to investigate bloating on a human cadaver, finding 
good agreement between in-situ measurements and the ‘volumetric’ data.  
 

2.4. Pattern and Impression Evidence 
Several potential applications for laser scanning with pattern and impression evidence are 
mentioned in Komar et al. (2012), for example documenting mass graves (tyre and bucket 
marks), footprints, tool marks, marks and impressions in perishable materials (such as food), as 
well as fire scenes containing fragile burnt human remains. Through personal communication 
with a number of researchers, there is some ongoing progression in the application of 3D 
imaging to pattern and impression evidence, however, it is difficult to find a significant amount of 
literature within these disciplines. 

2.4.1. Footwear marks 
The recovery of footwear impressions is a routine process for many police forces, however the 
traditional method of casting is highly destructive to the impression. Therefore, 3D imaging 
techniques can be used to capture the details of such an impression in a non-destructive way 
(Gamage et al 2013; Andalo et al 2011). Komar et al (2012) provided examples of a shoe of a 
suspect and an impression in sand that had been documented using a laser scanner. In this 
article Komar et al. (2012) stated that the software allows comparison between the two datasets 
and that the resulting 3D model is a useful tool for courtroom demonstration. This comparison 
has since been demonstrated by Thompson and Norris (2018), who evidenced the reliability of 
using structured light scanning. However, it has been noted that further work is needed before 



 

 

the structured light technique can replace traditional casting techniques (Thompson and Norris 
2018; Crabbe et al. 2015). 
 

2.4.2. Fingermarks 
Mulawka and Troy (2017) demonstrated that it is possible to recover ridge detail using 3D 
scanners for the collection of post-mortem fingerprints. Although this study used prototyped 
equipment for the documentation process, it confirmed that the recovery of detail is possible. 
Similarly, Liu et al (2017) captured finger ridge detail as well as shape using structured light 
scanning but acknowledged that matching fingerprints through recognition needed further work. 
 
No literature has been identified for 3D imaging of a fingermark on a surface (other than 
standard photography or microscopy). This is perhaps due in part to fingermarks being 2D, 
there is no need for a third dimension (unless recovered from a curved surface) (H.Earwaker, 
Personal Communication, September 12, 2018). Also, the limited resolution of surface scanners 
may render the techniques unsuitable, further, any fingermark would need to be visible in order 
for a surface scanner to capture it, thus, latent marks would not be visible without enhancement 
(H.Earwaker, Personal Communication, September 12, 2018). 
 

2.4.3. Bite marks 
Page et al. (2011) highlighted that bitemark analysis may be challenged in a court, however 
Lasser et al. (2009) was one of the first examples to demonstrate the application of laser 
scanning in bitemark analysis. In their technical note, the use of a digitised bite was 
quantitatively compared to a maxillary model with the aim of working towards a less subjective 
analysis. Since, Sheets et al. (2013) addressed the variability of dentition using laser scanning, 
which still demonstrated that caution should be applied to bitemark analysis, and Corte-Real et 
al. (2018) found successful matching of bitemarks on bitten apples with cone-beam CT scanned 
dental arches in a database. 
 
Komar et al. (2012) suggested that documentation of bitemarks using a laser scanner should be 
considered alongside traditional protocols at a postmortem. In this study, Komar et al. (2012) 
used the data to 3D print a replica model of a bitemark, stating that 3D printing could be useful 
for courtroom presentations and other educational purposes.  
 

2.5. Ballistics 
Using the virtual autopsy approach, 3D imaging can assist forensic pathologists in providing an 
accurate and visual interpretation of a bullet trajectory. These techniques normally centre 
around CT and MRI scanning (Levy et al. 2006; Folio et al. 2011; Colard et al. 2013), however 
studies have established that although this type of imaging is useful for understanding 
distribution, depth and direction of projectiles (Raneri 2018), it is also important to consider the 
initial autopsy examination as differences in interpretation may arise (Delteil et al. 2018; Usui et 
al. 2016). Likewise, photogrammetry has been used in the reconstruction of external bullet 
trajectories (Michienzi et al. 2018) and in post-mortem surface documentation. While the 
photogrammetry imaging process is rapid, it is insufficient at imaging body characteristics such 
as body hair, depressions or surfaces with fluid (Urbanova et al. 2015). 



 

 

 
Laser scanners have been used in crime-scene reconstruction to analyse bullet trajectories and 
reconstruct shootings. For example, Lisco et al. (2018) demonstrated that although there are 
several systematic errors that are present regardless of method, the laser tracker is suitable for 
recording trajectories in drywalls at a specific angle of incidence. Perhaps, a combination of 
laser scanning with forensic animation could be useful, Schofield (2011) used computer game 
technology as a mode of virtual simulation for reconstructing bullet trajectories. 
 

2.6. Bloodstain Pattern Analysis (BPA) 
Investigators can utilise 3D imaging in bloodstain pattern analysis (BPA) to identify the trajectory 
and point of origin of blood droplets (Raneri 2018, Hakim et al. 2015). Hakim et al. (2015) note 
that laser scanning is effective for recording BPA and is non-invasive and quicker than 
conventional documentation. Similarly, an investigation using multiple 3D techniques with 
differing resolutions including laser scanning and structured light scanning, found that accurate 
area of origins and trajectories could be visualised and analysed using 3D scene models 
(Hołowko 2015).  
 

2.7. Road Traffic Collisions 
The benefit of 3D technology to recording road traffic collisions was recognised very early. Buck 
et al (2013) showed that 3D data of a scene could help with the reconstruction of events and 
illustrated this using a case example of an individual being hit by a car. In this study, 
photogrammetry and 3D laser scanning was used. Subsequently, 3D accident reconstruction 
has been achieved and demonstrated as useful using close range photogrammetry (Osman & 
Tahar 2016), laser scanning (Lyu et al 2017), and utilising videos and still images to create 3D 
models (Jiao et al 2018).  
 

2.8. Forensic Archaeology 
3D documentation has many applications in forensic archaeology, such as recording remains in-
situ and recording complex sites involving commingling or mass graves. For example, SfM has 
been demonstrated for mass grave documentation (Baier and Rando 2016) and for recording 
funerary taphonomy (Knüsel and Robb 2016). Additionally, photogrammetry has been combined 
with GIS location-based data to document and interpret graves and remains in-situ (Wilhelmson 
and Dell’Unto 2015). While not strictly ‘forensic’ in nature, there are also examples of using 
structured light scanning for recording human remains in graves sites (McPherron et al. 2009). 
 
Forensic archaeologists from the Committee of Missing Persons in Cyprus (CMP) have also 
investigated the potential of using digital imaging when conducting ground surveys and 
searching for potential grave sites (Sturdy Colls et al. 2018). Additionally, searching for objects 
of forensic importance that are hidden beneath floors or within walls can also be aided with 3D 
imaging techniques. Ruffell et al. (2014) describe the potential of LiDAR, laser scanning and 
radiography in addition to the traditional aerial photography and ground-penetrating radar (GPR) 
techniques. 
 

2.9. Forensic Engineering 



 

 

3D documentation techniques have been employed in forensic engineering cases. For example, 
laser scanning was used to document the scene following the collapse of the power station in 
Didcot, UK in 2016 (Dr Karl Harrison at the Forensic Archaeology, Anthropology, and Ecology 
Symposium, London, UK, 12th June 2017). Laser scanning was also successfully used to 
develop 3D models in two cases of building collapses (a complex structure collapse of a shoring 
system and an overturned crane) a task that would be “nearly impossible” without digital 
imaging (Park et al. 2018). The authors demonstrated that they were able to reconstruct 
complex scenes for inspection, successfully conducting structural analysis and acquisition of 
dimensions (Park et al. 2018). 
 
A research collective termed ‘Forensic Architecture’ (Department of Visual Cultures, 
Goldsmiths, University of London (https://www.forensic-architecture.org) regularly applies 3D 
imaging techniques in project work. For example, the team used photogrammetry to create a 3D 
model of a crater from a suspected chemical bomb in Khan Sheikhoun, Syria in 2017. By 
obtaining photographs from civilians and journalists they were able to generate a 3D model, 
from which they could obtain the dimensions of the crater for further analysis (Forensic 
Architecture, 2017, April 4). In a current project, ‘Forensic Architecture’ are using SfM to 
generate a source of spatial and temporal evidence of the fire at Grenfell Tower, London, UK in 
2017, through combining eyewitness photographs and video footage with a 3D model of 
Grenfell Tower (Forensic Architecture 2017, June 14). 
 

3. 3D Presentation 
3.1. 3D printing 

3D printing, also known as additive manufacturing or rapid prototyping is a valuable extension to 
digital imaging in the forensic sciences. 3D polygon mesh files (primarily STL) from digital 
imaging techniques can be translated for a 3D printer to print. There are several different 3D 
printing techniques available each of which has differing advantages, limitations and 
considerations based on the sample morphology (Hodgdon et al. 2018 and Carew et al. 
2018). The parameters employed during scanning and post-processing (such as slice thickness 
or surface smoothing) are crucial to the accuracy and quality of the generated 3D model and 
subsequent 3D print (Ford and Decker 2016, Guyomarc'h et al. 2012). The accuracy of a 
printed replica should not be affected by printer resolution, provided printer resolution is greater 
than scan resolution (Hodgdon et al. 2018 and Carew et al. 2018). 
 
Physical 3D replicas can be useful for a variety of applications, from replicating bones for 
forensic analysis (Urbanova et al. 2017b, Wozniak et al. 2012) and replicating skulls for building 
facial reconstructions (Chase and LaPorte 2017), through to courtroom display of potential 
weapons (BBC News (Producer), 2015, April 20) or osteological evidence (Baier et al. 2017, 
Baier et al. 2018, Ebert et al. 2011). 
 
3D printing in forensic science is an emerging area with much further research needed to 
validate the processes and the applications involved. As present, 3D printing in forensic science 
appears to be largely based around replicating skeletal elements, perhaps if future research 
validates physical 3D printed exhibits as having superior evidential value, other disciplines could 



 

 

follow suit and we could see printed replicas of fingermarks or footwear impressions in 
courtrooms. 
 

3.2. Mixed Reality (MR) 
With exception to 3D printing, many of these datasets are still presented in a 2D format on a 
computer screen (Ebert et al 2014). The concept of mixed reality (MR) incorporates virtual 
reality (VR) and augmented reality (AR) technologies (Eve 2018). Through VR a user is 
immersed in real-time in a virtual world via a computer interface, usually using VR goggles or a 
headset (Eve 2018; Fernandez-Palacios et al. 2015). Through VR 3D data can be presented 
complete with depth perception (Raneri 2018). 
 
Conversely in AR, digital objects are be virtually ‘inserted’ into real-space using a smart device 
or goggles, this maintains a 1:1 connection to the real-world and creates a multi-sensory 
experience (Eve 2018; Fernndez-Palacios et al. 2015). Additionally, ‘virtual-tours’ can utilise 
360-degree photography to allow users to ‘walk’ through a scene on a smart device (Tung et al.  
2015). MR is a particularly important area of research as it can be applied in all stages of the 
forensic science process, from decision making at a crime scene through to presentation of 
evidence in a court of law. The process was demonstrated by Ebert et al (2014) where it was 
suggested that VR glasses could be used to immerse individuals into 3D interactive forensic 
scene reconstructions. Literature is also available on the use of VR and AR in archaeology (Eve 
2018; Fernndez-Palacios et al. 2015) and forensic medicine (Kilgus et al. 2014) as well as the 
use of MR in courtroom display (see 3.4; Ebert et al 2014); it is anticipated that further 
applications and research will emerge in the near future. 
 

3.3. Animation 
The introduction of virtual animations is a novel area, which can depict changes over time, use 
zooming or animated subjects (Aalders et al. 2017) and/or combine photography of real-world 
evidence (e.g. photographs of injuries) with virtually-constructed scenes or figures (Buck et al. 
2013). A recent example used a virtual animation to depict how a victim obtained their injuries, 
through animating a moving 3D skeleton with a bullet paths penetrating the body (Villa et al. 
2017). Furthermore, combining multimodal imaging with CAD has been used to show elaborate 
virtual representations and interactive videos of injuries and weapons (Bornik et al. 2018). 
Incorporating CAD objects into a 3D model merges case-findings with interpretations, although 
useful for demonstrations the two must be clearly defined (see 3.4). 
 

3.4. Courtroom Display 
Thali et al. (2000) promoted the use of photogrammetric 3D models for demonstration of 
evidence, stating that 3D models are more easily understood by laypersons, a concept that is 
still portrayed (Villa et al. 2017; Blau et al. 2018). The utility of 3D digital data for courtroom 
demonstrations of osteological evidence and the potential advantages of having 3D models over 
2D photographs was detailed by Errickson et al. (2014). However, there is currently little data to 
show whether 2D or 3D exhibits are more effective or comprehensible, and similarly more or 
less prejudicial to a jury (Aalders et al. 2017). A recent report highlighted that research is 
needed to fully explain and quantify the utility of visual aids in a court of law (Weiss et al. 2017). 



 

 

 
Furthermore, using VR in criminal trials poses new issues, an article by Young (2014) noted that 
VR demonstrations of evidence can be particularly persuasive and even prejudicial, and the 
author advised courts of law to proceed with due caution (Young 2014). Contrastingly, 
Salmanowitz (2018) suggested that VR could aid in reducing bias in courtroom decision making. 
Kilgus et al. (2014) provided caution for using MR and Animations in courtrooms, in particular 
the authors state the necessity for verifying the authenticity, fairness and relevance of using of 
visualisations for courtroom display of evidence, noting that the data, methods and visualisation 
must be valid. 
 
Virtual 3D models and physical 3D replicas have been used in courts of law as exhibits, there is 
high value and responsibility involved in courtroom display and several areas require clear 
definitions to be applied (Baier et al. 2017). Firstly, it is important to differentiate between 
findings and simulated scenarios such as scene reconstructions (Aalders et al. 2017). A 3D 
crime scene reconstruction is based on factual scientific evidence, in contrast to a crime scene 
simulation, which based on a predicted condition or sequences of events (Raneri 2018). The 
two must be distinguished when presenting 3D virtual scenes and practitioners have a 
responsibility to ensure that courts of law understand this distinction. Secondly, exhibits used as 
demonstrative aids or demonstrative evidence must be separated; each have differing rules of 
admissibility and moreover demonstrative aids are not admitted into evidence and carry no 
probative value (Carew et al. 2018; Hofer 2007). 
 

4. Further thoughts around forensic imaging 
4.1. Ethical Considerations 

As discussed, there are significant benefits to the use of 3D imaging techniques and 
consequently this data is different from any other form of data. Hirst and Smith (2019), suggest 
that 3D imaging demands separate ethical and legal consideration, however this deliberation is 
somewhat complex due to the different strands of imaging in forensic science. These ethical 
considerations stem from the discipline within these individual strands (i.e. biology; 
anthropology; archaeology; crime scene investigation), but still address similar acceptable 
boundaries such as what information is obtained, who’s data is gathered, what is the intended 
use of the data, and what other individuals are affected (Hughes 2015). Some disciplines (such 
as medicine) have strict protocols for research, and although further disciplines have guides and 
recommendations, the uptake of newer imaging modalities has yet to be fully addressed. 
 
There appears to be a much greater awareness in the fields related to the human body 
demonstrated by a number of recent publications (See Passalaqua and Piloud 2018; Squires et 
al. 2019). Perhaps this is a development from medical related disciplines (primarily from living 
individuals) where practical considerations may apply, such as determining if identifiable data 
collection needs to be collected and on the anonymisation of data and subsequent images or 
models. On the other hand, disciplines such as forensic anthropology are largely related to 
deceased individuals. These considerations are compounded when dealing with human 
subjects from forensic scenarios, for example, when dealing with imaging data from living or 
deceased individuals the wishes and beliefs of the individual and/or the next of kin may need to 



 

 

be considered when deciding whether to share the digital data. Furthermore, these areas have 
a strong association to international disasters, such as the mass killings in warfare, in contrast 
to the three-dimensional recovery of a footwear mark. 
 
Nevertheless, these ethical discussions should be implemented into degree programmes, 
especially within foundation learning. This in turn would hone the skills of future graduates 
(Hughes 2015), however care must be taken to avoid presenting a one-sided view. For 
example, an action that may be perceived by many as unethical may have been undertaken in 
an innocent and misguided way. Therefore, presenting both sides of an ethical discussion is 
important (Errickson and Thompson, 2019). 
 

4.2. Bias 
One of the main issues in forensic casework is the complex nature of analysing and interpreting 
data (Morgan and Bull 2007). As a result of the complexity of data analysis and interpretation of 
evidence in the forensic sciences, the issue of admissibility of evidence and expert witness 
testimonial accounts has been raised (Christensen et al. 2014). Both 2D and 3D image 
interpretation is affected by human perception and it has been demonstrated that expertise, 
experience, and cognitive bias will all impact on the decision-making process (Aalders et al. 
2017; Morgan 2017). For example, Nakhaeizadeh et al. (2014) undertook an experimental study 
examining cognitive bias in forensic anthropology. Whereby, it was demonstrated that the 
decisions of forensic anthropologists based on visual assessments are vulnerable to extraneous 
contextual information. Therefore, bias has large implications for accuracy and error in forensic 
science. For example, it can corrupt the conclusions and testimony of forensic examiners, 
influence other evidence, and therefore change sources of information that is presented to the 
courtroom (Kassin et al. 2013). 
 
It is encouraging to see these concerns being addressed in forensic science, and newer 
imaging techniques are starting to work towards reducing bias. For example, Nicolene Lottering 
has demonstrated how quantitative analysis using MSCT scans can assist in the removal of 
bias when compared with traditional methods (Sandholzer et al. 2013). Likewise, in drone aided 
survey, pre-establishing a flight path for the location of a body as opposed to manually operating 
the drone can ensure all areas of a particular region are documented, which in-turn reduces 
user bias (Urbanova et al 2017a). 
 

4.3. Training and Standards 
Currently, forensic science is undergoing a period of standardisation and validation (Passalaqua 
and Piloud 2018). Training and standardisation vary between laboratories, countries, and 
between disciplines. The creation of standard operating procedures has been suggested to help 
ensure reproducibility between laboratories however these can be met with resistance and can 
be difficult to progress into widespread use and acceptance (Thompson 2015). Raneri (2018) 
note that police staff require specialist training in virtual crime scene reconstruction, and that 
organisations such as the International Association of Forensic and Security Metrology (IAFSM) 
are assisting with this through holding workshops and through the development of practice 
guidelines (Raneri 2018). 



 

 

 
Hirst and Smith (2019) highlight that technological advancements in 3D imaging have had 
remarkable benefits to various disciplines, in particular those focusing on human remains. 
Although there are currently no standard protocols for creating scanned models, Sansoni et al 
(2009) state that traceability of 3D measurements is important to recognise standards. As a 
result, a number of publications have been developed which work towards good practice 
(Errickson et al 2017; Shamata and Thompson 2018a,b).  
 
For instance, there are a number of factors to take into consideration in order to produce 
accurate models, such as the software, algorithms, and experience of the user (Kuzminsky and 
Gardiner 2012). This is because the settings depend on the object that is being documented. 
Nevertheless, it is recommended that the operator has knowledge of both the object and the 
scanner (Errickson et al. 2015) and accurate metadata should also be stored along with the 
digital data. The authors suggest that further studies are developed, concentrating on this 
accreditation process. 
 

5. Conclusion and future recommendations 
The development and use of digital imaging in the forensic sciences has leapt forward in the last 
five years. Digital imaging and immersive 3D technologies offer advanced capabilities for 
recording and analysing crime scenes and evidence. This review has provided a synopsis of 
imaging across the forensic science disciplines to include literature focused on human subjects, 
as well as further subject types such as trace evidence. Moreover, we have shown how 3D 
imaging is being utilised holistically from crime scene to court. 
 
Through both experimental studies and casework analysis, the scientific community has 
advanced their understanding of the applications and limitations of digital imaging techniques. 
As these technologies continue to evolve, further empirical research will be required to fill in the 
knowledge gaps and to improve existing knowledge-bases. Future recommendations for 
consideration in digital imaging include: 

• A true understanding of the advantages and limitations of the techniques that may be 
used in forensic science. 

• The inclusion of full metadata and acquisition information in publications/reports. 
• Early awareness training in ethics and bias in undergraduate degree programs. 
• The use of noncontact digital imaging techniques over maceration or destructive 

techniques, wherever feasible. 
• Greater consideration on the ethics surrounding the ownership and sharing of digital 

data, with better collaboration to enhance further understanding. 
• Acknowledgment of cognitive bias and integration of control procedures in casework and 

analysis. 
• Exploration of the impact of 3D and immersive technology in courtroom presentation of 

evidence. 
 
Finally, forensic digital imaging could benefit from greater inclusion of cross-disciplinary forensic 
science research. We have demonstrated the wide scope and applications of digital imaging 



 

 

and hope that the Journal of Forensic Radiology and Imaging continues to be a host for such a 
broad discipline. 
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