
1

Multi-Label Random Forest Model for
Tuberculosis Drug Resistance Classification
and Mutation Ranking
Samaneh Kouchaki 1,∗, Yang Yang 1, Alexander Lachapelle1, Timothy M.
Walker 2,3, A. Sarah Walker 2,3,4, CRyPTIC consortium 5, Timothy E.A. Peto 2,3,4,
Derrick W. Crook 2,3,4, and David A. Clifton 1

1Institute of Biomedical Engineering, Department of Engineering Science,
University of Oxford, Oxford, UK
2 Nuffield Department of Medicine, University of Oxford, Oxford, UK
3 National Institute of Health Research Oxford Biomedical Research Centre, John
Radcliffe Hospital, Oxford, UK
4 NIHR Biomedical Research Centre, Oxford, UK
5 a corporate author; for the list of members, please see the section at the end of
this manuscript
Correspondence*:
Samaneh Kouchaki
samaneh.kouchaki@eng.ox.ac.uk

ABSTRACT2

Resistance prediction and mutation ranking are important tasks in the analysis of Tuberculosis sequence3

data. Due to standard regimens for the use of first-line antibiotics, resistance co-occurrence, in which4

samples are resistant to multiple drugs, is common. Analysing all drugs simultaneously should therefore5

enable patterns reflecting resistance co-occurrence to be exploited for resistance prediction. Here, multi-6

label random forest (MLRF) models are compared with single-label random forest (SLRF) for both7

predicting phenotypic resistance from whole genome sequences and identifying important mutations8

for better prediction of four first-line drugs in a dataset of 13402 Mycobacterium tuberculosis isolates.9

Results confirmed that MLRFs can improve performance compared to conventional clinical methods10

(by 18.10%) and SLRFs (by 0.91%). In addition, we identified a list of candidate mutations that are11

important for resistance prediction or that are related to resistance co-occurrence. Moreover, we found12

that retraining our analysis to a subset of top-ranked mutations was sufficient to achieve satisfactory13

performance. The source code can be found at http://www.robots.ox.ac.uk/∼ davidc/code.php14

15
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1 INTRODUCTION

As reported by the World Health Organisation, resistance co-occurrence is very common, and is especially17

so between first-line drugs for treating tuberculosis (TB): isoniazid (INH), ethambutol (EMB), rifampicin18

(RIF), and pyrazinamide (PZA) (World Health Organization, 2017). Two types of resistance co-occurrence19

are especially important: (i) multi-drug resistant TB (MDR-TB) defined as cases that are resistant to at20
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least INH and RIF; and (ii) extensively drug-resistant TB (XDR-TB), defined as isolates that are resistant21

to INH and RIF plus any of the fluoroquinolones such as levofloxacin or moxifloxacin and at least one of22

the three injectable second-line drugs, including amikacin, capreomycin, or kanamycin. Hence, resistance23

co-occurrence to anti-TB drugs has become an urgent public health concern (World Health Organization,24

2017).25

Conventional methods for resistance prediction from whole genome sequences are usually based on26

identifying specific known resistance-conferring variants (i.e. single nucleotide polymorphisms; insertions27

or deletions) and interpreting (i) the presence of any of them as indicating resistance; and (ii) the absence of28

all of them as indicating susceptibility to an individual drug (Schleusener et al., 2017). Most techniques are29

based on a library of resistance-conferring variants for each individual drug (Georghiou et al., 2012; Walker30

et al., 2015; Coll et al., 2015). However, due to high dimensionality of the sequencing data and unknown31

resistance mechanisms, these techniques do not necessarily result in high classification performance32

especially for less-studied drugs. Moreover, such methods predict resistance drug-by-drug based on known33

mutations for each drug, rather than by jointly predicting MDR- or XDR-TB.34

Some mutations are commonly seen in strains that are resistant to multiple drugs (e.g., MDR-TB and35

XDR-TB isolates). This is likely to be because they have no, or very limited, fitness cost (Eldholm36

et al., 2015). This suggests that predicting the global phenotype (e.g., MDR-TB), rather than individually37

predicted phenotypes (e.g., resistance to INH), could be a promising approach. KatG 315 was the most38

common MDR-TB mutation in a dataset of 608 susceptible and 403 MDR-TB isolates in work by Hazbon39

et al. (Hazbón et al., 2006) and also a recent study of 5310 isolates (Manson et al., 2017). Moreover,40

the proportion of isolates with katG 315 mutations was higher in MDR-TB isolates than mono-resistant41

isolates, supporting the hypothesis that these strains have a lower fitness cost and are better able to acquire42

and tolerate additional mutations. Similarly, katG 315, rpoB 445 and rpoB 450 mutations were found to43

be associated with MDR-TB isolates in another study (Van Rie et al., 2001) which identified 90% of all44

MDR-TB in their 5-year dataset. Borrell et al. (2013) observed that the gyrA D94G mutation was associated45

with greater fitness than the gyrA G88C mutation when co-existing with rpoB mutations in strains that are46

resistant to both RIF and quinolones. The later points to a likely epistatic interaction between gyrA D94G47

and rpoB.48

Multi-label learning provides a potential solution to such challenges. Multi-label learning is an49

important classification technique if each sample in a dataset is associated with multiple labels (e.g.,50

resistance/susceptibility to multiple drugs) and if there are correlations between labels (e.g., for resistance51

co-occurrence, there are around 2000 isolates that are resistant to both INH and RIF). In this case, learning52

each label independently, ignoring correlations between labels, results in lower performance. Instead of53

considering resistance to each drug individually, the multi-label technique learns a single model for all54

drugs, and makes a prediction at the sample level. This method is closer to the clinical reality, where drug55

resistance phenotypes are not typically independent of one another of due to using regimens made up56

of a cocktail of drugs. Resistance co-occurrence is especially common in first-line drugs, since standard57

regimens require them to be used together. Existing machine learning methods for TB prediction in the58

literature have focused on single-drug prediction (Zhang et al., 2013; Yang et al., 2018; Farhat et al., 2016;59

Periwal et al., 2011; Deelder et al., 2019), and ignored epistasis and correlation of resistance between drugs.60

Building a multi-label model to account for both of the latter may improve predictive performance and be61

useful for extracting important MDR- or XDR-TB resistance-associated mutations. In the context of this62

study, we compared multi-label random forests (MLRFs) with single-label random forests (SLRFs) for63

the prediction of phenotypic TB resistance. Analysing drugs with high resistance co-occurrence (e.g., RIF64
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and INH) simultaneously should enable patterns reflecting resistance co-occurrence to be exploited for65

resistance prediction. MLRF and SLRF models, on the other hand, would perform closely for drugs that the66

resistance co-occurrence is less common. We also conduct feature analysis for mutation ranking. We trained67

our models on a database of 13402 isolates with resistance phenotypes for up to 11 first- and second-line68

anti-TB drugs (INH, EMB, PZA, RIF, streptomycin, amikacin, moxifloxacin, fluoroquinolones-ofloxacin,69

kanamycin, capreomycin, ciprofloxacin). Resistance/susceptibility to all first-line drugs individually, MDR-70

TB, and cases with resistance to the four first-line drugs (denoted FDR-TB) were considered as labels (i.e.,71

classification “ground truth”) for the analysis. There were few XDR-TB cases (245 isolates) in our dataset72

due to the high percentage of missing labels, hence XDR-TB was not considered in our study. MLRF73

predicts labels for all considered drugs simultaneously and also can rank all associated mutations that74

are important in drug resistance prediction. Such analysis can also help to find mutations associated with75

resistance co-occurrence. In a substudy, the models were retrained (and the classification performance was76

recalculated) on a subset of ranked features instead of using all available features; this substudy allows us77

to evaluate the influence of selected highly-ranked features on the classification performance (as might be78

useful in creating a lightweight system for use in real-time, in practice).79

In summary, to date, RF-based studies for drug resistance prediction have only considered each drug80

individually (Farhat et al., 2016; Kouchaki et al., 2018). However, greater power may be obtained with81

RFs through multi-label analysis incorporating information from all drugs to include the co-occurrence of82

drug resistance and epistasis. Being an ensemble method, the MLRF also has advantages considering that83

there are fewer resistant examples available than susceptible isolates (i.e., datasets are highly imbalanced)84

that are common in the study of TB genomics. We focus on comparing MLRFs and SLRFs in terms of85

classification performance, mutation ranking, and the effect of feature selection on the performance.86

2 MATERIALS AND METHODS

We studied a diverse and large dataset collected from 16 countries across six continents.87

2.1 Whole genome sequencing88

Details of DNA sequencing and our data source (including the European Nucleotide Archive/Sequence89

Read Archive accession numbers) are presented in (CRyPTIC Consortium and the 100,000 Genomes90

Project, 2018; Walker et al., 2015) and Supplementary I. Sequenced reads were aligned to the reference91

MTB strain, and nucleotide bases were filtered based on the sequencing and alignment quality, and per-base92

coverage. Low confidence nucleotide bases were denoted as null calls. There are several ways to treat a null93

call in an isolate: (i) removing the sample completely from the analysis, which greatly reduces the sample94

size (since 34% of isolates have one or more null calls in the genetic regions of interest) and generalisability;95

(ii) considering the null calls as no variants (i.e., mutation presence = 0), which is a conservative option96

and means that performance will be an underestimate of true performance if all variants were known; (iii)97

considering null values as missing and impute their values, on either a single or multiple basis. We chose98

the second option (assuming absence of variant) because the total number of variant positions across the99

genetic regions of interest (5919 positions) and across all isolates (13402) with null calls was very small100

(0.19%); and because of the complexity of multiple imputation models that would be needed for (iii), based101

on the 5919 positions. This approach is effectively a “single” hard (i.e., conservative) imputation.102
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2.2 Data description103

The dataset used in this paper contains 13402 isolates collected from across the world. In this study, we104

followed previous work in which 23 genes (Supplementary A, Table S1) were targeted containing known105

resistance-associated mutations (Walker et al., 2015). For each isolate, the presence/absence of a variant106

was represented by a binary variable, with 1 indicating presence and 0 indicating absence. Across the107

23 candidate genes, in total, 5919 variants were found across isolates, including multiple variants at the108

same position. The mean number of variants per isolate was 14, ranging between 1 and 132. Hence, a109

binary vector of length 5919 was formed for each isolate, and considered to be our feature space (i.e., set110

of input variables). For each drug and isolate, a binary label of resistance/susceptible was considered. The111

“ground truth” phenotypic information was available for up to 11 anti-TB drugs using culture and confirmed112

selective culturing on Lowenstein-Jensen media. Not all samples were tested against all drugs with missing113

values, especially for second-line drugs where missingness of the phenotypical label was substantial. There114

were only a few XDR-TB cases (245 isolates) in our dataset due to the high percentage of missing labels115

and hence XDR-TB was not considered in our study.116

For the four first-line drugs, more isolates were susceptible than were resistant. For example, more than117

88% of isolates tested for EMB and PZA and 75% for INH and RIF were susceptible. Moreover, there118

were several isolates with multiple drug resistance considering the four first-line drugs (Figure 1).119

2.3 Predicting TB drug resistance from sequence120

Existing methods predominantly classify drug resistance as present or absent based on a library of121

predetermined variants from the literature. These methods, here denoted direct association (DA), use a122

logical ‘OR’ rule to classify an isolate against a given drug: the isolate is labelled as resistant if any of its123

mutations is a previously-known resistant variant. Otherwise, it is classified as susceptible (i.e., if only124

susceptible variants exist in the isolate). The library described by Walker et al. in 2015 was used throughout125

the classification comparison here.126

2.4 MLRF for TB classification127

The RF is an ensemble method that is based on building several independent decision tree classifiers128

on different subsets of the dataset. It considers the combination (often the average) of the output of each129

independent classifier to improve performance in producing overall predictions.130

Multi-label learning is a supervised problem in which several labels are learned simultaneously. In the TB131

data, there are many cases of MDR-TB, as shown in Figure 1 (World Health Organization, 2017). Using132

multi-labels (i.e. all phenotypes simultaneously, rather than considering each independently) can reduce133

the training time as only one model is learned, and predictive performance can be increased (Evgeniou and134

Pontil, 2004) due to learning correlation between inputs and the multiple outputs. The RF model can be135

extended to learn and predict multiple drugs simultaneously considering a joint score (Gini index) across136

all considered drugs (Faddoul et al., 2012). Specifically in each decision tree, for each pair (f ,x) of a137

feature f (mutation) and a value x (isolate) with a label y (resistance phenotype) at node (t):138

Gini index, GIJ(t, f, x) =
∑
y∈Y

GIy(t, f, x) (1)

where Y is the number of labels (two for MDR-TB and four for FDR-TB) and GIJ and GIy are the joint139

and per-label Gini indices respectively. The objective is to minimise Eq. (1) and hence (f, x) is selected to140
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best separate (defined by a lower joint Gini index) the data at each node in the tree. Hence, during training,141

it can compute the importance of each feature by averaging the impurity decrease associated with each142

mutation.143

Supplementary B, Figure S1 shows a sample decision tree from a forest learned by MLRF for the four144

first-line drugs (EMB, INH, RIF, and PZA). In comparison, a tree learned by SLRF for EMB is shown in145

Supplementary B, Figure S2. The tree grows in the best-node-first fashion (defined by impurity reduction1).146

katG S315T, rpoB S450L, embB M306V, embB Q497R, and embB M306I are common mutations in147

both trees. katG S315T was the most highly-ranked feature in both trees, but other rankings of features148

vary between models. A feature (mutation) that results in the lowest Gini index is selected to best split149

the data at each node. The MLRF learns a joint Gini index (Eq. 1), and hence finds that feature that best150

splits the data considering all drugs. In contrast, the SLRF only considers the Gini index based on one151

drug at each node (e.g., EMB). After the node split, another feature is selected that further reduces the152

Gini index. Building various trees on different subsets of the data can then automatically pick important153

features. Consequently, MLRF ranks mutations to best classify resistance to all drugs. Hence, it also helps154

the model learn mutations associated with resistance co-occurrence. Conversely, SLRF ranks mutations155

to best classify an individual drug ignoring any co-occurrence. The SLRF also ranks some mutations156

from other drugs as being important as seen in Supplementary B, which effectively reflects underlying157

interaction between phenotypes. After building the models, samples traverse each tree by starting at the158

root node, reaching a leaf node. The classification is calculated at the leaf node by majority vote and the159

final classification is obtained by averaging results across trees.160

2.5 Multi-label stratification161

Stratified sampling (i.e., taking equal proportion from each class) is especially important in TB analysis162

due to the imbalanced nature of the data and the co-occurrence of drug resistance for different drugs, with163

some resistance patterns being much rarer than others (Supplementary C, Table S4). Hence, an iterative164

algorithm termed multi-label stratified cross-validation (Sechidis et al., 2011) was considered here to avoid165

the use of subsets without any examples of rare labels. Multi-label stratified cross-validation starts with a166

label combination that has the fewest samples. Considering rare label combinations before more frequent167

combinations increases the chance of distributing these rare examples evenly among prediction of the data168

between training and test sets. In each iteration, one sample from the most rare combination is selected and169

added to a partition depending on the number of samples with that label already in each partition. Then, the170

partitioning continues with another sample with the same label if any remain; otherwise, a sample from the171

second-most rare label combination is considered. This process continues until all samples are assigned to172

a subset.173

2.6 Feature spaces174

To evaluate the performance of our model and to obtain feature rankings, five feature sets were considered:175

[F1] the baseline feature space of all variants found within 23 candidate genes (N = 5918); [F2] as a subset176

of feature set F1 includes only drug-associated genes for a particular drug (N = 3366 that obtained by177

only considering the variants within the genes that are known to be associated with the first line drugs,178

Supplementary A, Table S1); [F3] known variants from (Walker et al., 2015) for all first-line drugs (N =179

1874); [F4] and [F5] are obtained by dropping isolates with any known resistance-associated mutations180

from feature sets F1 and F2 respectively – that is, feature sets F4 and F5 allow us to investigate whether181

1 A node split decreases the gini impurity criterion for the two descendent nodes.
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phenotypically resistant isolates without well-known resistance mutations can be identified from other182

sequence variations (N = 4755 and 2417, respectively). Feature set F1 includes all variants spaces, which is183

preferable for less-studied drugs. For well-studied drugs, using the known catalogue of resistance-associated184

mutations has been shown to perform well.185

2.7 Training and testing186

For all experiments, model construction and evaluation was performed over 10 iterations of 5-fold187

multi-label stratified cross-validation. In each iteration, 20% of the dataset was used as the test set and the188

remaining 80% of the data as the training set. Here, the “internal” cross-validation on the 80% training189

dataset was used to select a decision threshold that maximises the accuracy; this threshold was then used190

for prediction in the test set. Moreover, we considered fixed RF hyper-parameters for both techniques191

(50 estimators with maximum depth of two and maximum features as the square root of input variants).192

The performance in terms of accuracy, sensitivity, specificity, and area-under-the-ROC-curve (AUC) was193

calculated for the test set (for reporting final “hold-out” results).194

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN
, Specificity =

TN
TN + FP

.

(2)

where TP, TN, FP, and FN are true positive, true negative, false positive and false negative respectively,195

and where P and N are resistance and susceptible samples, respectively. The output of the models is a196

probability estimate P (C1|X) of the posterior probability of input feature vector X belonging to class C1197

(resistant). We then define a threshold k on P (C1|X), such that a classification of X 7→ C1 (i.e., resistant)198

is made if P > k, and a classification of X 7→ C0 (i.e., susceptible) if P ≤ k. Varying threshold k results199

in different TP, FP, FN, and TN rates and thus sensitivity of specificity vary according to the value of200

k ∈ [0, 1]. However, AUC is calculated over all value of k, and is therefore insensitive to any particular201

choice of decision threshold k. The workflow of examined classifiers can be seen in Supplementary C.202

3 RESULTS

3.1 Comparison of top performing classifier and DA203

Table 1 compares the performance of DA and the best performing model considering feature sets F1-F5204

for INH, EMB, RIF, PZA, MDR-TB, and FDR-TB. Our results show that the MLRF is the best performing205

model for all drugs except for PZA. feature set F3 was the best feature set for INH, RIF, and MDR-TB,206

while feature F1 was the best feature set for EMB, PZA, and FDR-TB all in terms of AUC. DA showed207

higher specificity in comparison with the best performing model, but had lower sensitivity and AUC in all208

cases.209

3.2 Detailed comparison of MLRF, SLRF, and DA210

Supplementary D provides further details of the classification results. In terms of classification211

performance, both SLRF and MLRF perform fairly similarly with slight improvements in AUC and212

sensitivity considering MLRF especially for INH and RIF (p < 0.01). Compared to DA, sensitivity213

increased for all drugs (considering feature sets F1 and F3) and for all drugs except RIF when considering214
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feature set F2. Both MLRF and SLRF had higher AUC than DA considering feature sets F1-F3 for215

EMB, considering feature set F3 for INH and RIF, considering feature sets F1 and F3 for MDR-TB and216

considering all feature sets for PZA and FDR-TB.217

3.3 Mutation ranking218

The 10 most important mutations based on MLRF and SLRF and feature sets F1-F5 is shown in219

Supplementary E. In summary:220

• There were several known mutations that were commonly ranked as being important for the purpose221

of prediction, regardless of model (MLRF and SLRF) and drug: (i) katG S315T, rpoB S450L and222

embB M306V for feature set F1; and (ii) the latter three mutations along with embB M306I for feature223

sets F2-F3. These are the most common known resistance mutations associated with INH, RIF, and224

EMB, respectively (Walker et al., 2015). However, each of these highly-related mutations had different225

importance values and resulted in different classification performance across various MLRFs and226

SLRFs trained on different feature sets.227

• Analysis using feature set F4 identified several important mutations from other genes related to228

second-line drugs (e.g., rrs G349A and eis C-12T).229

• There was considerable overlap between mutations ranked for all first-line drugs and FDR-TB. In230

other words, SLRF ranking for a given drug indicated multiple mutations that are associated with other231

drugs.232

• Several mutations selected as being important were not in the DA library and were not lineage defining.233

Some of these mutations occurred within genes associated with a given first-line drug. Detailed234

information of their occurrence in isolates is shown in Supplementary F.235

• Considering (i) feature set F1, (ii) all variants in drug-associated genes for a given drug from feature236

set F2, and (iii) known drug-resistant variants for a given drug extracted from feature set F3, resulted237

in identifying a list of candidate mutations that are important for resistance prediction or are related to238

resistance co-occurrence (Supplementary G).239

3.4 MLRF and SLRF performance on a subset of important features240

As described earlier, a substudy introduced retraining models on a subset of ranked features (instead241

of using feature sets F1-F5). Table 2 and Figures 2 and 3 summarise the performance of the different242

classifiers when the feature set is restricted to that subset of mutations in feature sets F1-F3 ranked above243

importance thresholds of {0.05, 0.01, 0.005, and 0.001} (details in Supplementary E). In summary:244

• The best model for each drug (Table 2) still performs better than DA even when using a subset of245

important mutations (16-37 mutations) for INH, EMB, PZA, MDR-TB, and FDR-TB in terms of AUC246

and sensitivity (p < 0.01).247

• Considering only 16-37 features rather than the larger feature sets F1-F5 resulted in better performance248

for EMB and FDR-TB and very similar performance for others (Table 2).249

• The SLRF performed better for EMB, PZA, and FDR-TB when restricted to using highly-related250

mutations in this way.251

• Increasing the number of features (i.e., decreasing the threshold on feature importance used to select252

features in this substudy) did not always improve the performance (e.g. FDR-TB).253

• Increasing the number of features usually increased sensitivity while reducing specificity.254
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4 DISCUSSION

Our analysis demonstrates that machine learning methods, specifically MLRF (considering feature sets255

F1-F3), had higher sensitivity but lower specificity compared with DA (at their points of higher accuracy).256

Sensitivity and AUC increased substantially for PZA and FDR-TB when using MLRFs. There may be257

several reasons for this finding, including (i) the existence of additional resistance-associated mutations to258

those reported in the literature; (ii) the existence of certain combinational patterns of resistance-related and259

epistasis and lineage-related mutations; and (iii) co-occurrence of resistance (for the 23 genes considered260

in this paper). Supplementary G provides a list of possible candidates for (i) and (iii). Lower specificity261

could be due to the existence of several isolates with resistance-associated mutations that were incorrectly262

labelled as susceptible. It could be because of limitations in the routine phenotyping relating to dichotomous263

thresholds of ‘resistant’ vs ‘susceptible’ applied to a continuous measure of the minimum inhibitory264

concentration, as is well known for M306V for example (Khan et al., 2019). This could also have some265

additional negative effects on prediction of co-occurring resistance. Another reason could be the threshold266

setting for obtaining sensitivity and specificity. There is a trade-off between sensitivity and specificity in267

which increasing one can result in decreasing the other. The use of feature sets F4 and F5 resulted in lower268

prediction performance then other feature sets mainly because of very low numbers of resistant isolates left269

after dropping those with known resistant-associated mutations (Supplementary H).270

The best method based on MLRF had only slightly higher sensitivity and AUC compared to SLRF for271

most drugs (Supplementary D), possibly because of several common MDR-TB mutations, i.e. katG315272

being a strong resistance-conferring variant, as in (Hazbón et al., 2006). As the feature space is the same273

for MLRF and SLRF models, both techniques can take advantage of using the occurrence of mutations274

that is more likely to occur in multi-drug resistant samples. However, learning one model for all labels as275

in MLRF makes better use of such mutations as it learns all drugs simultaneously. Consequently, MLRF276

also enhances performance for single drugs by using existing resistance co-occurrence. PZA was a notable277

exception, potentially due to the existence of many less strong variants related to PZA resistance. Another278

reason for the very close AUC between MLRF and SLRF could be that we fixed the RF hyper-parameters279

(number of decision trees, maximum number of variant for each decision tree, ...) for both techniques.280

Future work introducing a separate parameter optimization could possibly increase the difference in281

performance.282

Our results confirmed the importance of several known mutations with resistance co-occurrence (e.g.,283

katG S315T, rpoB S450L, and embB M306V). Feature set F3 was the best feature set for well-studied drugs284

(INH, RIF, and MDR-TB) but feature F1 was better for others. This shows that there are additional mutations285

that are not within the current library of known mutations (used for DA) but which are important in286

classifying resistance; additional co-occurrence patterns of mutations may exist, as might weak interactions287

between mutations that may have joint effects. Classification based on MLRF and feature sets F1 and F2288

mainly identified known resistance-associated mutations as being important. This builds confidence in our289

approach. However, after removing isolates with any known variants, several mutations were ranked as290

being important (i) from other genes (e.g., related to second-line drugs); (ii) from known lineage-defining291

variants; and (iii) that were not in the library and were not lineage-defining (by checking if they occurred in292

more than one lineage, Supplementary F and G). Our results thereby confirm the possibility of additional293

important mutations (for prediction) to those already known to be important for TB resistance classification.294

We note that the tree depth was not limited for the learning procedure. Consequently, as we go deeper in295

the trees learned based on feature set F1, all other features can be seen. However, in TB there are a few296

strong mutations with high importance values (e.g., katG S350L) which result in very low importance297
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values for other mutations. Removing the impact of such highly important mutations as in feature sets F4298

and F5 would allow investigation of whether or not phenotypically resistant isolates without well-known299

resistance mutations can be identified from other sequence variations. In other words, although a deeper300

tree can see wider spectrum of mutations, feature sets F4 and F5 can zoom in other sequence variations by301

avoiding the impact of highly important mutations.302

Considering only the top-ranked important mutations (as in our substudy) resulted in higher AUC303

compared to DA for all drugs except RIF (Table 2). Thus a small number (16-37) of important features304

are generally sufficient for RF-based classification. Similar to considering the whole feature set, IF1 and305

IF3 outperformed IF2, IF4 and IF5 (where “I” prefix refers to our substudy). However, the MLRF only306

performed better then the SLRF for INH, RIF, and MDR-TB. Considering IF1-IF5, the SLRF was trained307

on important mutations for each drug and not on the highest-ranking mutations based on MLRF. Hence,308

different feature sets were used for SLRF and MLRF training. SLRF based on only important features for309

PZA, FDR-TB, and EMB had better performance compared with the common features based on MLRF.310

The MLRF was better for INH, RIF, and MDR-TB, possibly because the variants related to these drugs311

were stronger predictors, while those of PZA and FDR-TB reflect a potential combination effect between312

variants that are individually weak prediction of resistance. That is, the pattern of resistance for INH, RIF,313

and MDR-TB dominates the multi label learning, while the other can be captured by the SLRF. Moreover,314

errors in routine phenotypes of individual drugs impact MLRF more than SLRF. One limitation of the315

SLRF model is that it ranked highly many weak variants that are lineage-related mutations (Supplementary316

D). We need to note that lineage defining mutations might be helpful where resistance is over-represented317

in one lineage (e.g., MDR-TB in lineage 2). Figure 2 demonstrates that increasing the number of features318

by reducing the feature-selection threshold usually increases AUC, but this is not always the case; e.g.,319

IF1 and IF2 for FDR-TB (Figure 2). Consequently, our results indicate the importance of feature ranking320

to reduce the effect of unrelated mutations in the learning process. Another important conclusion of our321

work is that by increasing the number of features used, sensitivity improved at the expense of related322

specificity, confirming that a smaller feature set better predicts susceptible samples while there is a need323

to have more features to better predict resistant samples (Supplementary E). A trade-off typically exists324

between sensitivity and specificity.325

We note there are several limitations regarding our analysis. An assumption of feature ranking should326

be that the input features are independent; if there are some highly correlated features, any of them could327

be selected as an important feature. In other words, machine learning techniques, including RF, aim to328

identify patterns in the data that contribute to predictions. After selecting one such feature, the importance329

of other correlated features is decreased considering the classification performance. From a classification330

point of view, it is actually useful to do this as it removes the features whose effect is already described331

by other closely-related features. Hence, SLRF and MLRF are typically based on correlation and not332

causation, which means that lineage associate mutations, in addition to mutations conferring resistance333

to other drugs, can be used in the learning. However, ranking such mutations as important is a limitation334

of existing machine learning techniques in general. This mainly impacts performance in local settings,335

where the level of resistance co-occurrence between first- and second-line drugs is different, or where336

such mutations are completely absent or very abundant. Considering population level structure and cluster337

effect in the learning will be considered as a future work. For feature selection, an additional step might be338

helpful to indicate the correlated variants. Such effects can be decreased by random selection of features339

but they cannot be removed completely.340
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Random selection may also affect the selection of rare but important mutations. We note that the dataset341

in our application, which reflects the imbalance encountered in clinical practise, with (for example) a342

high percentage of samples resistant to INH + RIF that can bias feature ranking in favour of those more343

common labels. Finally, other limitations include any errors in phenotypes that may exist; removing equal344

importance of all mutations a priori; and ignoring data with missing labels.345

5 CONCLUSION

MLRF and SLRF classifiers were investigated for TB resistance classification and mutation ranking346

considering different subsets of extracted variants. Several common mutations were identified as important347

could confirm the existence of several MDR- and FDR-TB associated patterns. Furthermore, restricting348

analysis to the 16-37 top-ranked mutations might be useful in creating a lightweight system for use in349

practice. The main advantage of machine learning methods, especially in our application with a large350

number of features, is hence capturing any association between the feature space and the prediction of351

resistance, in addition to learning potentially new mutations associated with MDR-TB and FDR-TB (rather352

than simply predicting resistance to independent drugs).353
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TABLES

Table 1. Performance of the best machine learning classifier and DA considering INH, EMB, RIF, PZA,
MDR-TB, and FDR-TB. Sensitivity, specificity and AUC (mean ± standard error) were reported. The
Wilcoxon signed-rank test was used to calculate the p-value of each method compared with the DA and ∗
indicates p < 0.01 vs DA.

DA Best method
Drugs Sensitivity Specificity AUC Feature Set + Classifier Sensitivity Specificity AUC
INH 91.15 ± 1.19 98.96 ± 0.25 95.05 ± 0.60 F3 + MLRF 93.76∗ ± 0.80 97.79 ± 0.35 96.01∗ ± 0.47
EMB 85.10 ± 1.79 94.91 ± 0.38 90.00 ± 0.97 F1 + MLRF 91.75∗ ± 1.81 91.58∗ ± 0.77 91.70∗ ± 0.75
RIF 91.52 ± 1.34 98.68 ± 0.21 95.10 ± 0.65 F3 + MLRF 93.16∗ ± 0.80 98.02 ± 0.32 96.00∗ ± 0.40
PZA 43.21 ± 2.72 98.58 ± 0.23 70.89 ± 1.35 F1 + SLRF 87.27∗ ± 1.74 90.71∗ ± 0.72 88.99∗ ± 0.84

FDR-TB 37.34 ± 3.97 98.59 ± 0.22 67.96 ± 1.99 F1 + MLRF 87.58∗ ± 2.79 92.98∗ ± 0.45 90.28∗ ± 1.23
MDR-TB 89.84 ± 1.34 99.12 ± 0.178 94.48 ± 0.69 F3 + MLRF 93.70∗ ± 0.76 97.45 ± 0.36 95.58∗ ± 0.41

Table 2. Performance of best models restricting to only important mutations for classification. The number
of mutations used for the classification, best model and performance for INH, EMB, RIF, PZA, MDR-TB,
and FDR-TB are shown. Increase/decrease in performance in comparison with the best model in Table 1
are indicated with up/down arrows respectively. “I” prefix refers to our substudy.

Drug INH EMB RIF PZA FDR-TB MDR-TB
Best Model IF3 (0.001) + MLRF IF3 (0.005) + SLRF IF3 (0.001) + MLRF IF1 (0.001) + SLRF IF3 (0.01) + SLRF IF3 (0.001) + MLRF

Number of mutations 37 17 37 32 16 37
Sensitivity 92.88 (↓ 0.28) ± 0.93 91.10 (↓ 0.65) ± 1.76 92.19 (↓ 0.07) ± 1.10 84.73 (↓ 2.54) ± 2.49 91.74 (↑ 4.16) ± 3.37 93.76 (↑ 0.06)± 1.33
Specificity 97.88 (↑ 0.09) ± 0.31 92.70 (↑ 1.12) ± 0.51 97.77 (↓ 0.22) ± 0.52 92.83 (↓ 2.12) ± 0.52 90.06 (↓ 2.92) ± 0.61 97.38 (↓ 0.07) ± 0.49

AUC 95.48 (↓ 0.53) ± 0.40 91.90 (↑ 0.20) ± 0.82 94.98 (↓ 1.02) ± 0.53 88.78 (↓ 0.21) ± 1.17 90.90 (↑ 0.62) ± 1.56 95.47 (↓ 0.11) ± 0.62
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Figure 1. The phenotypic profile of first-line drugs; (a) each row shows the number of isolates that are
resistant to at least the indicated drugs combination and (b) heatmap quantifying the number of instances
of resistance co-occurrence between drugs. Off-diagonal elements show resistance co-occurrence between
different drugs and diagonal elements show resistant to a single drug.
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Figure 2. AUC (%) comparison considering MLRF and four thresholds {0.05, 0.01, 0.005 and 0.001} for
feature selection. “I” prefix refers to our substudy.
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Figure 3. AUC (%) comparison considering SLRF and four thresholds {0.05, 0.01, 0.005 and 0.001} for
feature selection. “I” prefix refers to our substudy.
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