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Abstract
Precision health initiatives aim to progressively move from 
traditional, group-level approaches to health diagnostics and 
treatments toward ones that are individualized, contextualized, 
and timely. This article aims to provide an overview of key 
methods and approaches that can help facilitate this transition 
in the health behavior change domain. This article is a narrative 
review of the methods used to observe and change complex 
health behaviors. On the basis of the available literature, 
we argue that health behavior change researchers should 
progressively transition from (i) low- to high-resolution 
behavioral assessments, (ii) group-only to group- and 
individual-level statistical inference, (iii) narrative theoretical 
models to dynamic computational models, and (iv) static to 
adaptive and continuous tuning interventions. Rather than 
providing an exhaustive and technical presentation of each 
method and approach, this article articulates why and how 
researchers interested in health behavior change can apply 
these innovative methods. Practical examples contributing 
to these efforts are presented. If successfully adopted and 
implemented, the four propositions in this article have the 
potential to greatly improve our public health and behavior 
change practices in the near future.
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ACCOUNTING FOR THE INHERENT COMPLEXITY OF 
HEALTH BEHAVIOR CHANGE
Precision medicine [1] and precision health [2] (i.e., 
diagnostics and treatment strategies that take indi-
vidual variability into account) have been greatly 
expanded in the past years through a variety of 
methods and computational techniques, such as 
genome sequencing, big data, and wearable tech-
nology. These initiatives aim to progressively move 
beyond approaches focused on average patient re-
sponses toward ones that are individualized, con-
textualized, and timely [2]. In this article, we aim to 
provide an overview of key methods and approaches 
that can help facilitate the transition to precision ini-
tiatives in the health behavior change domain.

Health behaviors include any activities under-
taken by individuals for the purpose of maintaining, 
enhancing, or protecting their health [3], such as 
regularly practicing physical activity, eating healthily, 

limiting alcohol consumption, and abstaining from 
tobacco smoking. Despite the well-established ef-
fects of such behaviors on health and important 
prevention efforts in the past decades, the majority 
of people in high income countries experience dif-
ficulties in adopting and maintaining health behav-
iors in the long run [4,5]. In the USA and Europe, 
only a small proportion of people (20–30%) report 
meeting the national physical activity guidelines [4]. 
In the same regions of the world, 10–30% are cigar-
ette smokers [6] and 30% of adolescents in the USA 
report consuming at least one sugar-sweetened bev-
erage per day [7].

In contrast with low-occurrence behaviors (e.g., 
cancer screening and vaccination uptake), repeated-
occurrence behaviors (e.g. physical activity, alcohol 
reduction) have to be performed (or avoided) on a 
regular basis over the entire lifespan, across different 
contexts [8]. Repeated-occurrence behaviors there-
fore tend to be dynamic, multi-factorial, and idiosyn-
cratic; research shows that behaviors such as physical 
activity and sleep [9], eating behaviors [10,11], and 
smoking lapses [11] vary from day to day at the indi-
vidual level [12,13] in response to a dynamic interplay 
of intra-individual (e.g., motivation), inter-individual 
(i.e., social support), and environmental/contextual 
factors (i.e., weather) [14]. As these behaviors are dy-
namic and manifest idiosyncratically (i.e., differently 
from one person to another), one specific influence 
(e.g. social support, weather) or intervention may be 
more or less informative/effective for different indi-
viduals [15].

In this article, our central argument is that, besides 
theoretical innovations [16–19], the efficient promo-
tion of health behaviors requires the use of innova-
tive methods which take account of the inherent 
complexity of health behavior change. By com-
plexity, we refer to the dynamic, multi-factorial, and 
idiosyncratic nature of health behavior change. The 
aim of this article was to articulate a set of innovative 
methods and approaches that might help to better 
address the complexity of health behavior change. 
We wish to provide a comprehensive overview of 
why and how researchers can apply these innovative 
methods and how, in concert, they will enable a form 
of precision behavioral science. Specifically, we argue 
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the following: health behavior change researchers 
should progressively transition from (i) low- to high-
resolution behavioral assessments, (ii) group-only to 
group- and individual-level statistical inference, (iii) 
narrative theoretical models to dynamic computa-
tional models, and (iv) static to adaptive and con-
tinuous tuning interventions (see Table 1).

From low- to high-resolution behavioral assessments
The health behavior change literature has been 
dominated by a low-resolution measurement para-
digm, illustrated by the high volume of studies 
adopting cross-sectional, prospective, longitudinal 
(nonintensive), and pre- and postintervention re-
search designs [20]. In the past decades, greater ac-
cessibility to technologies such as smartphones and 
wearable devices (e.g., smart watches) has facilitated 
the real-time (or near real-time) assessment of health 
behaviors and their influences/outcomes in daily life 
[21,22]. Studies incorporating repeated assessments 
have highlighted the dynamic nature of health be-
haviors and their influences, illustrated at different 
time scales [9,23,24]. In addition to conceptual 
questions that can only be addressed through high-
resolution data, such as the variability/instability of 
a particular process or questions of temporal and 
spatial synchronicity [25], failing to address the 
dynamics of health behaviors (e.g., by observing a 
phenomenon at the wrong temporal scale) can lead 
to incomplete or sometimes even erroneous conclu-
sions [26]. For example, results from a randomized 
controlled trial in which group differences in alcohol 
consumption post-intervention were measured at 30 
different time points demonstrated that focusing on 
the commonly used 1- and 6-month follow-up assess-
ments might lead to erroneous conclusions about 
the effectiveness of an intervention [23]. The import-
ance of observing a phenomenon at the right tem-
poral frequency is graphically illustrated in Fig.  1 
(for an empirical example, see [28]).

Empirically, one way to avoid the issue highlighted 
above is to measure the variables/phenomena of 
interest at the highest temporal resolution possible 
given, for example, physical constraints of meas-
urement devices. Starting with an initially high 
resolution (e.g., measuring physical activity con-
tinuously over the course of a trial), one can then 
identify when meaningful variance occurs (Fig. 1). 
Theoretically, when selecting the temporal reso-
lution, it is useful to draw on the literature in terms 
of the extent to which and over what time frame the 
variables of interest are expected to display mean-
ingful variation [20]. Using that, one can then seek 
to establish a measurement protocol that does not 
violate the “Nyquist Principle” (for a definition, see 
[29]). Specifically, the Nyquist Principle postulates 
that, for any given phenomenon, the sampling rate 
needs to be twice the degree to which meaningful 
variance and change is observed. For example, if Ta
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theory postulates that meaningful variation in motiv-
ation will occur every 30 min, then sampling should, 
ideally, occur at least every 15 min. If neither prior 
empirical work nor theory is a useful guide, then a 
practical approach is more appropriate. Namely, 
one should select the highest resolution that is prac-
tically feasible and work backwards from there.

In practice, behavioral monitoring can be done 
through passive detection (e.g., recording the 
number of steps on any given day via an acceler-
ometer or amount of rain via GPS-derived informa-
tion linked with weather sensor data) or actively by 
asking participants to answer a series of brief ques-
tions or complete short tests. At present, the most 
widely used real-time monitoring method is the 
“experience sampling method” (ESM) (also known 
as “ecological momentary assessments”; EMAs), 

the “measurement-burst design,” and “digital 
phenotyping.” EMAs and ESM involve the meas-
urement of relevant psychological and behavioral 
phenomena in or near real-time [30]. Measurement-
burst designs involve widely spaced successions of 
short EMAs/ESM periods, repeated over longer 
time periods [31] (e.g., 1-week, 3 times per year). 
Digital phenotyping involves the use of sensors and 
digital traces (e.g., information gathered passively 
via the use of digital tools, such as free-form text, 
app and social media interactions) to infer psycho-
logical and behavioral constructs [32].

From group-only to group- and individual-level statistical 
inference
Measuring behaviors and their influences at a high 
resolution has another key implication: the sample 

Figure 1 | Simulated percentages of a person’s level of motivation (y-axis) modeled over time (x-axis); (A) measurement of motivation 
across three time points, representing conventional intervention evaluation at baseline, post-intervention, and at a longer-term follow-up; 
(B) measurement of motivation on different days compared with (A) but maintaining the same measurement frequency; (C) measurements 
at a higher sampling frequency (40 time points instead of three); (D) linear regression line (dashed) and LOESS regression line (solid), 
fitted to the measurements in (C); (E) measurements at a higher sampling frequency (400 time points instead of 40), revealing a process 
of “deterministic chaos.” Figure courtesy of Matti Heino, University of Helsinki, see [27]. 
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size becomes the function of the total number of ob-
servations per individual, as opposed to the total number 
of individuals. This allows for individual statistical 
modeling [33,34] (i.e., building a separate statistical 
model for each individual). This approach to stat-
istical modeling is also termed “idiographic,” and 
is distinct from the traditional, “nomothetic” ap-
proach, which relies on the pooling of data from a 
group of participants [35].

Adopting an idiographic approach to statistical 
modeling in behavior change research has several 
advantages. With regards to feasibility, when little 
is known about a complex phenomenon, the idio-
graphic approach can result in more rapid, efficient, 
and cost-efficient learning that is directly applicable 
to and useful for the unit from whom the data were 
collected (e.g., a patient), compared with the trad-
itional, nomothetic approach [35,36]. At the concep-
tual level, modeling individual trajectories, rather 
than averaging them, helps to better understand het-
erogeneity with regards to a particular behavioral 
influence or an intervention’s effectiveness [37,38]. 
Ultimately, the modeling of individual trajectories 
can help inform the development of highly tailored 
interventions, in line with the objectives of precision 
health [39,40] (e.g., identifying relevant, actionable 
variables to intervene on for a particular individual 
in a specific context). Finally, individual statistical 
modeling prevents potential fallacies of unfounded 
group-to-individual generalizability [15]. Illustrating 
this issue, a study investigating the daily relation-
ships between physical activity and stress over a year 
shows that, on average, physical activity on a day 
was significantly associated with a reduction in stress 
at the end of the day [41]. However, at the individual 
level (i.e., using individual statistical modeling to un-
pack relationships for each participant), physical ac-
tivity was significantly associated with stress for only 
20% of the participants (15 of the 69 participants; 
a similar effect is illustrated in Fig.  2). Research 
adopting the idiographic approach has therefore 
stressed the importance of demonstrating consist-
ency between group- and individual-level inferences 
[15].

Various visualization techniques and statistical op-
tions are available to model trajectories or explore 
a specific question for a single individual, although 
the particular analytic technique used largely de-
pends on the study objective and the nature of the 
data [42–45]. Extensions of several statistical ap-
proaches, e.g., generalized linear mixed models, 
generalized additive mixed models, network ana-
lyses, or Bayesian analyses, can be applied to ex-
plore hypotheses at the individual level [46–48]). 
Slightly more complex and exploratory options 
are also available to identify a unique set of de-
terminants/predictors for a specific behavior and 
individual (i.e., tailoring variable selection). For 
example, classification procedures, also referred to 

as machine learning methods (see [49]), have been 
used to predict smoking behavior [50], and system 
identification techniques, derived from the field 
of control systems engineering, have been used to 
identify factors associated with walking behavior 
[51]. It should also be noted that, often, idiographic 
and nomothetic approaches can be usefully com-
bined; a nomothetic approach may be prioritized 
at the beginning of the data collection period, sub-
sequently switching to idiographic modeling when 
a sufficient number of observations per participant 
becomes available [52].

From narrative theoretical models to dynamic 
computational models
Clearly specifying beliefs, assumptions, hypotheses, 
and, by extension, theories about a given phenom-
enon is foundational for conducting rigorous, con-
firmatory science [53]. Returning to our point about 
complexity, experimental hypotheses and theories 
need to be specifiable in a way that matches the in-
herent complexity of the phenomenon under inves-
tigation. It has been argued that, to be complete, a 
theoretical model must contain four essential elem-
ents: what the key constructs are, how and why they 
are related, where and when they are applicable, and 
to whom [54]. Yet, in extant models of behavior 
change, three of these elements are typically under-
specified: the temporal, contextual, and individual 
components [20].

As argued elsewhere [55–57], one way of ad-
dressing the complexity of behavior change theories 
is to use computational modeling, i.e., the transla-
tion of a model’s assumptions into mathematical 
equations. Computational modeling makes explicit 
the functional forms of the relationships between a 
model’s components and how these vary over well-
specified time periods and scenarios representing, 
for example, different contexts (e.g., behavioral ini-
tiation vs. maintenance), the effects of exogenous 
variables (e.g., increases in atmospheric pollu-
tion), or baseline individual differences (e.g., age 
or gender). These scenarios can then be tested via 
computerized simulations, which provide multiple 
advantages. First, simulation models enable quick 
and inexpensive “sanity” checks on assumptions 
and beliefs. If results from the simulation appear 
wrong in some way to the scientist or its community, 
then the equations and hypotheses can be refined, 
refuted, or extended in a transparent manner [58]. 
Second, simulation studies enable the formalization 
of hypotheses that would be difficult to explore or 
visualize empirically due to practical or technical 
limitations, such as emergent properties of a system 
(see examples of agent-based models in public 
health [59]), or life-span analyses [60]. For example, 
computational modeling and simulation techniques 
have recently been used to understand how changes 
to a city’s infrastructure can lead to the nonlinear 
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adoption of cycling behavior [61]. Finally, at the con-
ceptual level, simulation helps to better formalize 
behavior change theories in terms of temporal, con-
textual, and individual aspects, which can ultimately 
help to disseminate theories to researchers, practi-
tioners, and policy-makers, and generate ideas for 
empirical studies that challenge their assumption 
(computational modeling and associated simulation 
techniques are available in many standard data ana-
lytic tools, such as R, MatLab, or Python). As such, 
researchers interested in developing computational 
models can seek out the tools within the analytics en-
vironment they are most comfortable with. Also, the 
references above to different types of modeling and 
simulation techniques (e.g., fluid analogies, agent-
based simulations, artificial neural networks) pro-
vide some initial examples for researchers to start 
using these tools.

Computational models and associated compu-
terized simulations are still relatively under-used 
in the behavior change field. Through a literature 
search on PubMed, we identified articles revisiting 
classic health psychology models such as the Theory 
of Planned Behavior and Social Cognitive Theory 
via “artificial neural networks” and “fluid analogies 
and control systems principles” [62,63]. We also 

identified studies aiming to: quantify the effect of 
non-sugar-sweetened beverage placements in corner 
stores on adolescent purchasing behaviors via a 
“decision-analytic model” [64]; test which criteria 
influence agents’ impact in a social network inter-
vention to increase physical activity in adolescents 
through “agent-based simulations” [65]; or predict 
change in body mass and composition during the 
course of a behavioral intervention for weight loss 
using a “dynamic model” inspired by control sys-
tems engineering methods [66]. More frequent use 
of computational modeling techniques could posi-
tively impact behavior change research in the near 
future by helping researchers to think dynamically 
and by better theorizing about how the context 
influences a particular behavior for a particular 
individual [57]. At the interventional level, com-
putational models provide a direct foundation (i.e., 
mathematical algorithms) for building adaptive and 
personalized health behavior change interventions 
[67,68].

From static to adaptive and continuous tuning interventions
The amounting evidence that health behaviors are 
complex suggests that adaptive and continuous 
“tuning” interventions are necessary for better 
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Figure 2 | Simulated forest plot of within-person associations between physical activity and stress levels the following day, inspired from 
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supporting healthy behavioral choices over time 
and across contexts, similar to what a clinician or 
health coach would do in their practice [2,69]. The 
idea that tailored interventions are more likely to en-
gender change at the individual level (as opposed to 
static or generic interventions) is not new; tailoring 
refers to a category of interventions which aim to 
“reach one specific individual, based on specific 
characteristics of that person that have been meas-
ured in a formal assessment” [70]. However, most 
tailored interventions so far have harnessed data 
from a single time point (e.g., demographic or psy-
chological characteristics measured at baseline), or 
previous moderation analyses, to determine what 
or how content is delivered [71]. Recent methodo-
logical advancements are enabling far more pre-
cision in terms of the concept of tailoring and its 
automation via digital technologies.

Prior work has postulated distinctions between 
generic, targeted, and adaptive interventions 
[72,73]. In brief, while generic interventions do not 
include specific individualization components, tar-
geted interventions support decision-making based on 
static information, such as demographics, person-
ality traits, or physical fitness at the beginning of an 
intervention. Adaptive interventions, however, support 
dynamic decision-making over time with adaptation 
algorithms generated based on insights from prior 
individuals. Recently, based on the logical extreme 
for tailoring of supporting a specific individual 
and methodological advancements, a fourth inter-
vention class has been proposed: continuous tuning 
interventions [2]. By continuous tuning, we mean 
interventions that use data about the individual for 
whom support is being provided to progressively re-
fine and “tune” the intervention content, delivery 
feature(s) or timing to the idiosyncrasies of the indi-
vidual, similar to individual psychotherapy or health 
coaching sessions delivered face-to-face by a trained 
professional, but with a potentially greater temporal 
precision afforded by digital technologies.

The key distinction between adaptive and con-
tinuous tuning interventions is how data are used 
for adaptation over time. Adaptive interventions 
are driven by pre-specified adaptation algorithms 
generated and evaluated based on the response of 
prior individuals, using study designs such as the 
“micro-randomized trial” (MRT; [74]) and main ef-
fect testing of the decision rules, time-invariant mod-
eration or time-varying moderation. Continuous 
tuning interventions, however, include real-time 
optimization algorithms, which can further adjust 
intervention content or delivery aspects to the needs 
of a specific individual, using methods such as re-
inforcement learning [75], control systems engin-
eering [67], and N-of-1 study designs [76].

On the one hand, adaptive interventions include, 
but are not limited to, “just-in-time adaptive inter-
ventions” (JITAIs), and aim to provide the right type 

and intensity of support to individuals at the right 
time ([69,77]). The “right” moment to intervene 
(also referred to as a “just-in-time state”) may, for ex-
ample, be characterized by an individual’s vulner-
ability to engage in (or avoid) the target behavior, 
or their availability and openness to receive support 
at a particular point in time (e.g., depending on 
their current activity, upcoming schedule, or mental 
state). Similar to the majority of present-day tailored 
interventions, early adaptive interventions have re-
lied on data from prior participants to determine 
when or how to intervene for the next group. Central 
to the distinction between adaptive and continuous 
tuning interventions is that adaptive interventions 
typically use data to make better adaptation algo-
rithms for future individuals; however, the data 
from those using the intervention are not harnessed 
to further refine the intervention(s) for those people 
themselves.

On the other hand, continuous tuning interven-
tions go a step farther than adaptive interventions 
by using data about the individual to further adjust 
the intervention to that specific person [78]. A good 
analogy for a continuous tuning intervention is a 
health coach. Relevant to continuous tuning, a good 
health coach has several attributes: (i) a clear sense of 
“meaningful” behavioral targets, such as the current 
national physical activity guideline; (ii) the ability to 
actively monitor a person’s behavior; (iii) awareness 
of a person’s broader life circumstances and how 
those circumstances influence each person’s be-
havior; (iv) a repertoire of evidence-based behavior 
change techniques that can be used and adapted to 
each person; and (v) the capacity to learn about a 
person and continuously adjust (or “tune”) the type 
or manner in which support is delivered based on 
each person’s changing needs. New methods and 
technologies enable all five of these attributes to 
occur in an automated fashion or to be used in part-
nership with a human interventionist, with the fifth 
point the key distinguishing factor between adaptive 
and continuous tuning interventions. To illustrate, 
we will describe in greater detail the use of “control-
lers” from control systems engineering.

Control systems engineering is concerned with 
the modeling and control of dynamically chan-
ging systems. The term “controller” is used to de-
note the series of mathematical equations that are 
used to monitor, make predictions for, and con-
trol dynamic systems (e.g., a patient). Controllers 
can be both model-based and model-free [67,79]: 
model-based controllers use dynamic computa-
tional models as inputs (described in the previous 
section, see also [69]). There is hence a clear link 
between individual statistical and computational 
modeling, and continuous tuning interventions. 
Control systems are ubiquitous in our everyday 
lives (e.g., thermostats, insulin pumps) and are 
designed to achieve and maintain a particular 
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goal state or set point (e.g., a specific level of 
daily physical activity). They achieve this by (i) 
sampling data at a suitably high resolution to 
identify any discrepancies between the person’s 
behavior (e.g., 6,000 steps/day) and the desired 
goal (e.g., 10,000 steps/day) and (ii) adjusting the 
timing, content, and dosage of interventions ac-
cording to the feedback (e.g., daily monitoring of 
physical activity levels). As the effect of any input 
may be context-dependent, advanced controllers 
take account of past states and simulate what may 
happen during future states in order to select 
the most appropriate input at a given moment 
in time. The discrepancy between a controller’s 
prediction and a person’s actual behavioral re-
sponse is incorporated into future decisions. For 
example, if a person starts being less responsive 
to suggested physical activity goals, the controller 
may adjust the goal or increase the reward a 
person will receive for meeting a goal to increase 
their motivation to strive toward it. If that does 
not work, the controller may adjust feedback 
after not meeting goals towards more actively 
using implementation intentions or education. 
The system will monitor how a person responds 
to each of these variations and will systematically 
use approaches that the person is more respon-
sive to (for an example, see [67]).

This type of intervention goes beyond adaptation 
based on prior data to continuous tuning via the con-
troller actively tuning and adjusting how it provides 
support dynamically based on how the person re-
sponds over time in different contexts. As part of the 
control systems approach, the “control optimization 
trial” (COT) aims to combine idiographic, obser-
vational data (i.e., observing and modeling within-
person dynamics of health behaviors over time) with 
the development and optimization of continuous 
tuning interventions [67]. Although no published 
examples exist in the behavior change field, Hekler 
et al. have recently secured funds to conduct a COT 
to support the perpetual adaptation of the JustWalk 
app, which aims to promote physical activity.

CONCLUSION
As many health behaviors are dynamic, multicausal, 
and manifest idiosyncratically, the present article ar-
gues that health behavior change research should 
progressively transition from low- to high-resolution 
behavioral assessments, from group-only to group 
and individual statistical inference, from narra-
tive theoretical models to computational models, 
and from static to adaptive and continuous tuning 
interventions (see Table 2for definitions of the key 
terms used in the article). This approach is aligned 
with the precision medicine initiative, which aims to 
develop preventive strategies that better take indi-
vidual variability into account [2].

The utilization of these methods and approaches 
also come with specific challenges. To mention a few: 
(i) enhanced technical, statistical, and mathematical 
skills will be required to manage long time-series, 
model complex non-linear change, and develop 
mathematical equations underpinning computa-
tional models (see [80,81]); (ii) ethical issues relating 
to the tracking and manipulation of sensitive, per-
sonal data (e.g., GPS-derived, biomedical or social 
media data; see [82,83]); (iii) an increase in partici-
pant burden and potential lack of engagement with 
high-resolution measures, especially when partici-
pants are asked to actively complete questionnaires 
or cognitive tests several times per day per week 
(see [84,85]); and (iv) an increasing ecological im-
pact of the transition from low- to high-technological 
research practices in public health (e.g., direct and 
indirect pollution engendered by the production 
and utilization of information and communication 
technologies such as smartphones and wearables; 
see [86,87]).

Although these challenges have no simple solu-
tions, the development of highly interdisciplinary 
collaborations will be necessary to ensure appro-
priate transition toward precision behavior science. 
If successfully implemented, the four recommenda-
tions made in this article have the potential to 
greatly improve our current public health and be-
havior change practices in the near future.
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