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Abstract

As we seek to discover new functional materials, we need ways to explore the vast

chemical space of precursor building blocks, not only generating large numbers of possi-

ble building blocks to investigate, but trying to find non-obvious options, that we might

not suggest by chemical experience alone. Artificial intelligence techniques provide a

possible avenue to generate large numbers of organic building blocks for functional ma-

terials, and can even do so from very small initial libraries of known building blocks.

Specifically, we demonstrate the application of deep recurrent neural networks for the

exploration of the chemical space of building blocks for a test case of donor-acceptor

oligomers with specific electronic properties. The recurrent neural network learned

how to produce novel donor-acceptor oligomers by trading off between selected atomic

substitutions, such as halogenation or methylation, and molecular features such as the
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oligomer’s size. The electronic and structural properties of the generated oligomers can

be tuned by sampling from different subsets of the training database, which enabled us

to enrich the library of donor-acceptors towards desired properties. We generated ap-

proximately 1700 new donor-acceptor oligomers with a recurrent neural network tuned

to target oligomers with a HOMO-LUMO gap <2 eV and a dipole moment <2 Debye,

which could have potential application in organic photovoltaics.

Introduction

The successful development of new functional molecules remains one of the most important

challenges to be addressed, not only due to the vastness of the chemical space to be explored,

but also given the level of specificity required in the targeted properties for each application.

In many cases, serendipity has played a fundamental role in the discovery and production

of new materials and molecules. Recently, there is growing interest in applying artificial

intelligence (AI) to the discovery of novel functional molecules, particularly in the field of

drug discovery, with the aim of both exploring larger chemical space and saving the time

and cost involved in the experimental synthesis and characterisation of such molecules.1–4

The use of AI in material discovery generally falls into two categories. Firstly, predictive

AI models, based upon supervised machine learning, are becoming more common in the use

for the computation of material properties, calculating the properties of interest at reason-

able accuracy, but a fraction of the computational cost compared to widely used electronic

structure calculations. Predictive AI models have been applied widely for material discovery

tasks, including organic photovoltaics,5–7 polymer solar cells,8 bioinspired hierarchical com-

posites9 and supercompressible polymers.10 Secondly, there are generative models, which use

unsupervised machine learning such that a model learns from a dataset and can then pro-

duce data of a similar format. This can be applied in chemistry to produce novel molecules

from libraries of known molecules. Generative models have been reported mainly for drug or

drug-like molecules,11 with only limited application for other types of functional molecules,
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for example non-fullerene electron acceptors12 and thermally conductive polymers.13 Our

study here focuses on developing deep generative AI models for the discovery of novel donor-

acceptor oligomers with desired electronic properties with potential application as organic

semiconductors.

Development of a deep generative model for material discovery can be divided into several

tasks. The first task is to represent the molecules of interest in a way that is easy to be

read and written by a computer. A standard representation of molecules is the simplified

molecular-input line-entry system (SMILES), which encodes molecular graphs compactly as

human-readable strings. The SMILES representations of molecules highly resemble that of

natural language, where long range dependencies are crucial for a reasonable representation.

For example, the SMILES of benzene is c1ccccc1, where the two ‘1’s represent the opening

and closing of the ring structure in the molecule and must both be present in the SMILES,

however, the ‘1’s are not neighbours to each other in the representation and a generative

model needs to ‘remember’ the position of the first ‘1’ in the string and close the ring at

chemical plausible positions. The generation of novel SMILES strings can thus be regarded

as natural language generation and a recurrent neural network (RNN) is a typical tool for

such tasks. An RNN is a class of artificial neural network that has a temporal memory,

thus enabling the wcapture of long range dependencies within a message (such as a SMILES

representation) and it has been widely used in many different areas, such as natural language

processing14 and music generation.15 As reviewed recently by Elton et al., RNNs are also an

important architecture for molecular generation, especially in drug discovery.11 For example,

Bjerrum et al. reported an RNN model trained using the 1.6 million fragment-like and 1.3

million drug-like SMILES from the ZINC12 database16 of commercially-available compounds

as training sets,17 and they generated 50,000 new SMILES structures from each of the RNN

models.

Another key task in the discovery of novel functional materials is to fine-tune the molecu-

lar generation models towards preferred properties. According to the chemical space project,
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there are at least 166.4 billion molecules that contain at most 17 heavy atoms.18 Therefore,

enumerating such a vast chemical space is almost impossible, and in many cases unnecessary.

One method to attempt to efficiently explore chemical space using deep generative models

for molecular discovery was defined as inverse molecular design by Sanchez-Lengeling et al.,

where existing functional molecules were used as starting point for the discovery of novel

materials.19 The tools for optimizing towards target molecules include variational autoen-

coders (VAE),4 generative adversarial networks (GAN),20 reinforcement learning (RL),2 and

transfer learning (TL), all of which can be incorporated with generative RNN models. TL

refers to reusing the machine learning model developed for one task towards another related

task with parameter fine-tuning. For the discovery of novel functional molecules from an

existing molecular library of limited size, TL can be applied to fine-tune the parameters

of a generative model trained from larger databases. Waller et al. developed a generative

RNN model using long short-term memory (LSTM) and fine-tuned the parameters of the

RNN model to generate molecules that were believed to target selected bacteria.1 Merk et

al. discovered new chemical entities that are inspired by pharmacologically active natural

products via fine-tuning the RNN model trained from ChEMBL database using TL.3

Recent development and design of electronic donor-acceptors has attracted significant

attention due to their application in organic light emitting diodes (OLEDs),21 organic photo-

voltaics (OPVs),22 and non-linear optical (NLO) materials.23 The donor-acceptor oligomers

need to be modified in order to obtain desired electronic properties.24,25 For example, the

optical gap of donor-acceptor oligomers usually needs to be lowered towards the long wave-

length region for OPVs to enhance light absorption. Discovery of novel donor-acceptor

oligomers often involves chemical modification of existing donor and acceptor moieties26

and the combinatorial exploration of donor-acceptor libraries,27 which requires expertise in

synthetic chemistry and careful experimental design.28,29 Such methodologies, while being

robust and effective at producing a large number of possible oligomers, rely heavily on the

expertise of chemists and can limit the accessible chemical space of the oligomers being gen-
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erated.1 In addition, the mere combination of a ‘good’ donor and ‘good’ acceptor is known

to miss potential oligomers using less ‘extreme’ donors and acceptors, due to the subtlety of

the effects on electronic properties.7 The publication of open access databases for electronic

materials30–32 has enabled the application of AI to the discovery of donor-acceptor oligomers,

and indeed material building blocks in general, offering alternative pathways for exploring

larger chemical diversity, potentially uncovering ‘wild cards’ that would not be found by

other routes.

In this work, we developed deep generative models for the generation of molecular li-

braries of donor-acceptor oligomers with preferred electronic properties using an RNN com-

bined with TL. TL was required as the libraries of existent donor-acceptor oligomers are not

of sufficient magnitude for training a robust RNN model. We explore whether the structural

and electronic properties of the donor-acceptors can be learned via TL, and whether the

chemical space of the training sets can be fully explored with the TL models. As a proof

of concept, we targeted the chemical space of donor-acceptor oligomers with an optical gap,

as approximated by the HOMO-LUMO gap, close to 2 eV and a dipole moment smaller

than 2 Debye. These oligomers can potentially form organic semiconductor crystals offer-

ing alternatives to the traditional families of molecular candidates such as oligoacenes or

benzothieno[3,2-b][1]benzothiophene derivatives. A low HOMO-LUMO gap, and by exten-

sion a low optical gap, ensures the generated oligomers are promising materials for organic

photovoltaics, and a low dipole moment in the ground state is desired as it has been shown

that this can help with directing self-assembly towards supramolecular arrangements that

promote macroscopic properties such as charge-carrier mobility.33 Our approach would be

equally applicable to a focus on a different region of property space and we would note that

for optoelectronic device applications such as OPVs and OLEDs, it is typical for there to

be multiple material properties and device characteristics contributing to high performance,

and these would need to be considered and appropriately weighted on a case-by-case basis.

We discuss the challenges for further extension of the method in the discussion.
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Methods

We present an overview of our approach for generating novel donor-acceptor oligomers with

targeted electronic properties in Figure 1. In the following sections, we will describe the

origin of our datasets, how we first trained a general RNN and then used unsupervised cluster

detection to uncover different clusters of molecules in a database of donor-acceptor oligomers.

Next, we compared the performance of transfer learning models built from different transfer

databases and finally validated the performance of the newly generated oligomers.

Datasets

The task for molecular discovery using deep generative models can be divided into two

parts; (i) learning the correct representation of molecules, for instance the valid SMILES

representation, and (ii) learning the required structural property relationship of the molecules

in order to generate novel functional molecules. To successfully carry out the first stage of

the task, it is necessary to train the model on an extensive and varied database from which

the syntax of valid SMILES can be learned. For the training of such an RNN model, which

will hereafter be refered to as the ‘General RNN’, we used the GuacaMol Training SMILES

database34 as published by by Brown et al.,35 which contains 1.2 million SMILES string from

the ChEMBL database. And we refer to the training set for the General RNN hereafter as the

‘General Database’. For the TL model, the ‘Database of organic donor-acceptor molecules’

from the Computational Materials Repository31 was used and is referred to hereafter as the

‘Transfer Database’. The Transfer Database originally contained 5419 molecules, but after

removing candidates that contained characters not present in the General Database and

those for which density functional theory (DFT) calculations we carried out to characterise

the molecular properties (see below) failed to converge, we were left with a final Transfer

Database of 5024 molecules. The average length of the SMILES in the General Database

is 47.6, while the average length of SMILES strings in the Transfer Database is 103.3, so

6



it is of interest how well the General RNN will be able to be applied to the more complex

molecules in the Transfer Database.

Figure 1: Our workflow for the discovery of novel donor-acceptor oligomers. An RNN
with randomized parameters was built, and the General RNN was obtained by training the
random RNN with the General Database of the ChEMBL library. The specialized RNN
was developed by tuning the General RNN using the Transfer Database that only contains
donor-acceptor oligomers, and then used to generated novel donor-acceptor oligomers.

The values of the Kohn-Sham HOMO-LUMO gaps, which we use to approximate the

optical gaps, and dipole moments in the database of organic donor-acceptor molecules were

previously calculated using the B3LYP functional.36–38 However, due to the exponentially

decaying nature displayed by this exchange-correlation, instead of the correct r−1 behaviour

at long distances, the excitation energies can be expected to be underestimated and the po-

larizability overestimated.39,40 We therefore performed additional calculations to evaluate the

electronic properties of the oligomers in the Transfer Database with a long-range corrected

DFT functional (ωB97X-D3) that does not suffer from this issue Firstly, we generated 100

conformers of each oligomer using the RDKit ETKDG method41 and evaluated the conform-

ers’ energies using UFF.42 The lowest energy conformation was then geometry optimised by

using the GFN-xTB2 method as implemented in xTB43. The optimisation was considered

complete when a threshold of 8× 10−4 Hartrees/(atomic unit length) in forces and 1× 10−6

Hartree in energies was reached, all conformations were confirmed to be true minima. We
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opted to optimise the geometry of the molecules using GFN-XTB2 rather than with DFT

calculations due to the large number of molecules in the Transfer Database. A benchmark be-

tween geometries optimised using GFN-xTB2 and DFT (ωB97X-D3 functional/def2-TZVP)

is reported in section 5 of the supporting information, showing that GFN-xTB2 provides

reasonable geometries at a much reduced computational cost. The optical and electronic

features such as the HOMO-LUMO gap and polarizabilities were then computed by employ-

ing the long-range corrected ωB97X-D3 functional44 as implemented in ORCA.45 The ground

and excited state properties were computed using a def2-TZVP basis set and by employing

the simplified Tamm-Dancoff approach (sTDA). Excited states with an excitation energy

of lower than 10.0 eV were computed, corresponding to approximately 300 singlet states

and 300 triplet states.46–49 This methodology has been shown to produce reliable results in

the case of co-polymers where optoelectronic properties have been computed and employed

to train machine learning models.7 Further analysis of the differences can be found in the

supporting information. Our computational approach, using GFN-xTB first for geometries,

cut the computational cost of obtaining structures and properties by a factor of about 3 - 4,

with each molecule on average taking about 1 day to run on a 24-core node on a university

supercomputer.

We found that now only 269 of the 5024 molecules in the ‘Database of organic donor-

acceptor molecules’ were promising candidates for our target of an optical gap close to 2.0

eV and dipole moment smaller than 2.0 Debye, making them possible candidates for organic

semiconductors. These results highlight the importance and need for TL to explore the

chemical space, with the main objective of generating many more new molecules with the

target properties.

The General RNN Model

The RNN architecture used in this paper is adapted from the work of Olivecrona et al..2

The molecular SMILES were encoded to numeric vectors suitable for machine learning using
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‘one-hot’ tokenization. In this study, there were 78 unique symbols in the SMILES strings

of the Transfer Database. Two additional tokens, ‘GO’ and ‘EOS’ were added to each string

to denote the beginning and end of a SMILES sequence. As a result, a SMILES string

with n symbols was represented by an (n x 80) dimensional vector. The specific RNN

type used in this study was the Gated Recurrent Unit (GRU),50 where each node in the

RNN was designed to learn long range dependency within the SMILES string by keeping a

weighted sum of information each character in the SMILES string possesses. Three stacked

GRU layers were used to process the vectors generated from the SMILES strings in this

study. The model was trained using the standard Adam optimizer, which is an extension

of the gradient descent algorithm designed for the training of deep neural networks.51 The

generative RNN model in this work was implemented using Python 3.6 in combination with

the PyTorch library.52

Unsupervised Cluster Detection in the Transfer Database

In order to explore the chemical space of the Transfer Database, cluster detection within

the Transfer Database was performed based upon their structural similarity. The Transfer

Database was considered as a graph, where each molecule in the Transfer Database formed

a node in the graph. The graph nodes were represented using the Morgan molecular fin-

gerprints of the corresponding molecules. A Morgan fingerprint is a vector that indicates

the presence of specific substructures within a molecule, and was computed here using the

RDKit cheminformatics package.53 The edges in the graph were defined using the pairwise

Tanimoto similarities between the fingerprints of the molecules, which quantifies how similar

a pair of molecular fingerprints are. In order to reduce the complexity of the graph, a cut-off

of 0.25 was applied to the molecular similarities, which means that molecules with similarity

larger than 0.25 were considered ‘connected’ by an edge . The Louvain method54 was applied

to the graph to detect clusters within the Transfer Database; the method detects clusters by

maximising the density of edges within each cluster compared to edges connecting different
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clusters. The Louvain modularity cluster detection was performed using Python 3.6. After

the clusters were detected, the HOMO-LUMO gaps and dipole moments of molecules in each

of the clusters were analysed to examine the shared properties of the clusters and determine

the most suitable clusters for TL.

Transfer Learning

We wanted to examine whether using subsets of the Transfer Database that contained clus-

ters of promising candidates with the desired properties would be a more effective way of

generating new candidates with promising properties than using the entire Transfer Database

for TL. Therefore, we carried out the cluster detection for the entire Transfer Database (5024

molecules) and separately for the set of ‘promising’ candidates (269 molecules). As a result,

three subsets of both the Transfer Database and the ‘promising’ candidates were supplied

to the General RNN for parameter fine-tuning, resulting in 6 TL models. The training sets

for Models 1, 2 and 3 were subsets of the whole Transfer Database, while training sets for

Models 4, 5 and 6 were subsets of the 269 ‘promising’ candidates. All parameters in the

General RNN were retrained during TL, with 15 epochs of training performed, which means

that each of the TL models were fine-tuned by passing the corresponding training sets 15

times through the General RNN. 1024 SMILES strings were sampled from each epoch during

the TL, resulting in 15,360 strings being generated from each TL model.

Evaluating the Transfer Learning Models

We evaluated the TL models by examining the validity, uniqueness and novelty35 of the

oligomer database generated by each model, as well as the ability of generating ‘promising’

molecules. The ‘validity’ measures the ability of the models to generate valid SMILE strings

and was calculated by dividing the number of valid SMILES strings (as confirmed using

the RDKit package) generated by each model over the total number of strings sampled by

each model. The ‘uniqueness’ measures the ability of the model to generate unique SMILES
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that had not already been sampled and was calculated by dividing the number of unique

SMILES generated over the number of valid SMILES generated by each model. The ‘novelty’

measures the models in terms of generating oligomers that were not already present in the

training sets, and was calculated by dividing the number of valid and unique SMILES strings

that were not already found in the corresponding training set over the total number of valid

and unique SMILES generated by each model.

For each TL model, about 4,000 novel molecules were generated, thus the computa-

tional cost of evaluating the electronic properties of all the 24,000 generated molecules using

DFT was prohibitive. We estimated that this would have required approximately 24,000

days on 24-core nodes, which even with access to massively parallel computer architectures,

was not viable. Instead, to assess the properties of the generated molecules at acceptable

computational cost, the HOMO-LUMO gaps and dipole moments were calculated using su-

pervised gradient boosted decision tree (GBDT) models trained on the Transfer Database.

The GBDT algorithm uses a weighted ensemble of decision trees to fulfill regression or clas-

sification tasks. The GBDT model was trained on the Transfer Database, with the database

randomly divided into training (80%, 4,019 molecules) and test (20%, 1005 molecules) sets,

and the Morgan fingerprints calculated using RDKit as the molecular input feature. Morgan

fingerprints with varied length (512, 1024, 2048) and radius (2, 4, 6) were used for the molec-

ular fingerprinting. The GBDT models were optimised so as to minimise the mean squared

error between the predicted values and the true values in the training set. The GBDT mod-

els were then used upon the generated unique and novel molecules from TL to predict their

HOMO-LUMO gaps and dipole moments. Those molecules with a HOMO-LUMO gap less

than 2 eV and dipole moment less than 2 Debye were deemed ‘promising’, as they were the

target of our study. In order to validate the ‘promising’ molecules identified using the GBDT

models, 90 ‘promising’ molecules were randomly sampled from the ‘promising’ generations

and their HOMO-LUMO gaps and dipole moments were calculated using DFT calculations

with the ωB97X-D3 functional, using the setup as described above.44
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Results and discussion

Supervised machine learning model of electronic properties

Supervised GBDT models were developed to evaluate the donor-acceptor oligomers generated

from the generative RNNs. It was found in this study that a GBDT model using Morgan

fingerprint with length 1024 and radius 2 had the lowest error in terms of predicting the

properties of the oligomers in the test set. The comparison between the ωB97X-D3-calculated

electronic properties and those predicted using the GBDT models on the test set (20% of

the Transfer Database, 1005 molecules) is shown in Figure 2. The mean absolute error of

the GBDT prediction for HOMO-LUMO gaps is 0.09 eV and for dipole moments is 1.31

Debye. While the GBDT model is therefore reasonably accurately predicting the HOMO-

LUMO gap of the molecules, the accuracy of the prediction for the dipole moments was

significantly lower. Previously, graph neural network models using molecular graphs as

feature vector inputs, such as the Schnet,55 MEGNet56 were trained to predict the dipole

moments of functional molecules with good accuracy. However, when we tested these models

for our study, the mean absolute error of the dipole moment predictions was exceptionally

large (over 10 Debye). The poor performance of the graph neural networks on the Transfer

Database was probably due to the fact that such models were trained and tested against the

QM9 dataset,57 which contains only molecules with no more than 9 heavy atoms. However,

the number of heavy atoms in molecules in our Transfer Database ranges from 20 to 180,

and application of such graph convolution networks was therefore inadequate due to the

complexity of molecules in the Transfer Database. We trialled other models, such as random

forest, and other fingerprints, such as Molecular ACCess System (MACCS) keys58,but these

performed less well than our selected model.

Here, we aim to discover as many ‘promising’ oligomers as possible for further valida-

tion, thus recall (identifying ‘promising’ oligomers) was pursued at the sacrifice of preci-

sion (labelling ‘promising’ oligomers correctly). The mean error of GBDT prediction for
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dipole moment was 0 Debye, with a standard deviation of 1.83 Debye. The molecules

generated via TL were fed into the GBDT models to predict their electronic properties.

Molecules with a GBDT-predicted dipole moment of lower than 3.66 Debye (correspond-

ing to 0.9 standard deviation above the mean error of 0 Debye) and a HOMO-LUMO gap

lower than 2.0 eV were considered as potential ‘promising’ oligomers. The choice of 3.66

Debye as cutoff for ‘promising’ oligomers implies a higher false positive rate and lower false

negative rate, which met the requirement of capturing as many ‘promising’ oligomers as

possible. The GBDT models for predicting the HOMO-LUMO gaps and the dipole mo-

ments, as well as the corresponding results obtained from DFT calculations can be found at

github.com/qyuan7/RNN_RL_molecule/tree/master/gbdt_regressors.

Figure 2: Relationship between the DFT calculated electronic properties and GBDT predic-
tions on the test set of the Transfer Database for (left) the HOMO-LUMO gap and (right)
the dipole moment. The line of y = x is shown in both plots.

Training the General RNN

The General RNN model was trained on the 1.2 million SMILES strings from the ChEMBL

database. The percentage of valid SMILES strings and the logarithmic loss (Log loss), which

we seek to minimise here to improve the model, are shown in Figure S2. By the final steps,

more than 90% of the SMILES strings generated were valid and the Log loss for the maximum

likelihood estimation fluctuated around 24, indicating that the training for the General RNN
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is close to convergence and it is a fairly efficient model in generating valid SMILES strings.

The source code for training the General RNN, as well as the General RNN trained from

this study can be found at github.com/qyuan7/RNN_RL_molecule.

Training sets for TL

Different subsets of the Transfer Database representing different structural and electronic

properties were used as the training sets for the TL tasks. Structurally similar oligomers

in the Transfer Database tend to fall into the same cluster detected by the Louvain algo-

rithm. Four structural clusters were identified from the Transfer Database, and represen-

tative molecules in the clusters are shown in Figure S3. It can be seen that molecules in

clusters 1 and 3 were similar in terms of structure and size, while molecules in clusters 0

and 2 were in general larger with either longer chain length (cluster 0) or possessing com-

plex side chains (cluster 2). The structural similarities of the oligomers can be qualitatively

represented using the distances between their fingerprint vectors. In order to visualize the

high-dimensional distances in two-dimensional space, the t-Distributed Stochastic Neighbour

Embedding (t-SNE, a dimension reduction technique for data visualisation)59 with two di-

mensions was applied to the fingerprints of the molecules. The distributions of the t-SNE

projections of the molecular fingerprints are shown in Figure 3, and molecules with the target

properties are shown as blue points. Almost all of the oligomers with the target properties

(255 of 269) were found in cluster 3, with just 12 in cluster 2. This suggested that cluster

3 was a ‘promising’ cluster and would form a more suitable training set for TL to generate

‘promising’ oligomers with the desired electronic properties. The molecular fingerprints in

cluster 2 differed greatly from those in cluster 3, it is thus possible to explore different regions

of the chemical space by using cluster 2 for TL. Therefore, we used three different subsets of

the Transfer Database for TL; Model 1 (containing all the molecules), Model 2 (molecules

in cluster 3) and Model 3 (molecules in cluster 2).

Cluster detection on only the oligomers with the target properties was also performed
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Figure 3: A visualisation of the different clusters found in molecules of the Transfer Database,
created via a dimensionality reduction technique. Shown is a hexagonal binning plot of the
t-SNE projection of the molecular fingerprints of the molecules, hexagons of different colours
represents different clusters and the depth of the colours shows the density of the distribution.
t-SNE 1 and t-SNE 2 correspond to the first and second dimensions of the 2-D projection of
the fingerprints. Oligomers with the target properties are plotted as blue scatter points.

(Figure S4). Two major clusters with 120 and 95 molecules respectively were found and on

this basis three additional training sets for TL were determined; Model 4 (all molecules with

target properties), Model 5 (sub cluster 1) and Model 6 (sub cluster 2). A summary of the

training sets for the six TL models are provided in Table 1, and by comparing the molecules

generated using these different datasets, we can explore how to best target molecular prop-

erties with TL.

Table 1: Training set summary for the six TL models. Molecules are denoted ‘promising’ if
they have the target properties.

Model Training
size

No. promising
oligomers

Description

Model 1 5024 269 All molecules in Transfer Database
Model 2 1568 255 Molecules in Cluster 3 of Fig. 2
Model 3 533 12 Molecules in Cluster 2 of Fig. 2
Model 4 269 269 All molecules in Promising Lead Database
Model 5 120 120 Molecules in Sub cluster 1 of Fig. S3
Model 6 95 95 Molecules in Sub cluster 2 of Fig. S3
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Performance of the Transfer Learning Models

For all the TL models, 15,360 strings were generated by each TL model, spread over the

15 epochs of retraining. The performance of the TL models on the six datasets in terms

of the number of valid, unique, novel and ‘promising’ oligomers from the sampled SMILES

strings are shown in Figure 4 and Table S1. The validity of molecules from all six models was

enhanced as the TL progressed, but the number of unique generations for each epoch did not

increase after the 10th epoch. For Models 1, 2 and 4, the number of novel SMILES dropped

in the later epochs of TL. The fact that the uniqueness and novelty do not increase despite

the increasing validity indicates that the TL models were trying to ‘remember’ certain valid

SMILES strings in the training sets rather than learning the general rule of the SMILES

format, which can be referred to as overfitting of the training set. This can be rationalised

in terms of the nature of the molecules in the Transfer Database, which are considerably

different from the ones observed in the ChEMBL database. Therefore, all the parameters

in the General RNN had to be refined during the TL to ‘learn’ the features of the SMILES

strings in the Transfer Database. Due to the limited size of the training sets for TL, a certain

extent of overfitting could not be avoided. It can also be observed that Models 4, 5 and 6,

which only used molecules with the target properties for the TL, were more powerful in

generating ‘promising’ oligomers compared to Models 1, 2 and 3. This is an indication that

the electronic properties of the training sets were ‘learned’ via TL, which will be discussed

in the following section. According to the trends of performance of the models in Figure

4, epochs beyond epoch 10 have not improved the models in generating more unique novel

‘promising’ oligomers, thus the parameters in the TL RNNs should be frozen beyond epoch

10 so that the sampling of ‘promising’ SMILES is more efficient.

Learning structural and electronic properties

It is interesting to assess to what extent the structural properties of the different training sets

were ‘learned’ through TL. The training molecules with the highest Tanimoto similarities to
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Figure 4: The number of valid, unique, novel and ‘promising’ oligomers generated for the
six TL models along the epochs of TL. An epoch of transfer learning for a model here refers
to passing the corresponding training set through the TL model once.

the generated molecules were defined as the nearest neighbours of the generated molecules.

The distribution of the neighbour similarities of all generated molecules and the ‘promising’

molecules from the six TL models (those with target properties) is shown in Figure 5(a). The

mean neighbour similarity of all the generated ‘oligomers’ and the ‘promising’ oligomers are

0.62 and 0.74, respectively. Examples of pairs of generated molecules and molecules in the

Transfer Database with different levels of similarities of 0.62 and 0.74 are shown in Figure S5,

to allow the reader to visualise what these values correspond to chemically. It can be seen

that the novel oligomers with 0.62 and 0.74 neighbour similarity were generated by different

levels of atom replacement on the corresponding neighbours, indicating that the molecular

structural property of the training sets were ‘learned’ from the TL process, especially by

the ‘promising’ oligomers. The similarities of the generated molecules and their neighbours

increased as TL proceeded (Figure S6), and the median of the neighbour similarities at epoch

10 were larger than 0.6 for all models (Figure 5(b)).

In addition to learning the structural properties of the training sets, another task for the
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TL was to learn the electronic properties of the training molecules. Since the properties of

the generated molecules were evaluated using the GBDT model and accurate prediction of

dipole moment was not achieved in this study, only the HOMO-LUMO gaps were examined.

The distributions of the HOMO-LUMO gaps of the molecules generated from the TL models

at the 10th epoch are shown in Figure 5(b) and shown for each epoch in Figure S7. For

Models 4, 5 and 6, the HOMO-LUMO gaps of the vast majority of generated molecules are

lower than 2.0 eV, and therefore the chance of obtaining ‘promising’ oligomers increased.

Models 1 through 6 had varied distributions of HOMO-LUMO gaps and all of these specific

distributions were ‘learned’ by the corresponding TL models. Therefore, the HOMO-LUMO

gaps of the generated molecules can be tuned by sampling different subsets of the training

database of interest.

Figure 5: (a) Distribution of the neighbour similarities of all the generated oligomers (blue)
and the ‘promising’ oligomers (maroon); (b) Distribution of the HOMO-LUMO gaps of
the molecules generated from the six TL models on the 10th epoch (red) compared to the
corresponding training sets (green).

Chemical space exploration

The ability for deep generative models to sample larger chemical space while obtaining

oligomers with desirable properties is also important. This is a particular goal of the study

here - to see whether our approach can move beyond traditional substitution strategies well

established in the material chemistry community, to uncover ‘wild cards’ that might suggest
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alternative molecular replacements or a series of fragment alterations. The training sets of

the TL models covered different regions of the chemical space, and it was expected that

each of the models would cover the corresponding chemical space. In addition, covering

chemical space beyond the training sets could lead to the discovery of novel donor-acceptor

oligomers that had not been considered. To create a qualitative visualisation of the chemical

space covered by the molecules in this study, the t-SNE projections of the fingerprints of the

molecules generated from the six TL models, together with the fingerprints of the molecules in

the corresponding training sets are shown in Figure S8. The chemical space of each training

set has been thoroughly explored by the corresponding TL model, as well as unexpected

regions of the chemical space of the training sets having also been covered, especially for

Models 4, 5, and 6. It was thus possible to generate donor-acceptor oligomers that are not

directly related to those in the Transfer Database from the TL models.

Merely covering more chemical space does not ensure the discovery of novel ‘promising’

donor-acceptor oligomers; it is possible that oligomers in the newly explored regions do not

exhibit the preferred electronic properties. To compare the chemical space covered by the

‘promising’ oligomers, the t-SNE projections of only the ‘promising’ training and generated

oligomers are shown in Figure 6. Representative molecules were sampled from the ‘promising’

oligomers generated from each TL model, and the structure of such molecules and their t-

SNE projection values are shown in Figure S9. It can be seen from Figure 6 that ‘promising’

oligomers generated from the TL explored well the corresponding chemical spaces of their

respective training sets. As demonstrated in Figures 6 and S9, the ‘promising’ oligomers

generated from Model 3 occupy a different region of chemical space compared to the other five

models. In addition, oligomers generated from Models 5 and 6 occupied different sub-parts of

the chemical space than Model 4. It is thus possible to explore particular regions of interest in

chemical space by tuning the training sets for TL with the assistance of unsupervised cluster

detection. However, the chemical spaces covered by the ‘promising’ oligomers were more

conservative than that covered by all the generated molecules, as seen by higher neighbour
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similarity in Figure 5a. The distribution of the neighbour similarities of generated molecules

with their corresponding training sets for each of the TL models are shown in Figure S10,

and the trend of ‘promising’ oligomers having higher neighbour similarities was found for all

six models. Such results indicate that the excessive regions of chemical space explored by the

TL models had limited contributions in terms of providing ‘promising’ oligomers, and the

trade-off between exploring unseen regions of the chemical spaces and generating a greater

percentage of more ‘promising’ oligomers is something to bear in mind.

Figure 6: Hexagonal binning plot of the t-SNE projection of the fingerprints of the ‘promising’
molecules generated from the TL models. Colours of the hexagons represent the density of
generated ‘promising’ oligomers in each hexagon according to the colour bar. The ‘promising’
molecules in the corresponding training sets are shown as black points. t-SNE 1 and t-SNE
2 correspond to the first and second dimensions of the 2-D projection of the molecular
fingerprints.

The t-SNE projections in this study are the two-dimensional projection of the 1024-bit

molecular fingerprints, allowing one to visualise the distribution of the high dimensional fin-
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Figure 7: Example of three ‘promising’ oligomers generated from the TL and their nearest
neighbour in the training set, as calculated using the Tanimoto similarity criterion. The
Tanimoto similarities between the donor-acceptor oligomers are shown above the arrows. It
should be noted that these 2-dimensional structures do not show the exact 3-dimensional
conformation of the molecule used in the calculations.

gerprints. The computed neighbours in the t-SNE plots could result from either structural

similarity (as intended) or from a crowding effect of the low dimensional representation of

high dimensional data. Examples of ‘promising’ generated molecules with high and low sim-

ilarity with their nearest neighbour in the training sets are shown in Figure 7. A ‘promising’

oligomer with high similarity to a neighbour could be generated by simple atom replace-

ment, while a ‘promising’ oligomer with a low similarity to a neighbour less than 0.6 involves

multiple alterations on the neighbour molecule, which would be difficult to suggest by using

traditional experimental functionalisation strategies. We obtained about 1,300 ‘promising’

oligomers with similarity to a neighbour lower than 0.6 with the TL models, which would

be of interest in expanding the chemical space of the ‘promising’ oligomers. In addition,

the different levels of modification to the neighbour molecules, as reflected in the gener-

ated ‘promising’ oligomers, could provide valuable insight for manual modification of the
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molecules in the Transfer Database.
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Figure 8: The subset of ‘promising’ oligomers validated by DFT calculations.
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Validation of promising molecules

We randomly selected 15 molecules from the predicted ‘promising’ oligomers generated from

each of the six TL models (90 molecules in total) for electronic property validation at the

DFT level with the ωB97X-D3 functional.44 Of the 90 selected molecules, 22 have HOMO-

LUMO gaps below 2.0 eV and dipole moments smaller than 2.0 Debye. The 22 structures

of this subset of ‘promising’ oligomers are shown in Figure 8. The distribution of the calcu-

lated HOMO-LUMO gaps and dipole moments of the molecules are shown in Figure 9(a).

The vast majority of this molecular subset have HOMO-LUMO gaps below 2.0 eV, while

the distribution of dipole moments of the selected molecules has a larger variance, which

can be ascribed to the lower accuracy of the GBDT models in dipole moment prediction.

The precision of identifying ‘promising’ oligomers was thus 0.24. In total, 7,224 novel unique

oligomers were predicted to be ‘promising’ from the six TL models. If we assume that 0.24 of

them would be truly ‘promising’, about 1,700 ‘promising’ oligomers as organic semiconduc-

tors have been generated, which is 6-times larger than the original 269 ‘promising’ oligomers

from a database of 5024 molecules conceptually designed for this task.

A significant issue with generative models is the generation of molecules that are not

synthetically viable, for example due to the complexity or the cost of potential synthetic

routes to access them. We therefore inspected the 22 ‘promising’ oligomers to compare their

ease of synthetic accessibility to that of oligomers in the original Transfer Database. While

the origin of all the oligomers in the Transfer Database is not clear, there are many systems in

the database that have been previously synthetically reported. The SA score from Ertl and

Schuffenhauer60 was calculated for each of the ‘promising’ oligomers and their corresponding

neighbour oligomers, where scores can range between 1 (easy to make) and 10 (very difficult

to make). All of our 22 generated molecules have scores between 3 and 5 and this reassures

us that the generated molecules are not extremely difficult to make and thus plausible. The

scores for each of the generated molecules is very similar to those of the Transfer database,

as shown in Figure S11, with a mean absolute error of 0.13 between a ‘promising’ oligomer
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and its nearest neighbour in the Transfer Database.

A more detailed study of the 22 promising donor-acceptor oligomers started with a visual

inspection of their computed molecular electrostatic potential (MEP), as shown in Figures 9

and S11. This quantity has been employed as a useful indicator to identify the electrostatic

interaction between molecules, in particular non-covalent molecular interactions that play

an important role in the formation of condensed phases.61 The oligomers can be classified

into three different categories based on the distribution of the electron density: oligomers

with a homogeneous electron density distribution, oligomers with a small accumulation and

depletion of electronic charge, and oligomers with visible regions where charges have been

strongly localised. Differences in the MEP distribution suggest different underlying mecha-

nisms used by the RNN for reducing the molecular dipole moments. Some molecules achieved

the dipole constraint by creating many different regions where charge is depleted or localised,

creating small local dipole moments that are cancelled out when the total dipole moment

of the molecule is computed. Alternatively, for some molecules a more even distribution of

charges was observed. Thus, two alternative strategies have been employed to achieve small

dipole moments with the RNN. In this regard, such characteristics have been directly inher-

ited from the Transfer database, generating a set of diverse ‘promising’ molecules without

the limitation of rearranging atoms within the oligomer in a combinatorial manner. The

deep generative model also provides different alternatives to fulfill the imposed constraints

beyond atom redistribution, such as using the size of the oligomers as a mechanism to tune

the HOMO-LUMO gaps and dipole moments.

We can observe the impact of the substitutions carried out by the deep generative model

on the optical properties by computing the UV-Vis spectra, as shown in Figure 9(b) for 4

selected oligomers and in Figure S12 for the remaining 22 oligomers. As a general trend

across all oligomers, the first and most intense bright state can be found in energy regions

between 2 - 3 eV, suggesting that they are possible candidates for applications such as

photovoltaics. The constraints imposed on the RNN model’s chemical space therefore had
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an impact on other important molecular features such as the optical properties.

Within the predicted structures, one can find known units, such as thiophene and furan,

which have been previously used in the construction of donor-acceptor oligomers. The deep

generative model also performed interesting substitutions such as fluorination or methylation.

These strategies are commonly found in the literature and can be categorised as traditional

substitutions in donor-acceptor oligomers. Similarly, completely changed small units such

as selenophene (e.g. Figure 8o) can be found within the set of suggested molecular trans-

formations executed by the deep generative model. Analogously, one can observe frequently

employed units for donor-acceptor molecules such as benzo[1,2-b:4,5-b]dithiophene (BDT)62

or pyridal[2,1,3]thiadiazole(PyT).63 However, the original composition of the molecule is

not preserved in all cases, with the molecules displaying interesting atomic substitutions

in the core such as BDT selenium (Figure 8i) or oxygen substituted (Figure 8v). Similar

molecules have been experimentally synthesised and characterised as organic semiconductor

with enhanced charge-carrier mobility as a consequence of such replacements.64 These pre-

vious findings provide an argument in favour of the capability of the deep generative model

not only to offer an effective procedure to explore the chemical space, but also as a tool to

provide new ideas and paths for novel atomic substitutions.

The TL model in this work is not limited to the generation of novel donor-acceptor

oligomers as organic semiconductors; with proper tuning of the training sets for TL, elec-

tronic materials for other applications could be obtained. For example, the power conver-

sion efficiency of organic solar cells is qualitatively related to HOMO energy of the donor,

LUMO energy of the acceptor, and bandgap of the donor according to the Scharber model;65

OLED materials require low singlet-triplet gap and minimized spatial overlap of HOMO

and LUMO.66,67 If such properties can be described with a supervised learning model from

molecular information contained in the SMILES representation, the TL models can ‘learn’

the relevant properties with corresponding tuning of the training sets. In addition, when

multiple electronic properties need to be optimized to improve device performance, the opti-
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mization can be assisted with a sampling approach such as an evolutionary algorithm (EA).

In this fashion, we believe that the low precision and high recall model in discovering novel

donor-acceptor oligomers can be used as a new methodology to discover and enhance selected

families of new materials.

There are challenges in applying this type of approach to more complex properties be-

yond simple single molecule properties, particularly for applications based on combinations

of properties. The first bottleneck to focus on to test expanding the approach is the genera-

tion of further training data for organic materials, such as to include excited state properties

or, even more challenging, properties or behaviours beyond the single molecule level. While

calculation of these properties ab initio for the requisite large number of systems is com-

putationally demanding, it is pleasing to note recent additions to open-source databases in

this area, which will open up new opportunities.32 Of course, device characteristics that are

not predominantly linked to molecular features, such as preparation conditions and sam-

ple history that influence the device microstructure, are beyond the scope of what could

be screened for by this approach. However, identification of promising molecules is still an

important starting point.
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(a)

(b)

Figure 9: a) Distribution of the ωB97X-D3 calculated HOMO-LUMO gaps and dipole mo-
ments of 90 randomly selected ‘promising’ oligomers generated from our trained deep gener-
ative model. Each newly produced donor-acceptor oligomer is represented as a white cross
in the 2-D distribution, where darker regions represent a greater density of molecules found.
The example molecules are shown with their molecular electrostatic potential, red represents
more electron-rich regions and blue more electron-poor. (b) Computed UV-Vis spectra for
the 4 selected oligomers.
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Conclusions

In attempting to discover new molecular building blocks with promising properties for mate-

rials, a limitation can come from the ability to truly explore and optimise the vast chemical

space of possibilities. Here we have focused on an approach using recurrent neural networks

(RNN) combined with transfer learning (TL) to effectively discover novel molecules with

targeted properties for donor-acceptor oligomers. While most previously reported deep gen-

erative models for molecule discovery have focused on drug discovery, we showed that the

generative models trained from a pharmaceutical database can be transferred to relatively

large and complex systems such as the donor-acceptor oligomers. Different chemical and

electronic property spaces were covered using different subsets of molecules as training sets.

Both structural and electronic properties can be ‘learned’ through TL, thus the RNN models

suggested in this study can be used to target different property spaces to fulfill the require-

ment of different types of electronic materials. Many of the molecular transformations learnt

mimic those used to enhance performance in donor-acceptor systems in the literature. The

models developed and the ‘promising’ oligomers identified are open to future theoretical and

experimental validation.

An ideal generative model for molecular discovery would enable exploration of wider

chemical space while retaining desired properties. However, it was found in this study that

there is some degree of trade-off between exploration of chemical space and the optimisation

of electronic properties. ‘Wild’ modifications to the training molecules were observed, likely

modifications that would not be proposed by chemists, but such molecules did not generally

exhibit satisfactory electronic properties. The generated ‘promising’ oligomers, with target

properties, were more ‘conservative’ neighbours of the oligomers in the training set. The two

factors need to be balanced in future molecular discovery tasks, although there is always the

possibility that we are seeking a ‘needle in a hay stack’ - an extreme modification that still

has the desired properties and has truly allowed us to move out of the region of chemical

space that would be considered by chemists alone.
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sen, K. S.; Schmidt, M. N. Machine learning-based screening of complex molecules for

polymer solar cells. J. Chem. Phys. 2018, 148, 241735.

(9) Gu, G. X.; Chen, C.-T.; Richmond, D. J.; Buehler, M. J. Bioinspired hierarchical

composite design using machine learning: simulation, additive manufacturing, and ex-

periment. Mater. Horiz. 2018, 5, 939–945.

(10) Bessa, M. A.; Glowacki, P.; Houlder, M. Bayesian Machine Learning in Metamaterial

Design: Fragile Becomes Supercompressible. Adv. Mater 2019, 1904845.

(11) Elton, D. C.; Boukouvalas, Z.; Fuge, M. D.; Chung, P. W. Deep learning for molecular

design—a review of the state of the art. Mol. Syst. Des. Eng. 2019, 4, 828–849.

(12) Sanchez-Lengeling, B.; Outeiral, C.; Guimaraes, G. L.; Aspuru-Guzik, A. Optimizing

distributions over molecular space. An objective-reinforced generative adversarial net-

work for inverse-design chemistry (ORGANIC). ChemRxiv [Preprint] 2017,

(13) others,, et al. Machine-learning-assisted discovery of polymers with high thermal con-

ductivity using a molecular design algorithm. npj Comput. Mater. 2019, 5, 5.

31



(14) Young, T.; Hazarika, D.; Poria, S.; Cambria, E. Recent Trends in Deep Learning Based

Natural Language Processing [Review Article]. IEEE Computational Intelligence Mag-

azine 2018, 13, 55–75.

(15) Boulanger-Lewandowski, N.; Bengio, Y.; Vincent, P. Modeling Temporal Dependencies

in High-dimensional Sequences: Application to Polyphonic Music Generation and Tran-

scription. Proceedings of the 29th International Coference on International Conference

on Machine Learning. USA, 2012; pp 1881–1888.

(16) Irwin, J. J.; Sterling, T.; Mysinger, M. M.; Bolstad, E. S.; Coleman, R. G. ZINC: A Free

Tool to Discover Chemistry for Biology. J. Chem. Inf. Model. 2012, 52, 1757–1768.

(17) Jannik Bjerrum, E.; Threlfall, R. Molecular Generation with Recurrent Neural Net-

works (RNNs). arXiv e-prints 2017,

(18) Reymond, J.-L. The Chemical Space Project. Acc. Chem. Res. 2015, 48, 722–730.

(19) Sanchez-Lengeling, B.; Aspuru-Guzik, A. Inverse molecular design using machine learn-

ing: Generative models for matter engineering. Science 2018, 361, 360–365.

(20) Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.;

Courville, A.; Bengio, Y. Generative adversarial nets. Advances in neural information

processing systems. 2014; pp 2672–2680.

(21) Tao, Y.; Yang, C.; Qin, J. Organic host materials for phosphorescent organic light-

emitting diodes. Chem. Soc. Rev. 2011, 40, 2943–2970.
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