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We present new numerical schemes for pricing perpetual Bermudan and American options as well as
α-quantile options. This includes a new direct calculation of the optimal exercise boundary for early-
exercise options. Our approach is based on the Spitzer identities for general Lévy processes and on
the Wiener–Hopf method. Our direct calculation of the price of α-quantile options combines for the
first time the Dassios–Port–Wendel identity and the Spitzer identities for the extrema of processes.
Our results show that the new pricing methods provide excellent error convergence with respect to
computational time when implemented with a range of Lévy processes.
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Perpetual American options
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1. Introduction

Much of the recent literature in finance concerns exotic
options, i.e. contracts where the payoff depends on the path
of the underlying asset. Fluctuation identities such as the ones
by Spitzer have applications in the pricing of many of these
contracts. Here, we introduce novel methods for pricing α-
quantile and perpetual Bermudan and American options using
these identities.

Option pricing is a classic problem in financial manage-
ment and has been subject to many different approaches such
as the one by Tse et al. (2001) for discretely monitored hind-
sight and barrier options. However, this approach was limited
to Brownian motion and, as demonstrated by Kou (2002) and
Du and Luo (2019), a process with both jump and diffu-
sion components is a more appropriate model. The method
we outline here is based on probabilistic identities and, as
it is valid for general Lévy processes, it is applicable to
a wide range of jump-diffusion models. Furthermore, many
decision-making processes can be modelled mathematically

*Corresponding author. Email: carolyn.phelan.14@ucl.ac.uk

as American options (Battauz et al. 2015) and thus the new
methods we present here also have a more general application.

While European options can only be exercised at a sin-
gle date, i.e. when they expire, American options can be
exercised at any time up to expiry. Bermudan options are
halfway between the two in that they can be exercised at a
finite set of dates, i.e. they are discretely monitored American
options. These can have an expiry beyond which the contract
is worthless, or no expiry, in which case they are called per-
petual. The valuation of American options is a long-standing
problem in mathematical finance (Merton 1973, Brennan and
Schwartz 1977, Barone-Adesi 2005), as it combines an opti-
misation problem, i.e. the computation of the early exercise
boundary, with a pricing problem. A closed-form solution has
not been found for a finite expiry.

In contrast, perpetual American options permit a closed-
form solution when the underlying is modelled with geometric
Brownian motion (Merton 1973), as the perpetual nature of
the option means that the optimal exercise boundary is con-
stant rather than a function of the time to expiry. However,
this closed-form solution cannot be extended to Bermudan
options. Moreover, as explained by Boyarchenko and Lev-
endorskii (2002a), the smooth pasting method used to price
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perpetual American options can fail under jump processes
such as those in the general Lévy class.

Several approximate methods suggested for finite-expiry
American options, such as finite differences (Brennan and
Schwartz 1977), trees (Cox et al. 1979), Monte Carlo
(Rogers 2002) and recursive Hilbert transforms (Feng and
Lin 2013) operate inherently with discrete time steps and thus
lend themselves to Bermudan options with finite expiry. How-
ever, they are not particularly accurate or efficient for per-
petual Bermudan options as the computational load increases
with the number of monitoring dates which is, of course,
infinite for this type of contract, so that a sufficiently large
truncation must be used. With very low interest rates such as
in the last decade, exercise dates many years in the future have
a significant effect on the option price and thus the number
of monitoring dates cannot generally be truncated to a suf-
ficiently low value for these methods to be computationally
efficient for perpetual options.

Boyarchenko and Levendorskii (2002a) published a
method to price perpetual American options for many Lévy
processes using analytic approximations of the Wiener–Hopf
factors. This was a step forward in showing the applicabil-
ity of the Wiener–Hopf method to price perpetual options
with Lévy processes. However, it is an approximate solu-
tion as there is no general closed-form method to calculate
the Wiener–Hopf factors; in addition, the proposed method is
not applicable to all Lévy processes and specifically excludes
the variance gamma (VG) process. In Boyarchenko and
Levendorskii (2002b) this method was adapted to perpetual
Bermudan options; however, the Wiener–Hopf factorisation
again requires approximation in some cases and calculations
were presented for simple jump-diffusion and normal inverse
Gaussian (NIG) processes only.

Mordecki (2002) also devised a pricing approximation for
perpetual American put options with Lévy processes which
is based on the optimal stopping problem for partial sums by
Darling et al. (1972); therefore it intrinsically operates in dis-
crete time and thus is useful for Bermudan options. However,
this method has restrictions on the jump measure used in the
Lévy-Khinchine representation of the characteristic function
and therefore cannot be used for general Lévy processes.

Here we fill the gap in the literature for a direct numerical
pricing method for perpetual Bermudan and American options
which can be used for general Lévy models. In section 4 we
describe a novel pricing scheme based on the Spitzer identi-
ties which includes a new way to directly calculate the optimal
exercise boundary. We also provide the first implementation
of the method by Green (2009) based on the Spitzer identi-
ties and an expression for prices of first-touch and overshoot
options which uses residue calculus.

In this article we also deal with quantile options which
belong to the class of hindsight options. They have a fixed
expiry; the payoff at expiry depends on the path of the
underlying up to that date. Two such examples are lookback
options, priced by Fusai et al. (2016), and quantile options.
Fixed-strike lookback options have a payoff similar to Euro-
pean options except that, instead of being a function of the
underlying asset price at expiry, it uses its maximum or min-
imum over the monitoring period. Quantile options can be
considered an extension of lookback options because, rather

than using the maximum or minimum of an asset price, the
payoff is based on the value which the asset price spends a
fraction α of the time above or below. For this reason they are
often described as α-quantile options.

They were first suggested by Miura (1992) as a hindsight
option which is less sensitive to extreme, but short lived, val-
ues of the underlying asset price compared to simple lookback
options. Akahori (1995) and Yor (1995) published analytic
methods for pricing these contracts with Brownian motion.
Since then, most work on pricing this type of options has
been based on the remarkable identity by Dassios (1995)
which used work by Wendel (1960) and Port (1963) and
relates the probability distribution of the α-quantile to the
probability distribution of the maximum and minimum of
two independent processes. A note by Dassios (2006) showed
that this can also be extended to general Lévy processes.
Several solutions for Lévy processes have been developed,
such as Monte Carlo methods for jump-diffusion processes
by Ballotta (2002) and an analytic method for the (Kou 2002)
double-exponential process by Cai et al. (2010). For dis-
crete monitoring, Fusai and Tagliani (2001) explored the
relationship between continuously and discretely monitored
α-quantile options; however, whilst they made recommenda-
tions for selecting an optimal pricing method depending on
the value of the monitoring interval�t, they did not produce a
correction term like the one by Broadie et al. (1997) for barrier
options.

Following work by Öhgren (2001), Borovkov and
Novikov (2002) and Petrella and Kou (2004), Atkinson and
Fusai (2007) provided closed-form prices for discretely mon-
itored quantile options by using the z-transform to write the
problem in terms of a Wiener–Hopf equation. They solved
this analytically for prices modelled with geometric Brownian
motion and also demonstrated the relationship between their
results and the Spitzer identities. This approach was extended
to general Lévy processes by Green (2009), who developed
direct methods based on his formulation of the Spitzer iden-
tities for calculating the distribution of the supremum and
infimum of processes. Later developments include the numer-
ical refinements carried out by Haslip and Kaishev (2014)
and the implementation of an option pricing method for look-
back options with Lévy processes in Fusai et al. (2016),
where the error converges exponentially with the size of the
log-price grid and the CPU time is independent of the num-
ber of monitoring dates. In this paper we address the gap
in the literature for a general method for pricing α-quantile
options with general Lévy processes and a date-independent
computational time. Indeed, the date-independence of our
method is a key advantage over methods such as those by
Öhgren (2001) and Feng and Linetsky (2009) where the
computational time increases with the number of monitoring
dates.

The article is organised as follows: section 2 provides
the background to transform techniques, with special refer-
ence to the use of the Fourier transform in option pricing.
Sections 3–5 describe the new techniques for pricing α-
quantile, perpetual Bermudan and perpetual American options
and present results for these new methods for a range of
Lévy processes. All the numerical results were obtained using
MATLAB R2016b running under OS X Yosemite on a 2015
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Retina MacBook Pro with a 2.7 GHz Intel Core i5 proces-
sor and 8 GB of RAM following the step-by-step procedures
described in section 3.1.1, Appendix 1 using the process
parameters listed in Appendix 2.

2. Transform methods for option pricing

In this paper we make extensive use of the Fourier trans-
form (see e.g. Polyanin and Manzhirov 1998, Kreyszig 2011),
an integral transform with many applications. Historically, it
has been widely employed in spectroscopy and communica-
tions; therefore much of the literature refers to the function
in the Fourier domain as its spectrum. According to the usual
convention in financial literature, we define the forward and
inverse Fourier transforms of a Lebesgue-integrable function
f (x) ∈ L1(R) as

f̂ (ξ) = Fx→ξ

[
f (x)

]
:=

∫ +∞

−∞
eiξxf (x) dx, (1)

f (x) = F−1
ξ→x

[̂
f (ξ)

] = 1

2π

∫ +∞

−∞
e−iξ x̂f (ξ) dξ . (2)

In equtions (1) and (2) ξ is introduced as the Fourier variable
conjugated to x and thus is a real number. However, later ξ
will be extended to the complex plane for use with Wiener–
Hopf methods as in the barrier option pricing work of Fusai
et al. (2016).

Let S(t) be the price of an underlying asset at time t ≥ 0
and x(t) = log(S(t)/S0) be its log-price, which we model
with a Lévy process. To find the price v(x, t) of an option
at time t = 0 when the initial price of the underlying is
S(0) = S0, and thus its log-price is x(0) = 0, we need to
discount the expected value of the undamped option payoff
φ(x(T)) e−αdx(T) at maturity t = T with respect to an appropri-
ate risk-neutral probability distribution function (PDF) p(x, T)
whose initial condition is p(x, 0) = δ(x). The purpose of
damping is explained below. As shown by Lewis (2001)
and comprehensively used in Fusai et al. (2016) and Phe-
lan et al. (2018, 2019), the expectation can be computed in
Fourier space using the Plancherel theorem,

v(0, 0) = e−rT E
[
φ(x(T)) e−αdx(T)|x(0) = 0

]
= e−rT

∫ +∞

−∞
φ(x) e−αdxp(x, T) dx

= e−rT

2π

∫ +∞

−∞
φ̂(ξ )̂p ∗(ξ + iαd, T) dξ

= e−rTF−1
ξ→x

[
φ̂(ξ )̂p ∗(ξ + iαd, T)

]
(0). (3)

Here, p̂ ∗(ξ + iαd, T) is the complex conjugate of the Fourier
transform of e−αdxp(x, T). To price options using this relation,
we need the Fourier transforms of both the damped payoff and
the PDF. A double-barrier option has the damped payoff

φ(x) = eαdxS0(θ(e
x − ek))+1(l,u)(x), (4)

where eαdx is the damping factor, θ = 1 for a call, θ = −1
for a put, 1A(x) is the indicator function of the set A, k =

log(K/S0) is the log-strike, l = log(L/S0) is the lower log-
barrier, u = log(U/S0) is the upper log-barrier, K is the strike
price, L is the lower barrier and U is the upper barrier. The
Fourier transform of the damped payoff φ(x) is available
analytically (Fusai et al. 2016),

φ̂(ξ) = S0

(
e(1+iξ+αd)a − e(1+iξ+αd)b

1 + iξ + αd

− ek+(iξ+αd)a − ek+(iξ+αd)b

iξ + αd

)
, (5)

where for a call option a = u and b = max(k, l), while for
a put option a = l and b = min(k, u). A damping factor eαdx

with a negative damping parameter αd ensures the integrabil-
ity of the payoff function of a call. In a numerical algorithm
the integrability results anyway from the unavoidable trun-
cation of the x range to a finite grid where −∞ < xmin ≤
l ≤ x ≤ u ≤ xmax < +∞, but a damping factor with αd < 0
for a call and αd > 0 for a put also improves the numerical
accuracy because it smooths the payoff and thus mitigates the
Gibbs phenomenon (Phelan et al. 2018, 2019). In equation (3)
the shift of the characteristic function p̂(ξ + iαd, T) from ξ

to ξ + iαd compensates the damping of the payoff, and one
must make sure that αd is chosen such that the characteris-
tic function remains within its analiticity strip. The selection
of the damping parameter was described in detail by Feng
and Linetsky (2008) and analysed in depth by Kahl and
Lord (2010). The robustness of Spitzer-based numerical pric-
ing methods with respect to the variation of the damping
parameter is shown in the supplementary material of Phelan
et al. (2018, 2019).

The characteristic function 	(ξ , t) of a stochastic process
in continuous time X (t) is the Fourier transform of its PDF
p(x, t),

	(ξ , t) = E
[
eiξX (t)

] =
∫ +∞

−∞
eiξxp(x, t) dx

= Fx→ξ [p(x, t)] = p̂(ξ , t). (6)

For a Lévy process the characteristic function can be written
as 	(ξ , t) = eψ(ξ)t, where ψ(ξ) is known as the characteristic
exponent and uniquely defines the process.

The fluctuation identities we use in the pricing methods for
discretely monitored options are expressed in the Fourier-z
domain, with the Fourier transform applied with respect to
the log-price and the z-transform applied with respect to the
discrete monitoring times. The z-transform is defined as

f̃ (q) = Zn→q[f (n)] :=
∞∑

n=0

qnf (n), q ∈ C, (7)

where f (n) = f (tn), n ∈ N0, is a function of a discrete vari-
able. For some of the pricing methods we also require the
inverse z-transform. This is not generally available in closed
form, so we use the well-established method by Abate and
Whitt (1992), which has been used for option pricing by Fusai
et al. (2006, 2016) and Phelan et al. (2019).

For continuously monitored options the Laplace transform
is applied to the time domain. The forward Laplace transform
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is an integral transform related to the Fourier transform and
defined as

f̃ (s) = Lt→s
[
f (t)

] =
∫ ∞

0
e−stf (t) dt s ∈ C. (8)

Similarly to the discrete-time case, the inverse transform is
not generally available in closed form, so we use the numer-
ical inverse Laplace transform by Abate and Whitt (1995),
used for option pricing by Phelan et al. (2018). The Laplace
transform can be obtained from the z-transform setting q =
e−s�t, tn = n�t and taking the limit for �t → 0,

Lt→s[f (t)] = lim
�t→0

�tZn→q[f (tn)]. (9)

This relationship can be exploited to derive versions of the
fluctuation identities with continuous monitoring (Baxter and
Donsker 1957, Green et al. 2010, Fusai et al. 2016, Phelan
et al. 2018).

2.1. Decomposition and factorisation

The fluctuation identities require the decomposition and fac-
torisation of functions in the Fourier domain. Decomposition
splits a function in the Fourier domain into two parts which
are zero in the log-price domain below or above a value l, i.e.

f̂ (ξ) = f̂l+(ξ)+ f̂l−(ξ), (10)

where f̂l+(ξ) = Fx→ξ [1(l,∞)(x)F−1
ξ→x[̂f (ξ)]] and f̂l−(ξ) =

Fx→ξ [1(−∞,l)(x)F−1
ξ→x[̂f (ξ)]]. We obtain the decomposition

using the Plemelj-Sokhotsky relations,

f̂l+(ξ) = 1

2

{̂
f (ξ)+ eilξ iH[

e−ilξ f̂ (ξ)
]}

(11)

f̂l−(ξ) = 1

2

{̂
f (ξ)− eilξ iH[

e−ilξ f̂ (ξ)
]}

. (12)

Here H[·] is the Hilbert transform, which we implement
numerically with the sinc method described by Stenger (1993)
and used for option pricing by Feng and Linetsky (2008)
and Fusai et al. (2016). The pricing approach of the lat-
ter paper exploits fluctuation identities computed with the
sinc-based fast Hilbert transform; a more detailed error anal-
ysis and extensions of the technique within this application
was subsequently carried out by Phelan et al. (2018, 2019).
The calculations also require the factorisation of a function,
i.e. obtaining ĝ⊕(ξ) and ĝ	(ξ) such that ĝ(ξ) = ĝ⊕(ξ)ĝ	(ξ);
this is done by decomposing the logarithm of ĝ(ξ) and then
exponentiating the result.

3. Quantile options

For a stochastic process X (t), the α-quantile Xα(T) is the
value which the process stays below a fraction α of the time
t ∈ [0, T]; α-quantile options have a payoff which is a func-
tion of this value. They were designed by Miura (1992) as an

improvement on lookback options which would be less sus-
ceptible to large but short-lived swings in the price of the
underlying asset. They are therefore more resistant to mar-
ket manipulation, as it is easier to cause a brief swing in an
asset price than a persistent price change. We propose a pric-
ing method for α-quantile options with general exponential
Lévy processes.

3.1. Pricing discretely monitored quantile options

For α-quantile options the form of the payoff is the same as
in equation (4), but in this case it is calculated as a function
of the quantile, i.e. x = Xα(T) rather than the process value at
expiry x = X (T). Therefore, with the characteristic function
of Xα(T), we can price an α-quantile option in the Fourier
domain using the Plancherel relation, equation (3), and the
Fourier transform of the damped payoff φ̂(ξ), equation (5).

The Dassios–Port–Wendel identity (Wendel 1960,
Port 1963, Dassios 1995) states that the α-quantile of a Brow-
nian motion over the time interval [0, T] has the same distri-
bution as the sum of the infimum of a Brownian motion X1(t)
over the time interval [0, (1 − α)T] and the supremum of an
independent Brownian motion X2(t) over the time interval
[0,αT]. For continuous monitoring we define

Xm((1 − α)T) := inf
t∈[0,(1−α)T]

X1(t) and

XM (αT) := sup
t∈[0,αT]

X2(t); (13)

then the α-quantile of the Brownian motion between time 0
and T is given by

Xα(T)
d= Xm((1 − α)T)+ XM (αT). (14)

A note by Dassios (2006) showed that this identity also
extends to general Lévy processes and discrete monitoring.
For N discrete monitoring dates with a constant interval�t =
T/N we define

Xm(N − j) := min
0≤n≤N−j

X1(n�t) and

XM (j) := max
0≤n≤j

X2(n�t); (15)

then the α-quantile of the Brownian motion between monitor-
ing dates 0 and N is given by

Xα(N)
d= Xm(N − j)+ XM (j), (16)

where j is the approximation of αN to the nearest inte-
ger, although contracts can sensibly be written to avoid this
approximation by selecting α and N so that αN is an integer.

We can understand intuitively the link between the value of
Xα(T) and the supremum and infimum. Firstly, if a process is
split into a section for t ∈ [0,αT] and one for t ∈ (αT , T] then,
by the property of independent increments, they represent two
independent processes over t ∈ [0,αT] and t ∈ [0, (1 − α)T].
Moreover, the supremum of X1(t) is the value that the pro-
cess has spent αT time below and conversely the infimum
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Figure 1. PDF of the maximum of a Brownian motion monitored over 0 < n ≤ 50 (left) and 0 ≤ n ≤ 50 (right) dates with σ = 0.4, risk-free
interest rate r = 0.05 and 216 log-price grid points. What seems a thick line in the right plot are actually high-frequency oscillations caused
by the Gibbs phenomenon explained in the text.

of X2(t) is the value which this process has spent (1 − α)T
time above. Although the basic idea behind the relationship
in equation (14) is quite clear, the mathematical proof is
involved and we refer the interested reader to the original
paper by Dassios (1995) for the details.

Equations (14) and (16) hold for Lévy processes because
this class of processes has independent increments. In this
framework (Green et al. 2010) devised Spitzer-based for-
mulations for the probability distributions of the maximum
and minimum of a discretely monitored process, pXM (x, n)
and pXm(x, n), which were used by Fusai et al. (2016) to
price fixed-strike lookback options with exponential error
convergence. These are given in the Fourier-z domain as

˜̂pXM
(ξ , q) = 1

�⊕(ξ , q)�	(0, q)
(17)

˜̂pXm
(ξ , q) = 1

�⊕(0, q)�	(ξ , q)
, (18)

where �⊕(ξ , q) and �	(ξ , q) are the Wiener–Hopf factors of
1 − q	(ξ + iαd,�t) as described in section 2.1. The inverse
z-transform can be applied to obtain

p̂XM (ξ , j) = Z−1
q→j

[̃
p̂XM

(ξ , q)
]

(19)

p̂Xm(ξ , N − j) = Z−1
q→N−j

[̃
p̂Xm
(ξ , q)

]
(20)

in the Fourier-domain. As XM (j) and Xm(N − j) are the max-
imum and minimum of mutually independent processes, they
are mutually independent random variables. It is a basic result
in probability theory that the PDF of the sum of two inde-
pendent random variables is equal to the convolution of their
PDFs, i.e.

pXα (x, N) =
∫ +∞

−∞
pXM (x

′, j)pXm(x − x′, N − j) dx′. (21)

By the convolution theorem this becomes a plain product in
Fourier space,

p̂Xα (ξ , N) = p̂XM (ξ , j)̂pXm(ξ , N − j). (22)

The option price can then be obtained from the Plancherel
relation, equation (3), using the Fourier transform φ̂(ξ) of the
damped payoff, equation (5).

The calculation of the discretely monitored price for look-
back options, as done by Fusai et al. (2016), is based on
the distribution of the maximum (or minimum) of the pro-
cess at n> 0. Similarly to the procedure for barrier options
also described in that paper, the first date is taken out of the
Spitzer-based scheme and the result for N − 1 dates is mul-
tiplied by the characteristic function. This gives a smooth
probability distribution pXM ′ (x, j) ∈ C∞, as illustrated on the
left-hand plot of figure 1, where XM ′(j) is used to denote that
we are using the maximum for n> 0. As described by Rui-
jter et al. (2015), Fourier-based pricing methods using this
PDF do therefore not suffer from the Gibbs phenomenon and
can achieve exponential error convergence with the number
of log-price grid points.

However, for the α-quantile options we price in this paper,
we require the distribution of the maximum (minimum) for
n ≥ 0. As all Lévy processes have the property that X (0) =
0, the value of the maximum for n ≥ 0 cannot go below 0.
Therefore obtaining pXM (x, j) using the Spitzer-based scheme
with the full number of dates alters the PDF so that it now has
an abrupt discontinuity and a large spike at x = 0 as shown
on the right-hand panel of figure 1. This spike corresponds
to a single probability mass equal to

∫ 0
−∞ pX ′

M
(x, j) rdx. This

can be understood by seeing that the cumulative distribution
function (CDF) of XM (j) is

PXM (x, j) =
{

0 for x < 0

P(X ′
M (j) ≤ x) for x ≥ 0.

(23)
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If P(X ′
M (j) ≤ 0) �= 0, as is generally the case for Lévy pro-

cesses, PXM (x, j) has a jump at x = 0 of size P(X ′
M (j) ≤ 0) =∫ 0

−∞ pX ′
M
(x, j) dx. Thus when the CDF is differentiated to give

the PDF pXM (x, j), this will contain a probability mass at
x = 0 of size

∫ 0
−∞ pX ′

M
(x, j) dx. The use of such mixed dis-

tributions is quite well established in the literature about the
maxima and minima of processes; see e.g. (Feng and Linet-
sky 2009). It can be formalised denoting the probability mass
with δ(x)

∫ 0
−∞ pX ′

M
(x′, j) dx′ to give a continuous probability

distribution which integrates to the expression for the CDF in
equation (23). With respect to the pricing algorithm presented
in section 3.1.1, one can also note that the regularity of the
function p̂Xα depends on the Wiener–Hopf factors �⊕(ξ , q)
and �	(ξ , q), which are smooth enough to permit the Fourier
inversion; see e.g. (Eberlein et al. 2011).

The introduction of the discontinuity and spike has caused
oscillations in the plot of the PDF via the Gibbs phenomenon.
The discontinuity means that, as described for example by
Boyd (2001) and Gottlieb and Shu (1997), we would no
longer obtain exponential error convergence with grid size
using these distributions to price options. We work around this
with a spectral filter, as successfully implemented for Fourier-
based option-pricing methods by Cui et al. (2017), Phelan
et al. (2019) and Ruijter et al. (2015). In particular, we use
an exponential filter of order 12 (Gottlieb and Shu 1997).

3.1.1. Pricing procedure for α-quantile options. We price
a discretely monitored α-quantile option with a uniform mon-
itoring interval �t = T/N between N dates. The uniform
interval is necessary to apply the z-transform, and it is one
of the main assumptions to obtain a procedure whose com-
putational cost is independent of the number of monitoring
dates. As explained by Petrella and Kou (2004) in reference to
the work on lookback options by Öhgren (2001), the method
could be used to price at other monitoring dates if the previous
maximum and minimum of the stock price can be ignored.
Since the last assumption is strong, we wrote the whole arti-
cle pricing the contract at time n = 0, i.e. the inception date is
also when we start to measure the maximum/minimum.

In order to calculate the price of discretely monitored
α-quantile options using the Fourier-z transform, we must
express the time for the two independent random processes
in terms of the number N of monitoring dates; given N, we
round j = αN to the nearest integer (in our tests, we select α
and N such that αN is an integer). The pricing procedure is
then

(i) Compute the characteristic function 	(ξ + iαd,�t)
of the underlying transition density, where αd is the
damping parameter introduced in section 2.

(ii) Use the Plemelj–Sokhotsky relations, equations (11)–
(12), with the sinc-based fast Hilbert transform to
factorise

�(ξ , q) := 1 − qσ(ξ/ξmax)	(ξ + iαd,�t)

= �⊕(ξ , q)�	(ξ , q), (24)

where σ(η) is an exponential filter of order 12 as
defined by Gottlieb and Shu (1997) and q is selected

according to the criteria specified by Abate and
Whitt (1992) for the inverse z-transform.

(e) Calculate the Fourier-z transform of the PDF of the
maximum XM and of the minimum Xm,

˜̂pXM
(ξ , q) = 1

�⊕(ξ , q)�	(0, q)
(25)

˜̂pXm
(ξ , q) = 1

�⊕(0, q)�	(ξ , q)
. (26)

(iv) Apply the inverse z-transform for j and N − j dates,
respectively

p̂XM (ξ , j) = Z−1
q→j

[̃̂
pXM

(ξ , q)
]

(27)

p̂Xm(ξ , N − j) = Z−1
q→N−j

[̃̂
pXm
(ξ , q)

]
. (28)

(v) Eliminate the numerical error in the characteristic
functions of XM and Xm that corresponds to a spuri-
ous imaginary part of the PDF to avoid its propagation
in the next step,

p̂ Re
XM
(ξ , j) := Fx→ξ

[
Re pXM (x, j)

]
= 1

2

[̂
pXM (ξ , j)+ p̂ ∗

XM
(−ξ , j)

]
(29)

p̂ Re
Xm
(ξ , N − j) := Fx→ξ

[
Re pXm(x, j)

]
= 1

2

[̂
pXm(ξ , N − j)+ p̂ ∗

Xm
(−ξ , N − j)

]
.

(30)

(vi) Calculate the characteristic function of Xα at the mon-
itoring date N,

p̂Xα (ξ , N) = p̂ Re
XM
(ξ , j)̂p Re

Xm
(ξ , N − j). (31)

(vii) Calculate the price of the discretely monitored α-
quantile option at time 0,

v(0, 0) = F−1
ξ→x

[
σ(ξ/ξmax)̂pXα (ξ , N)φ̂∗(ξ)

]
(0), (32)

where σ(η) is an exponential filter of order 12, as in
Step (ii) above.

In the procedure above, Steps (i)–(iii) relate to the calcu-
lation of the Wiener–Hopf factors and the Spitzer identities
for the maximum and minimum of a process, as described
in equations (17) and (18). Steps (iv)–(vi) obtain the PDF
of Xα(N) as described in equations (19)–(22) and Step (vii)
uses the Plancherel relation, equation (3), to obtain the final
price.

3.2. Results for discretely monitored α-quantile options

We implemented the pricing method described above
using the numerical procedure described step-by-step in
Appendix 1. figure 2 shows results with α = 0.75 for N = 52,
252 and 1008 monitoring dates for the Gaussian, VG, and
Merton jump-diffusion (MJD) processes.
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Figure 2. Convergence of the pricing error with CPU time with the log-price of the underlying asset modelled by Gaussian (right), VG
(centre) and Merton processes. For the Gaussian and Merton processes the log-price grid size range is 27 − 212, and for the VG process the
range is 28 − 217.

Table 1. Price of an α-quantile option with 252 monitoring dates computed with our new method, the recursion method, Monte Carlo, and
Monte Carlo combined with the Dassios–Port–Wendel identity.

Monte Carlo Monte Carlo + DPW

α Spitzer price recursion price price std dev price std dev

Gaussian
2/3 0.20847221 0.20847221 0.208438 3.8E − 5 0.208460 3.8E − 5
3/4 0.24346206 0.24346206 0.243491 4.1E − 5 0.243440 4.1E − 5
5/6 0.28541044 0.28541044 0.285367 4.5E − 5 0.285445 4.5E − 5

Variance gamma
2/3 0.15893822 0.15893822 0.158933 4.0E − 5 0.158915 4.0E − 5
3/4 0.17649028 0.17649028 0.176453 4.3E − 5 0.176493 4.3E − 5
5/6 0.19604275 0.19604275 0.196066 4.4E − 5 0.196050 4.4E − 5

Merton jump-diffusion
2/3 0.15957162 0.15957162 0.159540 3.9E − 5 0.159566 3.9E − 5
3/4 0.17757317 0.17757317 0.177592 4.1E − 5 0.177600 4.1E − 5
5/6 0.19776625 0.19776625 0.197760 4.3E − 5 0.197724 4.3E − 5

Note: Both the Spitzer and the recursion method use 216 log-price grid points.

The error convergence for this method is extremely fast;
we were able to achieve a CPU time of 10−2 seconds or less
for an error of 10−8 using the Gaussian and Merton processes
and 10−6 using the VG process. There are too few points
before reaching the error floor of 10−11, caused by the inverse
z-transform, to assess whether the error convergence is expo-
nential or high-order polynomial. This is not a concern for
using the method in practice, but a more accurate z-transform
would allow us to understand the convergence better.

In table 1 we show the variation of the price with α for
252 monitoring dates (as expected the option price increases
with α) and compare the results with those from three other
pricing methods. We use two Monte Carlo methods. The first
simulates N monitoring date paths and selects the jth small-
est value. The second uses the same approach as (Ballotta
and Kyprianou 2001) by combining the Monte Carlo simula-
tion with the Dassios–Port–Wendel identity. Two independent
paths of length j�t and (N − j)�t dates are simulated and the
sum of their respective minimum and maximum is calculated
to provide an estimate of the α-quantile. Further details about
this Monte Carlo scheme are included in Appendix 3. The
third comparison is with a recursive method drawn from Feng

and Linetsky (2009) and Green (2009). It uses the property
that for a random walk

X (tn) = X (tn−1)+ Qn, X (0) = 0, (33)

where Qn are independent and identically distributed random
variables with PDF p(x,�t), XM (tn), defined as the maximum
value of X (tn) between the times t0 = 0 and tn = n�T , has
the same probability distribution as the process RM (tn) defined
recursively as

RM (tn) = max(RM (tn−1)+ Qn, 0), RM (0) = 0, (34)

and Xm(tn) has the same probability distribution as the process
Rm(tn) defined recursively as

Rm(tn) = min(Rm(tn−1)+ Qn, 0), Rm(0) = 0. (35)

This gives recursive relationships for the PDFs of XM and Xm,

pM (x, tn) =
∫ ∞

0
pM (x

′, tn−1)p(x − x′,�t) dx′,

pM (x, 0) = δ(x) (36)
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pm(x, tn) =
∫ 0

−∞
pm(x

′, tn−1)p(x − x′,�t) dx′,

pm(x, 0) = δ(x). (37)

This can be implemented in the Fourier domain using the
Plemelj–Sokhotsky relations, equations (11)–(12), and the
sinc-based fast Hilbert transform in a similar way as done
for barrier options by Feng and Linetsky (2008) and Fusai
et al. (2016),

p̂M (ξ , tn) = 1

2

(̂
pM (ξ , tn−1)	(ξ ,�t)

+ H [̂pM (ξ , tn−1)	(ξ ,�t)]
)
, (38)

p̂m(ξ , tn) = 1

2

(̂
pm(ξ , tn−1)	(ξ ,�t)

− H [̂pm(ξ , tn−1)	(ξ ,�t)]
)
, (39)

where 	(ξ ,�t) = Fx→ξ [p(x,�t)] is the characteristic func-
tion of Qn. The characteristic functions of XM and Xm calcu-
lated in this way are then multiplied as in equation (22).

Table 1 shows that the prices calculated using our new
method are consistent with both Monte Carlo methods and
match the recursion method to 8 decimal places. We can there-
fore be confident that our new method gives highly accurate
results with very short CPU times as shown in figure 2.

4. Perpetual Bermudan options

Bermudan options have the same payoff as European options,
but they can be exercised at a discrete set of intermediate dates
rather than only at the final expiry date. They can be thought
of as a discrete version of American options and, indeed, the
price of a Bermudan option is often used as an approxima-
tion for the price of an American option; see e.g. (Feng and
Lin 2013). Perpetual Bermudan and American options have
no expiry and therefore ‘live’ until they are exercised. Pric-
ing perpetual options is an easier problem than the valuation
of those with finite expiry because the infinite time horizon
makes the optimal exercise boundary a constant rather than a
function of time. Indeed, closed-form formulas exist for per-
petual American options with simple processes, whereas there
are none for finite-expiry options.

We look at two methods for pricing perpetual Bermudan
options. Firstly we implement the method by Green (2009)
which uses residue calculus. We also implement a new
method which uses Spitzer identities and show a novel way
to calculate the optimal exercise boundary. We specify new
numerical truncation bounds for the log-price domain; they
are required because of the infinite time horizon.

Both methods require the probability distribution of the cur-
rent value of a process, subject to the path not having crossed
a lower barrier l, i.e.

pl(x, n) dx = P

[
Xn ∈ (x, x + dx] ∩ min

j<n
Xj > l

]
. (40)

Using techniques from complex analysis, Green (2009) and
Green et al. (2010) showed that this can be expressed using

the Spitzer identities as

pl(x, n) =

⎧⎪⎨⎪⎩
Z−1

q→n

[
F−1
ξ→x

[
Pl+(ξ , q)

�⊕(ξ , q)

]]
, x ≥ l,

Z−1
q→n

[F−1
ξ→x [Pl−(ξ , q)�	(ξ , q)]

]
, x < l,

(41)

where �⊕(ξ , q) and �	(ξ , q) are as defined in section 3.1
and Pl+ and Pl− are calculated decomposing P = 1/�	(ξ , q)
around l.

The order of the inverse transforms can be swapped. The
method we develop here for pricing perpetual Bermudan
options calculates the expected return from exercising the
option at each monitoring date and sums this over all moni-
toring dates. Therefore we use the form of the Spitzer identity
in equation (41) for x< l. That is, for each discretely spaced
exercise date, we require the distribution of X (n) subject to
n being the first monitoring date when it has gone below the
optimal exercise boundary. If the underlying has gone below
the optimal exercise boundary at a previous monitoring date
(j ≤ n − 1) then the option would have exercised at date j
and this path will not contribute to the expected return at
date n. Conversely for paths that are above the optimal exer-
cise boundary at date n, we would not choose to exercise the
option and therefore these paths will also not contribute to
the expected return at date n. In order to maintain the link
to the work using Spitzer identities to price barrier options,
for example by Fusai et al. (2016), we denote the log of the
optimal exercise boundary by l which is used for the lower
log-barrier in the work on barrier options. Several different
possible paths are illustrated in figure 3 for a process with 10
monitoring dates and l = − 0.2. The value of X (10) for paths
1 and 2 would contribute to the required distribution as the
paths stay above l for monitoring dates 0–9, but go below l at
the monitoring date 10. Path 3 does not count towards the dis-
tribution as it is above l at the 10th monitoring date and path 4
does not count as it goes below l at an earlier monitoring date.

4.1. Green’s residue method

We briefly recapitulate the method described by Green (2009)
to provide a background to the results from our numeri-
cal implementation and also because we re-use some of the
same techniques in deriving the new Spitzer-based method
described in section 4.2. The scheme is based on a com-
bination of a first-touch option paying K − D, where K is
the strike, and an overshoot option which pays the differ-
ence between a barrier D and the underlying asset S(t) =
S0eX (t) the first time the barrier is crossed. A first-touch option
requires the probability that the first time the underlying asset
crosses the barrier l is time n�t, i.e.

P[τl = n�t] =
∫ l

−∞
pl(x, n) dx. (42)

Substituting pl(x, n) = Z−1
q→n[F−1

ξ→x[Pl−(ξ , q)�	(ξ , q)]] from
equation (41) into this and taking the expectation over all
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Figure 3. Discretely monitored continuous random paths with 10 monitoring dates and �t = 1. Only the paths that stay above the barrier
(dot-dashed line) at monitoring dates 0–9 and descend below the barrier at date 10 contribute to the target distribution; they are indicated
with continuous lines. The paths which are on or below the barrier for at least one monitoring date between 0 and 9, or are above the barrier
at date 10 are not included in the target distribution and are indicated with dashed lines.

dates, Green (2009) obtains the price of the option as

vF(0, 0) = (K − D)
∞∑

n=1

e−rn�tZ−1
q→n

[
Pl−(0, q)�	(0, q)

]
.

(43)

The next insight by Green (2009) is that the summation and
inverse z-transform cancel each other if we use q = e−r�t

because the summation equates to a forward z-transform.
Then the price for a first-touch option is

vF(0, 0) = (K − D)Pl−
(
0, e−r�t

)
�	

(
0, e−r�t

)
. (44)

The value of the payoff of an overshoot option at date n is the
expected overshoot D − S(tn) conditional on n being the first
date when the underlying asset process falls below l, τl is

E[e−rτl (D − S(τl))|τl = n�t]

= e−rn�t
∫ l

−∞
(D − S0ex)pl(x, n) dx. (45)

We calculate the option value by using the tower property
to take the expectation over all discrete monitoring dates,
and we substitute pl(x, n) = Z−1

q→n[F−1
ξ→x[Pl−(ξ , q)�	(ξ , q)]]

to obtain

vO(0, 0) =
∞∑

n=1

e−rn�t
∫ l

−∞
(D − S0ex)Z−1

q→n

× [F−1
ξ→x [Pl−(ξ , q)�	(ξ , q)]

]
dx

= 1

2π

∫ +∞

−∞
φ̂(−ξ)Pl−(ξ , e−r�t)�	(ξ , e−r�t) dx.

(46)

In the first line we set q = e−r�t to cancel the inverse
z-transform as before; in the second line we use the Plancherel
relation to move into the Fourier domain. Using equation (5)

for φ̂(ξ) for a put option with a = −∞, b = l, k = l, αd > 0
and solving via the residue method,

vO(0, 0) = − D

2π

∫ +∞

−∞

Pl−(ξ , e−r�t)�	(ξ , e−r�t)

ξ 2 + iξ
dx

= DPl−(0, e−r�t)�	(0, e−r�t)

− DPl−(−i, e−r�t)�	(−i, e−r�t). (47)

Choosing the barrier l as the optimal exercise boundary, the
price vB of a perpetual Bermudan option is the sum of the price
vF of a first-touch option with payoff K − D, equation (43),
and the price of an overshoot option, equation (47), i.e.

vB(0, 0) = vF(0, 0)+ vO(0, 0) = KPl−(0, e−r�t)�	(0, e−r�t)

− DPl−(−i, e−r�t)�	(−i, e−r�t). (48)

Green (2009) showed that, as the optimal exercise boundary
gives a maximum price, solving ∂vB(0, 0)/∂D = 0 for D gives
the optimal exercise boundary,

Dopt = K
�	(0, e−r�t)

�	(−i, e−r�t)
. (49)

Then, defining lopt := log(Dopt/S0), we obtain the price of a
perpetual Bermudan option,

vB(0, 0)= K�	(0, e−r�t)[Plopt−(0, e−r�t)− Plopt−(−i, e−r�t)].
(50)

Therefore, we have proved the following result.

Theorem 4.1 Let X (t) be a Lévy process and αd be an appro-
priate damping parameter.† Then the price at time t = 0 of a
perpetual Bermudan put option on the underlying asset S(t) =
S0eX (t) with strike K and the set {j�t}j∈N of possible early

† See section 2 for a discussion of the purpose of the damping factor
and the choice of the damping paramter.
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exercise dates is given by vB(0, 0) provided in equation (50),
where lopt = log(Dopt/S0), Dopt is given by equation (49),
�	(ξ , q) is given by equation (24), and Plopt−(ξ , q) is calcu-
lated decomposing P = 1/�	(ξ , q) around lopt.

For the optimal exercise log-boundary we chose the symbol
lopt rather than dopt by analogy to the lower log-barrier l in the
work on barrier options of Fusai et al. (2016), as will become
clear in the next subsection.

4.2. New formulation based on Spitzer identities

The method by Green described in section 4.1 is very elegant
mathematically, but does not particularly lend itself to an intu-
itive understanding. Therefore we also devised an alternative
method for pricing perpetual Bermudan options, including a
new way of calculating the optimal exercise boundary.

We first recognise that the expected return from exercis-
ing a perpetual Bermudan put at monitoring date n, subject to
the underlying asset price being below the optimal exercise
boundary lopt, can be expressed as

E[e−rn�t(K − S(tn))
+] = e−rn�t

∫ l

−∞
(K − S0ex)plopt(x, n) dx.

(51)

To obtain the value of the option we sum over all monitoring
dates; substituting ˜̂plopt

(ξ , q) = Plopt−(ξ , q)�	(ξ , q),

vB(0, 0) =
∞∑

n=1

e−rn�t
∫ l

−∞
(K − S0ex)Z−1

q→n

×
[
F−1
ξ→x

[̃̂
plopt

(ξ , q)
]]

dx. (52)

We can again use the idea by Green (2009) of using q = e−r�t

so that the summation cancels with the inverse z-transform to
give

vB(0, 0) =
∫ l

−∞
(K − S0ex)F−1

ξ→x

[̃̂
plopt

(ξ , e−r�t)
]

dx. (53)

This integral can be expressed in the Fourier domain using the
Plancherel relation,

vB(0, 0) = 1

2π

∫ +∞

−∞
φ̂∗(ξ )̃̂plopt

(ξ , e−r�t) dx

= F−1
ξ→x

[
φ̂∗(ξ )̃̂plopt

(ξ , e−r�t)
]
(0), (54)

where φ(ξ) is the damped payoff for a put option,
equation (4), with l = lopt.

For this method, the calculation of the optimal exercise
boundary is based on the idea that if the underlying asset is
exactly at the optimal exercise boundary, i.e. S0 = Dopt, then
the value of the payoff from exercising the option is equal
to the expected value from continuing to hold the option.
Furthermore, the log-boundary used to calculate ˜̂plopt

(ξ , q) =
Plopt−(ξ , q)�	(ξ , q) is lopt = log(Dopt/S0) = 0, so that we can

rewrite equation (51) as

vB,S0=Dopt(0, 0) =
∫ 0

−∞
(K − S0ex)F−1

ξ→x

× [
P0−(ξ , e−r�t)�	(ξ , e−r�t)

]
dx

= F−1
ξ→x

[
φ̂∗(ξ)P0−(ξ , e−r�t)�	(ξ , e−r�t)

]
(0).
(55)

If we differentiate the expression on the first line of
equation (55) with respect to S0, we obtain

∂vB,S0=Dopt(0, 0)

∂S0
= −

∫ 0

−∞
exF−1

ξ→x

× [
P0−(ξ , e−r�t)�	(ξ , e−r�t)

]
dx, (56)

which is constant. Therefore, if we plot vB,S0=D(0, 0) against
S0 = D, we obtain a straight line, and the point where this
line crosses the non-zero part of the payoff function (K −
S0)

+, i.e. K − S0 for S0 < K, represents the optimal exercise
boundary. This is illustrated in figure 4. Thus, by calculating
equation (55) for two values of S0, say S0 = D1 and S0 = D2,
we obtain the corresponding straight line with slope m and
intercept c. We then calculate the optimal exercise boundary
Dopt, corresponding to the point where the lines cross, as

Dopt = K − c

m + 1
. (57)

Therefore, we have proved the following result.

Theorem 4.2 Let X (t) be a Lévy process and αd be an appro-
priate damping parameter. Then the price at time t = 0 of a
perpetual Bermudan put option on the underlying asset S(t) =
S0eX (t) with strike K and the set {j�t}j∈N of possible early
exercise dates is given by vB(0, 0) provided in equation (54),
where lopt = log(Dopt/S0), Dopt is the unique solution of
vB,S0=Dopt(0, 0) = K − Dopt, ˜̂plopt

(ξ , q) = Plopt−(ξ , q)�	(ξ , q)
with the left-hand side given by equation (55), and �	(ξ , q)
and Plopt−(ξ , q) are calculated as in Theorem 4.1.

We can also speed up the computational time by noting that
if we set D1 = 0 in equation (55) we obtain the price

vB,S0=D1(0, 0) = K
∫ l

−∞
F−1
ξ→x

[
P0−(ξ , e−r�t)�	(ξ , e−r�t)

]
dx

= KP0−(0, e−r�t)�	(0, e−r�t), (58)

which means that we only need to perform the inverse Fourier
transform for the other calibration point D2. To avoid com-
putational errors, rather than calculating the Spitzer identity
with l = 0 we select l = lε = �x, i.e. the grid step of the
log-price. This value does not depend on S0 and so the calcu-
lation of the gradient in equation (56) still returns a constant.
The option price is then calculated using equation (54) with
lopt = log(Dopt/S0).

4.3. Truncation limits

For finite-expiry options, the range of the log-price grid used
in the Fourier-based methods was calculated from the cumu-
lants of the distribution over a single monitoring interval �t;
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Figure 4. Crossing point of the lines K − D and vB,S0=D(0, 0) used to calculate the optimal exercise boundary Dopt.

for the parameters used by Fusai et al. (2016) and Phelan
et al. (2019), this is approximately ±2. For perpetual options
we must consider the shape of the PDF far in the future. This
is especially true when the risk-free rate r is low because the
effect of discounting for each additional �t is very small and
thus the contributions from distant dates is still significant.
Therefore, the truncation bounds used for finite-expiry options
are far too narrow for perpetuals. We base our calculation of
the new bounds on the idea that we should truncate the log-
price domain at a value where the discount factor makes the
effect of any distortion of the distribution of the underlying
asset negligible on the calculation of the final price. We select
a threshold 10−λ that we wish the error to be below and cal-
culate the time it will take for the discount factor to be below
this value,

Tbound = λ log(10)/r. (59)

We then approximate the standard deviation of the underlying
process at this time with

σbound = σ
√

Tbound, (60)

where σ is the volatility of the underlying process normalised
to 1 unit of time. The bounds of the log-price domain [−b, b]
are now given by

b = 6σbound. (61)

4.4. Results for perpetual Bermudan options with the
Gaussian process

Figures 5 and 6 show results of the two methods for pric-
ing perpetual Bermudan options. The results labelled ‘Green’
are from the residue method described in section 4.1 and
those labelled ‘Spitzer’ are from the new method described in
section 4.2. Results are presented for error vs. CPU time for
risk-free rates r = 0.02 and 0.05. Using a Gaussian process
for the underlying asset means the results as �t → 0 can be
compared with closed-form calculations for perpetual Amer-
ican options. The convergence of the price for Bermudan
options to the continuous case is shown in tables 2 and 3. We
discuss the further verification of these results in section 4.5.

Both methods perform well, and as �t → 0 the results
approach those for the corresponding perpetual American
option. The new Spitzer-based method outperforms Green’s
residue method, achieving an error of 10−7 in approximately
one tenth of the CPU time. In contrast, the convergence of
the optimal exercise boundary is slower for the Spitzer-based
method than for Green’s residue method. Moreover the opti-
mal exercise boundary errors of both methods converge at the
same rate or slower than the price errors, so we can see that
the former has a limited effect on the latter. This is discussed
in more detail in section 4.4.1.

4.4.1. Effect of the optimal exercise boundary error. We
studied the effect of the optimal exercise boundary error in
more detail by adding a perturbation (i.e. a small additional
error) to the optimal exercise boundary and observing the
effect on the absolute error of the price. Figure 7 shows the
result of this for log-price grid sizes of 218 and 221 which
in the original results correspond to price errors of 1.9E − 9
and 2.1E − 12 respectively and exercise boundary errors of
1.4E − 5 and 8.7E − 7, respectively. We can clearly see that
there is a quadratic relationship between the error of the opti-
mal exercise boundary and the error of the price. This is
consistent with the fact that the price error caused by the
boundary error is equal to the area between the lines of the
payoff K − S0 and the intrinsic option value v(0, 0) in figure 4.

4.5. Results for perpetual Bermudan options with other
Lévy processes

Figures 8–11 show results for the price and optimal exercise
boundary error vs. the number of grid points and CPU time,
with the log-price of the underlying asset modelled by VG
and Merton processes. Once again, the Spitzer-based method
performs better, achieving an error of 10−7 about 10 times
quicker than Green’s method. The error is calculated as the
precision compared to the result with the maximum number
of grid points and we discuss the verification of these results
below.
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Figure 5. Error convergence for the price (left) and the optimal exercise boundary (right) with respect to CPU time; the underlying asset is
modelled with a Gaussian process and the risk-free rate is r = 0.02. The pricing error convergence of the new method described in section 4.2
and labelled ‘Spitzer’ is faster than that of the residue method described in section 4.1 and labelled ‘Green’, whereas the optimal exercise
boundary error convergence is worse.

Figure 6. Error convergence for the price (left) and the optimal exercise boundary (right) with respect to CPU time; the underlying asset is
modelled with a Gaussian process and the risk-free rate is r = 0.05. The pricing error convergence of the new method described in section 4.2
and labelled ‘Spitzer’ is faster than that of the residue method described in section 4.1 and labelled ‘Green’, whereas the optimal exercise
boundary error convergence is worse.

Table 2. Results for both methods for perpetual Bermudan options with 220 log-price grid points showing the convergence to the price for
a perpetual American option.

Spitzer Green

�t r = 0.1 r = 0.05 r = 0.02 r = 0.1 r = 0.05 r = 0.02

1 0.20169919 0.33181098 0.53155442 0.20169919 0.33181098 0.53155362
0.5 0.20737414 0.33522271 0.53328533 0.20737414 0.33522271 0.53328453
0.25 0.21021533 0.33695115 0.53414348 0.21021533 0.33695115 0.53414268
0.1 0.21197983 0.33798846 0.53465453 0.21197984 0.33798846 0.53465373
0.01 0.21305064 0.33861012 0.53495870 0.21305065 0.33861013 0.53495791
American 0.21317038 0.33867902 0.53499224 0.21317038 0.33867902 0.53499224

In tables 2 and 3 we showed that that the results with the
Gaussian process converge to the closed-form solution by
Merton (1973) as �t → 0. We do not have a closed-form
solution for other Lévy processes, so we computed Monte
Carlo estimates for the Gaussian, VG and Merton cases.

Although the discrete nature of perpetual Bermudan
options is appropriate for a Monte Carlo simulation, the
absence of an expiry means that a Monte Carlo scheme with a
finite number of dates will not be a true representation of the
contract. We truncate the Monte Carlo simulation far enough
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Table 3. Optimal exercise boundary calculated using both methods for perpetual Bermudan options with 220 log-price grid points showing
the convergence to the optimal exercise boundary for a perpetual American option.

Spitzer Green

�t r = 0.1 r = 0.05 r = 0.02 r = 0.1 r = 0.05 r = 0.02

1 0.68360194 0.47916587 0.25110359 0.68360124 0.47916517 0.25110066
0.5 0.64678075 0.45056945 0.23520061 0.64678008 0.45056880 0.23519670
0.25 0.62026498 0.43075700 0.22442626 0.62026434 0.43075637 0.22442094
0.1 0.59653531 0.41350275 0.21519240 0.59653469 0.41350214 0.21518427
0.01 0.56851217 0.39363474 0.20472988 0.56851159 0.39363417 0.20470522
American 0.55555556 0.38461538 0.20000000 0.55555556 0.38461538 0.20000000

Figure 7. The absolute price error for different levels of perturbation added to the optimal exercise boundary for log-price grid sizes of 218

(left) and 221 (right). The smallest perturbation is equal to the boundary error at the same grid size, i.e. the smallest error result has twice the
boundary error usually seen. Notice the quadratic relationship between boundary error and absolute error.

Figure 8. Error convergence for the price (left) and the optimal exercise boundary (right) with respect to CPU time; the underlying asset is
modelled with a VG process and the risk-free rate is r = 0.02. The pricing error convergence of the new method described in section 4.2
and labelled ‘Spitzer’ is faster than that of the residue method described in section 4.1 and labelled ‘Green’, whereas the optimal exercise
boundary error convergence is worse.

in the future that the effect of disregarding these future dates
is less than the standard deviation of the Monte Carlo method
itself (clearly this method is more feasible for high discount
factors and large monitoring intervals, as the effect of future

dates is discounted away more rapidly). The calculation of
the optimal exercise boundary uses the same approach as the
new method described in section 4.2, i.e. we calculated the
price for S0 = D1 and S0 = D2, then we found the intersection
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Figure 9. Error convergence for the price (left) and the optimal exercise boundary (right) with respect to CPU time; the underlying asset is
modelled with a VG process and the risk-free rate is r = 0.05. The pricing error convergence of the new method described in section 4.2
and labelled ‘Spitzer’ is faster than that of the residue method described in section 4.1 and labelled ‘Green’, whereas the optimal exercise
boundary error convergence is worse.

Figure 10. Error convergence for the price (left) and the optimal exercise boundary (right) with respect to CPU time; the underlying asset
is modelled with a Merton jump-diffusion process and the risk-free rate is r = 0.02. The pricing error convergence of the new method
described in section 4.2 and labelled ‘Spitzer’ is faster than that of the residue method described in section 4.1 and labelled ‘Green’, whereas
the optimal exercise boundary error convergence is worse.

between the line through these points and the non-zero part of
the payoff function (K − S0)

+, i.e. K − S0 for S0 < K.
Table 4 shows that for all tested cases the results of our

new methods described in sections 4.1 and 4.2 coincide and
are within 2 standard deviations from the Monte Carlo results,
i.e. within a confidence interval of about 95%. More details
about this Monte Carlo scheme are included in Appendix 3.

5. Perpetual American options

As described by Green et al. (2010) and implemented by Phe-
lan et al. (2018), we can exploit the relationship between
Laplace and z-transforms described in equation (9) to extend
the pricing methods from discrete to continuous monitoring,
in this case from perpetual Bermudan to perpetual American

options. Unlike the previous examples for option pricing with
continuous monitoring, where the application of option pric-
ing was used as a motivating example for techniques which
have relevance in other fields, the continuous (i.e. American)
case is commonly used in financial contracts. By defining q =
e−s�t, we can write the continuously monitored equivalent
to �(ξ , q) = 1 − q	(ξ ,�t) as �c(ξ , s) = s − ψ(ξ), where
ψ(ξ) is the characteristic exponent of the characteristic func-
tion 	(ξ ,�t). Here, as q = e−r�t, we have s = r. Both meth-
ods described in sections 4.1 and 4.2 can be converted to
continuous monitoring and we compare the results below.

5.1. Results for perpetual American options

Figures 12–14 show results for both methods with the Gaus-
sian, VG and Merton processes. To assess the accuracy of the
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Figure 11. Error convergence for the price (left) and the optimal exercise boundary (right) with respect to CPU time; the underlying asset
is modelled with a Merton jump-diffusion process and the risk-free rate is r = 0.05. The pricing error convergence of the new method
described in section 4.2 and labelled ‘Spitzer’ is faster than that of the residue method described in section 4.1 and labelled ‘Green’, whereas
the optimal exercise boundary error convergence is worse.

Table 4. Comparison between the value of a perpetual Bermudan option with 220 log-price grid points and the value for the same contract
using a Monte Carlo approximation.

Parameters Monte Carlo

r �t price std dev Spitzer price Green price

Gaussian
0.05 1 0.33180 4.2E − 5 0.331811 0.331811
0.05 0.5 0.33520 4.5E − 5 0.335223 0.335223
0.05 0.25 0.33695 4.5E − 5 0.336951 0.336951
0.05 0.1 0.33791 8.3E − 5 0.337988 0.337988

Variance gamma
0.05 1 0.12023 1.1E − 4 0.120237 0.120237
0.05 0.5 0.12342 2.3E − 4 0.123298 0.123298
0.05 0.25 0.12500 1.3E − 4 0.124919 0.124919
0.05 0.1 0.12588 1.3E − 4 0.125959 0.125959
0.02 1 0.24704 1.8E − 4 0.247078 0.247078
0.02 0.1 0.24975 1.8E − 4 0.249756 0.249756

Merton jump-diffusion
0.05 1 0.11976 1.3E − 4 0.119856 0.119856
0.05 0.5 0.12309 1.2E − 4 0.122993 0.122993
0.05 0.25 0.12464 1.4E − 4 0.124674 0.124674
0.05 0.1 0.12570 1.1E − 4 0.125767 0.125767

Note: The prices calculated using the new Spitzer-based method and Green’s method are the same and within two standard deviations of the
Monte Carlo price.

methods with a Gaussian process we have the advantage over
Bermudan options that closed-form formulas exist for the cal-
culation of both the optimal exercise boundary and the option
price, and so the results in figure 12 use the closed-form calcu-
lation from Merton (1973) to calculate the error. For the other
process we do not have a closed-form result, and the contin-
uous nature of American options means that they cannot be
accurately represented using Monte Carlo methods which are
inherently discrete. Therefore the absolute errors displayed in
figures 13 and 14 are calculated against the result for the same
method and process with the maximum number of log-price
grid points.

In contrast to the results for perpetual Bermudan options,
the performance of the two methods is very different. Our
new Spitzer-based method is far superior, giving errors of

approximately 10−6 in 10−2 seconds or less. For the Gaus-
sian and Merton processes, Green’s method fails to reach an
error level of 10−6, and for the VG process it reaches this level
about 100 times slower than our new method.

5.2. Comparison between American and Bermudan option
prices

The performance for the direct calculation of the price of
American options is sufficiently good for practical purposes,
with the Spitzer method having an error of 10−6 for a CPU
time of 10−2 s. However, it is of academic interest to study the
use of the price for Bermudan options as an approximation to
the price for American options.
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Figure 12. Error convergence for the price (left) and the optimal exercise boundary (right) with respect to CPU time; the log-price of the
underlying asset is modelled by a Gaussian process with a range of risk-free rates r. The error is calculated using the closed-form expression
by Merton as a reference. The price and optimal exercise boundary error convergence for the new method described in section 4.2 labelled
‘Spitzer’ is faster than for the residue method described in section 4.1 labelled ‘Green’.

Figure 13. Error convergence for the price (left) and the optimal exercise boundary (right) with respect to CPU time; the log-price of the
underlying asset is modelled by a VG process with a range of risk-free rates r. The error is calculated using the numerical result with the
maximum grid size as a reference. The price and optimal exercise boundary error convergence for the new method described in section 4.2
labelled ‘Spitzer’ is faster than for the residue method described in section 4.1 labelled ‘Green’.

The left-hand panel in figure 15 shows the price error
compared to American options plotted against �t with the
log-price of the underlying asset modelled by a Gaussian
process and it is clear that the relationship is linear. By extrap-
olating this line, we can see that in order to achieve an error of
10−8 for r = 0.02 a step size of �t = 0.3E − 06 is required.
The price convergence with this step size is shown in figure 15
and we can see that reducing the step size this low destroys
the monotonicity of the convergence and the excellent error
performance that we were seeing for more realistic step sizes.

6. Conclusion

We implemented three new pricing methods based on the
Spitzer identities for pricing exotic options. We saw very fast

error convergence with log-price grid size and, by extension,
CPU time. Due to the low errors and the presence of the
10−11 error floor in the inverse z-transform, it was not possi-
ble to identify whether the error convergence is exponential or
high-order polynomial. The extremely low error and compu-
tational time make this a highly attractive method as it stands.
However, it would be of academic interest to implement this
method using an inverse z-transform with a lower error floor
in order to determine the exact order of convergence.

We presented a novel method for pricing perpetual Bermu-
dan options which includes a new technique to directly
compute the optimal exercise boundary; it is based on the
Spitzer identities and the sinc-based fast Hilbert transform.
We also provide the first numerical implementation of a
method designed by Green (2009) which uses residue calcu-
lus to remove the requirement of the final inverse Fourier-z
transform. Both methods perform well, but our new method



Pricing methods for α-quantile and perpetual early exercise options 915

Figure 14. Error convergence for the price (left) and the optimal exercise boundary (right) with respect to CPU time; the log-price of the
underlying asset is modelled by a Merton jump-diffusion process with a range of risk-free rates r. The error is calculated using the numerical
result with the maximum grid size as a reference. The price and optimal exercise boundary error convergence for the new method described
in section 4.2 labelled ‘Spitzer’ is faster than for the residue method described in section 4.1 labelled ‘Green’.

Figure 15. Convergence of the price of perpetual Bermudan options to the price of perpetual American options. The left hand plot shows
the convergence as �t → 0 with the log-price of the underlying asset modelled by a Gaussian process. The right hand side plot shows the
error convergence of the price of a perpetual Bermudan option with r = 0.02 and �t =3E − 06 vs. CPU time.

shows significantly lower errors and CPU times, with a
computational speed ten times faster for an error of 10−7.

We extended these methods to perpetual American options
(i.e. with continuous monitoring) and very different results
were observed for the two methods. For Green’s method, the
factorisation error was very high and dominated the error con-
vergence. For the new Spitzer-based method, the factorisation
error was much lower and therefore the effect only became
dominant for errors below approximately 10−7.

For errors greater than 10−7, the new Spitzer-based method
for perpetual American options has errors at least as low as the
method for perpetual Bermudan options, so we conclude that,
for practical purposes, there is no advantage in using discrete
monitoring as an approximation for continuous monitoring.
Comparing the two approaches as an academic exercise shows
that there is as a linear relationship between the size of the

monitoring interval �t and the error compared to continuous
monitoring. However, reducing �t to a sufficiently low value
that the discrete method would be predicted to have a lower
error than the continuous method, significantly degrades the
error convergence of the discretely monitored method so that
no advantage is gained.

An interesting extension to this work would be to inves-
tigate the calculation of the Greeks for these options. Sev-
eral different approaches have been used in the litera-
ture to find the Greeks with Fourier-based methods. These
include analytic methods such as those by Olivera and
Mordecki (2016), Eberlein et al. (2010) and Takahashi
and Yamazaki (2009), based on the work by Carr and
Madan (1999) and Lewis (2001). In addition, numerical meth-
ods have been developed for path-dependent options, such as
those by Jeannin and Pistorius (2009).
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Appendix 1. Numerical pricing procedures

Detailed descriptions of the pricing schemes are given in
Sections 3–5 of the main paper. Here we also provide detailed
step-by-step procedures used for our MATLAB implementation.

A.1. Green’s residue method for perpetual Bermudan
options

(i) Compute the characteristic function 	(ξ + iαd), where αd is
the damping parameter.

(ii) Use the Plemelj–Sokhotsky relations with the sinc-based fast
Hilbert transform to factorise

�(ξ , q) := 1 − e−r�tσ(ξ/ξmax)	(ξ + iαd,�t)

= �⊕(ξ , e−r�t)�	(ξ , e−r�t), (A1)

where σ(η) is an exponential filter of order 12 (Gottlieb and
Shu 1997). From this we can directly obtain �	(0, e−r�t).

(iii) Use the shift theorem to calculate �	(i, e−r�t) as

�	(i, e−r�t) = Fx→ξ

[
e−xF−1

ξ→x

[
�	(ξ , e−r�t)

]]
(0).

(A2)

(iv) Calculate the optimal exercise boundary

Dopt = K
�	(0, e−r�t)

�	(i, e−r�t)
(A3)

and the log-boundary lopt = log(Dopt/S0).
(v) Decompose P(ξ , e−r�t) = 1/�	(0, e−r�t) around lopt,

P(ξ , e−r�t) = Plopt+(ξ , e−r�t)+ Plopt−(ξ , e−r�t) (A4)

and obtain Plopt−(0, e−r�t).

(vi) Use the shift theorem to calculate

Plopt−(i, e−r�t) := Fξ→ξ

[
e−xF−1

ξ→x

[
Plopt−(0, e−r�t)

]]
(0).

(A5)

(vii) Calculate the option price

v(0, 0) = K�	(0, e−r�t)

×
[
Plopt−(0, e−r�t)− Plopt−(i, e−r�t)

]
. (A6)

A.2. Spitzer-based method for perpetual Bermudan options

(i) Compute the characteristic function 	(ξ + iαd), where αd is
the damping parameter.

(ii) Use the Plemelj–Sokhotsky relations with the sinc-based fast
Hilbert transform to factorise

�(ξ , q) := 1 − e−r�tσ(ξ/ξmax)	(ξ + iαd,�t)

= �⊕(ξ , e−r�t)�	(ξ , e−r�t), (A7)

where σ(η) is an exponential filter of order 12.
(iii) Decompose P(ξ , e−r�t) = 1/�⊕(ξ , e−r�t) around the log-

price grid step lε = �x,

P(ξ , e−r�t) = Plε+(ξ , e−r�t)+ Plε−(ξ , e−r�t). (A8)

(iv) Calculate the PDF for the calibration

p̂lε−(ξ , e−r�t) = Plε−(ξ , e−r�t)�	(ξ , e−r�t). (A9)

(v) Setting D1 = 0 and D2 ∈ (0, K), calculate

vD1 (0, 0) = Kp̂lε−(0, e−r�t) (A10)

vD2 (0, 0) = F−1
ξ→x

[
φ̂∗(ξ)p̂lε−(0, e−r�t)

]
(0), (A11)

where φ̂(ξ) is the Fourier transform of the damped payoff
φ(x) with x = log(S(t)/D2).

(vi) Calculate the optimal exercise boundary

Dopt =
[
K − vD1 (0, 0)

]
D2

vD2 (0, 0)− vD1(0, 0)+ D2
(A12)

and the log-boundary lopt = log(Dopt/S0).
(vii) Decompose P(ξ , e−r�t) = 1/�⊕(ξ , e−r�t) around lopt,

P(ξ , e−r�t) = Plopt+(ξ , e−r�t)+ Plopt−(ξ , e−r�t). (A13)

(viii) Calculate the characteristic function of the log-price

p̂lopt(ξ , e−r�t) = Plopt−(ξ , e−r�t)�	(ξ , e−r�t). (A14)

(ix) Calculate the option price

v(0, 0) = F−1
ξ→x

[
φ̂∗(ξ )̂plopt(0, e−r�t)

]
(0), (A15)

where φ̂(ξ) is the Fourier transform of the damped payoff
φ(x) with x = log(S(t)/S0).

A.3. Perpetual American options

For both methods the pricing procedure for discretely monitored
options is adapted to continuous monitoring by replacing Steps (i)–
(ii) in sections A.1 and A.2 with

(i) Compute the characteristic exponent ψ(ξ + iαd) of the
underlying transition density.

(ii) Use the Plemelj–Sokhotsky relations, equations (11)–(12),
with the sinc-based fast Hilbert transform to factorise

�c(ξ , r) := r − ψ(ξ + iαd) = �c⊕(ξ , r)�c	(ξ , r), (A16)

where r is the risk-free rate.

Then continue with Step (iii) in sections A.1 or A.2, but with
�c(ξ , r) in place of �(ξ , e−r�t).
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Appendix 2. Process parameters

Table A1 contains the process parameters used for the numerical
tests.

Table A1. Parameters for the numerical tests; 	(ξ , t) is the
characteristic function of the process that models the log-price

of the underlying asset.

Process 	(ξ , t) Symbol Value

Gaussian e(iμξ−(1/2)σ 2ξ 2)t μ 0
σ 0.4

Variance
gamma

(1 − iνξθ + 1
2νσ

2ξ2)−t/ν θ 1
9

σ 1
3
√

3
ν 0.25

Merton
jump-
diffusion

e(−(1/2)σ 2ξ 2+λ(eiμJξ−(1/2)σ2
J ξ

2 −1))t σ 0.1

λ 3
μJ − 0.05
σJ 0.086

Appendix 3. Monte Carlo pricing procedures

We describe in detail the Monte Carlo procedures which we used to
validate the prices calculated by the numerical methods presented in
this paper.

A.4. Path generation

For underlying assets with log-prices modelled by Gaussian, vari-
ance gamma and Merton processes X (t), the paths can simply be
constructed using the Euler–Maruyama algorithm with the built-in
Matlab functions for normal, gamma and Poisson pseudo-random
variables (Ballotta and Fusai 2018). In all cases the risk-neutral drift
was calculated using μRN = ψ(−i) as described by Feng and Linet-
sky (2008), where ψ(ξ) is the characteristic exponent of the Lévy
process.

A step of the Gaussian process (arithmetic Brownian motion) was
simulated with

�X = μRN�t + σ
√
�tZ, (A17)

where Z
d= N(0, 1) is a standard normal random variable.

A step of the variance gamma (VG) process was simulated with

�X = μRN�t + θG + σ
√

GZ, (A18)

where G
d= �(1/(ν�t), ν) is a gamma-distributed random variable

and Z is a standard normal random variable.
A step of the Merton jump-diffusion (MJD) process was simulated

with

�X = μRN�t + σ
√
�tZ1 + μJY + σJ

√
YZ2, (A19)

where Y
d= Poi(λ�t) is a Poisson-distributed random variable and

Z1 and Z2 are independent standard normal random variables.

A.5. α-quantile options

We used two methods to calculate the α-quantile:

(i) We simulated a path of N points and then found the jth
smallest value, where j = αN rounded to the nearest integer.

(ii) We combined Monte Carlo with the Dassios–Port–Wendel
identity as in Ballotta and Kyprianou (2001): two indepen-
dent paths over j and N − j dates are simulated and the sum of
their respective maximum and minimum is taken to provide
an estimate of the α-quantile.

A.6. Perpetual Bermudan options

Although the discrete nature of perpetual Bermudan options is appro-
priate for a Monte Carlo simulation, the absence of an expiry means
that a Monte Carlo scheme with a finite number of dates will not
represent the contract exactly. However, we truncate the Monte
Carlo simulation so far in the future that the effect of disregarding
these dates is less than the standard deviation of the Monte Carlo
method itself; this value has been determined empirically. Clearly
this is more accurate for high discount factors and large monitor-
ing intervals because the effect of future dates is discounted away
more rapidly. The optimal exercise boundary is found with the same
approach as in the new method described in section 4.2: the price is
calculated for S0 = D1 and S0 = D2, then the boundary is taken as
the intersection between the line through these points and the non-
zero part of the payoff function (K − S0)

+, i.e. the line K − S0 for
S0 < K.
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