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Abstract
Purpose Early squamous cell neoplasia (ESCN) in the oesophagus is a highly treatable condition. Lesions confined to the
mucosal layer can be curatively treated endoscopically. We build a computer-assisted detection system that can classify still
images or video frames as normal or abnormal with high diagnostic accuracy.
Methods We present a new benchmark dataset containing 68K binary labelled frames extracted from 114 patient videos
whose imaged areas have been resected and correlated to histopathology. Our novel convolutional network architecture solves
the binary classification task and explainswhat features of the input domain drive the decision-making process of the network.
Results The proposed method achieved an average accuracy of 91.7% compared to the 94.7% achieved by a group of 12
senior clinicians. Our novel network architecture produces deeply supervised activation heatmaps that suggest the network is
looking at intrapapillary capillary loop patterns when predicting abnormality.
Conclusion We believe that this dataset and baseline method may serve as a reference for future benchmarks on both video
frame classification and explainability in the context of ESCN detection. A future work path of high clinical relevance is the
extension of the classification to ESCN types.
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Introduction

Oesophageal cancer is the sixth most common cause of can-
cer deaths worldwide [16] and a burgeoning health issue
in developing nations from Africa along a ‘cancer belt’ to
China. The current gold standard to investigate oesophageal
cancer is gastroscopy with biopsies for histological analysis.
Early squamous cell neoplasia (ESCN) is a highly treatable
type of oesophageal cancer, with recent advances in endo-
scopic therapy meaning that lesions confined to the mucosal
layer can be curatively resected endoscopically with a <2%
incidence of local lymphnodemetastasis [1]. The endoscopic
appearances of ESCN lesions are subtle and easily missed,
with significant miss rates on endoscopy within the 3years
preceding diagnosis [10]. Early cancers invading into the
submucosa are likely to have local lymph node metastasis
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Fig. 1 Magnifying endoscopy (ME) frames extracted from videos of
patientswith different histopathology.Normal patients typically present
a clear deep submucosal vasculature, large green-like vessels such as the
one highlighted within the dashed yellow line are usually visible. Intra-

papillary capillary loops (IPCLs) refer to the microvasculature (pointed
by the arrows). Healthy patients tend to present thinner (yellow arrows)
and less tangled IPCL patterns than those with abnormal tissue (blue
arrows)

and should be referred promptly for consideration of surgi-
cal resection.

Intrapapillary capillary loops (IPCL) are a clinicalmicrovas-
cular feature recognised as an endoscopic marker for ESCN
[7,12,13]. They have been classified by the Japanese Endo-
scopic Society (JES) in a simplified system aimed at improv-
ing the easy recognition of ESCN by endoscopists [12]. The
type of IPCLs present also facilitates the accurate predic-
tion of the lesion histology; Type A IPCLs (see Fig. 1)
correlate with normal tissue. Type B1, B2, B3 IPCLs (see
Fig. 1) demonstrate progressive morphologic abnormalities
and correlate with the invasion of early neoplasia in the mus-
cularis mucosa and submucosal tissue. Oyama et al. [12]
demonstrate that the JES classification offers high diagnostic
accuracy compared to other classifications for the prediction
of dysplastic tissue—with the overall accuracy for histol-
ogy prediction 90.5% across type B1-3. A computer-assisted
detection (CADe) system that can classify still images or
video frames as normal or abnormal with high diagnostic
accuracy could provide a useful adjunct to both expert and
inexpert endoscopists.

Contributions

We focus on the problem of classifying video frames as
normal/abnormal. These frames are extracted from the mag-
nification endoscopy (ME) recording of a patient. To the
best of our knowledge, we introduce the first IPCL nor-
mal/abnormal open dataset1 containingME video sequences
correlated with histopathology. Our dataset contains 68K
video frames from 114 patients.

For a small and representative sample of 158 frames (IPCL
typesA,B1,B2,B3),we ask12 senior clinicians to label them
as normal/abnormal and report the inter-rater agreement as
Krippendorff’s α coefficient [8], achieving 76.6%. We also

1 https://github.com/luiscarlosgph/ipcl.

draw a comparison between raters and our gold standard
histopathology results, achieving an average accuracy across
raters of 94.7%.

We propose a novel convolutional network (CNN) archi-
tecture to solve the binary classification task with a particular
focus on the explainability of predictions. Our proposed
method achieved an average accuracy of 91.7%. In addition
to a global classification estimation, our novel design pro-
duces activation maps and class scores at every resolution of
the convolutional pyramid. The network has to explainwhere
it is looking at prior to the generation of a class prediction.
Looking at the activation maps for the abnormal class, we
have observed that the network is looking at IPCL patterns
when predicting abnormality. No conclusive evidence has
been found that it is paying attention to large deep submu-
cosal vessels to detect normal tissue. We believe that this
baseline method may serve as a reference for future bench-
marks on both video frame classification and explainability
in the context of ESCN detection.

Related work

Computer-aided endoscopic detection and diagnosis could
offer an adjunct in the endoscopic assessment of ESCN
lesions; there has been a high level of interest in recent years
in developing clinically interpretable models. The use of
CNNs has shown potential across severalmedical specialties.
In gastroenterology, considerable efforts have been devoted
to the detection of malignant colorectal polyps [5,14,15] and
upper gastrointestinal cancer [9]. However, its utility in endo-
scopic diagnosis of early oesophageal neoplasia remains in
its infancy [2].

Guo et al. [4] propose a CNN that can classify images as
dysplastic or non-dysplastic. Using a dataset of 6671 images,
they demonstrate per-frame sensitivity of 98% for the detec-
tion of ESCN. Using a video dataset of 20 videos, they
demonstrate per-frame sensitivity of 96% for the detection
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of ESCN. Although the results are encouraging, the size of
the patient sample is limited. Given the black box nature of
CNNs this may represent a matter of concern with regards to
generalization capability. Zhao et al. [17] have also reported a
CNN for the classification of IPCL patterns in order to iden-
tify ESCN. Using 1383 images, although heavily skewed
towards Type B1 IPCLs, they demonstrated overall accura-
cies of 87% for the classification of IPCL patterns. In this
study, however the authors excluded type B3 IPCLs from the
training and testing phase. The CNN also demonstrated only
a 71% classification rate for normal IPCLs, indicating that it
over-diagnoses normal tissue as containing type B1 IPCLs,
and so representing dysplastic tissue.

Dataset details

This dataset will bemade publicly available online upon pub-
lication and can thus serve as a benchmark for future work
on detection of ESCN based on magnification endoscopy
images.

Patient recruitment, endoscopic procedures and
video acquisition

Patients attending for endoscopic assessment to two early
squamous cell neoplasia (ESCN) referral centres in Taiwan
(National Taiwan University Hospital and E-Da Hospital)
were recruitedwith consent. Patientswith oesophageal ulcer-
ation, active oesophageal bleeding or Barrett’s oesophagus
were excluded. Gastroscopies were performed by two expert
endoscopists (WLW, HPW), either under conscious seda-
tion or local anaesthesia. An expert endoscopist was defined
as a consultant gastroenterologist performing > 50 early
squamous cell neoplasia (ESCN) assessments per year. All
endoscopies were performed using an HD ME-NBI GIF-
H260Z endoscope, with Olympus Lucera CV-290 processor
(Olympus, Tokyo, Japan). A solution of water of sime-
thiconewas applied via the endoscopeworking channel to the
oesophageal mucosa, in order to removemucus, food residue
or blood. This allowed good visualization of the oesophageal
mucosa and microvasculature, including IPCLs.

Correlating imaged areas with histology

Initially, a macroscopic assessment was made of the sus-
pected lesion in an overview, with the borders of the lesion
delineated by the endoscopist. The endoscopist then iden-
tified areas within the borders of the lesion on which to
undertake magnification endoscopy. The IPCL patterns were
interrogated using magnification endoscopy in combina-
tion with narrow-band imaging (ME-NBI). Magnification
endoscopy was performed on areas of interest at 80 − 100x

magnification. Using the JES IPCL classification system,
the IPCL patterns were classified by the consensus of three
expert endoscopists (WW, HPW, RJH) as type A, B1, B2,
B3, in order to give a prediction of the worst-case histology
for the whole lesion. The entire lesion was then resected
by either endoscopic mucosal resection (EMR) or endo-
scopic submucosal dissection (ESD). Resected specimens
were formalin-fixed and assessed by an expert gastrointesti-
nal histopathologist. As is the gold standard the worst-case
histology was reported for the lesion as a whole, based
on pathological changes seen within the resected specimen.
Similarly to abnormal lesion areas, type A recordings (nor-
mal, healthy patients) were obtained by visual identification
of healthy areas, magnification endoscopy, visual confirma-
tion of normal vasculature and IPCL patterns, and biopsy to
confirm the assessment.

Dataset description

Our IPCL dataset comprises a total of 114 patients (45
normal, 69 abnormal). Every patient has a ME-NBI video
(30fps) recorded following protocol in “Correlating imaged
areas with histology” section. Raw videos can present some
parts where NBI is active. In this dataset, only ME sub-
sequences are considered. All frames are extracted and
assigned to the class normal or abnormal depending on
the histopathology of the patient. They are quality con-
trolled one-by-one (running twice over all the frames) by
a senior clinician with experience in the endoscopic imaging
of oesophageal cancer. Frames that are highly degraded due
to lighting artifacts (e.g. blur, flares and reflections) up to the
pointwhere it is not possible (for the senior clinician) tomake
a visual judgement of whether they are normal or abnormal
are marked as uninformative and not used. This curation pro-
cess results in a dataset of 67742 annotated frames (28,078
normal, 39,662 abnormal) with an average of 593 frames per
patient. For each fold, patients (not frames) are randomly split
into 80% training, 10% validation (used for hyperparameter
tuning), and 10% testing (used for evaluation). The statistics
of each individual fold are presented in the supplementary
material.

Evaluation per patient clip

Let {ŷ f ,p}Fp
f=1 be the set of estimated probabilities for the

frames f (out of Fp) belonging to patient clip p. Then, the
estimated probability of abnormality for p is computed as an
average of frame probabilities:

P
(
X = abnormal

∣∣∣{ŷ f ,p}Fp
f =1

)
= 1

Fp

Fp∑
f =1

ŷ f ,p (1)
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Similarly to frame predictions, a threshold (p = 0.5) is
applied to obtain a class label for p. As per our data collection
protocol (see “Correlating imaged areas with histology” sec-
tion), magnification endoscopy clips contain either normal
or abnormal tissue. Hence, a correlation between P(X =
abnormal|{ŷ f ,p}Fp

f =1) and histopathology is expected. The
analysis of clip classification errors facilitates the identifica-
tion of worst cases, singling out patient-wide mistakes from
negligible frame prediction errors.

Methods

In this section, we propose a reference method for IPCL
binary classification with a particular focus on explainabil-
ity that may serve as a baseline for future benchmarks. As
it is common in data-driven classification, we aim to solve
for a mapping f such that fθ (x) ≈ y, where x is an input
image, y the class label corresponding to x, and θ a vector
of parameters. All the input images were preprocessed by
downscaling them to a width of 256 pixels (height automat-
ically computed from their original aspect ratio) so that we
could fit a large batch of images into the GPU. To account
for changes in viewpoint due to endoscope motion, random
(p = 0.5) on-the-fly flips are applied to each image. Our
baseline model is ResNet-18 [6]. The batch normalization
moving average fraction is set to 0.7. Our batch size, momen-
tum and weight decay hyperparameters are set to 256, 0.9,
and 0.0005, respectively. The initial learning rate (LR) was
tuned by grid search. It was set to λ = 5e−3 for training
all folds, decaying it every 10K iterations (≈ 40 epochs) by
a factor of 0.5 until 45K iterations (≈ 200 epochs). In our
implementation, using anNVIDIAGeForce TITANXPascal
GPU and Caffe 1.0 as deep learning framework, the infer-
ence time per-frame is 7.6ms [6.4ms, 9.9ms], enabling the
algorithm for deployment as a real-time endoscopy solution.

Explaining network predictions, baseline without FC
layer: ResNet-18-CAM

Explaining network predictions is of particular interest to
draw a comparison between image features that clinicians
employ in their clinical practice and those thatmight exist but
be unknown to them. Conversely, adding attention to those
image features that are known to be relevant but are not used
by the network could potentially improve its performance.
In the context of ESCN detection, this leads to investigate
whether the network is actually looking at deep submucosal
vessels and IPCL patterns to predict abnormality. The answer
to this question typically comes in the formof a heatmap,with
those parts relevant to the classification being highlighted.

Our baseline model (ResNet-18) may be formalized as
fθ = r(h(g(Tx))) where Tx = Tθ (x) ∈ R

H×W×K is the
feature tensor obtained after processing x at the deepest
pipeline resolution, K represents the number of feature chan-
nels, Tx(k) is amatrix that represents the feature channelwith
index k, and g, h, and r represent the global average pooling
(GAP), fully connected (FC), and final scoring convolution
layers, respectively.

The FC layer h represents a challenge for explainability,
as relevance is redistributed when gradients flow backwards,
losing its spatial connection to the prediction being made
[11]. Hence, inspired by [18], we stripped out the fully
connected layer of 1000 neurons from the baseline model
(ResNet-18), connecting the output of the GAP directly to
the neurons that predict class score (those in layer r ) and set-
ting their bias to zero. Formally, this leads to fθ = r(g(Tx)),
the output of the network before softmax being

ŷ(c) =
∑
k∈K

wk,c

⎡
⎢⎢⎢⎢⎣

1

HW

∑
i, j︸ ︷︷ ︸

GAP

Tx(k)︸ ︷︷ ︸
Feature tensor

⎤
⎥⎥⎥⎥⎦

(2)

where wk,c ∈ θ̂ , and ŷ(c) is the score predicted for class c.
Following this approach, a heatmap per class can be gen-
erated obviating the GAP layer during inference, simply
computing

ŷ(c)
CAM =

∑
k∈K

wk,cTx(k) (3)

These heatmaps called class activation maps (CAMs) [18]
keep a direct spatial relationship to the input, which is
relevant for visual explanations. Although the architecture
proposed in [18] requires removing the GAP layer to pro-
duce the CAMs, (2) can be reformulated as

ŷ(c) = 1

HW

∑
i, j︸ ︷︷ ︸

GAP

[∑
k∈K

wk,cTx(k)

]

︸ ︷︷ ︸
CAM

(4)

in which case the CAMs are embedded within the network
pipeline as a 1 × 1 convolution (as we have already shown
in [3]). This leads to fθ = g(r(Tx)). We refer to this archi-
tecture as ResNet-18-CAM (as for the baseline, LR is set to
5e−3 and decayed by 0.5 every 10K iterations until 45K iter-
ations). The performance of this network is shown in Table 2.
Although the accuracy of ResNet-18-CAM is comparable to
the baseline network (ResNet-18), ResNet-18-CAM conve-
niently computes a heatmap per class as part of the network
processing. However, the explainability in the context of our
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classification problem remains very challenging due to the
low resolution of the heatmaps produced.

Deeply supervised class activationmaps:
ResNet-18-CAM-DS

In the computer vision field, images tend to display one or
a few large objects. This is, however, not the case in med-
ical images such as the magnification endoscopy ones used
to classify IPCL patterns. Due to their low resolution, it is
very challenging to understand what the network is looking
at, as abnormal microvasculature in an endoscopic image is
not localized only in a single spot. In our clinical problem,
two types of features could be expected to be highlighted,
submucosal vessels and IPCLs, which represent endoscopic
markers for ESCN [7,12,13]. The procedure to generate the
CAM proposed in [18] employs the deepest feature maps
as inputs to produce the attention heatmaps. For our input
images of 256× 256 pixels, these feature maps have a reso-
lution of 8 × 8 pixels, leading to very low-resolution CAMs
(also 8 × 8 pixels ). This hinders the explanatory capability
of the heatmaps, as small capillaries are the main clinically
discriminating feature. It is of interest to know whether they
are being looked at to predict abnormality. A trivial solu-
tion would be to reduce the depth of the network, but this
could potentially hamper the learning of abstract features
and decrease performance. In addition, the optimal amount
of resolution levels for the given task to balance accuracy
and explainability is a hyperparameter that would need to
be tuned. Instead, we propose an alternative path modelling
fθ (x) as

fθ (x) = ( fθt ◦ fθt−1 ◦ · · · ◦ fθ2 ◦ fθ1)(x) (5)

where fθt represents the function that processes the input at
resolution t , and whose output tensor has a width and height
downsampled (strided convolution) by a factor of 0.5 with
regards to its input tensor. In this formulation, given an x of
size 256 × 256 pixels and t = 5, the output of fθ5 is 8 × 8
pixels.

Given (5), let Tx,t be the output tensor produced by fθt .
Then, similarly to (4), we propose to generate a class score
prediction at each resolution t as follows

ŷ(c)
t = 1

HW

∑
i, j︸ ︷︷ ︸

GAP

[∑
k∈K

wk,cTx,t (k)

]

︸ ︷︷ ︸
CAM at resolution t

(6)

and final class scores are obtained as a sum over scores at
different resolutions:

ŷ(c) =
∑
t

ŷ(c)
t (7)

As indicated by (6), prior to generating a class prediction,
a CAM at resolution t is produced. This heatmap contains
both positive and negative contributions from the input image
towards class c. However, for the sake of heatmap clarity, we
consider only the positive contributions towards each class
when generating our CAMs. That is, we want to see what
part of the image contributes to normality/abnormality, as
opposed to what part of the image does not contribute to
normality/abnormality. Thus, ourCAMs are generated as fol-
lows

ŷ(c)
CAMt

=
[∑
k∈K

wk,cTx,t (k)

]+
(8)

where z+ = max(0, z). A loss based just on this final score
alone would not force the network to produce meaningful
CAMs at every resolution level. Therefore, we also propose
to deeply supervise the side predictions in our proposed loss:

L
(
x, y, θ̂ , { ŷ(c)

t }C,T
c=1,t=1

)
= L f

(
x, y, θ̂ , { ŷ(c)

t }C,T
c=1,t=1

)

+
∑
t

Lt
s

(
x, y, θ̂ , { ŷ(c)

t }Cc=1

)

(9)

where x is the input image, y the ground truth class label, θ̂
the network parameters, and { ŷ(c)

t }C,T
c=1,t=1 represent the score

predictions for each class c at resolution t . Both L f (·) and
Lt
s(·) are denoted L f and Lt

s for a simplified notation. L f is
defined as

L f = −y log

[
σ

(∑
t

ŷ(c)
t

)

c=1

]

−(1 − y) log

[
σ

(∑
t

ŷ(c)
t

)

c=0

]
(10)

where σ(·)c represents the softmax function for class index
c. Lt

s is the side loss for the prediction at each different res-
olution t , defined as:

Lt
s = −y log

[
σ

(
ŷ(c)

)
c=1

]

−(1 − y) log
[
σ

(
ŷ(c)

)
c=0

]
(11)

In addition to the network generating CAMs at every reso-
lution prior to generating the scores as part of the prediction
pipeline, the combined lossL proposed allows for the valida-
tion of the accuracy at each resolution depth of the network.
We refer to the architecture that implements the model in (5)
with embedded CAMs at different resolutions following (6)
and loss (9) as ResNet-18-CAM-DS (see Fig. 2).
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Fig. 2 Proposed model ResNet-18-CAM-DS with embedded positive class activation maps at all resolutions

Results

Our recording protocol (see “Correlating imaged areas with
histology” section) enforces that areas recorded in the
short patient clips are biopsied. Histopathology labels (nor-
mal/abnormal) corresponding to the biopsied specimen are
propagated to all the frames of the clip. It is then of inter-
est to evaluate the agreement between the label assigned to
each individual frame (based on patient’s histopathology)
and its correlation to the assessment made by visual inspec-
tion of IPCL patterns. A team of 12 senior clinicians with
experience in endoscopic imaging of oesophageal cancer
labelled 158 images from thedataset (randomlypicked across
patients and manually filtered so that quasi-identical images
are not included). A 25% per IPCL pattern class (normal,
B1, B2, B3) is kept across the sample (leading to an imbal-
ance 25% normal, 75% abnormal). The inter-rater agreement
was evaluated using the Krippendorff’s α coefficient, where
values 0% and 100% represent extreme disagreement and
perfect agreement, respectively, α ≥ 80% indicates reli-

able agreement, and α ≥ 66.7% tentative agreement [8].
The Krippendorff’s α obtained for the senior clinicians was
76.7%.The labels of each clinicianwere also compared to the
histopathology, obtaining an average sensitivity, specificity,
accuracy, and F1 score (given in %, with a 95% confidence
interval) across the 12 clinicians of 97.0 [92.1, 1.0], 88.0
[49.6, 1.0], 94.7 [83.9, 99.7], and 96.5 [89.7, 99.8], respec-
tively.

We report the quantitative classification results forResNet-
18,ResNet-18-CAM,andResNet-18-CAM-DS inTables 1, 2,
and 3, respectively. ResNet-18-CAM-DS achieved an aver-
age sensitivity, specificity, accuracy, and F1 score of 93.7%,
92.4%, 91.7%, and 94.0%, respectively, all of them better
than those achieved by ResNet-18 and ResNet-18-CAM.
Accuracy is only three percentage points away from the aver-
age of clinical raters. Across all folds, a total of 60 patient
clips (12 per fold) are predicted to be normal/abnormal. The
binary class estimation for each clip is computed following
(1). Each patient in the dataset folder has a unique identifica-
tion number. We will refer to them in this section to facilitate

Table 1 Results for ResNet-18
(baseline model) on frame
classification over the testing set
of each fold of the IPCL dataset

Measure (%) Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Sensitivity 99.1 96.6 96.7 99.5 64.3 91.2

Specificity 87.9 74.7 62.1 84.9 100.0 81.9

Accuracy 94.8 90.0 77.2 92.8 66.8 84.3

F1 score 95.8 93.1 79.0 93.7 78.2 88.0
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Table 2 Results for
ResNet-18-CAM on frame
classification over the testing set
of each fold of the IPCL dataset

Measure (%) Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Sensitivity 98.6 94.6 95.4 97.6 75.9 92.4

Specificity 91.7 89.8 65.9 89.4 100.0 87.4

Accuracy 95.9 93.1 78.8 93.8 77.6 87.8

F1 score 96.7 95.0 79.8 94.4 86.3 90.4

Table 3 Results for
ResNet-18-CAM-DS on frame
classification over the testing set
of each fold of the IPCL dataset

Measure (%) Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Sensitivity 99.6 91.3 98.3 98.9 80.5 93.7

Specificity 81.3 95.1 96.6 89.3 99.8 92.4

Accuracy 92.5 92.4 97.4 94.5 81.9 91.7

F1 score 94.1 94.4 97.0 95.1 89.2 94.0

Fig. 3 Representative images
from the testing set of fold 1
(left). Highest resolution CAM
generated by ResNet-18-CAM-
DS for the abnormal class
(better viewed in the digital
version). That is, ŷ(c)

CAMt
=

ŷ(1)
CAM1

(centre). Class activation
maps generated by ResNet-
18-CAM [18] (right). In contrast
to traditional CAMs generated
by ResNet-18-CAM (right),
ours (centre) suggest that our
network is looking at IPCLs to
predict abnormality

the search of these patients in the dataset folder. Following (1)
to estimate the class of a patient clip, ResNet-18 fails on three
patients. Folds 1, 2, and 4 fail on patient 158 (false positive),
fold 3 fails on patient 143 (false positive), and fold 5 fails
on patient 66 (false negative). ResNet-18-CAM fails on two
patients, 143 (false positive) on fold 3, and 66 (false negative)
on fold 5. ResNet-18-CAM-DS fails only on folds 1 and 4 in

patient 158 (see supplementary material for some frames of
these problematic patients). In Fig. 3 a qualitative compari-
son is shown between the class activation maps produced for
the abnormal class by ResNet-18-CAM-DS (at its highest
resolution) and the standard class activation maps proposed
by Zhou et al. [18]. As our system is designed as a CADe, we
have computed the ROC curve (see supplementary material)
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to inform the consequences that several choices of sensitivity
have on specificity. The AUC of the system is 95.8%.

Discussion and conclusion

Our proposedmethodResNet-18-CAM-DSachieves slightly
higher average accuracy (91.7%) across folds than our
baseline ResNet-18 (84.3%). Although the automated classi-
fication accuracy (91.7%) is still below the average achieved
by the clinicians (94.7%), it performs better than some of
them (their CI low value is 83.9%). It is also encouraging
to see that accuracy did not decrease at the expense of an
improved explainability. More data and further methodolog-
ical refinements will most likely lead to improved accuracy.
Qualitative results in Fig. 3 seem to indicate that the net-
work is looking at IPCL patterns to assess abnormality,
which aligns with the clinical practice. However, we have not
observed high activations over the large green submucosal
vessels in the heatmaps for the normal class. This suggests
that they may not be used by the network as an aid to solving
the classification problem. Future work could concentrate on
adding an attention mechanism to the network in order to
consider such vessels as a feature of normal images.
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