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Introduction
Mental disorders now comprise the leading cause 
of disability globally.1 They afflict people without 
discrimination of age, geography or income level,2 
with an estimated one in three people affected by 
a mental illness during their lifetime.3,4 Mental 
disorders are associated with a lower quality of 
life and significantly correlated with chronic dis-
ease (i.e. cardiovascular disease, diabetes) devel-
opment.5,6 The Diagnostic and Statistical Manual 
of Mental Disorders (DSM) introduced a stand-
ard and operationalised diagnostic framework 
within which to make psychiatric diagnoses. 
Although its initial intent was to increase reliabil-
ity of diagnoses and ensure continuity of care, 
clinical diagnosis and monitoring of psychiatric 
disorders often remain dependent on patient 
reports of clinical symptoms.7 These subjective 
accounts may also be compromised if patients are 
in an impaired mental state.

In such cases, family member reports play an 
important role in clinical diagnosis, such as in the 
case of patients with Asperger syndrome and other 
autism spectrum disorders.8 Moreover, clinicians 

differ in the process of making diagnoses as rec-
ommended by diagnostic manuals,9 which could 
jeopardise the patient’s treatment and care. 
Clinically, the functional elements of the condi-
tions are likely to remain the therapeutic focus; 
however, retinal biomarkers may be a useful 
adjunct in detecting or predicting any structural or 
functional progression of neuropsychiatric dis-
ease, although longitudinal studies are needed to 
validate if indeed psychiatric structural changes in 
the brain are reflected in the retina.

Diagnosing schizophrenia, bipolar disorder and 
major depression commonly involves screening 
scales and patient-reported outcome measures. 
For major depression disorder, the Patient Health 
Questionnaire (PHQ-9) is a commonly used tool 
for diagnosis,10 but has been found not to provide 
a strong index for severity of disease.11 According 
to a study by Kjaergaard and colleagues, other 
commonly used screening tools, such as the Beck 
Depression Inventory-II, the Montgomery and 
Åsberg Depression Rating Scale, were concluded 
to be useful for screening a major depression epi-
sode but not reliable in accurately diagnosing 
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depression, hence necessitating the need for a 
comprehensive tool to guide and monitor treat-
ment response.12 In one study observing the reli-
ability of patient-reported outcome measures 
(PROMs) in schizophrenia, differences were 
found in PROM self-ratings provided conse-
quently by patients with schizophrenia.13 Greater 
differences were associated with higher degrees of 
disorganisation and cognitive impairment, thus 
suggesting the lack of reliability in patient reports. 
It is important to note that symptoms of schizo-
phrenia can change over time, thus making it 
challenging to use symptomology screening scales 
as the mainstay.14 Further to this, screening tools 
such as the Mood Disorder Questionnaire 
(MDQ) for bipolar disorder have been found to 
have a low positive predictive value, suggesting 
that such scales may not be reliable tools in clini-
cal practice.15 Lastly, Svendsen and colleagues 
concluded that subjectively experienced cognitive 
function fails to predict objective function.16 
Therefore, in order to gain a better understanding 
of the neurological changes that occur, objective 
measures must be sought. The gap in diagnostics 
and monitoring has called for more objective and 
quantifiable measures to equip clinicians with 
reliable tools to assess symptomology and to track 
disease progression in response to treatments.

The retina’s development from the same tissue as 
the brain, the neuroectoderm, suggests that reti-
nal changes may parallel structural and functions 
changes in the brain.17 Noninvasive, retinal imag-
ing technology, such as optical coherence tomog-
raphy (OCT) and electrodiagnostics, have made 

it possible to determine potential biomarkers of 
neural tissue structure changes and disorder pro-
gression.17 OCT is a quick, noninvasive imaging 
device that captures cross-sectional retinal images 
down to the individual layers through high resolu-
tion using near-infrared light (Figure 1).18,19

With its power to achieve high resolution imag-
ing, SD-OCT has allowed for a number of previ-
ously unseen changes to be assessed, such as 
reductions in retinal nerve fibre layer thickness in 
patients with schizophrenia and decreased cho-
roidal thickness in patients with psychosis com-
pared with healthy controls.20,21 Oberwahrenbrock 
and colleagues investigated the inter-rater relia-
bility of semiautomated segmentation of OCT 
scans across five centres in the United States and 
Europe, and concluded that OCT scans are 
highly reliable in a neurodegenerative population. 
Thus, OCT scans can potentially serve as a relia-
ble tool in clinical trials assessing retinal injury in 
psychiatric disorders.22 Thus, retinal imaging 
allows for the possibility of surrogate biomarkers 
to guide clinicians and researchers and provide 
greater insight on diseases that have historically 
relied on subjective self-reports and contradictory 
screening scales.

Determining biomarkers may provide researchers 
with an opportunity to reduce cost and time in 
clinical trials and allow clinicians to diagnose ear-
lier, monitor disorder progression and guide 
treatment. The studies in this review examine the 
correlation between retinal markers and disease 
presence, severity and duration in schizophrenia, 

Figure 1.  An SD-OCT cross-sectional macula scan of retinal layers.
BM, Bruch’s membrane; GCL, ganglion cell layer; INL, inner nuclear layer; IPL, inner plexiform layer; ONL, outer nuclear 
layer; OPL, outer plexiform layer; PR-IS/OS, photoreceptor inner segment/outer segment; RNFL, retinal nerve fibre layer; 
RPE, retinal pigment epithelium; SD-OCT, spectral-domain optical coherence tomography.
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bipolar disorder and major depression. The aims 
of this review are to demonstrate how retinal 
biomarkers may be utilised to enhance current 
clinical diagnostic methods and to discuss how 
changes in OCT measures may serve as surrogate 
markers of pathophysiological mechanisms that 
contribute to brain abnormalities in psychiatric 
disorders.

Schizophrenia
Schizophrenia is a chronic, debilitating psychiat-
ric disorder that affects an estimated 4.0 per 1000 
people over a lifetime,23 and is ranked the fifth 
leading cause of disability worldwide in 15- to 
44-year olds.24 Diagnosis is complex and relies 
primarily on clinical judgement of positive symp-
toms (e.g. hallucinations, delusions, disorganised 
speech) or negative symptoms (e.g. avolition, flat 
affect).25,26 Symptoms may also fluctuate over 
time, with several other conditions acting as pos-
sible mimics including infectious,14 neurological, 
metabolic and other psychological disorders.27–29 
These factors make diagnosing schizophrenia 
challenging.

Diminished total brain volume seen on MRI is a 
well-established characteristic of schizophrenia.30 
In a large (352 studies) meta-analysis collating 
cross-sectional volume indices, longer illness 
duration and high doses of antipsychotics were 
negatively correlated with grey matter volume. 
Similarly, with severity of disease, grey matter 
volumes of the superior temporal gyrus and gyrus 
rectus have been found to correlate negatively 
with the positive scales of the Positive and 
Negative Syndrome Scale (PANSS), and superior 
temporal gyrus and anterior cingulate cortex cor-
related negatively with negative scales.31

There is evidence that early identification and 
treatment of psychotic symptoms markedly 
improves clinical outcomes.32,33 Given the weak 
predictive value of clinical features, diagnoses 
based on objective biomarkers would be of para-
mount value.26,34 Visual impairments, including 
deficits in visual acuity and contrast sensitivity,35,36 
are both common and have a high sensitivity for 
converting to psychosis compared with other 
symptoms.37 Visual impairments have been asso-
ciated with psychosis from the prodromal phase,38 
to first episodes,39–41 in addition to higher rates of 
psychosis,42,43 increased severity of illness and 
chronicity.42,44–46 Visual deficits may also be 

secondary to reduced access to healthcare in that 
patients’ deficits may stem from underutilising 
healthcare services regardless of visual changes.47 
It is uncertain to what extent visual impairments 
derive from the retina versus the brain. It has been 
suggested that structural and functional retinal 
changes may indicate progressive brain tissue loss 
in addition to explaining clinical features and per-
ceptual visual processing deficits,17 as established 
in multiple sclerosis and Alzheimer’s disease 
(AD).48–53

Retinal neurotransmitters in schizophrenia
N-methyl-D-aspartate (NMDA) glutamatergic 
receptor hypoactivity and hyperactivity, also 
referred to as the glutamate hypothesis of schizo-
phrenia, has been linked to the pathogenesis of 
both negative and positive symptoms in addition 
to neural excitotoxicity,54–56 which can induce 
neurodegeneration.57–59 Additionally, the same 
receptors mediate glutamatergic cone photore-
ceptor-bipolar cell pathways at the fovea.60 
Photoreceptor complex thinning may represent 
NMDA dysfunction54; however, there is no direct 
evidence to affirm that a glutamate surplus 
directly causes structural changes to the retina.61,62 
The dopamine hypothesis of schizophrenia pro-
poses that dopamine abnormalities in the mes-
olimbic and mesocortical pathways contribute to 
the positive and negative symptoms of schizo-
phrenia.63,64 In the retina, dopamine is synthe-
sised and released from amacrine cells (ACs) and 
is involved in several aspects of visual function 
including modulating visual acuity and contrast 
sensitivity.65 Reduced retinal dopamine has led to 
excessively strong coupling of ACs and horizontal 
cells (HCs), associated with increased inhibition, 
reduced contrast sensitivity and poorer visual 
acuity as a possible consequence.66

Electroretinogram changes in schizophrenia
Changes in retinal function over time, or how 
they compare to healthy controls, can serve as an 
important biomarker for monitoring disease pro-
gression. Electroretinogram (ERG) assesses 
retinal function by measuring electrical activity of 
neuronal populations in response to light  
exposure.46,67 In schizophrenia, abnormal ERG 
findings are well established, and have been 
reported in several recent studies.68–70 Using port-
able hand-held flash ERG (fERG), Demmin and 
colleagues reported diminished a-wave and 
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b-wave amplitude and latency in both photopic 
(light-adapted) and scotopic (dark adapted) con-
ditions, suggesting weakened photoreceptor and 
bipolar cell activity.68 In contrast, Moghimi and 
colleagues saw a trend of decreasing b-wave 
amplitude in schizophrenia patients and healthy 
controls with regards to a-wave and latency, 
despite observing a trend towards reduced b-wave 
amplitude.69 Looking at the findings from a longi-
tudinal standpoint, Hébert reported that cone 
a-wave and rod b-wave amplitude reductions 
seen in childhood were present in adults with 
schizophrenia.71 Finally, in a large study compar-
ing medicated and stable 150 schizophrenia 
patients with 151 bipolar patients, both patient 
groups exhibited diminished cone a-wave ampli-
tude and extended b-wave latency, whereas only 
schizophrenia patients exhibited diminished cone 
b-wave amplitude. Furthermore, bipolar and 
schizophrenia patients could be differentiated 
with 80% sensitivity and 82% specificity.70 These 
studies suggest ERG could be useful to clinicians 
in a number of ways, including making differen-
tial diagnoses and objectively tracking neurode-
velopment of the condition and use and 
effectiveness of antipsychotic medications.

OCT in schizophrenia
The use of OCT in schizophrenia is fairly novel, 
yet studies have revealed common themes, most 

notably retinal thinning and reduced macular 
thickness and macular volume (MV). Global 
retinal thinning has been reported in several 
studies.61,62,72–74 Specifically, peripapillary 
RNFL thinning has been observed in the nasal, 
inferior and, predominately, in the superior 
quadrants (Figure 2).74–77 In contrast, Silverstein 
and colleagues reported no difference in RNFL 
thickness between schizophrenia patients and 
controls,78 and Ascaso and colleagues found 
these significant differences only amongst right 
eyes, the clinical relevance of which remains 
unclear (Table 1). Macular thinning and 
reduced MV are another reported, yet debated, 
finding in patients with schizophrenia compared 
with age-matched controls. Whereas several 
studies observed overall macular thinning in 
patients compared with age-matched con-
trols,61,62,75,79,80 one study observed macular 
thinning isolated to the nasal and inferior outer 
macular regions.81 In contrast, Silverstein and 
colleagues reported no difference in macular 
thinning between schizophrenia patients and 
age-matched controls.78 Additionally, Chu and 
colleagues observed no macular thinning in 
schizophrenia and schizoaffective patients com-
pared with healthy controls. However, it is 
unclear how the results were affected by the 
inclusion of schizoaffective disorder, given that 
the majority of studies excluding schizoaffective 
patients report significant macular thinning.82

Figure 2.  Comparison of SD-OCT pRNFL thicknesses of the right eyes in a patient with schizophrenia (a) and a 
healthy patient (b). Yellow sectors indicate borderline limits.
pRNFL, peripapillary RNFL; RNFL, retinal nerve fibre layer; SD-OCT, spectral-domain optical coherence tomography.
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On examination of the individual layers of the 
macula with OCT, one comprehensive study by 
Samani and colleagues found that total retinal 
thickness was significantly reduced in the 
foveal, nasal parafoveal, and temporal parafo-
veal regions, with all three zones having outer 
nuclear layer (ONL) and inner segment layer 
(ISL) thinning in common.61 Furthermore, 
thinning was observed to affect the parafoveal 
ganglion cell layer (GCL) temporally, and the 
inner plexiform layer (IPL) and retinal nerve 
fibre layer (RNFL) nasally.61 Of relevance to 

treatment potential in schizophrenia, lower 
macular volumes have been observed in treat-
ment-refractory patients compared with treat-
ment-responsive patients, possibly reflecting 
the duration of disease, but also with potential 
as a prognostic biomarker.72 In contrast, other 
studies have observed no difference in global 
mRNFL or choroidal thickness in schizophre-
nia and schizoaffective disorder when compared 
with healthy controls (Table 2).79,82 These con-
trasting findings have been attributed to small 
sample sizes, varying illness duration and lack 

Table 1.  A summary of studies reporting sector analysis of peripapillary RNFL changes in schizophrenia, 
bipolar disorder and major depression. Effect size has been calculated as mean percentage reduction in 
disease versus healthy controls.

Schizophrenia OCT type Global Superior Temporal Inferior Nasal

Study ST SN IT IN  

Ascaso80 TD   7.8%   6.3%   7.9%   9.4% 10.7%

Ascaso75 SD   9.8%b 10.7%b   5.8%   9.2% 15.5%b

Celik72 SD   4.8%   5.1%   2.3%   4.7% 10.1%   6.7%   4.9%

Chu82a TD   1.0%   0.9%   0.9% –0.8% –0.1%

Lee62 SD   8.9% 11.7%   9.9%   7.4%  

Topcu-Yilmaz79 SD   0.0%   0.8% –2.2%   1.4%   2.3% –1.4% –1.2%

Yilmaz81 SD   5.9%   1.7%   3.5%   3.8%   7.9%

Bipolar disorder OCT type Global Superior Temporal Inferior Nasal

Study ST SN IT IN  

Mehraban83 SD   6.8%   4.8% –1.3%   8.0% 10.5%

Kalenderoglu84 SD   5.9%   3.9%   5.3% –0.1%   3.5%   7.8%   3.1%

Khalil85 SD 14.8% 11.3%   7.4%   9.3%   3.6%

Polo86 SS   8.1% 16.5% 11.2%   4.3%   9.4%   4.7%   4.9%

Major depression OCT type Global Superior Temporal Inferior Nasal

Study ST SN IT IN  

Yildiz87 SD –0.1%   0.1%   4.2% –0.4% –5.4%

Sönmez88a SD   1.7%   1.2% –0.9%   0.2% –0.1%   2.6%   4.6%

Grey shading indicates statistical significance as chosen by each study investigator.
aMean of right and left eyes.
bOD significant only.
IN, inferonasal; IT, inferotemporal; OCT, optical coherence tomography; RNFL, retinal nerve fibre layer; SD, spectral 
domain, SN, superonasal; ST, superotemporal; TD, time domain.
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of OCT resolution to detect loss of unmyeli-
nated axons in early disease. In the latter study, 
Chu and colleagues found specifically that the 
right nasal RNFL in schizoaffective patients 

was significantly thinner (p = 0.02) compared 
with schizophrenia patients82; however, the 
clinical relevance of this finding, if any, would 
need to be proven with further studies.

Table 2.  Structural retinal characteristics of patients diagnosed with schizophrenia, BD and depression.

Schizophrenia n Mean age, 
years (SD)

Mean illness 
duration, 
years (SD)

Anti-psychotic 
medication 
status

Global 
RNFL 
thinning

Global 
Macular 
thinning

Choroidal 
thinning

Study  

Ascaso80 20a 39.2 (13.5) + −  

Ascaso75 37 45.1 (10.4) 16.3 (11.2) Medicated + +  

Celik72 81 35.6 (10.2) 13.3 (9.1) Medicated + –

Chu82 49 29.9 (8.7)   4.4 (3.6) Medicated and 
unmedicated

−  

Lee62 30 37.2 (10.7) Medicated + +  

Samani61 35 40.6 (12.9) 16.3 (9.1) Medicated + +  

Topcu-Yilmaz79 22 34.6 (9.5) 10.3b Medicated and 
unmedicated

− + −

Yilmaz81 68a 39.9 (10.3) + −  

Bipolar disorder  

Study  

Mehraban83 60a 33.8 (9.2) 10.6 (8.6) +  

Kalenderoglu84 43 35.6 (10.5)   6.8 (10.6) Medicated and 
unmedicated

+  

Khalil85 40 30.9 (9.3) Medicated +  

Polo86 23a 49.7 (8.75) 16.2 (6.7) Medicated and 
unmedicated

+ + −

Major depression  

Study  

Yildiz87 58 44.6 (13.1) Medicated and 
unmedicated

−  

Sönmez88 30 34.6 (8.8)   5.7 (7.3) Medicated −  

Positive (+) sign denotes statistically significant thinning compared with healthy controls. Negative (−) sign refers to no 
difference in thickness between those with disease and healthy controls. ‘n’ refers to number of patients.
aEyes.
bNot reported.
RNFL, retinal nerve fibre layer; SD, standard deviation.
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Wide retinal venules in schizophrenia
There is growing evidence that people with schizo-
phrenia have higher rates of cardiovascular disease 
(CVD),9,89–94 and the calibre of retinal microvascu-
lature assessed through colour fundus photogra-
phy is increasingly recognised as an important 
biomarker of subclinical CVD. Indeed, metabolic 
syndrome (MetS) has been well studied in schizo-
phrenia.95,96 MetS prevalence ranges from 5.6% in 
untreated schizophrenia inpatients in Brazil up to 
74% in Hispanic outpatients.97,98 Patients with 
schizophrenia are already at elevated risk of mor-
bidity and mortality due to CVD, so given that 
antipsychotic medications may potentiate the 
damage, especially at young ages,99,100 it is impor-
tant to be able to monitor and anticipate cardiovas-
cular changes to allay further injury from CVD.

Several familial studies have examined the associa-
tion between schizophrenia or psychosis and retinal 
venule calibre with positive associations. The 
Dunedin Longitudinal Study, a birth cohort origi-
nally consisting of 1037 children, described how 
patients who developed schizophrenia by age 38 
had distinctly wider retinal venules compared 
with healthy cohort members.101 Similarly, in the 
Twins Eye Study in Tasmania and the Brisbane 
Longitudinal Twin Study, individuals who experi-
enced psychosis had wider venules compared with 
unaffected co-twins and controls; however, unaf-
fected co-twins also exhibited wide venules com-
pared with controls.102 These findings suggest 
widened retinal venules may reflect familial vulner-
ability to psychosis. Accordingly, genetic variants 
associated with both retinal vascular abnormalities 
and schizophrenia were described in the Dunedin 
study and revealed a strong genetic correlation 
between arterial diameter and weak correlation in 
venular diameter with a schizophrenia diagnosis.103 
More recently, in a study examining the relation-
ship between adult vascular-ischemia and the neu-
rodevelopmental hypothesis, Moises, Wollschläger 
and Binder described an overwhelming number of 
schizophrenia-associated genes also involved with 
vascular function, regulation and repair.104 These 
findings suggest that vascular abnormalities evi-
denced by widened retinal venules may reflect a 
genotypic vulnerability to psychosis.

Magnocellular pathway dysfunction in 
schizophrenia
Beginning in the M-ganglion cells of the retina, the 
magnocellular pathway branches out into the 

M-layers of the lateral geniculate nucleus (LGN) of 
the thalamus then into the dorsal stream and visual 
cortex located in the parietal lobe.105 Visual path-
way deficits in schizophrenia are thought to stem 
from disturbances in this pathway, as evidenced  
by reduced visual field sensitivity,106–108 eye- 
tracking,109,110 motion-contrast sensitivity,111 read-
ing performance and smooth pursuit eye move-
ment compared with healthy controls.105 Deficits in 
the magnocellular pathway have also been impli-
cated in some of the cognitive impairments 
seen,112,113 including attention and memory.107,114 
Given the multiple visual symptomology in schizo-
phrenia, various methods have been used to investi-
gate the potential impact of magnocellular pathway 
deficits on vision. Functional magnetic resonance 
imaging (fMRI) studies have revealed right hemi-
sphere magnocellular pathway hypoactivation in 
first-degree nonpsychotic relatives and patients 
with schizophrenia,115 but otherwise normal 
pathway functioning.116 Electroencephalography 
(EEG) studies measuring event-related potentials 
(ERPs) have shown diminished amplitudes and 
poor detection of low spatial frequency targets.117 
Regarding contrast sensitivity loss, a review by 
Skottun and Skyoles concluded that contrast sensi-
tivity deficits were not consistent with magnocellu-
lar deficiencies.118 However, they did acknowledge 
the difficulty of drawing a clear relationship between 
clinical symptoms of schizophrenia to deficits in the 
magnocellular pathway,118 such as linking poor 
reading performance in schizophrenia to dyslexia, 
which is weakly associated.105

More notably used in glaucoma, frequency dou-
bling perimetry (FDT) is a small, transportable 
device that assesses visual field defects as well as 
changes in contrast sensitivity.114 FDT works by 
creating an illusion at a high temporal frequency 
of a counter-phased flicker of a sinusoidal grating 
with a low spatial frequency.114 Since processing 
this type of visual stimuli is believed to involve 
areas of the brain that process visual information 
that activate the magnocellular pathway, FDT is 
seen as a way to assess retinal ganglion cell (RGC) 
function.115,119,120 FDT has been used in glau-
coma patients to assess the relationship between 
ganglion cell-inner plexiform layer (GCIPL) 
thickness and mean sensitivities and showed 
strong statistically significant positive correlations 
between the two, most notably in the inferotem-
poral and inferior sectors.121 Several studies have 
explored neurological dysfunction of this pathway 
in patients with schizophrenia using FDT as well. 
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Khosravani and Goodarzi reported diminished 
visual field sensitivity in patients with schizophre-
nia compared with normal controls.106 Gracitelli 
and colleagues reported statistically significantly 
lower global mean deviation in both eyes of 
patients with schizophrenia compared with their 
parents and normal controls.107 Similarly, Lima 
and colleagues showed lower global mean sensi-
tivity in patients compared with healthy con-
trols.108 Indeed, these abnormalities may reflect 
deeper damage to neural pathways within the 
brain, specifically the cortex and brainstem, as 
similarly proposed in AD,122 in order to offer a 
potential biomarker for diagnosis and monitoring 
of cognitive impairment in schizophrenia, thus an 
area of great interest for future research.

Severity and duration of schizophrenia
The correlations reported between duration of 
disease with retinal thickness and macular volume 
are mixed. Significant inverse correlations have 
been reported between duration of disease and 
thickness of the RNFL, temporal parafoveal ISL 
and temporal parafoveal ONL, as well as macular 
thinning and volume.61,62 These correlations with 
macula thickness and volume suggest progressive 
neurodegeneration seen in parallel with MRI 
changes of grey matter volume loss.123 However, 
studies containing similar numbers of patients 
and controls have reported no significant correla-
tion between RNFL thickness or macular thick-
ness with duration of illness.74,79 The Ascaso 
study (n = 60) found no correlation between dura-
tion and retinal abnormalities; however, the find-
ing of macular thinning in patients with nonrecent 
illness episodes suggests that changes in retinal 
structures may be conditional as opposed to pro-
gressive.75 Similarly, Chu and colleagues reported 
no significant retinal changes between early stage 
schizophrenia patients and schizoaffective disor-
der to age and gender-matched controls.82 The 
lack of disease-related retinal changes seen in 
these studies may be explained by the theory that 
lower levels of neuroinflammation in the retina 
can be caused by antipsychotic drug use, particu-
larly in patients with recent illness episodes.124,125 
This has been supported by a meta-analysis that 
included 23 studies (n = 762), which suggested 
antipsychotics express a systemic anti-inflamma-
tory effect.126 Only one study we reviewed actively 
assessed the role of antipsychotics on OCT 
abnormalities, and found no significant correla-
tion with treatment.61

The relationship between the severity of symp-
toms and retinal abnormalities is also unclear. 
Thinning of the RNFL, GCL and IPL have been 
found to significantly correlate with disease 
severity, measured by the Positive and Negative 
Symptom Scale (PANSS).72,127 Moreover, GCL 
and IPL volumes have been found to be lower in 
treatment refractory patients with schizophrenia 
compared to treatment responsive patients,72 sug-
gesting an inverse relationship with advanced dis-
ease. A more recent study observed that ONL 
and foveal photoreceptor thinning significantly 
correlated with the severity of negative symptoms, 
in addition to a significant inverse correlation 
with nasal parafoveal ONL thickness.61 Smaller 
macular volume has also been related to higher 
severity of symptoms using the Schedules for the 
Assessment of Positive and Negative Symptoms 
(SAPS and SANS) scales.82,128 However, similar 
studies with respect to number of patients and 
age or gender-matched controls, have reported no 
significant correlation between RNFL thickness 
or macular thickness with severity measured by 
the Clinical Global Impression Scale-Severity 
(CGI-S)129 and PANSS scores, respectively.74,79

Future possibilities in schizophrenia
Firstly, animal models representing negative 
symptoms are lacking. It has proven difficult to 
model schizophrenia in animals given that the 
disease impairs higher brain function resulting in 
human-specific symptoms such as delusions, hal-
lucinations and disorganised speech.130 Animal 
models in schizophrenia are few, and tend to 
focus on dopamine dysfunction driving patho-
physiological changes.131,132 These have shown 
that retinal dopaminergic deficiency may lead to 
loss of a subset of retinal amacrine cells.133 
Treatments for negative and cognitive symptoms 
of schizophrenia are lacking, hence more work is 
needed to develop comprehensive models that 
will adequately reproduce the deficits created by 
these symptoms. Secondly, given the contentious 
nature of findings related to retinal thinning, 
macular thinning and macular volume deficits, 
larger studies that evaluate more detailed and 
comprehensive outcome measures are necessary. 
This would include higher resolution OCT 
scans adequate enough to visualise subtle abnor-
malities present in early schizophrenia. Chu and 
colleagues acknowledged lower resolution time-
domain OCT (axial resolution 10 μm) as the 
main limitation of their study, whereas studies 
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that offered better axial resolution of 5 μm yielded 
more significant macular thickness measure-
ments.61,62,82 Thirdly, most schizophrenia patients 
in these studies were receiving antipsychotic med-
ications at the time of data collection, therefore it 
was not possible to exclude the potential anti-
inflammatory and neuroprotective effects of these 
medications that may have masked minor differ-
ences in RNFL between the different groups.134 
Finally, tobacco smoking is very common in 
schizophrenia and has been suggested to have a 
procognitive effect on positive symptoms,135 
although a recent study by Yokoyama and collea
gues discovered an association between length of 
smoking and severe symptoms with reduced pre-
frontal volume on MRI.136 Additionally, chronic 
tobacco smokers have been shown to have a thin-
ner ganglion cell complex and choroid compared 
with age and sex-matched nonsmoking controls, 
suggesting that smoking may confound or modify 
the effect of the relationship between retinal thin-
ning and schizophrenia (Table 2).136,137

Bipolar disorder
Bipolar disorder (BD), formerly known as manic 
depression, is an episodic, chronic psychiatric 
illness that can cause severe disability and 
declines in quality of life.138 Patients with BD 
experience severe mood swings from intense 
highs (mania) to extreme lows (depression) that 
last for several weeks or months. An estimated 
1% of the global population is affected by BD,138 
and it has been estimated that between 30%  
and 50% of patients with BD have been  
misdiagnosed with unipolar major depression 
because of initial presentation with a depressive 
episode, and may go on for years without a cor-
rect diagnosis.139–141 Delayed diagnosis, espe-
cially in children and adolescents,142,143 has been 
linked with poorer outcomes, including longer 
episodes and higher rates of recurrence.144–147 
Structural brain abnormalities seen on MRI 
have been detected in patients as early as the 
first episode, with some changes progressing, 
including reduced grey matter in the hippocam-
pus, temporal lobe and fusiform gyrus.148,149

RNFL changes in bipolar disorder
More recently, OCT has been used to correlate 
these changes in the retina. Multiple studies 
have demonstrated statistically significant global 

thinning of the pRNFL in patients (Table 
1).83,84,86,150 Compared with healthy controls, 
statistically significant global RNFL thinning 
was observed in euthymic (current ‘normal’ 
mood) BD patients.84 However, similar studies 
that age-matched controls have observed all but 
temporal thinning.83 Conversely, using age and 
sex-matched controls led to the observation of 
all but nasal thinning.85,150 Studies that meas-
ured antipsychotic use did not find a correlation 
between prescribed medications and RNFL 
thinning, hence patients presented with signifi-
cant RNFL thinning regardless of antipsychotic 
use.84,150 In addition, duration of illness has 
been shown to negatively correlate with RNFL 
thickness and GCC volume in euthymic and 
psychotic patients, suggesting a progressive 
neurodegenerative process.83,84

Multiple studies have observed lower IPL and 
GCL volume in BD patients,84,85,150 and a signifi-
cant negative correlation between severity and 
duration of illness.84 One study observed a signifi-
cant compensatory thickening of the INL in the 
BD group,150 contrary to previous BD studies, 
but similar to reported findings in Parkinson  
disease.151 Therefore, the absence of more obser-
vations of total retinal thickness change in BD 
may be a result of masking of thinning by simul-
taneous thickening of other layers.150 Newer, 
swept-source OCT able to image both the retina 
and choroid has been used to examine patients 
with BD, demonstrating significant thinning in 
the central macula, as well as in the inner tempo-
ral, nasal and inferior zones (Table 2).86 However, 
no changes in choroidal thickness were observed.

ERG changes in bipolar disorder
Patients at high genetic risk for BD (n = 20) and 
schizophrenia (n = 9) (one parent with BD or 
schizophrenia) have demonstrated diminished 
rod b-wave amplitude and delayed latency com-
pared with age and sex-matched healthy con-
trols, but no statistical difference in cones.152 A 
more recent and larger follow up study compar-
ing high-risk children with age- and sex-matched 
healthy controls also observed diminished rod 
b-wave amplitude and delayed latency but also 
found delayed cone b-wave latency.153 These 
results suggest that retinal rod response abnor-
malities may serve as a biomarker for the risk of 
developing BD.
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Future possibilities in bipolar disorder
Few studies have assessed the structural and 
functional changes in the retina associated with 
BD directly. Growing evidence from OCT stud-
ies suggests neurodegeneration in BD can be 
characterized by RNFL, GCL and IPL thinning 
with increasing duration of disease.83–86 The 
pathophysiological changes that underpin these 
observations remain unclear, hence more research 
is needed to support these findings. A potential 
explanation could be that low retinal dopamine, 
as suggested by reduced b-wave amplitude, may 
play a part in hypo-arousal states (anhedonia, 
melancholia) as suggested in seasonal affective 
disorder (SAD).154,155 Still, small study size, 
chronic medication use and early age of onset are 
just a few of the barriers to establishing OCT, 
ERG and other similar measures as valid bio-
markers to show degeneration and follow pro-
gression of BD and other psychiatric disorders.

Major depression
Major depression (MD) is a neuropsychiatric dis-
order that can affect individuals across a life span. 
MD is marked by anhedonia, low mood and cog-
nitive disturbances.156 According to WHO esti-
mates, depression is the leading cause of disability 
worldwide.157 It is estimated that over 322 million 
people suffer from depression, 4.4% of the world’s 
population. A number of risk factors have been 
identified, including female gender, high stress, 
family history, childhood experiences, personality 
traits and genetics.158–161 It has been observed 
that healthy patients who self-report visual impair-
ment without visual acuity loss have almost dou-
ble the odds of depression compared with visual 
acuity loss alone, after controlling for other risk 
factors.162 This finding could either be due to 
changes in the brain–vision axis, or other psycho-
logical influences.

The role of neuroinflammation has recently been 
implicated in the aetiology of MD, as evidenced 
by activation of the immune system seen in 
depressed patients and the strong relationship 
observed between depression and autoimmune 
diseases.163–165 By one estimate, up to 50% of 
autoimmune patients exhibit impaired quality of 
life or depressive symptoms.166 Moreover, increas-
ing evidence has pointed to the importance of 
neuroinflammation in AD pathogenesis,167–170 
and history of MD as a risk factor for AD.171–175 

Likewise, MRI and postmortem studies have 
shown decreased grey matter volume and glial 
density in the prefrontal and cingulate cortices 
and decreased hippocampal volume in patients 
with depression, regions of the brain involved in 
the emotional and cognitive characteristics of 
depression.176–180 In MRI studies, decreased vol-
umes in the prefrontal cortex, hippocampus and 
basal ganglia have been found bilaterally.180 It is 
also important to note that the shape of the hip-
pocampus has been found to be abnormal in MD 
patients without volume deficits through high-
dimensional mapping.181 Based on these findings, 
several studies have been conducted to investigate 
the relationship between these changes and func-
tional and structural retinal changes related to 
MD.

ERG findings in major depression
ERG changes have been described in several 
studies of MD patients. The largest of these stud-
ies (n = 200) comparing the cone and rod ERGs 
between MD patients and healthy controls 
observed prolonged b-waves at the cone level and 
reduced rods/cone a-waves in medicated and 
unmedicated MD patients compared with con-
trols, suggesting that these irregularities are not 
modifiable by medication.182 In contrast, another 
smaller (n = 40) study assessing the response to 
duloxetine in MD patients and healthy controls 
found that treatment-responsive MD patients 
had significantly higher baseline rod b-wave 
amplitudes compared with nonresponders and 
healthy controls; however, no statistical differ-
ence between all groups was found at 12 weeks.183 
Their findings suggest that rod b-wave amplitude 
alterations could be state-dependent or poten-
tially predict response to antidepressants in sub-
types of depression.

Significant reductions in pattern electroretinogram 
(PERG) amplitude have been observed in MD 
patients compared with controls; unmedicated and 
medicated MD patients displayed significantly 
lower retinal contrast gain compared with controls. 
In addition, studies have found a strong correla-
tion between contrast gain and depression sever-
ity.184 In those patients who achieved remission, 
MD patients with low baseline contrast gains nor-
malised on par with controls, whereas patients not 
achieving remission continued to show reduced 
RGC function, providing evidence that retinal 
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contrast gains may be state-dependent and there-
fore useful as a prognostic biomarker.185 Moreover, 
as mentioned previously and similar to BD, 
reduced b-wave amplitude may be indicative of 
low retinal dopamine, contributing to hypo-arousal 
as seen in SAD.154,155

Wide retinal venules
There is strong evidence from longitudinal stud-
ies that patients with MD are at increased risk of 
developing cardiovascular disease.186–192 In light 
of this risk, a large (n = 865) cross-sectional 
study based on the cohorts from the Brisbane 
Longitudinal Twin Study and the Twin Eye 
Study in Tasmania examined whether an asso-
ciation existed between depression and anxiety 
with retinal vessel calibre. In the adolescents and 
young adults who participated, depression and 
anxiety symptoms were associated with wider 
retinal venules, even after adjusting for other 
cardiovascular risk factors.193

OCT in major depression
In vivo visualization of the retina via OCT in MD 
patients has been explored by several studies, 
with mixed findings (Table 1). Significantly 
reduced GCL, IPL and global and temporal 
superior RNFL thickness have been observed in 
recurrent MD patients compared with first epi-
sode patients, and in all MD patients compared 
with healthy controls.194 However, most of the 
evidence comparing MD patients with healthy 
controls to date found no statistically significant 
difference in OCT measures although differences 
within MD groups were more profound (Table 
1).87,88,195 Duration and severity of disease was 
observed to correlate negatively with GCL and 
IPL volumes and positively with global RNFL 
thickness; however, the evidence is weak for all 
measures possibly owing to the majority of MD 
patients taking psychotropic medication.87,194 
Finally, the total retinal volume of the left eye has 
been shown to be greater than the right eye in 
MD patients, indicating a possible hemisphere-
specific lateralisation of cognitive processing.195 
This idea has been compounded by positron 
emission tomography (PET) studies showing 
increased orbitofrontal and prefrontal activity in 
healthy volunteers during temporary states of 
sadness,196,197 with MD patients more often hav-
ing altered left prefrontal functioning.198–201

Future possibilities in major depression
Compared with other diseases included in this 
review, there is a dearth of evidence defining the 
structural and functional changes in the retina in 
MD. More studies are required to confirm the 
presence or absence of retinal changes between 
MD patients and healthy controls, severity of 
symptoms, duration of illness, timing of depres-
sive episodes, effect of antidepressant use and how 
they may relate to future neurodegeneration. The 
lack of differences between MD patients and con-
trols seen in studies may be a real absence of 
effect, or alternatively due to small study num-
bers, insufficient resolution of OCT or other 
methodological issues. For example, retinal thick-
ness has been found to fluctuate according to 
diurnal variations in healthy patients, yet no study 
reviewed here reported timing of examinations, 
which could explain the lack of difference seen 
between MD patients and the control group, if 
not standardized.202–205 As suggested by the mon-
oamine deficiency hypothesis, the pathophysiol-
ogy of MD may result from deficiencies in 
norepinephrine, serotonin and dopamine.206–208 
Therefore, if retinal dopamine, released by 
amacrine cells in the INL, is diminished, subse-
quent input to retinal ganglion cells is reduced 
and could lead to atrophy in these layers as noted 
on OCT.209 Therefore, OCT may be an impor-
tant tool to track neurodegeneration in patients 
with MD, yet few studies have investigated its role 
longitudinally, possibly due to the statistically 
insignificant findings thus far.194 Advancements in 
OCT imaging technology assure high-resolution 
images that will, in the future, allow any structural 
changes to be detected with greater sensitivity, in 
particular the GCL.210

Conclusion
The studies reviewed propose that various 
changes in structure and function of the retina 
reflect changes in the brain and could thus serve 
as important biomarkers in psychiatric disorders. 
In schizophrenia, the hyper- and hypoactivity of 
NMDA glutamatergic receptor found at the fovea 
could potentially be associated with functional 
changes, but more studies are needed, observing 
retinal changes over time. It is well accepted that 
dopamine abnormalities, which also may be 
linked to positive and negative symptoms, impair 
visual function. Additionally, OCT has revealed 
retinal thinning and reduced macular volume and 
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thickness in schizophrenia; however, it is unclear 
if these findings correlate with duration and sever-
ity of symptoms. Moreover, it is unknown how 
RNFL thinning relates to atrophy of specific 
regions of the brain in schizophrenia and MD.78 
In particular, if occipital atrophy does occur, 
knowing when it occurs in relation to RNFL thin-
ning could help explain why some studies have 
found no difference in RNFL thickness between 
patients with schizophrenia and controls despite 
visual symptomology.82 Lessons may be learned 
from a similar finding of absent retinal thinning 
with visual disturbances in anti-NMDA receptor 
encephalitis, pointing, instead, to potential dys-
function in the anterior and posterior visual 
pathways and thus demonstrating deeper cortical 
and subcortical processing impairments in the 
brain.211 It also must be noted that the majority of 
studies reviewed reported exclusion of patients 
with concomitant ocular diseases; however, it is 
less clear whether diseases that could inevitably 
affect ocular structure and function, such as dia-
betes, were excluded or controlled for.

In BD, OCT has demonstrated pRNFL thinning, 
and lower IPL and GCL with increasing duration 
of disease, thus proposing a potential method to 
aid in early diagnosis of this disease. Moreover, 
ERG has allowed for observation of diminished 
rod b-wave amplitude and delayed cone b-wave 
latency in bipolar patients with high genetic risks. 
On the other hand, in major depression, prolonged 
b-waves at the cone level were found, suggesting 
that ERG could serve as a valuable tool to evaluate 
antidepressant response and differentiate between 
bipolar disorder and depression during diagnosis. 
Despite many structural and functional changes in 
the retina of patients with MD, there is a gap in 
understanding how these biomarkers can aid prac-
tice at the clinical level. In all these conditions, if a 
long-term biomarker (over decades) might be 
found in the retina, it is unlikely to replace func-
tional and behavioural outcomes, as these are what 
are assumed to cause the disability in these psychi-
atric illnesses as opposed to poor vision. However, 
it may serve as a surrogate endpoint.

Major advances in retinal imaging in recent years, 
specifically with OCT, have enabled the discovery 
of these potential biomarkers. The results from 
these studies demonstrate how retinal biomarkers 
could help robust clinical diagnostic methods and 
the monitoring of disease progression. Since much 

of the existing research is limited by cross-sec-
tional designs, further studies utilising more 
robust methods, such as cohorts, with large and 
sufficiently powered sample sizes are key to devel-
oping a more comprehensive understanding the 
relationship between OCT measures and psychi-
atric disorders and establishing retinal biomarkers 
that are reliable enough to diagnose psychiatric 
conditions early on, potentially predicting disease 
onset and severity before symptoms manifest.
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