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Abstract:  

The energy sector transition requires large financial investments in low-carbon generation 

technologies, to be delivered by a variety of actors with heterogeneous characteristics. Real-

world actors have bounded-rationality, reflected by their limited foresight and heterogeneous 

expectations, and as past trends influence their investments. Agent-based models are highly 

suitable modelling frameworks to study such realistic and complex energy transition dynamics. 

This paper introduces BRAIN-Energy, a novel agent-based model which explicitly allows to 

explore the impacts of actors’ heterogeneous characteristics, and of their interactions, on the 

transition pathways of the UK, German and Italian electricity sectors. Results show that actors’ 

heterogeneous characteristics pose barriers to effective decarbonisation efforts, affect the 

speed of the transition, and impact the transition’s security of supply and affordability 
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dimensions. Limited foresight and path-dependency lead to investment cycles (both virtuous and 

vicious). The country comparison highlights how such effects are stronger in markets with more 

heterogeneous market players. 

 

Keywords: agent-based modelling; bounded-rationality; heterogeneity of actors; investment 

decisions; energy sector; low-carbon transition 

 

 

 

1. Introduction 

The electricity sector is the largest producer of greenhouse gas emissions in Europe 

(Eurostat2), and as imposed by national and international climate change reduction objectives it 

needs to be decarbonised. Decarbonising the electricity sector, and subsequently electrifying 

transport and heating will allow decarbonisation targets to be met cost-effectively (Anandarajah 

et al., 2008; Ekins et al., 2011; Williams at al., 2012). Low-carbon assets will have to account for 

the largest share of electricity production by 2050 and be supported by carbon capture and 

storage (CCS) technologies.  

Meeting these challenging decarbonisation goals requires large financial investments in 

low-carbon technologies (IEA/IRENA, 2017), to be delivered by an increasing variety of market 

actors and investors (Hansen et al., 2019) and by new financing niches (Bolton and Foxon, 2014). 

These market actors are heterogeneous and have diverse investment behaviours (Bergek et al., 

2013; Mazzucato and Semieniuk, 2017). They operate with bounded-rationality, and not having 
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exact knowledge about the future. Hence they rely on past experiences, expectations and habits. 

Such adaptive and heterogeneous behaviours, and their interactions, add complexity to the 

energy transition and uncertainty to what shape the future energy system will have, leading to a 

multitude of possible decarbonisation pathways. Energy systems are, hence, complex adaptive 

systems which Bale et al. (2015) understand as systems characterised by heterogeneous and 

interrelated elements (such as agents, objects and dimensions), the evolution of which is an 

emergent property of the behaviours and interactions of the different elements. For example 

the energy transition in Germany, called “Energiewende”, dramatically changed the structure of 

electricity supply in Germany, leading to a growth in decentralised renewable electricity 

production and to the rise of “third parties” (Brunekreeft et al., 2016). The emerging property of 

this increasing competition was the impact on the financial viability of incumbent utilities, and 

the need of new business models for such actors to be able to continue delivering electricity and 

the necessary low-carbon investments (Brunekreeft et al., 2016). 

However, equilibrium and optimisation models have been mostly used to study the energy 

transition and investments in low-carbon technologies leading to future decarbonisation 

pathways. These models assume homogeneous and rational economic actors (Bale et al., 2015), 

and neglect attention to the actors’ bounded-rationality (Iychettira et al., 2017; Wüstenhagen 

and Menichetti, 2012) and to their diverse strategies and interactions with other market players 

and policy-makers. Hence, new methods and modelling approaches are needed to provide 

suitable policy insights and decision-making tools (Ringler et al., 2016) to achieve a sustainable 

decarbonisation of the electricity sector (Mercure et al., 2016). Modelling of sustainability 

transitions should pay attention to the heterogeneous behaviours and characteristics of the key 

stakeholders involved in the low-carbon transition (Gazheli et al., 2015), to understand the 

barriers that such aspects could pose to reaching a sustainable transition. Moreover, new 
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modelling approaches should take into account the different dimensions involved in the 

transition, and the emergent properties arising from their complex interactions and feedback 

between each other (Hansen et al., 2019; Hoekstra et al., 2017; Deissenroth et al., 2017).  

 This paper introduces BRAIN-Energy (Bounded Rationality Agents Investment model), an 

agent-based model (ABM) whose strength is its sophisticated representation of agent behaviour. 

BRAIN-Energy’s novelty lies in introducing a greater diversity of market players and behaviours 

compared to existing energy system ABMs, and in having a stronger focus on how past 

experience and imitation influence the investment behaviours of such market players. By 

comparing three countries (UK, Germany and Italy), characterised by different types of market 

players and ownership structures of renewable energy plants in their electricity sectors (Hall et 

al., 2016), this paper aims to answer the following research questions:  

1) To what extent do the heterogeneous characteristics of the market players impact future 

investments in the electricity sector and its low-carbon pathways? 

2) How does the structure of the electricity sector change to 2050 in terms of market shares 

of the market players (which players survive and which lose)? 

 

 

Chapter 2 provides a review of existing agent-based models in the energy sector and 

highlights the strengths of BRAIN-Energy, and Chapter 3 introduces the model, its main agents, 

their characteristics and investment procedures. Scenarios are discussed in Chapter 4, and 

Chapter 5 discusses BRAIN-Energy’s results for the three case studies, with conclusions and policy 

implications in Chapter 6. 
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2. Literature review 

2.1 Challenges of modelling complex energy transitions and heterogeneous actors 

The energy transition has mainly been studied through conventional equilibrium and 

optimisation energy system models. Prior models have focused on either the full range of 

possible technology pathways, such as MARKAL in the UK (Strachan et al., 2008), TIMES/TIAM 

(Loulou and Labriet, 2008), MESSAGE, used by IIASA in the GEA (2012), or on providing a detailed 

spatial and temporal resolution for supply-demand balancing in the electricity sector such as 

WeSIM (Strbac et al, 2015). Despite their high degree of technological detail and mathematical 

precision, these models had to compromise on defining and aggregating decision-makers. For 

this reason Bale et al. (2015) argue that equilibrium models might not be suitable to study real 

systems made of agents. Hoekstra et al. (2017) criticise equilibrium models for being static and 

for having rational, utility maximising actors, which leads such models to being disconnected 

from the reality of the energy system’s transition, where agents do not necessarily act in a fully 

rational way, but rather exhibit bounded-rationality (Li, 2017; Mercure et al., 2016; Trutnevyte, 

2016). Moreover, optimisation models fail to capture the interactions between agents, and do 

not account for the fact that multiple solutions and path-dependency can arise from agents' non-

optimal investment decisions (Mercure et al., 2016). The combination of these weaknesses 

prevents such models from being able to address the breadth of current challenges of the energy 

transition, and limits their ability in capturing the drivers and barriers to the energy system 

transition in the long-term (Bale et al., 2015). 

Energy systems are, in fact, made of a multitude of actors, with different behaviours and 

potentially conflicting interests, and which influence each other. Actors interact with each other 

through networks disciplined by institutions (Bale et al., 2015). The main actors and investors in 

the electricity sector are electricity producers such as incumbent utilities, and new types of 



6 
 

investors, such as households and institutional investors. Interactions between these diverse 

market players and the institutional dimension (made of national government, electricity 

regulator agent and their policies) give rise to a variety of emergent techno-economic properties 

of the electricity sector, and to different possible future transition pathways and feedback loops 

(Hoekstra et al., 2017). These real-world actors have bounded-rationality. This means that 

instead of being profit-maximising, agents base their investment choices on routines, habits and 

past experience, as they have limited information about the future (Simon, 1953, 1955, 1956; 

Nelson and Winter, 1982). This leads to “satisficing” investment choices, which are adaptive and 

path-dependent. Li (2017) argues that, because of their influence on energy sector's 

decarbonisation pathways, actors' heterogeneous and non-optimal behaviours should gain a 

central role in energy system models.  

 

2.2 Advantages and disadvantages of using agent-based models for energy analysis 

Agent-based modelling approaches have the potential of dealing with the increasing 

complexity involved in the transition of the energy system (Hansen et al., 2019; Köhler et al., 

2018; Hoekstra et al., 2017; Bale et al., 2015; Pfenninger et al., 2014). Agent-based models 

(ABMs) are bottom-up dynamic simulation models, and their main strength is the representation 

of autonomous and heterogeneous agents (Köhler et al., 2018) and their interactions. With ABMs 

it is, therefore, possible to represent the increasing variety of stakeholders taking part in the 

energy transition (Hansen et al., 2019), and to represent the complexity in decision making 

processes that actors face in the real world (Ma and Nakamori, 2009). Also, in ABMs it is possible 

to represent agents with bounded-rationality, whose strategies are adaptive and path-

dependent. Hence, ABMs can model learning, strategizing and interacting agents, which is one 

of the features that modelling approaches able to deal with complexity should have (Hoekstra et 
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al., 2017; Bale et al., 2015). Moreover, in ABMs the emergent properties of a system can be 

modelled as a dynamic result of the different micro-economic strategies of the actors and their 

interactions, rather than being the outcome of equilibrium solutions (Ponta et al., 2018; Köhler 

et al., 2018). Also according to Hoekstra et al. (2017) ABMs are the best approach to model 

emergence as opposed to other simulation techniques. A further strength of ABMs lies in being 

able to capture the dynamic feedback which develop between the different dimensions involved 

in the energy transition (Hansen et al., 2019; Deissenroth et al., 2017; Bale et al., 2015), which is 

a limitation of equilibrium models. Understanding such dynamic feedbacks allows to better 

understand uncertainty involved in the energy transition (Köhler et al., 2018). Moreover, ABMs 

make it easier to address institutional and governance barriers in energy transitions (Busch et al., 

2017), and to understand the side-effects which path-dependency, bounded-rationality, myopic 

foresight, and heterogeneous strategies have on energy and climate policies (Chappin et al., 

2017). In fact, according to Chappin et al. (2017) social elements which pose challenges to the 

energy transition are best studied through ABMs.  

Disadvantages of ABMs include the challenge to adequately represent the operations of 

the electricity system. A further challenge for ABMs is linked to the difficulty in calibrating and 

validating them against empirical data (Tesfatsion, 2006; Ringler et al., 2016; Weidlich and Veit, 

2008). Moreover, due to their flexibility, ABMs are hard to compare between themselves (Fagiolo 

et al., 2007b), and the absence of a standard protocol to describe ABMs makes them difficult to 

compare and replicate (Grimm et al., 2006 and 2010). 

 

2.3      Agent-based models in the energy and electricity sector 

As a result of their advantages, ABMs studying the energy transition (Table 1) have 

flourished, with the majority of such studies being published in 2017, highlighting the growing 
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importance of ABMs for energy policy (Hansen et al., 2019). Weidlich and Veit (2008) and Hansen 

et al. (2019) provide a review of the most prominent ABM studies covering electricity markets, 

while Ringler et al. (2016) specifically focus on ABMs studying electricity grids.  

Chappin et al. (2017) and Richstein et al. (2014 and 2015) use the EmLab model, a flexible, 

modular and open-source ABM (De Vries et al., 2015) to simulate two interconnected electricity 

markets in typical European countries and to explore the effects of the investment decisions of 

the market players with bounded-rationality under different policy settings and market 

structures. Their goal is to understand how different policies influence the development of 

European electricity markets in the long term, and also the need for flexibility options such as 

demand response practices and electrical energy storage in an electricity system with a capacity 

mechanism (Khan et al., 2018). Agents in this model include electricity generators, an aggregated 

energy consumer agent, the government, an electricity spot market, and a market for trading 

CO2 emission permits. Similarly, electricity generators are the main agents in the ABM developed 

by Kwakkel and Yücel (2014) and Yücel and Van Daalen (2012), which studies the Dutch electricity 

system using a socio-technical perspective. Electricity generators are the main agents also in the 

AMIRIS model (Deissenroth et al. 2017), a socio-technical ABM which focuses on the German 

electricity sector, and in the PowerACE model (Sesnsfuss et al., 2008; Bublitz et al., 2017). This 

ABM also focuses on the German electricity sector, and studies the impact of the EU ETS and of 

increasing renewable energies on the structure of the market and on the generators’ investment 

choices. The CASCADE ABM (Rylatt et al., 2013; Allen et al., 2013; Allen and Varga, 2014) also has 

electricity generators as main agents, but the purpose of the ABM is mainly to study their short 

term bidding decisions in the UK electricity market, as opposed to long-term investments and 

their impacts on the low-carbon transition. Kraan et al. (2018, 2019) use an ABM to study the 

behaviour of heterogeneous investors with different views of the future, and whose investment 
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choices are affected by their past performance, on the long-term evolution of the electricity 

sector. The heterogeneity of investors is, however, limited to existing and new investors in these 

studies. ABMs focused on the Italian electricity market are more immature, and the most 

prominent example is offered by Palmer et al. (2015) who study the evolution of PV investments 

as a result of communication and imitation between household agents. 

Table 1 summarises the key aspects of the ABM studies reviewed above and of BRAIN-

Energy. BRAIN-Energy’s novelty compared to the above reviewed studies includes a greater 

focus on depicting diverse market players and their heterogeneous behaviours, and key 

investment aspects such as bounded-rationality and limited foresight. As discussed in section 

3.4, this emerges both from learning from previous periods which leads to path-dependency in 

investment choices, and from imitation of other players’ successful investment strategies. A 

further novelty in BRAIN-Energy is the inclusion of financial sector actors, which has not been 

done in energy sector ABMs yet. This paper also adds a country comparison to existing ABM 

studies, with the aim of highlighting if the heterogeneous investment behaviour of the market 

player influences the low-carbon transition differently depending on the presence of different 

types and numbers of market players.   
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Reference Main agents Bounded-

rationality 

Path-

dependency 

Imitation Power 

sector 

operations 

Geographical 

context 

De Vries et al. 

(2015); 

Richstein et 

al. (2014; 

2015); 

Chappin et al. 

(2017); Khan 

et al. (2018) 

Electricity generators  Yes No No Detailed + 

CO2 trading 

market + 

storage 

2 connected 

electricity 

markets in 

typical 

European 

countries 

Kwakkel and 

Yücel (2014); 

Yücel and Van 

Daalen (2012) 

Electricity generators 

(differentiated by size) 

Yes No No Endogenous 

demand 

changes 

Netherlands 

Deissenroth et 

al. (2017) 

Electricity generators 

(differentiated by type 

of generation 

technology), direct 

marketers 

Limited No No Hourly 

resolution 

Germany 

Sesnsfuss et 

al. (2008); 

Bublitz et al. 

(2017) 

Electricity generators 

(incumbent utilities) 

and consumers 

 No No  Germany 

Rylatt et al. 

(2013); Allen 

et al. (2013); 

Allen and 

Varga, (2014) 

Electricity generators, 

consumer agents 

Limited No No Detailed (as 

focus is on 

short term 

bidding 

decisions) 

UK 

Kraan et al. 

(2018, 2019) 

Investors in electricity 

sector (existing and 

new) 

Yes Yes No Yearly 

resolution + 

constant 

electricity 

demand 

Liberalised 

European 

market 

Palmer et al. 

(2015) 

Households No No Yes Yearly 

resolution 

Italy 

BRAIN-Energy Electricity generators 

of different types, 

institutional investors, 

aggregated household 

agents 

Yes Yes Yes Yearly 

resolution 

3 countries 

(UK, Germany 

and Italy) 

 

Table 1 - ABM studies in electricity sector and key aspects 



11 
 

3. Methodology 

3.1 Model overview and design  

 BRAIN-Energy is an ABM of electricity generation and investment. Its focus is the 

representation of heterogeneous agent characteristics in investment decisions and multi-agent 

interaction, and an exploration of the impacts of those aspects on the electricity sector 

transition.  BRAIN-Energy was developed in the open-source software environment Netlogo 

(Wilensky, 1999), and iterates in yearly time steps from a calibration year of 2012 (to be able to 

validate the model, by comparing BRAIN-Energy’s results with a few years of historical data), 

through to 2050. The annual resolution of BRAIN-Energy is justified by the fact that the 

investment decisions of the market players and their interactions – the core of BRAIN-Energy’s 

analysis - are better captured on a yearly basis. Section 3.3 explains how BRAIN-Energy deals with 

intermittent renewable generation and peak requirements, and load factors for the different 

generation technologies are provided in the Appendix. 

BRAIN-Energy is calibrated for each of the three country case studies – UK, Germany and 

Italy. These three countries have been chosen as case studies (Figure 1), because they represent 

a different spectrum of market structures (from more centralised as the UK, to highly 

decentralised as Germany), a different spectrum of governance arrangements (from more 

market oriented as the UK, to more civil society oriented as Germany), and finally different types 

of market players, stakeholders and ownership structures of renewables in the electricity sector 

(Hall et al., 2016). 
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Figure 1 - Case studies in BRAIN-Energy 

 

BRAIN-Energy gives a stylised representation of each country’s power sector, in terms of 

existing generation technologies and available generation technologies in the future, type of 

market players and prevailing policy environment. For each country the market participants are 

clearly defined (section 3.2) based on extensive literature search. For the operational decision 

process (section 3.3), at every time-step these market players first take decisions about 

electricity production and dispatch from their existing power plants. The revenues and financial 

positions of the market players are updated based on their electricity sales. Subsequently 

(section 3.4), market players decide about decommissioning unprofitable power plants, and 

make investment decisions in new generation assets. An overview of BRAIN-Energy’s yearly flow 

is depicted in Figure 2. 
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Figure 2 - BRAIN-Energy's yearly flow 

 

 Table 2 summarises BRAIN-Energy’s main calibration variables for the three country case 

studies at calibration year, indicating if these are static or dynamic. The dynamic values used in 

BRAIN-Energy for the capital costs of technologies can be found in the Appendix, which also 

contains information for future electricity demand projections in the three countries. Further 

detail on installed capacity, and technical power plant data are provided in the Appendix. 

 

 

 

 

 

 

 

 

 

 



14 
 

Exogenous variables Initialisation Nature Source 

Electricity demand  UK: 309 TWh 

GER: 593 TWh 

IT: 328 TWh 

Dynamic UK:    Historical- National Grid half-hourly data 

           Future- National Grid FES (2016), “Two Degree” scenario 

GER:  Historical- Open Power System Data Platform3, AG 
Energiebilanz4 

           Future- Prognos (2014) 

IT:      Historical- GME5 

          Future- Terna (2016, 2018) 

 

Fuel costs Gas:  

UK: 20.3 GBP/MWh 

GER and IT: 29 EUR/MWh 

Coal (GER): 37 EUR/MWh  

Dynamic UK:                Historical- BEIS (2016) 

                  Future- BEIS (2016), “Reference” scenario 

GER and IT: Historical- BmWi Energiedaten database6 

                      Future- Prognos (2014) 

 

Capital costs of technologies 

(EUR/kW) 

 

Gas: 400 

Coal: 1,800 

Nuclear: 6,000 

Onshore wind: 1,300 

Offshore wind: 3,000 

PV: 1,560 

Biomass: 2,500 

Dynamic DIW (2013) 

 

 

 

 

 

 

 

Operational & Maintenance 

(O&M) costs 

 Static UK: BEIS (2016a) 

GER and IT: DIW (2013) 

 

CO2 price UK: 6.39 GBP/mt 

GER and IT: 7.36 EUR/mt 

Dynamic UK:               Historical – BEIS (2016) 

                      Future – BEIS (2016), “Reference” scenario 

GER and IT: Historical-  EEX Exchange 

                      Future- Prognos (2014) 

Table 2- Main calibration variables in BRAIN-Energy 

 

 

3.2 Market players 

3.2.1 Type of market players 

6 different types of market players are modelled in BRAIN-Energy, with Table 3 showing 

which players invest in each country’s market, and Table 4 describing their characteristics. 3 

types of market players can be found in the UK model: incumbent utilities, independent power 

producers (IPPs) and new-entrants. The variety of market players is greater in the German (CPI, 

2012, 2016) and Italian models, where 6 types of market players have been modelled: incumbent 

                                                           
3 https://data.open-power-system-data.org 
4 https://ag-energiebilanzen.de/7-0-Bilanzen-1990-2016.htmlx 
5 http://www.mercatoelettrico.org/it/Download/DatiStorici.aspx 
6https://www.bmwi.de/SiteGlobals/BMWI/Forms/Listen/Energiedaten/energiedaten_Formular.html?&addSearchPathId=3046
70 
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utilities, IPPs, new-entrants, municipal utilities (only in the German model), institutional 

investors, and households. A household market player in BRAIN-Energy is an aggregation of 1,000 

households, to reflect the fact that the average household investment in PV in Germany and Italy 

is 10 kW (CPI, 2012; GSE, 2016) and the minimum investment size in PV in BRAIN-Energy is 10 

MW. 

This set-up reflects the fact that the main market players in the UK electricity supply sector 

are incumbent utilities, which own the majority of conventional generation assets (Hall et al., 

2016), and 47% of renewable assets (BEIS, 2014). The ownership of renewable generation assets 

by non-corporate or community actors in the UK is negligible at 0.3% (BEIS, 2014), and hence no 

households nor institutional investors have been modelled in BRAIN-Energy’s UK version. 

Although energy companies owned by local authorities are starting to enter the UK electricity 

market7, with the goal of tackling fuel poverty, these are currently very limited in number and 

market share. Hence UK municipal utilities have not yet been introduced in the current version 

of BRAIN-Energy. In contrast, in the German electricity sector the ownership of renewable 

generation assets is fragmented, and non-corporate, municipal and non-state models dominate 

(Hall et al., 2016). Private individuals (households and cooperative of households) own 46% of 

total renewable installed capacity, and 43% is owned by institutional investors (Trend:research, 

2013). Households are very important investors also in the Italian market, especially on solar PV, 

and so are institutional investors (Terna, 2016). 

 

 

 

 

 

 

                                                           
7 Energy companies owned by local authorities include Robin Hood Energy, Bristol Energy, Liverpool Energy 
Community Company and Angelic Energy 
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Type of market player UK Germany Italy 

Incumbent utilities 

 

4 3 3 

IPPs 2 2 2 

New-entrants None at 2012 – up 

to 6 through to 

2050  

None at 2012 – up 

to 6 through to 

2050  

None at 2012 – up to 

6 through to 2050  

Municipalities N/a 2 N/a 

Institutional investors N/a 2 2 

Households N/a 8 6 

Table 3 – Number of market players in UK, Germany and Italy at calibration year 

 

 

3.2.2 Heterogeneity of market players 

The market players in BRAIN-Energy are heterogeneous based on the type of organisation 

and their characteristics. This consists of five elements (specific characteristics in Table 4): 

1. Aim: different types of market players have different strategies and aims which define 

their behaviour and actions through time (Table 4). The aim of the different types of 

market players in BRAIN-Energy is based on a literature review and on real-world 

characteristics.  

2. Technological preferences: market players only operate or invest into determined types 

of technologies (Table 4). This is because different electricity generation technologies 

bear different types of risks, which can best be managed by different types of owners 

which have different capabilities, sizes, risk propensities, etc. (CPI, 2017a, 2017b; 

Mazzucato and Semieniuk, 2017). The different types of technologies which market 

players own, operate and invest in have an impact on the revenues which market players 

are able to generate at each time step in BRAIN-Energy, and hence on their future 

investments and the evolution of their market shares. 
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3. Foresight: different types of market players evaluate future investment options over a 

different number of years in the future. The length of the foresight of the market players 

depends on their investment behaviours, risk propensity and return expectations and 

wider behavioural assumptions modelled in BRAIN-Energy and summarised in Table 4. 

4. Number of years before unprofitable assets are closed down: incumbent and municipal 

utilities are willing to absorb losses for longer years, as electricity generation is their main 

business, in contrast to IPPs and new entrants who have a more speculative behaviour 

(CPI, 2016; Global Capital Finance, 2014). The number of years during which market 

players are willing to absorb losses for before closing unprofitable plants is calibrated in 

BRAIN-Energy based on the market players’ wider strategies in the literature (Global 

Capital Finance, 2014; BNEF, 2012; CPI, 2012, 2016, 2017b) and is summarised in Table 4. 

5. Cost of capital: the different costs of capital for market players have been calibrated 

based on values found in the literature (H.M. Treasury, 2011; Hermelink and De Jager, 

2015; Global Capital Finance, 2014; Steinbach and Staniaszek, 2015) and on the financial 

statements of the major European utilities (Uniper, 2017; E.ON, 2017; Enel, 2017; Scottish 

Power, 2018; RWE, 2016). These reflect the risk profile of each type of actor also taking 

into account the risk profile of the country in which they operate (Diacore, 2015), and 

represent a company’s weighted average cost of capital (WACC). 

 

This heterogeneity of the market players in BRAIN-Energy also illustrates bounded 

rationality, as investment decisions are affected by the market players’ limited foresight of the 

future, and are hence based on their own heterogeneous expectations of electricity demand, 

fuel and technology costs. As discussed later in sections 3.4.2 and 3.4.3, the market players’ 

characterisation further captures both path dependence and imitation, as investment decisions 
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are influenced by the success of each market player’s own portfolio, as well as by emerging 

knowledge of the outcomes of the other players’ investments. 
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Market players Characteristics and strategies 

Incumbent utilities 

Main players in the electricity 
sector, whose main business is 
electricity generation. Some are 
vertically integrated 
companies, which also own the 
supply business. 

 Aim: production of electricity to meet demand and provision of stable dividends to 
shareholders (Blyth et al., 2015; Caldecott and McDaniels, 2014; CPI, 2016). Once out of 
the market, no new incumbents are created in BRAIN-Energy 

 Technology preferences: invest across all technologies (within the pool of their accepted 
technologies) 

 Foresight: 15-20 years. Incumbents are willing and able to absorb losses from 
unprofitable plants longer than other generators 

 Number of years losses are allowed for before plants are switched off: 7-10 years 

 Capital costs: 5%-7% (Hermelink and De Jager, 2015; Steinbach and Staniaszek, 2015; 
CPI, 2016) 

 
Independent power producers 

(IPPs) 

Project developers, which 
develop, own, operate new 
generation assets, and 
eventually then sell these on.  
IPPs are not vertically 
integrated. 

 Aim: profit maximisation and increased market share (CPI, 2016; Global Capital Finance, 
2014). Opportunistic investment style. 

 Technology preferences: gas and nuclear. Renewables: onshore- and offshore wind (CPI, 
2016) 

 Foresight: 10-15 years. IPPs switch off unprofitable plants sooner than incumbents or 
municipalities (Global Capital Finance, 2014). 

 Number of years losses are allowed for before plants are switched off: 5 years 

 Capital costs: 8%-10% in Germany and UK, 8-12% in Italy (Diacore, 2015). IPPs seek 
higher returns from investments than incumbents, and are willing to undertake riskier 
projects (Global Capital Finance, 2014) 

 
New-entrants 

New-type of electricity 
generators (e.g. IT companies 
entering the electricity market). 
Their main business is not 
electricity generation. Not 
existent at the beginning of the 
simulations in BRAIN-Energy. 
 

 Aim: their main expertise is not electricity generation, but they want to maximise profits 
attracted by subsidies 

 Technology preferences: only renewable generation technologies 

 Foresight: 10 years, as supply of energy is not their main business, they are just being 
speculative 

 Number of years losses are allowed for before plants are switched off: 5 years 

 Capital costs: 12%, as they seek high return 
 

Municipal utilities      

Directly or indirectly owned by 
a municipality or city, and 
operate only in their regions, to 
which they are strategically 
committed.  
 

 Aim: investment choices are driven by financial return expectations, but also by wider 
environmental considerations (CPI, 2016; Hall et al., 2016) 

 Technology preferences: gas and renewable generation technologies (PV, onshore wind 
and biomass). Larger municipalities also invest in offshore wind (CPI, 2016) 

 Foresight: 25 years, as supply of energy to their region is their main business 

 Number of years losses are allowed for before plants are switched off: 7-10 years 

 Capital costs: 4% (Hall et al., 2016), as they can borrow from local banks 
 

Institutional investors 

Institutional investors (such as 
pension funds and insurance 
companies) are financial 
institutions that manage funds 
on behalf of others.  

 Aim: seek stable, predictable and long-term returns and cash-flows to match their long 
term liabilities 

 Technology preferences: Onshore wind and PV. More experienced institutional investors 
can also invest in offshore wind. Pension funds seek to invest EUR 100-250 million at 
once, while insurance companies look to invest EUR 20-100 million at once (Global 
Capital Finance, 2014; Blyth et al., 2015; CPI, 2016, 2017b) 

 Foresight: 20-25 years, as this matches their long-term liabilities (Blyth et al., 2015; CPI, 
2016; Mazzucato and Semieniuk, 2017) 

 Number of years losses are allowed for before plants are switched off: 5-10 years 

 Capital costs: 5%-10% in Germany and UK and 5-12% in Italy, to reflect the riskier 
environment (Global Capital Finance, 2014; Diacore, 2015) 
 

Households 

Aggregated to 1,000 
households 

 Aim: they invest in small scale renewable energy facilities, to cover self-consumption, 
and might sell surplus locally. 

 Technology preferences: households only invest in small scale PV (Palmer et al., 2015; 
GSE, 2016b; Trend:research, 2013; CPI, 2016). 

 Foresight: investment decisions based on pay-back period of assets, which can vary from 
5 to 15 years depending on single actors 

 Capital costs: reflect market cost of capital and are between 3%-6% (Steinbach and 
Staniaszek, 2015) 

Table 4 – Characteristics of market players  
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3.3  Power sector operations 

Each year market players in BRAIN-Energy bid potential electricity production from each of 

their power plants 𝑝 into the market (we assume market players sell all electricity they produce 

through the wholesale market, and don’t take into account the fact that they might be vertically 

integrated or have power purchase agreements). Each market player’s bidding strategy at time 

𝑡 (𝑏𝑡) is a function of the short run marginal cost per MWh of electricity produced by power 

plant 𝑝 (𝑆𝑅𝑀𝐶𝑝,𝑡), and of the potential available production capacity of power plant 𝑝 at year 

𝑡 (𝑒𝑝𝑝,𝑡): 

 𝑏𝑡 = 𝑓(𝑆𝑅𝑀𝐶𝑝,𝑡, 𝑒𝑝𝑝,𝑡) 

 

Electricity demand is exogenous in BRAIN-Energy and has been calibrated on half-hourly 

national data (Table 2). Additional information can be found in the Appendix. To account for 

variations in the load profile, electricity demand has been divided into a yearly day average 

demand, yearly night average demand and a yearly peak demand. Yearly peak demand is 

calculated as yearly average day demand multiplied by the peak factor, calibrated on historical 

observations of the absolute yearly peak electricity demand in the UK, Germany and Italy (see 

Appendix). All bids from the market players are then collected, and electricity is dispatched on a 

merit-order basis to satisfy yearly average day and night electricity demand. The electricity price 

at year 𝑡 (𝑝𝑡) is equal to the short run marginal cost of the last and most expensive bid accepted 

into the market, which is required to meet electricity demand in that year. Based on the 

electricity production mix resulting from the merit order, total emissions in the power sector and 

carbon intensity of electricity generation are calculated. 

To account for the intermittency of renewable generation assets, and for their effect on 

capacity, on load factors of thermal plants and on the electricity price formation, their installed 
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capacity has been de-rated by their load-factor (see Appendix). To account for intermittency of 

renewable source, renewable assets have a declining “contribution to peak” in BRAIN-Energy. 

This leads to a declining marginal contribution of each additional renewable generation asset in 

meeting peak demand the more renewables are installed in the system. Renewable plants only 

contribute 5% of their capacity to peak generation, when over 80% of electricity is produced from 

renewable sources (De Vries et al., 2015). 

To incentivise investments into renewable energy technologies and achieve at least an 80% 

share of electricity produced through renewables at 2050 in all three countries as dictated by 

national regulations8, a CO2 price operates in BRAIN-Energy, as well as policies such as Contracts 

for Difference (CfDs) in the UK and feed-in-tariffs (FITs) in Germany and Italy. Moreover, a 

capacity market is active in the UK and Italian models to manage security of supply. The CfD 

mechanism and the capacity market are modelled in BRAIN-Energy as auctions, while FITs have 

static values through time (see Appendix). The CO2 price changes through the years, and its 

values can be found in the Appendix. Detailed explanation about the functioning of the CfD 

mechanism, FITs and the capacity market can be found in BRAIN-Energy’s online documentation. 

For additional information on the power sector operation see BRAIN-Energy’s model 

documentation on: https://www.ucl.ac.uk/energy-models/models/brain-energy 

 

3.4   Investments 

3.4.1  Economic criteria in investments 

                                                           
8 For the UK: 2008 Climate Change Act 
For Germany (Renewable Energy Sources Act 2017) (in German Erneubares Energien Gesetz- EEG: http://www.gesetze-im-
internet.de/eeg_2014/EEG_2017.pdf 
For Italy (Strategia Energetica Nazionale (Ministero dello Sviluppo Economico, 2017)): 
https://www.mise.gov.it/images/stories/documenti/Testo-integrale-SEN-2017.pdf 

https://www.ucl.ac.uk/energy-models/models/brain-energy
http://www.gesetze-im-internet.de/eeg_2014/EEG_2017.pdf
http://www.gesetze-im-internet.de/eeg_2014/EEG_2017.pdf
https://www.mise.gov.it/images/stories/documenti/Testo-integrale-SEN-2017.pdf
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In BRAIN-Energy market players evaluate investment opportunities based on an NPV 

calculation. If an investment option has an NPV higher than zero, market players select the 

options with the highest expected return on investment (ROI) which is equal or above their cost 

of capital. Market players have different technology options, and their NPV calculations are 

based on n years ahead. n is different by market player, to represent their heterogeneous limited 

foresight. Also, market players use different discount rates r in their NPV calculations, which 

reflect their different cost of capital. Finally, market players use heterogeneous expectations 

about future electricity demand, fuel and technology costs in their NPV calculations. Before 

investing, market players make sure to be able to pay at least 20% of the investment cost from 

their own cash, and to be able to raise the remaining amount as debt. Debt is raised at a market 

player’s specific cost of capital r as in Table 4 (the same value is used as the discount rate in the 

NPV calculation), and market players are assumed to pay back the loans in fixed annual 

instalments during the lifetime and depreciation time of the power plant for which construction 

the loan has been taken. Figure 3 shows the investment process of the market players in BRAIN-

Energy and the different dimensions influencing them. 

Further details about the investment process and mathematical formulations can be found 

on BRAIN-Energy’s online documentation on https://www.ucl.ac.uk/energy-

models/models/brain-energy. 

 

 

https://www.ucl.ac.uk/energy-models/models/brain-energy
https://www.ucl.ac.uk/energy-models/models/brain-energy
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Figure 3 –  Investment process 

 

3.4.2  Influence of past performance and path-dependency 

The performance of past investments influences future investments of the market players, 

making these adaptive and path-dependent. Path-dependency arises when there are feedback 

and reinforcing mechanisms stemming from increasing returns and economies of scale, 

knowledge accumulation, and learning-by-doing (Safarzynska and Van den Bergh, 2010). Given 

the long life-time of electricity generation assets (Chappin et al., 2017), it is key to take path-

dependency into account when studying investments in the power sector. 

In BRAIN-Energy market players learn from own successful past investments, and this is 

reflected in a market player’s growing profit and improving financial situation. Hence, learning-

by-doing and accumulation of knowledge in BRAIN-Energy lead to growing market shares and 

ability to commit new investments. Market players in BRAIN-Energy also learn from their own 

unsuccessful past investments. After five years that a new plant started operations, market 
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players assess its profitability every year. If at any given year a plant’s cumulative profits over the 

previous five years defined as: 

∑ 𝑃𝐹𝑝,𝑡 = (𝑝𝑟𝑜𝑑𝑝,𝑡 ×  𝑝𝑡)

𝑛

𝑦=𝑡

−  𝑡𝑜𝑡𝐶𝑜𝑠𝑡𝑝,𝑡 

 

are lower than the 5-yearly share of the new plant’s total capital cost (
𝐶𝐴𝑃𝐸𝑋𝑝

𝑙𝑝
× 𝑛) then the new 

investment is flagged as unprofitable. 𝑙𝑝 is the lifetime of plant 𝑝,  𝑝𝑟𝑜𝑑𝑝,𝑡 is the electricity 

production of plant 𝑝 at year 𝑡,  𝑝𝑡 is the electricity price at year 𝑡, and 𝑡𝑜𝑡𝐶𝑜𝑠𝑡𝑝,𝑡 comprise 

variable and fixed production costs and yearly capital costs. If the number of years during which 

the new plant is unprofitable in a row is greater than the number of years a market player is 

willing to absorb losses for (Table 4), then it is shut down. A market player will not invest in the 

same technology until such technology becomes profitable again. At this point, if the 

technology’s NPV calculation is greater than zero, and if the ROI is equal or greater than the 

capital cost of the market player plus a threshold α which differs by type of market player, the 

market player will invest again in this technology. These thresholds have been calibrated based 

on the behaviours of the market players explained in Table 3. Threshold α can be between 1 ≤

 𝛼 ≤ 2. For more aggressive market players, such as new-entrants and independent power 

producers, α = 1. For institutional investors and incumbent utilities α = 1.5, while for municipal 

utilities α = 2, because such players take longer than others to switch off unprofitable plants, 

given that they are not only motivated by return considerations in their investment decisions 

(CPI, 2016). However, as they are also driven by political considerations in their investment 

decisions (CPI, 2016) they are more cautious when learning from unsuccessful past experiences, 

hence the higher value of α for them. 
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3.4.3 Imitation in investments 

In BRAIN-Energy investment choices are also influenced by the successful investments of 

other market players. Imitation has been introduced in BRAIN-Energy because it is a key aspect 

of sustainability transitions, which imitation can either delay or encourage (Gazheli et al., 2015). 

Imitation, brought about by peer effects and social interactions has been recognised as a key 

driver of technology adoption, especially solar PV, by several studies (Janssen and Jager, 2002; 

Bollinger and Gillingham, 2012; Graziano and Gillingham, 2015).  

In BRAIN-Energy households can only imitate other households. All other agents can 

imitate each other, excluding households. As market players in BRAIN-Energy have bounded-

rationality the only information which they have available about other players is the evolution of 

their market shares.  If a market player’s x market share 𝑀𝑆𝑥 is growing compared to the 

previous year, hence if 𝑀𝑆𝑥 ,𝑡+1 >  𝑀𝑆𝑥,𝑡, market player a chooses to imitate the market player 

x whose market share grew the most at year t+1. However, as market player a has bounded-

rationality and doesn’t have perfect information about which exact power plant or new 

investments led the market share of player x to grow, market player a decides to imitate the 

generation technology of player x with the highest expected ROI based on its own myopic 

expectations (or the shortest pay-back period for households) and which is an allowed 

technology given their technology preferences.  

 

 

4. Scenarios 

To illustrate the functioning of BRAIN-Energy and to capture key agent-focused elements 

of the evolution of the UK, German and Italian electricity sectors, four core scenarios (Figure 4) 

have been developed in each of the three country case studies. The aim of these scenarios is to 
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study how market players with heterogeneous characteristics as it is in the real world (and whose 

investments are path-dependent) impact the long-term decarbonisation scenarios of the UK, 

German and Italian electricity sectors and their emergent techno-economic properties, as 

opposed to an “idealised” world with homogeneous market players. By testing different 

regulatory frameworks, we aim to understand if different policy conditions are needed with 

homogeneous versus “real-world” heterogeneous market players (whose investments are path-

dependent) to achieve a successful transition. 

 

 

Figure 4 – Overview of scenarios  

 

Exogenous variables are the same in all four core scenarios, and are calibrated as explained 

in Table 2, while Table 5 summarises the overall parameters used in the scenarios. 

The four core scenarios differ according to two main variables: 1) characteristics of the 

market players, and 2) regulatory framework.  
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Characteristics of the market players refer to market players being homogeneous or 

heterogeneous, and to them taking or not path-dependent investment choices, and imitating or 

not other players. Introducing diverse market players and their heterogeneous behaviours is a 

key novelty of BRAIN-Energy (section 2.3). This has been done because depicting heterogeneous 

agents, as opposed to a single decision-maker as in conventional equilibrium and optimisation 

models, is key to study a complex phenomenon such as the electricity sector’s low-carbon 

transition (section 2.2). In Scenario 1 (UK1, GER1, IT1) and Scenario 3 market players have the 

same capital costs, foresight, expectations about future technology costs, expectations about 

variance in expected demand and they all close unprofitable plants down after the same amount 

of loss-making years. In contrast in Scenario 2 (UK2, GER2, IT2) and Scenario 4 (UK4, GER4, IT4) 

market players have heterogeneous technology preferences, capital costs, foresights, 

expectations about future technology and fuel costs and electricity demand, and they close 

unprofitable plants down after a different number of years. Table 5 gives the detailed differences 

in homogeneous versus heterogeneous characteristic between Scenario 1 and 3, and Scenarios 

2 and 4 respectively. Furthermore, investment choices in Scenario 2 and Scenario 4 are path-

dependent and affected by imitation, as explained in sub-chapters 3.4.2 and 3.4.3. Market 

players’ investment choices are not path-dependent (and not affected by imitation) in Scenarios 

1 and 3, because these scenarios represent a “stylised” world where all market players behave 

the same, and where investment decisions are taken according to strict economic rationality 

criteria, as it is in cost optimisation models (Mercure et al., 2016). Therefore, in these “stylised” 

scenarios market players’ investments are not affected by learning opportunities based on past 

investments. Moreover, as all market players have the same expectations of future costs (fuel 

and technology) and electricity demand, the success of new investments is the same in scenarios 

with homogeneous market players. Therefore, all market players would have the same learning 
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opportunities, and introducing path-dependency in these scenarios would just cause, for 

example, all gas plants to shut down at a certain point in time, leading to supply gaps. 

The regulatory framework refers to the scale of the government intervention in the 

electricity market and is treated as an exogenous variable in the four core scenarios. Examining 

the impact of heterogeneity under different policy conditions allows understanding of the scale 

of intervention needed to achieve a successful transition with heterogeneous market players. 

Scenario 1 and Scenario 2 are characterised by a strong regulatory framework, with a CO2 price, 

subsidies to renewables, which take the form of Contracts for Difference (CfD) in the UK and of 

feed-in-tariffs in Germany and Italy (FITs), and a capacity market. The capacity market is 

applicable in the UK model as it is one of the four pillars of the Electricity Market Reform (Grubb 

and Newbery, 2016), introduced in the UK in 2013, and in the Italian model starting from 2020 

(as the capacity market in Italy at present is not functioning yet, but has been approved by law). 

In contrast, German law doesn’t foresee a capacity market, hence there is no such mechanism in 

the German model. Section 3.3 provided detail about the functioning of CfDs, FITs, capacity 

market, the strength of the decarbonisation goals and the CO2 price in the three countries with 

further detail given in the online model documentation and in the Appendix. In Scenario 3 and 

Scenario 4 the regulatory framework is much weaker, and only characterised by the presence of 

a CO2 price. The regulatory framework is an exogenous variable in this paper in order to focus 

only on the impacts caused by the actions of homogeneous or heterogeneous market players. 
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 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

 UK1 GER1 IT1 UK2 GER2 IT2 UK3 GER3 IT3 UK4 GER4 IT4 

Exogenous variables Table 2 Table 2 Table 2 Table 2 

Regulatory framework 

 Subsidies 

 Capacity market 

 

CfDs 

Yes 

 

FITs 

No 

 

FITs 

Yes 

 

CfDs 

Yes 

 

FITs 

No 

 

FITs 

Yes 

 

N/a 

N/a 

 

N/a 

N/a 

Market players behaviours 

 Path-dependency 

 Imitation 

 Capital costs 

 

 

 

 Foresight 

 Expectations 

 Fuel costs 

 

 Electricity demand 

 

 Technology costs 

 

N/a 

N/a 

3.5% (social discount 

rate (H.M. Treasury, 

2011) 

 

10 years 

 

Table 2 

 

Table 2 

 

Table 2 

 

Yes 

Yes 

Table 4 

 

 

 

Table 4 

 

+/-20% compared to 

level in Table 2 

+/-15% compared to 

level in Table 2 

+/-25% compared to 

level in Table 2 

 

N/a 

N/a 

3.5% (social discount 

rate (H.M. Treasury, 

2011) 

 

10 years 

 

Table 2 

 

Table 2 

 

Table 2 

 

Yes 

Yes 

Table 4 

 

 

 

Table 4 

 

+/-20% compared to 

level in Table 2 

+/-15% compared to 

level in Table 2 

+/-25% compared to 

level in Table 2 

Table 5 - Characterisation of scenarios by agent heterogeneity and strength of the policy 
framework 

 

 

5. Results and discussion 

         Five outcome parameters have been chosen to highlight how market players with 

heterogeneous characteristics shape the decarbonisation of the electricity sector and the 

achievement of the energy policy trilemma. These are discussed in section 5.1:  

 To monitor affordability: (1) total capital investments, and (2) electricity price  

 To monitor progress towards decarbonisation goals: (3) share of electricity produced through 

renewables, and (4) evolution of the installed capacity mix 

 To monitor security of supply: (5) supply gaps (both peak and average) 

         Section 5.2 further discusses how the market shares of the market players evolve through 

the years from 2012 to 2050, highlighting which market players improve their market shares and 

which in contrast lose importance through the years.  
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5.1 Impacts of heterogeneous characteristics of the market players on the electricity sector 

transition 

5.1.1 Impacts on affordability 

In Scenarios 2 and 4 market players, with heterogeneous characteristics, impact 

aggregated investment levels in high carbon and renewable technologies. Aggregated capital 

investments between 2012 and 2050 are on average 15% higher in UK2 and UK4 scenarios 

compared to UK1 and UK3 scenarios (Figure 5). As capital investments in renewable technologies 

remain substantially unchanged in the UK model, the difference in aggregated investment levels 

is given by higher gas investment. These are on average 54% higher in scenarios UK1 and UK2, 

because of the capacity market, compared to UK3 and UK4, and reach GBP 70 bn in UK2 scenario.  

 

Figure 5 – Cumulative capital investments in UK, Germany and Italy 

 

Heterogeneity also leads to on average 55% higher aggregated investments between 2012 

and 2050 in German GER2 and GER4 compared to GER1 and GER3 scenarios (Figure 5), 

highlighting the strong impact that heterogeneity of behaviours has on the electricity sector 
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transition of a decentralised market as Germany. Such higher investment amounts in GER2 and 

GER4 scenarios where market players have heterogeneous behaviours are mainly driven by the 

fact that municipal utilities are not only motivated by risk-return considerations in their 

investment decisions. 

In contrast to the UK and German models, total investments decline by in average 13% in 

IT2 and IT4 scenarios compared to IT1 and IT3 scenarios (Figure 5), with cumulative investments 

in renewables being in average 22% lower. Aggregated investments decline with heterogeneous 

market players in the Italian model, because this version of BRAIN-Energy is characterised by a 

riskier investment environment where market players have higher costs of capital and return 

expectations compared to the other two countries (Diacore, 2015). 

An emergent property of BRAIN-Energy across the three country case studies is how 

heterogeneity and path-dependency leads to investment cycles (Figure 6), which mainly happen 

around gas technologies. Such investment cycles are a key element of market players’ 

heterogeneity, and mainly result from their short and myopic foresight, which can lead market 

players to make uneconomic investments, or to over- or under-invest. Investment cycles are 

intensified by market players’ path-dependency in investment choices, and can lead to 

unnecessary investments being committed, hence to higher capital costs of the low-carbon 

transition, and to supply-gaps, as uneconomic investments are successively closed down by 

market players. Investment cycles, therefore, affect both the cost dimension and the security of 

supply dimension of the transition.  
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Figure 6 - Investment cycles in gas technologies in scenarios with heterogeneous market 

players 

 

5.1.2 Impacts on progress towards decarbonisation goals 

Heterogeneity impacts the timing of the investments (Figure 5 and 7). The impact is 

stronger with lower government intervention in UK4 scenario versus UK3, where the absence of 

the capacity market leads to no nuclear investments to 2030, and the absence of CfDs to 

significantly lower investments in renewables to 2030. In UK3 58% of total investments are 

delivered by 2030, while only 22% in UK4 (Figure 7). At 2030, this leads to 28% of electricity being 

produced through renewable sources in UK3, while only 22% is produced though renewables in 

UK4 (Figure 8). 
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Figure 7 - Timing of investments and average yearly investments in GBP/EUR 

 

In GER3 59% of total investments are delivered by 2030, leading to a share of renewables 

in electricity production of 52%, while only 50% of total investment are committed by 2030 in 

GER4 scenario (Figure 7). In the Italian model IT2 and IT4 scenarios also lag behind IT1 and IT3 

scenarios in terms of investments committed by 2030 (Figure 7), and subsequently the share of 

electricity generated through renewables at 2030 (Figure 8) is significantly lower in IT3 and IT4 

scenarios. Therefore, heterogeneous characteristics impact the speed of the electricity sector’s 

low-carbon transition to 2030. 

Riskier investment environments also impact the successful achievement of the 

decarbonisation targets at 2050 as highlighted by the Italian case study. At 2050, neither IT2 nor 

IT4 reach at least an 80% share of electricity generated through renewables (Figure 8). In the UK 

scenarios with heterogeneous market players feature a surge in investments after 2030 (Figure 

7). In UK4 scenario aggregated renewable investments made after 2030 increase by up to 252% 

compared to investments made by 2030 to meet the 2050 decarbonisation targets, and reach an 

80% share of electricity produced through renewables (Figure 8). GER2 and GER4 scenarios with 
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heterogeneous market players receive substantially higher offshore wind investments after 2030 

(Figure 9) compared to before 2030, which leads these two scenarios to decarbonise faster after 

2030 compared to GER1 and GER3 scenarios. Therefore, both in the UK and German models 

heterogeneity leads to a back-loading as opposed to front-loading of investments. 

 

 

Figure 8 - Share of electricity produced through renewables 

 

 

 

Figure 9 - Timing and level (EUR) of offshore wind investments in Germany 
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The scenarios’ technology mix also varies according to market players having 

homogeneous or heterogeneous characteristics (Figure 10), and affects the evolution of the 

share of electricity produced through renewables. While PV benefits from market players being 

homogeneous in the German and Italian models, the more expensive offshore wind reaches a 

higher installed capacity at 2050 in Germany and Italy when market players have heterogeneous 

characteristics. This is linked to the market players’ heterogeneous expectations about the 

evolution of technology costs in the future, which lead some market players to expect offshore 

wind prices to be lower in the future and hence to a higher expected profitability for offshore 

wind plants. In scenario with heterogeneous expectations, imitation then helps the offshore 

wind diffusion process. Heterogeneity also leads to a successful reduction of the installed 

capacity of conventional technologies in Germany, while it leads to a growing installed capacity 

of gas in Italy. This is linked to the market players’ heterogeneous capital costs, and especially to 

the fact that capital costs are higher in Italy to reflect the riskier investment environment. These 

higher capital costs in scenarios IT2 and IT4, compared to the other two countries, incentivise 

gas investments and deter low-carbon investments. 
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Figure 10 - Installed capacity at 2030 and 2050 in UK, Germany and Italy 

 

5.1.3 Impacts on security of supply 

The security of supply dimension of the transition is measured by supply gaps which arise 

whenever the amount of electricity produced by the existing assets at any time-step is not 

sufficient to either cover yearly average or yearly peak demand (Figure 11). Results from the UK, 

German and Italian case studies showed how scenarios with heterogeneous market players are 

less secure in terms of electricity supply. Heterogeneity can lead to up to 26% more time during 

which yearly peak electricity demand is not met, and to up to 8% more time during which average 

yearly electricity demand is not met (Figure 11). The impact is particularly strong in Germany and 

Italy where no capacity mechanism is in place. The more frequent supply gaps lead to higher 

electricity prices in scenarios with heterogeneous market players (Figure 11). This is an emergent 

property of BRAIN-Energy across the three country case studies, and an instrument to attract 

more investments to close the supply-gaps. 
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Figure 11 - Supply gaps and electricity price 

 

5.2    Evolution of market players’ market shares  

The evolution of incumbent utilities’ market shares and the diversification of the electricity 

sector in terms of market players is an important metric from a political point of view. Results 

showed that the evolution of the aggregated market share of the different types of market 

players and what type of market players are strongest at 2050 depends on the interplay of the 

heterogeneous characteristics of the market players (including their heterogeneous technology 

preferences) with the prevailing country structure in the electricity market in terms of type of 

market players and regulatory framework. 

Figure 12 shows how the aggregated market share of incumbent utilities is affected by the 

heterogeneity of the market players’ characteristics. In the UK and German models incumbent 

utilities lose 60% of their aggregated market share in a weaker regulatory framework (scenarios 
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UK4 and GER4).  This is explained by the fact that newer market players can pursue more 

successful strategies, unless a capacity market helps incumbents maintain a high market share 

as in UK2 scenarios.  

 

 

Figure 12 – Evolution of market players’ aggregated market shares 

 

The German model shows how municipal utilities are the main market players at 2050 

when market players have heterogeneous characteristics (Figure 12), and how given their 

“relaxed” risk-return considerations in investment decisions they contribute to successfully 

meeting the 2050 decarbonisation targets especially when FITs are in place as in GER2 scenario. 

The growth of institutional investors’ market shares is also greater in scenarios where market 

players have heterogeneous characteristics both in the German and Italian case studies. 
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Figure 12 also shows how in a more risky country environment (where capital costs and 

return expectations are higher), such as Italy, incumbent utilities survive better and even grow 

their aggregated market share under a weak regulatory framework. In such cases a stronger 

government intervention is needed to help diversify the electricity market by allowing and 

incentivising entry of third-parties, which could help in delivering the necessary low-carbon 

investments, and could help breaking the lock-in of conventional generation technologies by 

incumbent utilities which otherwise could prevent the achievement of the 2050 decarbonisation 

goals as in IT3 and IT4 scenarios. 

 

 

6. Conclusions and policy implications 

This paper introduced an new agent-based electricity model (BRAIN-Energy) whose key 

innovations are the introduction of a greater diversity of types of market players and of their 

characteristics even within the same type of organisation, the introduction of financial sector 

actors, and a strong focus on the market players’ path-dependent investment strategies and 

imitation of other players’ successful strategies. 

Results from the three case studies in BRAIN-Energy showed that introducing market 

players with heterogeneous characteristics allows to better represent the risks that such real-

world agents put on decarbonisation progress, no matter if government policy is strong or weak. 

In the Italian model, scenarios with heterogeneous market players don’t achieve the 2050 

decarbonisation objectives, neither under strong nor weak government policy. Moreover, 

heterogeneity slows the transition down to 2030, requiring a surge in investments between 2030 

and 2050. Heterogeneity not only affects the decarbonisation dimension of the energy policy 

trilemma, but also the cost dimension. In fact, scenarios with heterogeneous market players have 



40 
 

different cost requirements, which are higher in the case of UK and Germany. Higher capital 

requirements are often brought about by investment cycles caused by myopic foresight and 

strengthened by path-dependency. While path-dependency in investment choices intensifies 

investment cycles, results showed how imitation can help the diffusion of offshore wind projects. 

Heterogeneity also impacts the transition’s security of supply. Inertia in market players’ 

responses, due to path-dependent investment choices or different future expectations about 

costs and prices, throw up (severe) supply gaps.  

The German case study also showed how in a country where there is a greater variety in 

the number of market players and their heterogeneous characteristics, heterogeneity has an 

even stronger influence on overall investment levels and supply-gaps. 

The analysis of the evolution of the market players’ market shares illustrated how 

heterogeneity of market players’ strategies can lead to more radical changes in which types of 

organisations supply electricity and especially to a growth of non-incumbent players, such as 

municipalities and institutional investors. Incumbents remain harder to shift in riskier and more 

expensive investment environments, and when a capacity market is in place. However, the lower 

diversification in terms of market players could compromise the achievement of the 2050 

decarbonisation goals, showing the importance of reaching a diversified investors base and of 

encouraging financing niches (Bolton and Foxon, 2014; Blyth et al., 2015) for a successful energy 

transition. 

BRAIN-Energy also tried to address weaknesses of ABMs as regards to modelling power 

system operations by introducing a declining “contribution to peak” for each new renewable 

power plant to account for the intermittency of renewable source as explained in section 3.3. To 

further strengthen the operational side of BRAIN-Energy, future developments will include a 

demand response module (via an aggregator agent) to improve the ability of electricity systems 
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to meet peak and average demands. Future developments will also include the addition of local 

agents (such as local energy companies) in the UK version of BRAIN-Energy to acknowledge the 

growth of these actors and the growing diversification of the UK market. 

This paper showed how critical it is to depict diverse market players with heterogeneous 

characteristics in energy models because of the impacts on key aspects of future decarbonisation 

pathways, such as achievement of the 2050 decarbonisation targets, robustness of supply and 

cost effectiveness. Assuming perfectly rational and utility-maximising market players in energy 

system models, and neglecting attention to their adaptive behaviours, characterised by aspects 

such as path-dependency and imitation, could lead to poor and ineffective policy design for 

energy transitions. Hence, findings presented in this paper strengthen the importance of 

improving realistic decision making processes in energy system models, by using tools such as 

ABMs. These models are able to deal with the complexities which diverse market players with 

heterogeneous characteristics and their interactions introduce in the energy transition. This 

would help to inform effective policies, able to successfully stimulate low-carbon investments 

towards the level required to ensure a climate-effective capital allocation, helping governments 

to address crucial international policy issues and priorities such as reducing GHG emissions and 

mitigating climate change, while making the energy system robust and affordable.  
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Appendix 
 
 
Electricity demand: 
 
UK                                                                          

 
Germany 

 
 
Italy 

 
Sources: see sources in Table 2 
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Peak factor: 
 
 
 
 
 
 

Source: see sources in Table 2 (same sources as for electricity demand) 
 

 
Installed capacity at 2012 in UK: 

 
 
 
 
 
 
 
 
 
 
 
 

 Source: BEIS (2016b) 
 
 
 
Installed capacity at 2012 in Germany: 

 
 
 
 
 
 
 
 
 
 
 
 
 

Source: Bundesnetzagentur Kraftwerkliste, 20189 
 
  
 

                                                           
9 https://www.bundesnetzagentur.de/.../Kraftwerksliste/Kraftwerksliste_2018_1.xlsx?__ 

 % of yearly average day 
demand 

UK 125% 
Germany 130% 
Italy 150% 

Technology GW 

Gas CCGT 35 
Coal 30 
Nuclear 9 
Onshore wind 6 
Offshore wind 3 
PV 2 
Hydro 4 
Biomass 3 
Peaking plants 
(e.g. oil) 

2 

Technology GW 

Gas CCGT 29.5 
Lignite 22 
Hard coal 25 
Nuclear 12 
Onshore wind 31 
Offshore wind 0.6 
PV 33.5 
Hydro 14.5 
Biomass 6 
Peaking plants 
(e.g. oil) 

4 
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Installed capacity at 2012 in Italy: 
 
 
 
 
 

 
 
 
 
 

Source: Terna (2012) 
 
 
 

Capital costs of technologies in EUR/kW: 
 

Technology 2012 2015 2020 2025 2030 2035 2040 2045 2050 

Gas CCGT 400 400 400 400 400 400 400 400 400 
Coal 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 
Nuclear 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 
Onshore 
wind 

1,300 1,269 1,240 1,210 1,182 1,154 1,127 1,101 1,075 

Offshore 
wind 

3,000 2,868 2,742 2,621 2,506 2,396 2,290 2,189 2,093 

PV 1,560 950 750 675 600 555 472 448 425 
Biomass 2,500 2,424 2,350 2,278 2,209 2,141 2,076 2,013 1,951 
Peaking 
plants (e.g. 
oil) 

400 400 400 400 400 400 400 400 400 

Source: DIW (2013) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Technology GW 

Gas CCGT 63.8 
Coal 8.5 
Onshore wind 8.1 
PV 16.6 
Hydro 22.2 
Biomass 3.8 
Peaking plants 
(e.g. oil) 

9 
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Technical power plant data: 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Source: DIW (2013), BEIS (2016a), RSE Colloquia (2017) 
 
 
 
CO2 price in the UK model 

 
Source: BEIS (2016) 
 
 
 
 
 
 
 
 
 
 
 
 

Technology Average load 
factor UK and 
GER 

Average 
load 
factor 
Italy 

Lifetime Emission 
intensity 
(gCO2/kWh) 

Gas CCGT 93% 93% 25 years 365 
Coal 90% 90% 30 years 907 
Nuclear 90% N/a 60 years  
Onshore wind 32% 30% 24 years  
Offshore wind 43% 42% 23 years  
PV 11% 16% 25 years  
Hydro 40% 40% 35 years  
Biomass 84% 84% 25 years  
Peaking plants 
(e.g. oil) 

22% 22% 25 years  
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CO2 price in the German and Italian model 
 

 
Source:  EEX Exchange and Prognos (214) 
 
 
 
 
 
FIT values in Germany 

 

 

 

 

Source: EEG 2017 (https://www.gesetze-im-internet.de/eeg_2014/BJNR106610014.html) 

 

FIT values in Italy 

 
 
 
 
 

Source: Legislative Decree 6 July 2012 
(https://www.mise.gov.it/images/stories/normativa/DM_6_luglio_2012_sf.pdf)  
 
 
 

 
 
 
 

Technology EUR/MWh 

Onshore wind 
Offshore wind 
PV 
Biomass 

65.2 
96.5 
108.1 
95.2 

Technology EUR/MWh 

Onshore wind 
Offshore wind 
Biomass 

127 
165 
122 

https://www.gesetze-im-internet.de/eeg_2014/BJNR106610014.html
https://www.mise.gov.it/images/stories/normativa/DM_6_luglio_2012_sf.pdf

