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Linear combination of atomic orbitals model for deterministically placed acceptor arrays in silicon
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We develop a tight-binding model based on linear combination of atomic orbitals (LCAO) methods to describe
the electronic structure of arrays of acceptors, where the underlying basis states are derived from an effective-
mass-theory solution for a single acceptor in either the spherical approximation or the cubic model. Our model
allows for arbitrarily strong spin-orbit coupling in the valence band of the semiconductor. We have studied pairs
and dimerized linear chains of acceptors in silicon in the “independent-hole” approximation, and investigated
the conditions for the existence of topological edge states in the chains. For the finite chain we find a complex
interplay between electrostatic effects and the dimerization, with the long-range Coulomb attraction of the hole
to the acceptors splitting off states localized at the end acceptors from the rest of the chain. A further pair of states
then splits off from each band, to form a pair localized on the next-to-end acceptors, for one sense of the bond
alternation and merges into the bulk bands for the other sense of the alternation. We confirm the topologically
nontrivial nature of these next-to-end localized states by calculating the Zak phase. We argue that for the more
physically accessible case of one hole per acceptor these long-range electrostatic effects will be screened out;
we show this by treating a simple phenomenologically screened model in which electrostatic contributions from
beyond the nearest neighbors of acceptor each pair are removed. Topological states are now found on the end
acceptors of the chains. In some cases the termination of the chain required to produce topological states is not the
one expected on the basis of simple geometry (short versus long bonds); we argue this is because of a nonmono-
tonic relationship between the bond length and the effective Hamiltonian matrix elements between the acceptors.
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I. INTRODUCTION

Recently defects in semiconductors have aroused increas-
ing interest owing to their applications in quantum simulation,
quantum computation, and Terahertz radiation [1]. Donors are
well understood and the exchange interaction of a pair of
donors was studied within the Heitler-London approximation
several decades ago [2,3]. However, donors in indirect-gap
systems suffer from the disadvantage that the oscillation of
spin-spin interactions is large and not controllable, owing
to the unavoidable interference between the conduction-band
valleys of the host. Recently acceptors in tetrahedral semi-
conductors have attracted renewed attention, because of the
absence of such multiband interference in the valence band;
this will lead to monotonic exchange and hopping interactions
that are easier to control. However, owing to the p-orbital
characters of the valence band, the spin-orbit interactions need
to be taken into account from the outset.

Previously the electronic structures of a single acceptor in
common semiconductors have been studied both theoretically
and experimentally. Baldereschi and Lipari introduced the
so-called “spherical model” [4,5], based on the effective-mass
theory and including the cubic contributions either through
perturbation theory [6] or in an exact form [7]. These cal-
culations gave reasonably accurate predictions of the accep-
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tor ionization and excitation energies. Recently, Durst et al.
computed the electronic structure and exchange interaction
between two acceptors by adopting the spherical model and
the Heitler-London approximation [8]. They also investigated
the interaction between acceptor pairs in the extreme long-
range limit, where hopping of electrons is no longer relevant,
again using the spherical model [9]; they argue that in this
limit the interactions are dominated by electric quadrupole
moments. On the other hand, experimental measurements of
the optical transitions and spectra of acceptors in silicon have
been performed [10]; the coherence time of the excited state of
acceptors in silicon has also been measured, showing promise
for optically controlled p-n devices [11]. The transport prop-
erties of boron in silicon, such as the conductivity and magne-
toresistance, have also been studied previously [12]. Recently,
the readout and control of the spin-orbit state of two cou-
pled acceptors in silicon was demonstrated experimentally,
opening up another route to quantum computing and quan-
tum information in silicon [13–17]. Acceptor pairs in silicon
have also been used for simulations of fermionic strongly
correlated many-body systems [18], and this is particularly
interesting in the context of the emerging field of determin-
istic doping [19]. Although the surface chemistry needed for
deterministic implantation of more complex structures has not
yet been developed, it is timely to investigate the potential
structures that could be produced, and the potential role of
the spin-orbit interaction in their electronic properties.

Here we report a systematic study of ordered acceptor
arrays in tetrahedral semiconductors by using a combination
of a linear combination of atomic orbitals (LCAO) model
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and quantum chemistry calculations. We first computed the
electronic structure of the single acceptor in silicon by using
spherical and cubic models; our results confirm the significant
improvement due to the inclusion of the cubic term, thus
benchmarking the previous work. Based on these single-
acceptor calculations, we have selected an appropriate basis
set of single-acceptor electronic states and performed calcu-
lations on acceptor pairs and linear chains by using a linear
combination of atomic orbitals (LCAO) approach within an
independent-hole model. Our results suggest an interesting
interplay between electrostatic effects and topological edge
state in finite chains. The following discussion falls into three
sections. In Sec. II, we will introduce the spherical model and
the cubic model, and use them to develop our LCAO model
for acceptor arrays. In Sec. III, we will show our calculation
results. At the end, we will draw some general conclusions.

II. COMPUTATIONAL DETAILS

A. Single-acceptor problem

1. Spherical model

Within effective mass theory [4], the Hamiltonian for an
isolated acceptor contains spherical and nonspherical (cubic)
parts. In many cases (although not in silicon), we can neglect
the cubic terms and obtain the so-called spherical model [5],
which can be significantly simplified by using rotational sym-
metry. In this paper, we take the general form of the spherical
model (valid for arbitrary spin-orbit coupling) as follows:

Ĥs = p2

h̄2 − 2

r
− μ

3h̄2 (P(2) • I (2) ) + 2

3
�

(
1

2
− �I • �S

)
, (1)

where p is the hole linear momentum operator, μ is the
strength of the spherically symmetric heavy-hole light-hole
coupling, and � is the spin-orbit coupling. The tensor oper-
ators P(2) and I (2) are as defined in previous studies of accep-
tors [5]: Pik = 3pi pk − δik p2 contains the hole (linear) mo-
menta, while Iik = 3

2 (IiIk + IkIl ) − δikI2 is built from the an-
gular momentum operators Ii of a spin-1 object (correspond-
ing to the intrinsic orbital angular momentum of the p orbitals
comprising the valence band). �I is the corresponding vector
of spin-1 angular momentum operators, while �S is the vector
of spin- 1

2 spin operators of the hole. In this model, we use the

effective Rydberg R0 = e4m0

2h̄2ε2
0 γ1

and the effective Bohr radius

a0 = h̄2ε2
0 γ1

e4m0
as units of energy and length, respectively [5],

where ε0 and m0 are the crystal dielectric constant and the free
electron mass, respectively, and γ1 is the parameter proposed
by Luttinger for the description of the hole dispersion relation
near the center of the Brillouin zone [4]. For silicon, where the
effective Rydberg R0 = 24.8 meV and a0 = 2.55 nm, we have
the strength of the spherical term μ = 0.483, and the valence
band spin-orbit splitting � = 1.774R0. We note that the model
is set up to describe electrons in the valence band, so the
ground state for holes will appear at the top of the spectrum
(i.e., with the largest positive eigenvalue). For convenience,
we still use the common description to describe the energy
states, for example, the lowest state is the ground state.

The eigenstates of Eq. (1) have well-defined values of the
total angular momentum �F = �L + �I + �S = �L + �J , where �L

is the orbital angular momentum of the envelope function
and �J = �I + �S is the total intrinsic angular momentum of
a valence-band electron. Hence, they are characterized by
quantum numbers F and mF . The spherical states used in
the calculation are shown in Appendix A. The heavy-hole
light-hole mixing couples terms with �L = 0,±2; its matrix
elements can be obtained using the result below,

〈L′, J ′, F, mF |P(2) • I (2)|L, J, F, mF 〉

= (−1)L+J ′+F

{
F J ′ L′
2 L J

}
(L′‖P(2)‖L)(J ′‖I (2)‖J ), (2)

where the term with {} is the 6-j symbol, and (J ′‖I (2)‖J ) can
be obtained by the formula,

(J ′‖I (2)‖J ) = (−1)J+ 7
2

√
(2J + 1)(2J ′ + 1)

{
1 J ′ 1

2
J 1 2

}

•(I ′‖I (2)‖I ). (3)

Using these results, we find the differential equations satisfied
by the radial parts of the wave functions. We then obtain the
single-acceptor eigenstates and eigenenergies, which can be
used as a basis for the further calculation of acceptor arrays in
Secs. II B and II C.

2. Cubic model

The cubic model takes the form,

Ĥc = Ĥs + δ

3h̄2

([
P(2) × I (2)](4)

4 +
√

70

5

[
P(2) × I (2)](4)

0

+ [
P(2) × I (2)](4)

−4

)
, (4)

where δ is the strength of the cubic term [6] (δ = 0.249 for Si).
Here we still use the effective Rydberg R0 and the effective
Bohr radius a0 as units of energy and length, respectively [5],
and [A × B](l )

m denotes component m of the part of the spheri-
cal tensor product A × B having rank l .

The cubic term couples states with �mF = 0,±4 [6], so
the eigenstates are now labeled by irreducible representations
of the cubic double group rather than by values of F . There
are six fermionic representations, �±

6 , �±
7 , �±

8 ; states with
these symmetries can be obtained by taking suitable linear
combinations of states with spherical symmetry. We use an
underlying basis of Gaussian orbitals of spherical symmetry
up to a maximum of L = 3 and F = 9/2 (which we label as F9

2

states, corresponding to the usual notation in atomic physics).
We compute the matrix elements of the cubic terms in this
basis of spherically symmetric states, using

〈L′, J ′, F ′, m′
F |[P(2) × I (2)](4)

m |L, J, F, mF 〉

= 3 ∗ (−1)F ′−m′
F
√

(2F + 1)(2F ′ + 1)

(
F ′ 4 F

−m′
F m mF

)

•
⎧⎨
⎩

J ′ J 2
L′ L 2
F ′ F 4

⎫⎬
⎭(L′‖P(2)‖L)(J ′‖I (2)‖J ), (5)

where the term with () is the 3- j symbol, and the term with
{} is the 9- j symbol. Then we can transform these matrix
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elements into a set of basis functions belonging to the irre-
ducible representations of the cubic double group. The eigen-
functions of the Hamiltonian (4) can be solved by expanding
the cubic states in terms of Gaussian functions [6]. The
resulting cubic states are then used as the basis for the dimer
and chain models.

B. A pair of acceptors and the one-hole model

For the case of a pair of acceptors, a calculation for a
fully interacting two-hole model has recently been reported
in the Heitler-London limit [8], but it is challenging to extend
this approach to systems with more than two acceptors. We
therefore introduce an independent-hole model to simplify
the calculation, where we initially assume that there is only
one hole in the acceptor pair. The single-hole system can be
written as A−

2 , where A stands for the acceptor (compare the
H+

2 molecule, which contains a single electron). In this case,
the Hamiltonian is

Ĥpair
s,c = ĤA

s,c − 2

rB
= ĤB

s,c − 2

rA
, (6)

where HA and HB are the Hamiltonians of a single acceptor
A and a single acceptor B (which may be written either in
the spherical approximation or including cubic terms). Then
we can easily obtain an expression for the off-diagonal matrix
element (or transition strength),

〈φA|Ĥpair|φB〉 = 1

2
(EA + EB)〈φA|φB〉 − 〈φA| 1

rA
|φB〉

− 〈φA| 1

rB
|φB〉, (7)

〈φ′
A|Ĥpair|φA〉 = 〈φ′

A|HA − 2

rB
|φA〉

= EA〈φ′
A|φA〉 − 〈φ′

A| 2

rB
|φA〉, (8)

where EA and EB are the single-acceptor energy states.
Using Eqs. (7) and (8), we can obtain the transition strength

between any single-acceptor states on any sites. The single-
hole energies can then be found by solving a generalized
eigenvalue problem provided we can compute the overlap
〈φA|φB〉 and the potential term 〈φA| 1

ri
|φB〉. We follow the

methods in the previous paper [20] to find the corresponding
matrix elements using the Gaussian expansion of the single-
acceptor states; Ref. [20] gives the result for states up to P
orbitals, while the results for higher angular momenta can be
obtained by taking further derivatives along the different axis.

This approach becomes exact as (i) the number of single-
acceptor states used and (ii) the number of Gaussian functions
used to represent each one both tend to infinity. Since we
are interested in the lowest-lying states in silicon, we use
only the lowest four single-acceptor states (1S 3

2
, 2S 3

2
, 2P3

2
,

2P5
2

for the spherical case and 1�+
8 , 2�+

8 , 1�+
6 , 1�−

8 for the
cubic case) in our basis, as the others are far away from them
in energy. For the spherical case the different total angular
momenta are mixed in the array but the projection mF , for
which the quantization axis is chosen along the inter-acceptor
axis, remains a good quantum number. For the cubic case,
with a general axis direction states of all symmetries are

FIG. 1. (a) Schematic of the 10-acceptor finite chain. (b) The unit
cell of the infinite chain; atoms b and c are in the same cell. The
letters a, b, c, d, and e label the acceptors. We refer to d1 < d2 as the
“short-long” case, and d1 > d2 as the “long-short” case.

mixed; however, time-reversal symmetry guarantees the states
still appear in Kramers doublets, which can be thought of
as derived from the mF = ± 1

2 and mF = ± 3
2 pairs in the

spherical case.

C. Linear acceptor-chain and LCAO model

1. Finite chain

From the one-hole model in Sec. II B, we can develop
a similar linear combination of single-acceptor states to de-
scribe a finite linear chain of acceptors by similarly adding
the potential terms from neighboring dopants (Vpotential) into
the single-acceptor Hamiltonian,

Ĥ chain
s,c = ĤA

s,c − 2

rB
+ V̂potential = ĤB

s,c − 2

rA
+ V̂potential. (9)

The details for the transition matrix element are shown in
Appendix B. However, the basis states on different acceptors
are not orthogonal and hence the overlap matrix S must be
included in the construction of the LCAO model. This requires
that all the eigenvalues of the overlap matrix must be posi-
tive, in order to obtain a well-defined generalized eigenvalue
problem. Approximations to the overlap matrix, for example,
truncating it after a finite number of neighbors, may destroy
the positive definiteness of S and make it impossible to solve
the eigenvalue problem. This is a problem particularly for
small separations, as we will show in Sec. III C 1. To minimize
this problem, we include in the calculation the influence of
the next nearest neighbor by considering the matrix elements
between each acceptor and its next nearest neighbor in both
the transition matrix and the overlap matrix.

For definiteness we focus on the 10-acceptor finite chain
shown in Fig. 1(a), where we label the first five acceptors
from one end by a, b, c, d, and e. We assume that the
separations appear periodically as shown in Fig. 1(a), so the
chain possesses a dimerization that can be varied by changing
the separations d1 and d2.

2. Short-range model

We refer to the single-hole model including interactions
with the next nearest neighbors as the “long-range” model.
This is expected to be a good model for a single hole bound to
an array of acceptors and in this case the long-range Coulomb
interactions have an important effect on the physics (as shown
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in Sec. III C 1). However, we may also wish to understand
the behavior of clusters which are at or close to charge neu-
trality and hence contain many holes (for example, one hole
per acceptor), but the motion of the holes is approximately
independent of each other. In that case we expect that the
motion of the other holes will effectively screen out these
long-range interactions, so we adopt as our approximation
to this charge-neutral case a “short-range” model where the
effect of the Coulomb potential term in Eq. (9) is removed.

3. Infinite chain

From the one-hole model in Sec. II B, we can also generate
an LCAO model to describe the linear infinite acceptor chain
in the similar way. The general form of the Hamiltonian has
the same form as for the finite chain [Eq. (9)]. We assume
each unit cell contains two acceptors as shown in Fig. 1(b).
The inter-cell separation is taken as d1, and the intra-cell
separation is d2. Since the system is periodic its eigenstates
are labeled by a Bloch wave vector k, which we define so that
the phase factor of the transition from left to right is eik , and
that from right to left is e−ik .

D. Zak phase

An indication of whether a given state in the finite chain
system has a topological origin can be obtained by calculating
the Zak phase for the corresponding infinite chain. For a one-
dimensional system, this quantity was defined in the previous
paper [21,22] as

Z = i
∫

firstBZ
dk〈uk|∂kuk〉, (10)

where uk is the eigenvector of the Bloch Hamiltonian at wave
vector k. When the Zak phase is 0 modulo 2π , we expect
the system to be topologically trivial and the corresponding
finite chain to have no topological edge state, whereas when
the Zak phase is ±π , the system is topologically nontrivial
and the corresponding finite chain supports topological edge
states. As it is the integration of the Berry connection over the
first Brillouin zone, the Zak phase is invariant (modulo 2π )
under gauge transformations of the form |uk〉 → eiβk |uk〉 [23].

For a generalized eigenvalue problem, the formula for the
Zak phase becomes

Z = i
∫

firstBZ
dk〈uk|S(k)|∂kuk〉, (11)

where S(k) is the overlap matrix. As previously, Eq. (11) is
invariable under unitary transformations. The correctness of
Eq. (11) will be shown later in Sec. III C 2.

Here we should point out that in our calculations the
implied position of the chain end is always at the center of
the unit cell. Hence, different choices of the unit cell for the
calculation of the Zak phase correspond to different termina-
tions of the finite chain—even although these different unit
cells describe the same infinite system. So the Zak phase for
a particular choice of unit cell actually reflects the properties
of the corresponding finite chain as well as the infinite chain,
which means the results can be different if we cut the infinite
chain in different places.

TABLE I. The lowest four single-acceptor eigenenergies ob-
tained from the Gaussian expansion for Si; the energy unit is the
effective Rydberg R0.

Spherical state Spherical result Cubic state Cubic result

1S 3
2

1.356041 1�+
8 1.868314

2P3
2

0.456253 1�+
6 0.930278

2S 3
2

0.360829 1�−
8 0.717426

2P5
2

0.314359 2�+
8 0.538586

III. RESULTS AND DISCUSSION

A. Single-acceptor problem

The single-acceptor problem can be solved by expanding
the wave function of the eigenstates in terms of Gaussian
functions [5,6]. We use the lowest four states as a basis for
further calculations of the pair and the acceptor chain; their
energies in the spherical and cubic cases are shown in Table I.
We note that the states in the cubic case are systematically
more strongly bound than those in the spherical case, and we
expect they will have correspondingly shorter decay lengths.
This is supported by Fig. 2, which shows the behavior of
the ground-state wave function for the spherical case with
mF = 1

2 and for the cubic case in the [001] direction; the more
rapid decay in the cubic case is apparent.

We also show the behavior of the eigenstates in the spher-
ical and cubic cases as the spin-orbit coupling � changes,
for fixed μ and δ (μ = 0.483, δ = 0.249), in Fig. 3. As
� → 0, �F = �L + �I + �S is not the only conserved quantity;
instead, �S and �L + �I are separately conserved. So, the 1S 3

2

and 1S 1
2

states converge to the 1S1 state of the orbital-only

model (where the suffix now refers to the value of �L + �I);
similarly 2S 3

2
converges to the 2S1 state, 2P1

2
and 2P3

2
will

converge to the 2P1 state, and 2P5
2

will converge to the 2P2

state; the 1S1, 2S1, 2P1, and 2P2 states were discussed for weak
spin-orbit coupling in the early paper [5]. Similarly, in the

FIG. 2. The behavior of the ground-state wave function for an
acceptor in Si, in the spherical case with mF = 1

2 (solid line) and the
cubic case in the [001] direction (dash line).
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(a) (b)

FIG. 3. The behavior of the single-acceptor eigenenergies as a function of � with μ = 0.483 and δ = 0.249 (the values in Si): (a) the
energy spectra for the spherical case, (b) the energy spectra for the cubic case. Note that some states of other symmetries are not shown, and
� = 1.774R0 for silicon.

cubic case without spin-orbit coupling, the symmetries reduce
to �±

n ⊗ �+
6 (where �±

n denotes the symmetry of the orbital
part, including the envelope function and the orbital angular
momentum of the atomic p states, and �+

6 is the symmetry of
a single spin-1/2).

B. A pair of acceptors with one hole

The behaviors of the eigenenergies for the spherical and
cubic cases are shown as a function of acceptor separation
r in Fig. 4. The closely related case of the H+

2 molecule is
discussed in Appendix C (and shown in Fig. 8). The states all
converge to one of the lowest four states of a single acceptor
as r → ∞, and can roughly be understood as either bonding
or antibonding combinations of the single-acceptor states;
however, for the cubic cases this is complicated by crossings
of the states. The splittings between the states set in at smaller
values of r for the cubic case compared to the others.

C. Linear acceptor chain

1. Finite chain

As our LCAO model does not contain the influence of all
the acceptors in the chain, the overlap matrix S is not guar-
anteed to be positive definite. For example, the behavior of
the eigenvalues of the overlap matrix for a 10-acceptor finite
chain in the spherical model (truncated at the next-nearest-
neighbor) when mF = 1

2 as a function of the acceptor separa-
tion d2 when d1 = 4a0 is shown in Fig. 9 in Appendix D. It
can be seen that, even with the influence of the next-nearest
neighbor included, S ceases to be positive definite for separa-
tions d2 < 6a0. The next-next nearest term and the following
terms are small compared to the next-nearest-neighbor ones,
so adding them only improves the description of the system
a little but significantly increases the cost of the calculation.
Therefore, we only include the next-nearest-neighbor terms
in our model, and restrict our calculations so we do not enter
the parameter regions where the corresponding S matrix is not
positive definite. For the spherical case we require that one of
the separations is larger than 4a0 and the other is no smaller
than 6a0; for the cubic case (where the basis states are more

localized) we require that one of the separations is larger than
2a0 and the other is no smaller than 4a0. From now on, we
refer to the case d1 < d2 as the short-long arrangement, to
d1 = d2 as the uniform chain, and to d1 > d2 as the long-short
arrangement.

First, we fix the sum d1 + d2 to a constant, choosing the
values 10a0 for the spherical model, 6a0 for the cubic model
in the [001] direction, and 7.5a0 for the cubic model in the
[110] and [111] directions (this is because the overlap matrix
for the infinite chain is not positive definite in the [110]
and [111] directions under the condition d1 + d2 = 6a0—see
Sec. III C 2). The behavior of the lowest few energy states as
a function of d1 under this condition is shown in Fig. 5; we
show the lowest 20 energy states for the spherical case, and
the lowest 32 states for the cubic case. It can be seen that the
eigenstates are arranged in groups that correspond to the bands
in the infinite-chain model (see below). For the spherical case
in Fig. 5(a), the bulk states with mF = 1/2 are shown in solid
black lines and those with mF = 3/2 in solid gray lines, while
pairs of states shown in dashed lines split off from these main
bands. In each case a nearly degenerate pair (dashed line) lies
in the gap between main bands on one side of the diagram, and
converges into two different bands on the other side. These
states in dashed lines are each topologically nontrivial on one
side of the diagram. There are also other states that always lie
below the main bands (the dash-dot lines). We find that the
dash-dot lines below the main band are localized at the end
of the chain, and the dashed lines between the main bands are
localized on the acceptors next to the end of the chain. (The
dash-dot lines are not shown for the cubic cases—we explain
the reason below.)

Now let us investigate the electrostatic origin of the edge
states below the main band. These states are introduced into
our system because of the parabolic potential arising from the
long-range interactions between the charges. This potential
rises at the ends of the chain, reflecting the different envi-
ronments of the acceptors in the middle and at the ends of
the chain, so when we add a hole to either of the highest two
states among them, they will be localized at the ends. We can
check the influence of the parabolic potential by comparing
the results for the short-range model, where the long-range
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(a) (b)

(c) (d)

FIG. 4. Eigenenergies for a pair of acceptors with one hole as a function of separation r for (a) the spherical case, and for the cubic case
in (b) the [001] direction, (c) the [110] direction, and (d) the [111] direction. In (a), the states with mF = 3/2 (mF = 1/2) are the dashed lines
(solid lines).

Coulomb interactions are absent. Without the long-range po-
tential, the system is less localized than the original one, so
we can only have d1 + d2 = 14a0 while retaining a positive
definite overlap matrix. The behavior of the lowest 20 energy
states as a function of d1 under this condition is shown in
Fig. 5(b). We see that the dash-dot lines below the main band
disappear (this is also true for the short-range model in the
cubic case, not shown). Since these edge states arise purely
from electrostatic effects they are trivial (i.e., nontopological)
states, and we do not show them in the graphs for the cubic
cases.

Comparing Figs. 5(a) and 5(b), we also see that the behav-
ior of the dashed line edge states associated with the mF =
1/2 (solid black line) bands in the spherical model reverses:
For the long-range model [Fig. 5(a)] the states lie in the band
gap for the short-long arrangement but join the bands in the
long-short case, while the reverse is true in the short-range
model [Fig. 5(b)]. This is because the long-range electrostatic
interactions effectively pull the end acceptors away from the
bulk bands, transforming a chain ending with a long bond into
one ending with a short bond and vice versa. This is also
reflected in the different numbers of (solid black line) band
states with mF = 1/2 in the two cases.

We can also see that the behavior of the dashed line edge
states associated with the mF = 3/2 (solid gray line) bands in
the spherical model does not reverse between the long-range
and short-range cases, even though the number of states in
each band changes just as for mF = 1/2 as the electrostatic
edge state is pushed back into the band. As we show in
Sec. III C 2, this is a consequence of an anomalous variation
of the effective transition amplitude with distance in the
particular geometry considered; it is related to an anomalous
behavior of the topological Zak phase that is discussed in
Sec. III C 2.

The calculations for the cubic cases [Figs. 5(c)–5(e)] are
performed in the long-range model, and the behavior of the
edge states (dashed line) is similar to the long-range spherical
model. For the [001] and [111] directions, the mF = ±3/2 and
mF = ±1/2 bands of the spherical model evolve into states
which retain different symmetries in the cubic environment; a
dashed line can therefore cross all the states in a band having
a different symmetry from its own. In the [110] direction, on
the other hand, there is just one irreducible representation that
is even under exchange of the acceptors and one that is odd,
so a given dashed line will anticross (with states of the same
symmetry) or cross (with states of the opposite symmetry)
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(a) (b)

(c) (d)

(e)

FIG. 5. The lowest few energy states for the finite chain as a function of d1 when d1 + d2 is held constant. (a) The lowest 20 energy states
for the spherical case when d1 + d2 = 10a0. (b) The lowest 20 energy states for the spherical case in the short-range model without long-range
potential when d1 + d2 = 14a0. (c) The lowest 32 states for the cubic case in the [001] direction when d1 + d2 = 6a0. (d) The lowest 32 energy
states for the cubic case in the [110] direction when d1 + d2 = 7.5a0. (e) The lowest 32 energy states for the cubic case in the [111] direction
when d1 + d2 = 7.5a0. The dashed lines are the states splitting from the main bands and lying between them. For the spherical case shown in
(a), the dash-dot lines are the states that split from the main bands and lie below them; the solid black lines show states in the main bands for
mF = 1

2 , the solid gray lines are the main bands for mF = 3
2 . The same style coding was also done for (b).

alternately as it passes through a band; we nevertheless make
the dashed line continuously as if it crossed all the other states
[the anticrossings are hardly visible on the scale of Fig. 5(d)].
The relevant symmetries are shown in Table II.

2. Infinite chain

For the infinite chain, exchanging the value of d1 and
d2 makes no difference on the system. So we only need to
consider the short-long arrangement (d1 � d2) when d1 + d2
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TABLE II. The symmetry for the ground state under the cubic
model.

System Group Symmetry

Single acceptor Oh �+
8

Pair/Chain ([001] direction) D4h �±
6 , �±

7

Pair/Chain ([110] direction) D2h �±
5

Pair/Chain ([111] direction) D3d �±
4 , �±

5 , �±
6

is held constant. The band structures under different arrange-
ments for the two spherical cases (long range and short range)
and for the the cubic case in different directions when d1 + d2

is fixed are shown in Fig. 10 in Appendix E. We also show
the detail of the lowest four energy bands (those at the top
of the graphs in Fig. 10) in Fig. 6. There are gaps between
the bands of states when d1 �= d2, but these gaps close when
d1 = d2, where the periodicity of the model halves and the
size of the Brillouin zone doubles. The calculation could
not be done under the condition d1 + d2 = 6a0 for the cubic
model in the [110] and [111] directions, because the relevant
overlap matrix is not positive definite; we use the condition
d1 + d2 = 7.5a0 instead.

We now investigate the topological properties of the band
structure and their connection to the properties of the fi-
nite chains. We calculate the Zak phase Z as described in
Sec. II D; the results are shown in Table III. All the short-long
arrangement calculations are done under the same conditions
as the band structures described above, while the long-short
arrangement calculations are done by exchanging the values
of d1 and d2. For the cubic case, “first” means that the
states correspond to the first curve at the top of the pictures
in Fig. 6, “second” means that the states correspond to the
second curve from the top of the pictures in Fig. 6. The results
confirm that the states observed to split from the bands in
the finite-chain calculations are indeed nontrivial topological
states. In general we expect these topological states to arise
when the effective chain (after allowing for the split-off of
any electrostatically bound states) is terminated by a weak
bond; Table III indeed shows nontrivial Zak phases (Z = π

mod 2π ) for short-long chains; however, the Zak phase for
the spherical case with mF = 3

2 is abnormal (nontrivial for
long-short chains).

Now we show that the existence of “abnormal” values
of the Zak phase result from the behavior of the effective
transition strength between the same single-acceptor level on
different nearest-neighbor sites as a function of separation.

First, we develop a simple orthogonal one-level-per-
acceptor model in which the only parameters are the transition
strengths between different sites, the most important being be-
tween nearest neighbors. These are shown in Fig. 7: We define
tbc1, tcb1 to be the intra-cell transition strengths, and tbc2, tcb2 to
be the inter-cell transition strengths. Normally, a longer bond
length would correspond to a smaller value of the transition
strength and a shorter bond to a larger transition energy. But in
the “abnormal” case, we find that the dependence is reversed,
so the longer bond length has a stronger transition strength for
the particular level concerned. This could make the effective
arrangement for the system (defined in terms of strong and

weak interactions) differ from the geometrical arrangement;
hence the system can switch from a “short-long” arrangement
to a “long-short” arrangement and vice versa. In other words,
whether the chain is abnormal or not depends on whether or
not its effective arrangement is the same as its geometrical
arrangement.

In the real acceptor chain the states on different sites are in
general not orthogonal so we must solve a generalized eigen-
value problem. This leads us to define an effective transition
matrix,

Teff (k) = S− 1
2 (k)T (k)S− 1

2 (k). (12)

Under this definition, the eigenvector becomes

|ũk〉 = S
1
2 (k)|uk〉, (13)

and the Zak phase can be written as

Z = i
∫

firstBZ
dk〈ũk|∂kũk〉. (14)

As shown in a previous paper [23], the Zak phase remains
invariant under the transformation (13). Therefore we can say
the effective transition strength matrices are equivalent to the
original transition matrices in the computation of the Zak
phase. This argument also shows that Eq. (11) plays the same
role in the generalized eigenvalue problem as Eq. (10) plays
in the case with the orthogonal eigenstates (where S(k) = 1).

We find that the effective transition strengths can behave
differently from the original ones and in particular their de-
pendencies on the geometrical arrangement can be opposite.
Therefore, once again we need to use an effective arrangement
to describe the system, which we define so that the short
effective bonds correspond to the strong effective transition
strengths, and the long effective bonds to the weak effective
transition strengths. With these two new definitions, we find
the Zak phase for a particular band is determined by the the
effective atomic arrangement; once again, the Zak phase is
abnormal when this effective arrangement differs from the
actual geometry. An alternative way of phrasing this argument
is in terms of the Wannier functions for each band, whose
centers of charge are closely related to the Zak phase [22]
and which are by construction decoupled from the other
bands [24].

IV. CONCLUSION

We have developed an LCAO model to describe the prop-
erties of acceptor arrays in tetrahedrally bonded semicon-
ductors, both in the spherical model and the cubic model,
within the independent-hole approximation. We have used it
to predict the low-energy states of acceptor dimers and linear
acceptor chains in silicon. In particular we have studied the
lowest few energy states in the finite chain, arising from linear
combinations of the 1S3/2 (or 1�+

8 ) acceptor ground states.
For the case of a single hole in the chain we find a complex
interplay between the long-range Coulomb interaction and the
topological properties of the chain; the electrostatic attraction
between the hole and the acceptors in the interior of the
chain “splits off” a state localized on the end acceptor, and
the transition between topological and nontopological states
then takes place in the remainder of the chain. This has
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 6. The band structure of the lowest 4 energy states for the infinite chain under different arrangements when d1 + d2 is fixed: (a) the
spherical case when d1 = 4a0 and d2 = 6a0, (b) the spherical case when d1 = d2 = 5a0, (c) the cubic case when d1 = 2a0 and d2 = 4a0 in
the [001] direction, (d) the cubic case when d1 = d2 = 3a0 in the [001] direction, (e) the cubic case when d1 = 2.5a0 and d2 = 5a0 in the
[110] direction, (f) the cubic case when d1 = d2 = 3.75a0 in the [110] direction, (g) the cubic case when d1 = 2.5a0 and d2 = 5a0 in the [111]
direction, (h) the cubic case when d1 = d2 = 3.75a0 in the [111] direction. For the spherical model calculations, the state with mF = 3/2
(mF = 1/2) is open (solid).
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TABLE III. The Zak phase Z computed under a variety condi-
tions for long-range model in the spherical and cubic cases.

Arrangement Long-short Short-long

Spherical case with mF = 1
2 0 π

Spherical case with mF = 3
2 −π 2π

Cubic case in [001] direction (first) 0 π

Cubic case in [001] direction (second) 0 π

Cubic case in [110] direction (first) 0 π

Cubic case in [110] direction (second) 0 π

Cubic case in [111] direction (first) 0 π

Cubic case in [111] direction (second) 0 π

the consequence that a single hole has twofold-degenerate
topological bound states derived from the lowest energy band
in the “short-long” arrangement (where the chain ends in a
short, rather than a long, bond) that merge into the bulk bands
in the “long-short” arrangement; these bound states are mainly
localized on the next-to-end acceptors, and their topological
origin can be confirmed by computing the Zak phase in the
corresponding infinite chain model.

In an array with many holes the long-range interactions are
likely to be screened out by the motion of other holes. We
approximate this effect by introducing a “short-range model”
in which phenomenological screening removes the effect of
acceptors beyond the nearest neighbor of each pair. In this
case the electrostatic splitting off of the states localized on
the end acceptors disappears, and the topological states of the
lowest band (which is derived from the mF = ± 1

2 states in
the spherical model) appear for the “long-short” arrangement
instead (where the chain ends in a long bond). The situation
in the next-lowest band (derived from the mF = ± 3

2 states in
the spherical model) is more complex and we trace this to
a nonmonotonic dependence of the effective hopping matrix
element between these states on the acceptor spacing.

We note that even with the inclusion of screening, we
would not expect our model to be accurate at large spacings
(where the Coulomb interactions are expected to dominate
over the inter-acceptor tunneling). For dimerized geometries
we would expect the behavior to cross over from a band
insulator (at small spacings) to an antiferromagnetic spin
model (at large spacings); a similar transition is found in
models of donor arrays [25]. The system would, however,
remain insulating throughout. For the equally spaced case
(d1 = d2) we would expect a true metal-insulator transition

FIG. 7. Schematic showing the definition of the transition
strengths tbc1, tcb1, tbc2, and tcb2; here atoms b and c are in the same
unit cell.

to occur in the real system which, being driven by interac-
tions, is not captured in our model. Experimental evidence
from randomly doped p-type bulk Si suggests this occurs at
densities around 4.5 × 1018 cm−3 as shown in the previous
paper [12], corresponding to spacings around 6 nm = 2.4 a0;
this is within the range of the typical separations (2a0 to 5a0)
considered in our calculations for the cubic case. Hence, even
when we are working on the insulating side of the transition,
our system is relatively close to the phase boundary and we
might expect our results to remain qualitatively correct except
when d1 = d2 (where we fail to predict the correct insulating
behavior). The cases with d1 �= d2, showing the topological
behavior, should be qualitatively correct.

In conclusion, our results generalize the concept of topo-
logical end states to encompass the richness of band-edge de-
generacy and spin-orbit coupling expected in acceptor states
in silicon. Our findings point to the complex interplay between
topological effects based on the dimerization, the distance de-
pendence of the interactions, and the long-range electrostatics
that is likely to determine the nature and location of the edge
states in real acceptor arrays. They also suggest that more
complex array geometries beyond simple one-dimensional
lines might reveal still richer topological behavior.
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APPENDIX A: SPHERICAL STATES

Here we detail the forms of the spherical states with
different angular momentum quantum numbers used in the
single-acceptor calculations.

�(S 3
2
) = f0(r)

∣∣L = 0, J = 3
2 , F = 3

2 , mF
〉

+ g0(r)
∣∣L = 2, J = 3

2 , F = 3
2 , mF

〉
+ h0(r)

∣∣L = 2, J = 1
2 , F = 3

2 , mF
〉
, (A1)

�(S 1
2
) = f1(r)

∣∣L = 0, J = 1
2 , F = 1

2 , mF
〉

+ g1(r)
∣∣L = 2, J = 3

2 , F = 1
2 , mF

〉
, (A2)

�(P1
2
) = f2(r)

∣∣L = 1, J = 3
2 , F = 1

2 , mF
〉

+ g2(r)
∣∣L = 1, J = 1

2 , F = 1
2 , mF

〉
, (A3)

�(P3
2
) = f3(r)

∣∣L = 1, J = 3
2 , F = 3

2 , mF
〉

+ g3(r)
∣∣L = 1, J = 1

2 , F = 3
2 , mF

〉
+ h3(r)

∣∣L = 3, J = 3
2 , F = 3

2 , mF
〉
, (A4)

�(P5
2
) = f4(r)

∣∣L = 1, J = 3
2 , F = 5

2 , mF
〉

+ g4(r)
∣∣L = 3, J = 3

2 , F = 5
2 , mF

〉
+ h4(r)

∣∣L = 3, J = 1
2 , F = 5

2 , mF
〉
. (A5)
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FIG. 8. The behavior of the eigenenergies as a function of sepa-
ration r for the H+

2 molecular ion.

Here fi(r), gi(r), and hi(r) are the radial parts and
|L, J, F, mF 〉 is the angular part, which can be expanded in
terms of Gaussian functions [5]. The further spherical states
we need to form the cubic states can be obtained in the same
way.

APPENDIX B: TRANSITION ELEMENTS

Here we show the transition elements used in the finite
chain calculation. The subscript indicates the acceptor on
which the state involved in the transition is centered.

taa = EaSaa + Vb, (B1)

tab = 1
2 EaSab + 1

2 EbSab + 1
2Va + 1

2Vb + Vc, (B2)

tac = 1
2 EaSac + 1

2 EcSac + 1
2Va + Vb + 1

2Vc + Vd , (B3)

tbb = EbSbb + Va + Vc, (B4)

tbc = 1
2 EbSbc + 1

2 EcSbc + Va + 1
2Vb + 1

2Vc + Vd , (B5)

tbd = 1
2 EbSbd + 1

2 Ed Sbd + Va + 1
2Vb + Vc + 1

2Vd + Ve. (B6)

Here Ei is the single-acceptor energy of the state on atom i, Si j

is the overlap matrix between the states on atom i and atom j,
and Vi is the potential matrix of atom i. Here taa, tab, and tac

are for the acceptor at the end of the chain, and tbb, tbc, and tbd

are for the acceptor in the middle of the chain; tbb, tbc, and tbd

are also used in the infinite chain calculation.

APPENDIX C: H+
2 CASE

The H+
2 molecular ion is an analog of the one-hole,

two-acceptor problem but without any spin-orbit coupling or

FIG. 9. The smallest eigenvalue of the overlap matrix, truncated
at next-nearest neighbors, for a 10-acceptor finite chain in the
spherical model with mF = 1

2 as a function of separation d2 when
d1 = 4a0. Note the appearance of unphysical negative eigenvalues
when d2 � 6a0.

heavy-hole light-hole splitting (μ = � = δ = 0, and γ = 1).
We show the behavior of the eigenenergies as a function of
separation r for the H+

2 case, computed in the same way as
the corresponding spherical acceptor problem, in Fig. 8. The
results show the expected splitting of the atomic 1s states into
bonding and antibonding orbitals, and also the splitting of the
2s and 2p levels as the atomic spacing is reduced, but without
the spin-orbit splittings present in the acceptor analogs.

APPENDIX D: EIGENVALUES OF THE OVERLAP MATRIX

Here we show the behavior of the smallest eigenvalue of
the overlap matrix for a 10-acceptor finite chain under the
spherical model when mF = 1

2 with different separation d2

when d1 = 4a0 in Fig. 9. It can be seen that the negative
eigenvalue disappears for d2 � 6a0. Similar thresholds can be
found for other values of d1.

APPENDIX E: BAND STRUCTURES
FOR THE INFINITE CHAIN

Here we show the band structure under different arrange-
ments when d1 + d2 is fixed in Fig. 10. Note that the bands
cross in the [111] direction while they anticross in the [110]
direction. This difference can be traced back to the symmetry
properties of the different geometries (see Table II): Different
bands can have the different symmetries at the same k in the
[111] direction, and therefore the bands can cross. In the [110]
direction, however, all bands have the same symmetry and so
they anticross.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 10. The band structure for the infinite chain under different arrangements when d1 + d2 is fixed. (a) The spherical case when d1 = 4a0

and d2 = 6a0. (b) The spherical case when d1 = d2 = 5a0. (c) The cubic case when d1 = 2a0 and d2 = 4a0 in the [001] direction. (d) The cubic
case when d1 = d2 = 3a0 in the [001] direction. (e) The cubic case when d1 = 2.5a0 and d2 = 5a0 in the [110] direction. (f) The cubic case
when d1 = d2 = 3.75a0 in the [110] direction. (g) The cubic case when d1 = 2.5a0 and d2 = 5a0 in the [111] direction. (h) The cubic case
when d1 = d2 = 3.75a0 in the [111] direction. For the spherical model calculations, the state with mF = 3/2 (mF = 1/2) is open (solid).
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