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abstract: Selfish genetic elements that gain a transmission ad-
vantage through the destruction of sperm have grave implications
for drive male fertility. In the X-linked meiotic drive system (SR)
of a stalk-eyed fly, we found that SRmales have greatly enlarged tes-
tes and maintain high fertility despite the destruction of half of their
sperm, even when challenged with fertilizing large numbers of
females. Conversely, we observed reduced allocation of resources
to the accessory glands that probably explains the lower mating fre-
quency of SR males. Body size and eye span were also reduced,
which are likely to impair viability and precopulatory success. We
discuss the potential evolutionary causes of these differences be-
tween drive and standard males.

Keywords: accessory gland, meiotic drive, multiple mating, sex ratio
distorter, sexual selection, sperm competition, stalk-eyed fly, testis.

Introduction

Meiotic drive genes gain a transmission advantage through
manipulation of meiosis or gametogenesis and are likely to
have profound ecological and evolutionary consequences,
ranging from the evolution of sex determination systems
and changes in karyotype, to impacts on population per-
sistence and sexual selection (Hurst andWerren 2001; Jae-
nike 2001; Werren 2011; Lindholm et al. 2016). Drivers
have been uncovered in a wide range of taxa, with a pre-
ponderance of linkage to the sex chromosomes in the het-
erogametic sex (Hurst and Pomiankowski 1991; Jaenike
2001; Taylor and Ingvarsson 2003). When meiotic drive
occurs in males, it severely disrupts the maturation and
fertilization capacity of noncarrier sperm, imposing a fer-
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tility disadvantage to organismal fitness (Price andWedell
2008), which is exaggerated under conditions of sperm
competition (Taylor et al. 1999; Angelard et al. 2008; Price
et al. 2008a) and typically has pleiotropic viability costs in
both sexes (Burt and Trivers 2006).
The extent to which these and other detrimental effects

of sperm-killer drive promote adaptive responses in the
host species has received limited attention. There is an ex-
tensive literature on genetic elements that interfere and
suppress the action of drive. For example, in Drosophila
species, suppressors of X-linked drive have been found
on the Y chromosome (Carvalho et al. 1997; Cazemajor
et al. 1997; Branco et al. 2013) and throughout the rest
of the genome (Carvalho and Klaczko 1993; Atlan et al.
2003; Tao et al. 2007). A more recent suggestion is that
drive may promote the evolution of female polyandry in
order to dilute the ejaculates of drive males (Haig and
Bergstrom 1995; Zeh and Zeh 1997; Wedell 2013). There
is some evidence for this from experimental evolution
studies using populations exposed to meiotic drive inDro-
sophila pseudoobscura (Price et al. 2008b) andMusmuscu-
lus (Manser et al. 2017) and from natural populations in
which the rate of multiple mating correlates negatively
with the frequency of drive inD. pseudoobscura (Price et al.
2014) andDrosophila neotestacea (Pinzone and Dyer 2013).
Female mate choice may additionally evolve in response to
drive. In stalk-eyed flies, meiotic drive has been linked to
small eye span, which may allow females to avoid mating
with carrier males through assessing eye span (Wilkinson
et al. 1998b; Cotton et al. 2014). Female house mice could
avoidmatingwithdrivemales throughdetectinguniquema-
jor histocompatibility alleles linked to the driving t complex
(Silver 1985; Lindholm et al. 2013), although evidence re-
mains unclear (Lindholm and Price 2016).
Another as yet unexplored route by which males could

adapt to drive is by increasing the allocation of resources
to sperm production, in order to offset the destructive
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effect of drive on gametogenesis. Sperm number is posi-
tively correlatedwith testis size inmany intraspecific stud-
ies (Gage 1994; Fry 2006; Hettyey and Roberts 2006), and
increased testis size is a well-characterized evolutionary
response to heightened sperm competition favoring greater
sperm production (Hosken and Ward 2001; Pitnick et al.
2001; Simmons and García-González 2008; Gay et al.
2009). The loss of sperm in drive males could be compen-
sated for by increased investment in testis size. Meiotic
drive elements are typically found within inversions or
other areas of low recombination that keep drive and in-
sensitive responder loci together (Palopoli and Wu 1996;
Johns et al. 2005; Dyer et al. 2007), facilitate the spread
of modifiers that enhance transmission distortion (Hartl
1975; Larracuente and Presgraves 2012), and are predicted
to be enriched for male-beneficial sexually antagonistic
alleles (Rydzewski et al. 2016). For similar reasons, alleles
that enable compensatory investment in testes could be-
come associated with the drive haplotype.
We test this idea using theMalaysian stalk-eyed fly spe-

cies Teleopsis dalmanni. This species harbors SR, an X-
linked driver that produces strongly female-biased broods
as a result of the destruction of Y-bearing sperm (Pres-
graves et al. 1997; Wilkinson and Sanchez 2001). Meiotic
drive arose around 2–3.5 million years ago in the Teleopsis
clade, and the XSR drive chromosome in T. dalmanni is es-
timated to have diverged from a nondriving ancestor (XST)
around 1million years ago (Swallow et al. 2005; Paczolt et al.
2017) and is characterized by a large inversion(s) covering
most of the X chromosome (Johns et al. 2005; Paczolt et al.
2017). XSR is found at appreciable frequencies (10%–30%)
across populations and generations (Wilkinson et al. 2003;
Cotton et al. 2014) but appears to lack genetic suppressors
(Reinhold et al. 1999; Wolfenbarger and Wilkinson 2001;
Paczolt et al. 2017). This means that there has been ample
time and opportunity for adaptive responses to evolve in
male carriers of the drive chromosome.
We determined whether SR and ST (standard) males

(males carrying XSR and XST, respectively) differed in their
reproductive (testis and accessory gland size) and morpho-
logical (eye span and body size) traits. Testis size predicts
the amount of sperm found within female storage (Fry
2006). Accessory glands produce all nonsperm components
of the ejaculate, and accessory gland size is positively asso-
ciated with male mating frequency (Baker et al. 2003; Rog-
ers et al. 2005a, 2005b). Body size and eye span are also im-
portant predictors of male mating frequency (Wilkinson
et al. 1998a; Small et al. 2009; Cotton et al. 2010).We deter-
mined SR and ST male sperm production by mating them
to low or high numbers of females over a 10-h period and
counting the number of fertilized eggs produced.Maleswere
also exposed to females over a short time period (30min) to
compare the copulation rate of SR and ST males.
This content downloaded from 128.04
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Material and Methods

Experimental Animals

Details of stock collection and day-to-day upkeep can be
found in the appendix (available online). Experimental
males were taken from the SR stock population, in which
males are a ~50∶50 mix of XSR and XST genotypes. Exper-
imental females were taken from the ST stock population,
which lacks meiotic drive. Single nonvirgin males were
allowed to mate freely with either one or five virgin ST
stock females over a period of 10 h. Mated females were
allowed to lay eggs for 14 days, by which time most fe-
males had stopped laying fertile eggs. Fecundity was re-
corded through egg counts, and egg hatch was used as
an estimate for fertility. On the following day, experimen-
tal males and a similar number of unmated males were
anesthetized on ice, and their testes and accessory glands
were removed (fig. 1A) and photographed under differen-
tial interference contrast microscopy. Organ area was
measured at#50 magnification by tracing the outline.
Male eye span (Hingle et al. 2001) and a proxy for body
size, thorax length (Rogers et al. 2008), were measured.
In a second experiment, SR stock males were intro-

duced to two ST stock nonvirgin females at artificial dawn.
All copulations were counted during 30 min. To minimize
any effects on mating frequency due to female choice, the
experimental males were standardized to have a narrow
range of eye span (7.5–8.5 mm).
Males from both experiments were genotyped using ei-

ther twoX-linked insertion-deletionmarkers, comp162710
and cnv395, or a microsatellite marker, ms395. Allele size
of these markers reliably indicates the SR genotype of
the males in our laboratory stocks (Meade et al. 2018).
Statistical Analysis

We tested whether male genotypes differed in their mor-
phological (body size and eye span; linear models) and re-
productive (testis size and accessory gland size; linear
mixed effects models) traits. Differences in relative trait
size between genotypes, as well as in absolute trait size
(models where body size is excluded), are reported. The
total number of fertile eggs (Poisson generalized linear
mixed effects model [GLMM]) and proportion fertility
(fertile eggs, nonfertile eggs; binomial GLMM) of females
are compared when mated to SR (i.e., XSR/Y genotype) or
ST (i.e., XST/Y genotype) males. We also tested whether
male reproductive traits and their interaction with male
genotype were important predictors of fertility. Last, we
tested whether SR and ST males differed in their mating
frequency over 30 min by comparing the likelihood that
SR and ST males mate at all (binomial GLMM), as well as
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the total number of copulations among males that mated at
least once (Poisson GLMM).
To avoid collinearity of male morphological and repro-

ductive traits with body size, models used residual values
(Dormann et al. 2013). Where appropriate, experimental
batch was included as a random effect. Further details and
model effect sizes can be found in the appendix.
Results

SR Trait Size

SR males had small body size (mean 5 SE, 2:2905
0:013 mm) compared to ST males (2:33650:009 mm;
F1, 357 p 8:745, P p :003; fig. 1B). SRmales also had small
absolute eye span (SR: 8:04850:046 mm; ST: 8:4025
0:031 mm; F1, 357 p 42:631, P ! :001; fig. 1B) and relative
eye span (F1, 355 p 0:713, P p :016), especially when body
size was small (body size# genotype interaction: F1, 355 p
4:175, P p :042).
Despite the small body size of SR males, the testis size

of SR males was large (1:94050:050 mm2) compared to
that of ST males (1:5450:028 mm2; F1, 280:16 p 73:796,
P ! :001; fig. 1C). SR males also had large relative testis
size (F1, 282:78 p 99:982, P ! :001). In contrast, SR males
had small absolute accessory gland size (SR: 0:3065
0:011 mm2; ST: 0:34850:010 mm2; F1, 335:36 p 16:353,
P ! :001; fig. 1D) and relative accessory gland size
(F1, 334:03 p 7:801, P p :006). Taking relative values for
each genotype, eye span (F1, 286 p 19:892, P ! :001) and
accessory gland size (F1, 274:418 p 26:008, P ! :001) in-
creased with testis size, but the rate was reduced in SR
males (interaction eye span: F1, 286 p 5:261, P p :023;
fig. A1; interaction accessory glands: F1, 268 p 8:375, P p
:004, fig. A2; figs. A1, A2 are available online).
SR Fertility

SR males did not differ from ST males in total (mean5
SE, SR: 112:04758:290; ST: 107:05355:597; x2

1 p
2:416, P p :120, N p 215; fig. 2A, 2B) or proportion fer-
tility (SR: 0:83350:025; ST: 0:76250:019; x2

1 p 2:469,
P p :116, N p 215) when kept with females over an ex-
tended 10-h period. Males mating with five females
achieved higher total fertility (one female: 79:2315
5:090; five females: 138:12356:653; x2

1 p 43:698, P !

:001, N p 215) but a lower proportion fertility (one fe-
male: 0:80450:024; five females: 0:76350:199; x2

1 p
6:021, P p :014, N p 215) than those mating with a sin-
gle female. The interaction between mating group (one or
five females) and genotype did not influence total fertility
(x2

1 p 0:591, P p :442, N p 215) or proportion fertility
(x2

1 p 1:377, P p :241, N p 215).
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Male testis size was an important predictor of fertility.
Both total fertility (x2

1p5:897, Pp:015, Np165; fig. 2C,
2D) and proportion fertility (x2

1 p 18:837, P ! :001, N p
165) were greater among males with larger testis size, even
when accounting for male body size (total: x2

1 p 6:216,
P p :013, N p 165; proportion: x2

1 p 16:646, P ! :001,
N p 165). The addition of testis size did not alter the rela-
tionship between genotype and total fertility (x2

1 p 0:018,
P p :895, N p 173) or proportion fertility (x2

1 p 0:260,
P p :610, N p 173). There was no interaction between
testis size and genotype predicting total (x2

1 p 0:164, P p
:686, N p 173) or proportion fertility (x2

1 p 0:617, P p
:432, N p 173). Accessory gland size did not predict total
fertility (x2

1 p 0:032, P p :858, N p 165) or proportion
fertility (x2

1 p 0:160, P p :689, N p 165).
SR Mating Frequency

A total of 493 copulations from 193 males were observed
over the 30-min mating trials. SR males (mean 5 SE,
2:75050:175,N p 81) copulated fewer times on average
than ST males (3:55050:186, N p 76; x2

1 p 6:304, P p
:012; fig. 1E) but were not less likely to mate at least once
(SR: 81/104; ST: 76/89; x2

1 p 1:665, P p :197,N p 193).
Discussion

One of the main features of meiotic drive in males is re-
duced sperm production due to the dysfunction of non-
carrier sperm. This has been reported to cause a loss in fer-
tility in a variety of species, including Drosophila (Hartl
et al. 1967; Jaenike 1996; Angelard et al. 2008; Price et al.
2012; Pinzone and Dyer 2013), house mice (Carroll et al.
2004), and Silene alba (Taylor et al. 1999). Here we present
evidence that SR males in Teleopsis dalmanni overcome this
deficit by having greatly enlarged testes. SR males carry an
extreme form of the XSR drive chromosome, siring female-
only broods as a result of the dysfunction of Y-bearing gam-
etes. Despite gamete loss, SR males achieve fertility at a level
equivalent to that of STmales when exposed to either a sin-
gle female or five females over a 10-h period (fig. 2). Our
results contradict a previous study that found an SR fertility
deficit using a similar design (Wilkinson et al. 2006). But
this study measured fertility as the number of adults that
eclosed, compounding fertility with egg-to-adult survival.
Recent work shows that larval survival is reduced in drive
heterozygous females (Finnegan et al. 2019), which could
account for the apparent drop in SR male fertility. The
patterns in T. dalmanni are in contrast to other insect spe-
cies with X-linked meiotic drive, which generally show a
deficiency in fertility of drive males after either a single or
multiple matings (Jaenike 1996; Atlan et al. 2004; Angelard
et al. 2008; Price et al. 2012; Pinzone and Dyer 2013).
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These experiments were designed to test whether daily
sperm reserves differ between SR and ST males, not to
replicate normal levels of mating observed under natural
conditions, which occur at far lower rates (Cotton et al.
2015). On dissection, we discovered that SR males have
greatly enlarged testes (fig. 1C), about 26% larger than
those of ST males. This difference remained after control-
ling for body size (fig. 1C). Our interpretation is that the
increase in testis size allowed SR males to compensate for
the loss of sperm due to the action of meiotic drive. This is
This content downloaded from 128.04
All use subject to University of Chicago Press Terms 
supported by the finding that fertility increased with in-
creasing testis size, for both absolute and relative testis
size, in both SR and ST males (fig. 2). Our interpretation
also aligns with previous findings that SR male ejaculates
deliver similar numbers of sperm as do those of ST males
after single and multiple matings (Meade et al. 2018). De-
spite the destruction of half of the sperm of SR males, the
increased investment in their testis size (i.e., spermproduc-
tion) allows them to deliver sufficient sperm to achieve a
fertility similar to that of ST males. To further understand
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Figure 2: A, B, Boxplots (median and interquartile range; top) and Kernel probability density of measures (bottom) of total fertility of SR
males (carrying the drive X chromosome; red) and ST males (carrying the standard X chromosome; blue). A, Mated to a single female.
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the extent of this compensation, we need to assess SRmale
success under sperm competition, which is the norm in
T. dalmanni (Wilkinson et al. 1998a; Baker et al. 2001;
Corley et al. 2006). Previous work suggests that SR males
perform poorly under sperm competition (Wilkinson et al.
2006), but this assessment again does not take account of
the lower egg-to-adult viability of XSR carriers (Finnegan
et al. 2019), which could simulate an advantage of STmales
in sperm competition. In our experimental design, autoso-
mal backgroundwas standardized across SR and STmales.
So it seems likely that control of testis size is linked to
alleles that are located in the XSR chromosomal inversion
and that such alleles arose as an adaptive response to
sperm dysfunction caused by drive, but further investiga-
tion is needed to establish this view.
We found morphological trait divergence in accessory

gland size, which is small in SR males, even after control-
ling for body size (fig. 1D). Previous work in T. dalmanni
shows that accessory gland size is linked with the mating
rate (Baker et al. 2003; Rogers et al. 2005a). This might ex-
plain why the mating frequency of SR males was low, be-
ing about 75% of the rate for ST males over a 30-min pe-
riod (fig. 1E). In addition, SR males have small body size
and small eye span for their body size (fig. 1), traits likely
to reduce male mating success both in male-male agonis-
tic interactions (Panhuis andWilkinson 1999; Small et al.
2009) and in attracting and mating with females (Wilkin-
son and Reillo 1994; Hingle et al. 2001; Cotton et al. 2010).
The increased allocation of resources to testes in SR males
potentially causes a reduction in the resources available for
investment in accessory glands, as both traits develop over
several weeks after eclosion (Baker et al. 2003; Rogers et al.
2008). Resource competition with testes is not an obvious
reason for reduced body size and eye span, which are de-
termined during larval development. However, expression
of these traits might be connected via juvenile hormone,
which has been shown to mediate a trade-off between
eye span and testes in stalk-eyed flies (Fry 2006).
Small body size and eye span are also likely to arise

from the low genetic condition of drive males. The T.
dalmanni SR inversion(s) covers nearly all of the X chro-
mosome, capturing one-third of the stalk-eyed fly ge-
nome (Johns et al. 2005; Paczolt et al. 2017). XSR alleles
will be subject to weak natural selection as a result of re-
duced recombination and will be liable to accumulate del-
eteriousmutational effects (Kirkpatrick 2010). Consistent
with a lack of recombination, there are 955 fixed sequence
differences between transcripts linked to XSR and XST

(Reinhardt et al. 2014). Such mutations are expected to
have a negative effect on costly, condition-dependent
traits, such as body size and eye span, whose expression
is affected by multiple loci distributed throughout the ge-
nome (David et al. 2000; Cotton et al. 2004; Bellamy et al.
This content downloaded from 128.04
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2013). Given that SR males have small eye span, they will
be unattractive and will gain fewer mating opportunities.
Consequently, investment in accessory glands that enable
higher mating rates will give lower returns than the diver-
sion of resources into larger testes that allow SR males to
produce ejaculates of a size equivalent to those of ST males
and that allow SR males to be able to compete under the
conditions of high sperm competition seen in stalk-eyed
flies. These ideas about linking resource allocation, condi-
tion, and mating rates need further investigation, in partic-
ular under the mating conditions that occur in the wild.
Here we demonstrate for the first time that through in-

vestment in testis size, drive males can maintain fertility,
despite sperm destruction. Other responses to drive, such
as genetic suppression, polyandry, and female choice, re-
duce the transmission advantage gained by drive and lead
to reductions in the equilibrium frequency of drive (Hartl
1975; Taylor and Jaenike 2002; Holman et al. 2015). In
sharp contrast, increased investment in sperm production
intensifies the transmission of drive, because the fertility
gain to the individual male is also beneficial to the drive el-
ement itself. Such an association with meiotic drive has
been neither theoreticallymodeled nor empirically studied
previously, but it has implications for the spread and equi-
librium frequency of drive in natural populations.
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