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Abstract—Interest in bistatic radar has fluctuated since its first
demonstration. Modern multistatic and MIMO radar systems
have prompted a resurgence in the field, particularly where
imaging radar and automatic target recognition are concerned.
The lack of openly-available bistatic imagery and corresponding
analysis of the unique artefacts which occur within it is a
significant barrier to developing automatic target recognition
methods for such systems. This paper looks to address these
issues by presenting an appropriate simulation methodology for
obtaining bistatic synthetic aperture radar imagery of ground
vehicle targets and investigating the features that occur within
this imagery. In this paper, a number of effects unique to the
bistatic case are presented, and the performance degradation of a
classifier at several bistatic angles is empirically demonstrated. A
version of the final database will be publicly released to promote
wider research into this challenge.

I. INTRODUCTION

Synthetic Aperture Radar (SAR) has been a revolutionary
sensing modality since its inception in the early 1950s. A
review of early developments in SAR [1] describes some of
the first openly published results using this technology. Since
these early measurements, SAR has become a cornerstone
of modern intelligence, surveillance, target acquisition, and
reconnaissance (ISTAR) capabilities, due to its ability to sense
over long ranges, by day or night, with little or no degradation
by weather. Appropriate choice of operating frequency can
also allow penetration of foliage and cover, whilst coherent
change detection and interferometric modes allow precise
detection and monitoring of changes in a scene which are
undetectable by optical sensors.

The future of radar sensing is moving towards networked
solutions containing multiple agile RF sensor nodes, due to the
many advantages this brings. This approach realises a platform
through which the recently developed ideas of cognition for
radar sensing can be best exploited. As progressively greater
information regarding the background scene or targets is
obtained, the cognitive feedback loop provides the opportunity
to change geometry, waveform or other variables under control
of the wider system in order to improve the overall detection
or classification probability. Little attention has been paid to
the additional complexity introduced by variable bistatic col-
lection geometries. It is therefore important to ensure that the
problem of automatic target recognition (ATR) implementation

is studied with the same rigour as was previously applied to
the monostatic case.

Monostatic SAR ATR is a mature area of research and
has benefited from the release of real databases such as
MSTAR [2]. When simulating simulate or generate experimen-
tal multistatic SAR imagery, caution must be exercised when
transferring across methods developed for monostatic SAR.
It is widely accepted that such methods are not applicable
to bistatic scenarios that cannot be approximated as quasi-
monostatic. For example, it is shown in [3] that bistatic
SAR images of vehicles cannot be accurately co-registered
to equivalent monostatic images for bistatic collection angles
greater than 4◦. More importantly, it is noted that accurate co-
registration was only achievable for configurations in which
the bistatic and monostatic apertures overlapped. This would
imply data incest in a large-scale data fusion system such as
a distributed MIMO radar.

This paper aims to address this gap by developing a compre-
hensive understanding of the effects introduced by the bistatic
scattering configuration, and thus to better inform bistatic
ATR processing methods. Section II defines the context of
this research. Section III outlines the simulation methodology
adopted and the approach to analysis. Section IV shows
representative results from the work performed to date. Further
work and conclusions are addressed in Section V.

II. PROBLEM CONTEXT

A. Simulation of bistatic SAR features

Geometrical optics and the geometrical theory of diffraction
(GTD) method [4] have been applied to this problem in
order to develop canonical scattering models for simple targets
[5][6][7][8]. Most of these models were verified against the
XPATCH simulator [9][10], which was publicly released by
the US Department of Defense in 1997. However, it is difficult
to build complex targets from these canonical features when
the effects of multipath returns must be considered. The sim-
ulated returned power for many vehicular targets is typically
10 to 15 dB lower if multipath is not considered [9]. XPATCH
addressed the multipath problem by applying a shooting and
bouncing ray (SBR) technique; this is commonly referred to
as ray-tracing. This allows the use of CAD models for the
desired ground targets to produce high fidelity simulated SAR
imagery.



The simulation work completed within this paper applies the
recently released RaySAR [11] model, another SBR approach
that was released to the wider research community in Jan
2016 and offering an open-source alternative to XPATCH.
The ray-tracing methodology used by RaySAR was presented
in [12]. A high-throughput pipeline based on the RaySAR
simulator has previously been demonstrated [13], allowing the
generation of large databases of sample imagery along with
the associated ray-tracing contributions for further analysis.
This approach has previously been applied to vehicular targets
in order to demonstrate low-latency ATR methods. The same
pipeline is used in this work to enable rapid analysis of com-
plex targets and identify target poses or collection geometries
which are particularly challenging for feature extraction.

Dstl recently released another SAR simulator called SAR-
CASTIC [14][15]. This tool allows complex phase history data
to be simulated, leading to full complex output images, and
can account for material properties such as surface roughness
to add realistic speckle to the final imagery. A direct compar-
ison of the SARCASTIC simulation output with equivalent
RaySAR configurations is shown in Subsection IV-A.

B. SAR ATR

The US Air Force Research Laboratories (AFRL) Moving
and Stationary Target Acquisition and Recognition (MSTAR)
database [2] has been used as the de facto standard for bench-
marking ATR performance on SAR imagery for the last 20
years. The data was captured with a STARLOS system during
1995 and 1996, with a nominal resolution of 1 foot in both
range and azimuth. The database includes ten targets, primarily
military vehicles of Russian origin, along with samples of
clutters and confuser targets.

There are several issues, however, with the MSTAR dataset
which render it unsuitable for current ATR research. Firstly,
the STARLOS system used to collect the data is not repre-
sentative of modern SAR capabilities. Since the release of
MSTAR, significant progress has been made in the area of
ultra-wideband SAR systems leading to increases in both im-
age resolution and quality. Figure 1 shows an image collected
by the Bright Spark demonstrator system (a joint Dstl-Thales
UK project) with clear shadow edges and high-resolution detail
of the cars in the image1. The achieved resolution is 4 cm in
range and 2.8 cm in azimuth, which is an order of magnitude
improvement over STARLOS. Secondly, the scenes used to
generate the MSTAR challenge often contain common clutter
within a target class; this has been shown to artificially inflate
the scores achieved by many CNN methods on the MSTAR
challenge [16]. Finally, the entire database was collected in a
monostatic configuration; as already mentioned in Section I,
this makes the data unsuitable for developing bistatic ATR
methods.

Recent approaches to the MSTAR classification challenge
have heavily favoured neural network models. In particular,

1Publicly released imagery from Bright Spark is available at
https://dstl.github.io/brightspark-data/data/

Fig. 1: A Bright Spark image capture showing several cars in
a car park, with clearly visible shadows

convolutional neural networks (CNNs) have been applied
to achieve very high accuracy scores. This parallels similar
advances in the optical object detection and classification
domains. High performance metrics, however, do not replace
the need for explainability [17]. Whilst methods for producing
human-interpretable explanations for neural network outputs,
such as Grad-CAM [18] and saliency mapping [19], have
made significant progress in recent years, the outputs are still
difficult to interpret for a layman and do not offer a point-
by-point justification for a given classification decision. For
this reason, high-risk decisions such as targeting for kinetic
operations are typically taken on the basis of deterministic
methods such as template matching. At the bare minimum, a
physical explanation for the presence of a feature in the image
must be available before it can be used in targeting.

C. Bistatic features and shadow region exploitation

It has previously been observed that many man-made targets
exhibit aspect-dependant scattering behaviour, which can be
exploited to separate them from natural clutter [20]. Bistatic
systems enable greater exploitation of this phenomenon, par-
ticularly where targets have been designed for low radar
signature. It must be remembered, however, that the support in
the wavenumber domain and hence the achievable resolution
of a SAR system decreases with increasing bistatic angle.
This can be derived for the zero grazing angle case with a
stationary transmitter from Equation 1 as shown in [21]; ∆θ is
the accumulative angle across the aperture, 2θbc is the bistatic
angle at the centre of the aperture, the radar waveform varies
in frequency from fc to fc +B and S is the total area of the
support manifold.
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Consider a monostatic SAR transceiver imaging a scene.
There may be areas with no direct (single-bounce) propagation
path to the transceiver at any point along the aperture. This
leads to the presence of a shadow in the reconstructed image,
henceforth referred to as the reconstruction shadow. In the
bistatic case, a second shadow is apparent due to the target
being illuminated along a vector which is not equivalent to



Fig. 2: Renders of the CAD models used for the T72B and
L33 targets

that along which the receiver looks at the target. This will be
referred to as the illumination shadow.

There is an important distinction to be made regarding this
scenario, which is that a propagation path is not equivalent
to a line-of-sight. Atmospheric interactions such as ducting
or target interactions which are not a direct skin return can
allow propagation along non-optical paths. In this work, it
has been assumed that microwave radars emitting sufficiently
high frequencies are used to achieve the resolutions discussed,
and that the assumption of optical equivalence holds. Low-
frequency systems would not be able to make this assumption.

Prior work on shadow region features [16] used the SAR-
Bake tool [22] to segment the MSTAR images for analysis.
This raises the question of whether it is possible to reliably
segment shadows within an actual SAR image via edge detec-
tion techniques, for example, without prior knowledge of the
targets in the scene. Use of information in the shadow regions
as features for classification has previously been demonstrated
[23][24].

III. METHODS

Using the simulation pipeline shown in [13], a large
database of simulated imagery has been constructed covering
five military targets and two civilian pickup truck variants2.
Figure 2 shows two of the CAD models used for the sim-
ulations; representative SAR images formed by this process
for monostatic and bistatic cases are shown in Figure 3. A
resolution of 15 cm has been used in both range and azimuth;
the pixel spacing in the images shown here is 5 cm unless
stated otherwise. A limitation of the current configuration of
the RaySAR implementation is that it does not account for
surface roughness; therefore, the images are free from speckle
contributions which would typically be observed within real
SAR imagery.

Imagery was generated for each target as follows. The 3D
CAD model of each target was placed on a ground plane at
the origin. The transmitter and receiver nodes were placed
such that they were located on the surface of a 500 m sphere
centred on the origin and lay in the same horizontal plane. The
elevation angle θ was varied in 5◦ increments from 30◦ to 60◦,
and the azimuth angle φ of the transmitter node was varied
in 1◦ increments from 0◦ to 359◦. For the monostatic case,

2Military targets from Marco Bergman’s 1:100 scale tank library
(https://www.thingiverse.com/thing:769137). Pickup truck models from
https://free3d.com/3d-model/chevrolet-silverado-1986-jeep-44547.html and
https://free3d.com/3d-model/pickup-69582.html

TABLE I: Key parameters for SARCASTIC configuration

Parameter Value
Slant range to SRP 5 km
Centre frequency 10GHz

Bandwidth 1413.235MHz
Aperture length 719.5m

Platform velocity 50m s−1

Pulse repetition frequency 2000Hz
Pulse duration 20ns

the transmitter and receiver were co-located (i.e. the bistatic
angle β = 0; for the bistatic cases, the receiver was offset
by an angle β from the transmitter in azimuth, where β ∈
{−135,−90,−45,−20,−10,−5, 5, 10, 20, 45, 90, 135, 180}
degrees.

A total of 35280 configurations were used per target (360
azimuth angles, 7 elevation angles, 14 bistatic angles). Where
models could be posed, such as through the rotation of turrets
or elevation of barrels, a number of poses were used; it should
be noted that no analysis has been performed on the relative
classification success for the same target model in different
poses (this will from the basis of future investigations). The
dataset was then divided to form segregated training and test
sets; 30% of the images were selected at random to form the
test set, and the remaining images constituted the training set.

The end goal of this analysis is to identify features which
explain how classification success varies as a function of target
type and collection geometry. A modified You Only Look
Once (YOLO) classifier [25] was used to demonstrate this
effect in practice. The modified Tiny YOLO variant of the
model presented in [13] was trained on the simulated data,
and the variation in classification success for the single model
analysed for test data with a range of bistatic angles.

To enable direct comparison between the imagery obtained
from RaySAR and SARCASTIC, sample images have been
generated with configurations matching the presented RaySAR
images. The SARCASTIC simulator has been upgraded to
support bistatic operation as part of this work. The target
model used was the same Leopard 2A6 CAD model used for
the previous RaySAR work. The model is passed through the
materialise stage of the SARCASTIC toolchain to generate a
Delaunay triangulation of the mesh with an appropriate surface
roughness for the material. In this case, the target has been
assumed to be made from a homogenous metal, for which
SARCASTIC’s default properties have been used.

Template compensated phase history data files are generated
using the cphdShell utility. The key parameters used for this
work are given in Table I. It should be noted that the aperture
covers an angular range of ±4.115◦ as measured from the
centre of the synthetic aperture, so it is acceptable to make
the small angle approximation.

IV. RESULTS

Figure 3 shows a comparison of simulated images con-
taining a T72B main battle tank, L33 self-propelled gun and
Leopard 2A6 for both monostatic and bistatic geometries.
As explained in Subsection II-C, the monostatic geometries



(a) T72 B, monostatic (b) T72 B, β = 20◦

(c) L33, monostatic (d) L33, β = 90◦

(e) Leopard 2A6, monostatic (f) Leopard 2A6, β = 135◦

Fig. 3: Example images produced by the simulation pipeline
presented previously in [13]

only exhibit shadowing in the range direction. For small
bistatic angles such as that demonstrated in Figure 3b, the
reconstruction and illumination shadows display high cross-
correlation.

The benefits of a bistatic geometry are clearly demonstrated
by comparing Figure 3c and Figure 3d. Figure 3d was simu-
lated with the same pose and transmitter position as Figure 3c,
but with the receiver relocated to form a bistatic angle of
90◦. The illumination shadow in Figure 3d corresponds to
the reconstruction shadow in Figure 3d. The reconstruction
shadow in the bistatic case, however, clearly displays the
barrel of the 155 mm howitzer, which is almost invisible in
the monostatic case due to the illumination incidence angle.
The bistatic image also shows a strong scattering event at the
muzzle brake.

It should also be noted that the length of the vehicle can

(a) Equivalent monostatic configuration (w.r.t. receiver)

(b) Bistatic angle of 135◦

Fig. 4: Multibounce maps showing the number of scattering
events responsible for each contribution in the final image

be more accurately estimated from Figure 3d as the extent of
layover in the azimuth direction is limited by the geometry of
the aperture. If the small angle approximation holds, then it
can be assumed that azimuth layover does not occur. Fusing
the azimuth and shadow measurements from the mono and
bistatic images would therefore permit the derivation of the
vehicle’s dimensions in all three spatial axes, which can
be used as features for a template-based match. Figure 4
shows a mapping of all target returns contributing to the final
images in Figure 3e and Figure 3f. These diagrams were
obtained using the analysis tools bundled into RaySAR. The
shadow regions causing occlusion of the target outline can
clearly be seen; these are thought to contribute significantly to
classifier performance degradation at high bistatic angles (see
Subsection IV-B) as they interrupt the outline of the vehicle
and obscure several prominent features on the hull. This is of
particular concern for vehicles with turrets or other movable
elements such as cranes or booms.

It should also be noted that there is a consistent layover



(a) Monostatic equivalent to Figure 3e)

(b) Bistatic angle of 135◦ (equivalent to Figure 3f)

Fig. 5: Simulated images of the Leopard 2A6 from the
modified SARCASTIC simulator

artefact in both images where a section of the ground plane
appears within the reconstruction shadow at a point where
it would intersect the hull outline. The return is a direct
path signal passing below the turret overhang. This has not
been investigated in depth yet, but may have interesting
repercussions for image segmentation approaches which rely
on texture analysis to separate targets of interest from terrain.

A large reduction in multipath contributions around the
turret region can be observed in the bistatic case compared
to the monostatic case. The relevant area is 591 to 594 m
slant range, −2 to 2 m azimuth in Figure 4b. Operating a
bistatic configuration in the forward scatter region is likely to
require significant changes to the choice of features due to the
illumination shadow causing significant occlusion of parts of
the target in range. However, the return from the top surfaces
of the vehicle is dominated by the direct path signal, which
makes feature extraction from these regions much simpler.

A. SARCASTIC validation

Figure 5 shows the matched detected imagery from SAR-
CASTIC for the RaySAR results shown in Figure 3e and
Figure 3f, including the first published bistatic result from
SARCASTIC. These experiments were performed on the
ATHENS GPU server in UCL’s Electronic and Electrical
Engineering department. This provides four Tesla V100 GPUs
with 32 GB of memory each, along with four Intel Xeon Gold
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Fig. 6: Normalised classification accuracy as a function of
bistatic angle for a Tiny-YOLO based classifier

6126 CPUs (48 cores, 96 threads) and 250 GB of RAM. The
total simulation time for each image once the model was
prepared was approximately 30 minutes; this equates to about
700 ms per pulse.

Visual comparison of the outputs of both simulators re-
veals common features, such as the multipath signature from
the road wheels appearing inside the hull outline for the
monostatic case due to layover. The predicted shadowing is
present in both SARCASTIC images, and multipath artefacts
are observed in many of the locations predicted by Figure 4.

B. Classification success vs. bistatic angle

The classifier described in Section III (Tiny YOLO) was
trained for 15 epochs; the first 10 epochs were completed
with a learning rate of 0.1, and the last 5 used a learning
rate of 10−3. K-fold cross-validation was used to provide a
validation set during training with K = 10 and stochastic gra-
dient descent was implemented as the optimiser. Non-maximal
suppression for classification was performed by selecting the
highest confidence score across all predicted bounding boxes
in the final layer.

Figure 6 illustrates the variance in classification success on
the selected test set for the trialled Tiny YOLO classifier as
the bistatic angle of the collection geometry was varied. The
normalisation factor for each class was the highest achieved
classification accuracy across all offsets. A number of inter-
esting trends can be observed in this data. The tank classes
(Leopard 2A6 and T72B) demonstrate a sharp drop in accuracy
from β = 45◦ to β = 90◦; the M1126 target also demonstrated
a similar characteristic. It is hypothesised that the orthogonal
shadows introduced to the image when the target is illuminated
at β = 90◦ obscure features which have been learnt from
the training data with smaller bistatic angles, leading to poor
classifier performance.



V. CONCLUSIONS AND FUTURE WORK

In this paper, it has been demonstrated that bistatic collec-
tion geometries introduce complex artefacts and shadowing in
SAR imagery, particularly when a target introduces overhangs
and abrupt changes in elevation which are vulnerable to
layover. A large quantity of simulated imagery has been
produced to support research into these effects and analysis
of a small number of examples has been presented. A di-
rect comparison between the fast RaySAR and high-fidelity
SARCASTIC simulators has been made to demonstrate their
relative strengths. A Tiny YOLO classifier was trained on the
dataset, and its performance was found to vary significantly
depending on the bistatic angle used to generate the input
image. This validates the assertion that ATR methodologies
for bistatic systems can neither ignore the effects of a change
in collection geometry nor assume that the same approaches
used for monostatic scenarios will function as expected.

The hybrid pipeline mentioned in Section III and the up-
graded SARCASTIC simulator will be exploited to support
a simulation campaign covering more targets, along with
realistic terrain models. Building a comprehensive dataset
containing many targets of interest over a large parameter
space will enable further investigation into the nature of
unusual artefacts in bistatic SAR imagery, the frequency with
which they occur, and methods for mitigating or exploiting
them in an operational context. A large subset of this data will
be openly released to enable wider research into the problem
of bistatic SAR ATR. Using the SARCASTIC simulator will
also allow the full complex image to be investigated; exploiting
the phase data will give much greater insight into the structure
of the target response. From the observation that the phase
of noise contributions will be largely uncorrelated whereas
multipath artefacts arising from the target will be correlated
to the physical geometry, it follows that this could be used to
identify multipath artefacts in the shadow regions. This could
also be exploited to improve shadow segmentation, along with
texture analysis.

ACKNOWLEDGEMENTS

This work was supported by funding from Dstl and EP-
SRC Grant EP/R513143/1. Bright Spark imagery courtesy of
Thales,UK and Dstl.

REFERENCES

[1] C. W. Sherwin, J. Ruina, and R. Rawcliffe, “Some early developments
in synthetic aperture radar systems,” IRE Transactions on Military
Electronics, vol. 1051, no. 2, pp. 111–115, 1962.

[2] The Air Force Moving and Stationary Target Recognition Database.
[Online]. Available: https://www.sdms.afrl.af.mil/datasets/mstar/

[3] E. E. Laubie, B. D. Rigling, and R. P. Penno, “Bistatic sar image
registration accuracy,” in 2015 IEEE Radar Conference, May 2015, pp.
0742–0746.

[4] J. B. Keller, “Geometrical theory of diffraction,” J. Opt. Soc.
Am., vol. 52, no. 2, pp. 116–130, Feb 1962. [Online]. Available:
http://www.osapublishing.org/abstract.cfm?URI=josa-52-2-116

[5] B. D. Rigling and R. L. Moses, “GTD-based scattering models for
bistatic SAR,” in Algorithms for Synthetic Aperture Radar Imagery XI,
E. G. Zelnio and F. D. Garber, Eds., vol. 5427, International Society
for Optics and Photonics. SPIE, 2004, pp. 208 – 219. [Online].
Available: https://doi.org/10.1117/12.541555

[6] F. Comblet, A. Khenchaf, A. Baussard, and F. Pellen, “Bistatic synthetic
aperture radar imaging: Theory, simulations, and validations,” IEEE
Transactions on Antennas and Propagation, vol. 54, no. 11, pp. 3529–
3540, Nov 2006.

[7] J. A. Jackson, B. D. Rigling, and R. L. Moses, “Parametric scattering
models for bistatic synthetic aperture radar,” in 2008 IEEE Radar
Conference, May 2008, pp. 1–5.

[8] ——, “Canonical scattering feature models for 3D and bistatic SAR,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 46, no. 2,
pp. 525–541, April 2010.

[9] M. Hazlett, D. J. Andersh, S. W. Lee, H. Ling, and C. L. Yu,
“XPATCH: a high-frequency electromagnetic scattering prediction code
using shooting and bouncing rays,” in Targets and Backgrounds:
Characterization and Representation, W. R. Watkins and D. Clement,
Eds., vol. 2469, International Society for Optics and Photonics. SPIE,
1995, pp. 266 – 275. [Online]. Available: https://doi.org/10.1117/12.
210627

[10] D. Andersh, J. Moore, S. Kosanovich, D. Kapp, R. Bhalla, R. Kipp,
T. Courtney, A. Nolan, F. German, J. Cook, and J. Hughes, “Xpatch
4: the next generation in high frequency electromagnetic modeling and
simulation software,” in Record of the IEEE 2000 International Radar
Conference [Cat. No. 00CH37037], May 2000, pp. 844–849.

[11] S. Auer, R. Bamler, and P. Reinartz, “Raysar - 3D SAR simulator:
Now open source,” in 2016 IEEE International Geoscience and Remote
Sensing Symposium (IGARSS), July 2016, pp. 6730–6733.

[12] S. Auer, S. Hinz, and R. Bamler, “Ray-tracing simulation techniques
for understanding high-resolution SAR images,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 48, no. 3, pp. 1445–1456, 2010.

[13] M. Woollard, A. Bannon, M. Ritchie, and H. Griffiths, “Synthetic aper-
ture radar automatic target classification processing concept,” Electronics
Letters, 2019.

[14] D. Muff, M. Stevens, D. Blacknell, M. Nottingham, C. Stevenson,
and H. Griffiths, “Detecting vibrating targets in fine resolution SAR
imagery,” in EUSAR 2018; 12th European Conference on Synthetic
Aperture Radar, June 2018, pp. 1–6.

[15] D. G. Muff, “Electromagnetic ray-tracing for the investigation of multi-
path and vibration signatures in radar imagery,” Ph.D. dissertation, UCL
(University College London), 2018.

[16] S. Papson and R. M. Narayanan, “Classification via the shadow region in
SAR imagery,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 48, no. 2, pp. 969–980, April 2012.

[17] M. Heiligers and A. Huizing, “On the importance of visual explanation
and segmentation for SAR ATR using deep learning,” in 2018 IEEE
Radar Conference (RadarConf18), April 2018, pp. 0394–0399.

[18] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 618–626.

[19] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,”
arXiv preprint arXiv:1312.6034, 2013.

[20] R. D. Chaney, A. S. Willsky, and L. M. Novak, “Coherent aspect-
dependent SAR image formation,” in Algorithms for Synthetic Aperture
Radar Imagery, vol. 2230. International Society for Optics and
Photonics, 1994, pp. 256–274.

[21] X. Mao, Y. D. Zhang, and M. G. Amin, “Low-complexity sparse
reconstruction for high-resolution multi-static passive SAR imaging,”
EURASIP Journal on Advances in Signal Processing, vol. 2014, no. 1,
p. 104, 2014.

[22] D. Malmgren-Hansen and M. Nobel-Jørgensen, “Convolutional neural
networks for SAR image segmentation,” in 2015 IEEE International
Symposium on Signal Processing and Information Technology (ISSPIT),
Dec 2015, pp. 231–236.

[23] C. Belloni, “Deep learning and feature-based classification techniques
for radar imagery,” Ph.D. dissertation, Cranfield University, UK, 2019.

[24] M. Jahangir, D. Blacknell, C. Moate, and R. Hill, “Extracting informa-
tion from shadows in SAR imagery,” in 2007 International Conference
on Machine Vision. IEEE, 2007, pp. 107–112.

[25] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” arXiv
preprint, 2017.


