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A B S T R A C T

Collection of Annual Average Daily Traffic (AADT) is of major importance for a number of applications in road
transport urban and environmental studies. However, traffic measurements are undertaken only for a part of the
road network with minor roads usually excluded. This paper suggests a methodology to estimate AADT in
England and Wales applicable across the full road network, so that traffic for both major and minor roads can be
approximated. This is achieved by consolidating clustering and regression modelling and using a comprehensive
set of variables related to roadway, socioeconomic and land use characteristics. The methodological output
reveals traffic patterns across urban and rural areas as well as produces accurate results for all road classes.
Support Vector Regression (SVR) and Random Forest (RF) are found to outperform the traditional Linear
Regression, although the findings suggest that data clustering is key for significant reduction in prediction errors.

1. Introduction

Annual average daily traffic (AADT) is a measure of road traffic
flow, defined as the average number of vehicles at a given location over
a year1 (Roess et al., 2011). AADT data are mainly collected by Auto-
matic Traffic Counters (ATCs) where passing vehicles are monitored on
a 24 h basis and are used for a number of applications in road transport
studies, such as accident prediction (Çodur and Tortum, 2015), GHG
emission estimation (Puliafito et al., 2015) and noise exposure esti-
mation (Morley and Gulliver, 2016). AADT values are also fundamental
for road construction, planning, maintenance and pavement design
studies (Leduc, 2008). However, ATCs are normally not integrated
throughout the road network. In the UK – as in most countries – ATCs
are only installed at selected locations on major roads covering only a
fraction of the network. Minor road counts are undertaken at selected
locations as well, although counting is conducted manually. Moreover,
manual counts for major and minor roads are undertaken seasonally
and adjustments to estimate AADT are applied (Department for
Transport, 2013).

Lack of traffic count measurements across the road network, underlines
the need for a method to estimate these values as accurately as possible at
all possible locations on the road network. To date, a number of attempts
has been made, although research on AADT estimation exhibits limitations
in several aspects. First of all, studies are usually limited within the

boundaries of urban areas (e.g. Doustmohammadi and Anderson, 2016; Kim
et al., 2016), or on particular types of roads (e.g. Caceres et al., 2012).
Secondly, most studies estimate AADT on major roads, while minor roads
are repeatedly excluded, with only a few studies incorporating them (e.g.
Apronti et al., 2016; Morley and Gulliver, 2016). Finally, the majority of
statistical models incorporates limited explanatory variables – so that many
potentially affecting factors are not taken into account.

In this paper we present a methodology, based on Machine Learning
and standard statistical methods, which can accurately estimate AADT
values for all road types (major and minor) for the whole road network.
We exclude motorways from the analysis considering that traffic on
these roads is not directly affected from its surrounding characteristics
(Eom et al., 2006; Zhao and Chung, 2001). The methodology, explores a
comprehensive set of driving factors, while addressing the identified
limitations of the modelling implemented so far. In order to do so, the
method extracts information from a number of spatial and non-spatial
datasets from different sources, with the datasets being manipulated in
a GIS environment. England and Wales in the UK are used as an em-
pirical study to demonstrate the methodology. The method can be used
to provide outputs sat different geographical scales, so it can be used
both for macro and micro analyses. As a word of clarification, it should
be noted, that AADT estimation studies can generally be divided into
current-year and future-year estimations (Castro-Neto et al., 2009),
with the former using data from existing traffic counters to develop
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1 AADT is given by (Leduc, 2008): = =AADTi j
TCi j

1
365 ,

24

365 , where TCi, j24 is the 24 h traffic count on road link i at day j.
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models capable of estimating AADT at locations where counts are not
available when new data are used (Selby and Kockelman, 2013) and the
latter incorporating historical traffic data, aiming to estimate short or
long term future AADTs at the same locations. Our approach focuses on
the former, where a model is developed and applied on data from ex-
isting traffic counters, so as to test its accuracy and potential application
on street segments where counters are not available.

The paper is presented in six sections. Section 2 provides a review of
the AADT estimation approaches found in the literature. Section 3 de-
scribes the datasets used, while section 4 presents the methodology for
creating the variables and estimating AADTs for all roads. Finally,
section 5 presents the results and section 6 concludes and discusses the
findings and potential future works to improve our approach.

2. Literature review

AADT estimation is not a novel concept with analyses conducted for
over 30 years now (e.g. Neveu, 1983; Fricker and Saha, 1987). To date,
a number of approaches has been tested using known traffic counts and
incorporating additional explanatory variables for prediction. In this
section, the most common modelling approaches as well as identified
characteristics potentially influencing traffic flows are presented.

2.1. AADT estimation models

In the literature, three principal approaches to estimate AADT can
be identified, namely Linear Regressions, Spatial Statistics and several
Machine Learning (ML) techniques. Linear regression models have been
the most popular in the literature, with applications ranging from the
very early to the latest stages of AADT estimation. For example,
Mohamad et al. (1998) applied linear regression with 11 predictors in
county roads in Indiana and Xia et al. (1999) used a linear regression
model from a sample of 450 count stations in Florida. Zhao and Chung
(2001) extended previous research by using a larger dataset, in-
corporating land use and accessibility variables in Florida. More re-
cently, Doustmohammadi and Anderson (2016) applied linear regres-
sion with land use data in two small and medium sized cities in
Alabama and Pun et al. (2019) applied a multiple linear regression
model in Hong Kong.

Evolution in the field of spatial statistics and development of spatial
datasets has led to application of spatial methods for AADT estimation.
In these models spatial location and correlation are taken into account
so that data points are weighted according to their distance from the
location where the dependent variable is to be estimated (Loyd, 2007).
For example, Wang and Kockelman (2009) applied Kriging interpola-
tion with Euclidean distances among traffic count stations in Texas
while Kriging with additional covariables (CoKriging) has been applied
by Eom et al. (2006), Selby and Kockelman (2013) and Kim et al.
(2016) in North Carolina, Texas and South Korea respectively. Geo-
graphic Weighted Regression (GWR) to estimate AADT has been used
by Zhao and Chung (2001) and Zhao and Park (2004) in Florida and
Selby and Kockelman (2013) in Texas.

More recently, application of Machine Learning (ML) algorithms has
reached AADT estimation studies. To our knowledge, applications are
mainly focused on production of AADT predictions based on historical
data, while ML use has been scarce for estimation at unmeasured lo-
cations. ML applications can be found in Shojaeshafiei et al. (2017),
where the K-STAR (K*) and Random Forest (RF) algorithms are applied
to estimate AADT in Alabama, and in Fu et al. (2017) where Artificial
Neural Networks (ANNs) are used to estimate AADTs in the Republic of
Ireland. The latter also appears to be the first study attempting to ex-
tend the study area to country level. Cluster analyses have been con-
ducted by Gecchele et al. (2011) in Venice, Italy and by Caceres et al.
(2018) for intercity roads in Spain, although the former focuses on
temporal pattern identification and does not take into account other

characteristics. Finally, Das and Tsapakis (2019) also apply RF, Support
Vector Regression (SVR) and K nearest neighbour (knn) in Vermont.

2.2. Drivers of road traffic flows

In order to estimate AADT several attributes have been explored by
various studies so that the explanatory variables (predictors) identified
in the literature can be classified in four major categories: roadway
characteristics, socioeconomic, land use, public transport and parking
facilities.

Roadway attributes, are related to various characteristics of the road
at the location where the traffic count point is placed. For example,
Zhao and Park (2004), Doustmohammadi and Anderson (2016) and
Shojaeshafiei et al. (2017) have incorporated road class and number of
lanes, while speed limits for street segments have been used by Selby
and Kockelman (2013) and Fu et al. (2017). Apronti et al. (2016) in-
corporate type of road surface to distinguish between paved and un-
paved roads in low volume roads in Wyoming, taking into account the
large number of unpaved roads in the state. The same study, also in-
corporates a highway accessibility variable applied to low volume roads
which is found in a number of previous studies as well (e.g. Mohamad
et al., 1998; Selby and Kockelman, 2013; Xia et al., 1999; Zhao and
Park, 2004), although applied to capture connectivity of higher class
roads with motorways. In addition, Sarlas and Axhausen (2014) take
into account road density in the vicinity of traffic count points. Other
studies have also introduced topological roadway characteristics for
traffic flow analysis, such as the degree (e.g. Jiang and Liu, 2009; Pun
et al., 2019) and several centrality measures (e.g. Gao et al., 2013;
Jayasinghe et al., 2015; Zhao et al., 2017).

Socioeconomic characteristics are the most common attributes used
in the literature, being taken into account in almost all studies.
Population of local settlements is considered by Fu et al. (2017) and
Selby and Kockelman (2013) and number of households and household
income is used by Eom et al. (2006). Apronti et al. (2016) used em-
ployment and per capita income, while other variables used in applied
studies include age of population, gender balance in the population and
car ownership (e.g. Cervero and Kockelman, 1997; Stead, 2001; Zhao
and Chung, 2001; Zhang, 2007; Aditjandra et al., 2012). Jahanshahi
and Jin (2016) state that car ownership influences traffic volumes, al-
though its influence varies across areas. However, one has to bear in
mind that car ownership is strongly connected to household income
(Silva et al., 2012).

Land use variables indicate the surrounding environment at location
where the count point is placed, with the majority of studies mainly
distinguish the count points at either being on urban or rural areas (e.g.
Eom et al., 2006; Fu et al., 2017; Zhao and Chung, 2001; Zhao and Park,
2004). However, other studies have introduced more detailed land use
classification. For example, Xia et al. (1999) classified land use by in-
troducing business, residential and fringe areas while Kim et al. (2016)
used commercial, residential, industrial and miscellaneous classifica-
tion. Apronti et al. (2016) refined this approach by introducing a more
detailed classification, considering several types of agricultural land
use, forest and recreational sites among others.

Public transport variables are almost entirely absent from AADT
studies with only Sarlas and Axhausen (2014) incorporating density of
public transport stops in the vicinity of traffic count points. On the other
hand, behavioural studies have investigated the impact of public
transport supply on mode choice and road traffic. Cervero (1994) finds
that residents near rail stations are more likely to use public transport,
which leads, to a reduction in private road traffic. Stead (2001) dis-
covered that bus frequencies impact travelled distances by individuals
and mode choice, albeit findings differ across geographic area.
Aditjandra et al. (2012) also conclude that public transport accessibility
reduces individual driving. The influence of parking availability and
costs in AADT is also absent from all studies we have seen in the
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literature. On the other hand, parking impact on mode choice and
therefore road traffic, is an established area of research in behavioural
studies, where Hess (2001) and Zhang (2007) conclude that availability
of parking encourages individual car use. In addition, there is a con-
siderable literature about the impact of parking as a pulling factor for
traffic, especially in those cases where free or low cost parking is
available, as these factors can generate traffic in the area where it is
provided and the surrounding areas (e.g. Arnott and Inci, 2006; Arnott
and Williams, 2017; Inci et al., 2017; Kelly and Clinch, 2009; Shoup,
2006).

3. Data

For the purposes of our research, a number of spatial and non-
spatial datasets have been extracted from different sources and ma-
nipulated within a GIS environment to facilitate feature design de-
scribed in section 4.1. Selection of specific datasets is based on the
identified factors in section 2.2, although not all variables used in the
literature are available for the UK. For example, number of lanes and
speed limits are not provided in the spatial road network dataset. As
incorporating more variables into a Machine Learning algorithm has
the potential to improve performance (Domingos, 2012), we use vari-
ables, potentially affecting AADT, additional to those considered in the
literature so far.

Traffic count points were derived from the UK's Department for
Transport (DfT) and consist of approximately 19,000 geocoded count
points in England and Wales, classified as Major (Motorways and A
roads) and Minor (B, C and U roads). The count points provide in-
formation about the number of vehicles (AADT) driving at that parti-
cular point over the course of 2016. It is important to mention that the
counts further distinguish among vehicle types (Two-wheeled motor
vehicles, Cars and Taxis, Buses and Coaches, Light and Heavy Goods
Vehicles). This information is currently not used in this paper although
it is useful as part of further research discussed below. For this dataset,
we further check for potential missing information and exclude faulty
counters where identified. In Fig. 1, we show the average and the range
of AADT (total number of motorized vehicles) for ‘A', ‘B', ‘C' and ‘U'
roads.

The Integrated Transport Network (ITN) and ITN Urban Paths
(ITNUP) spatial datasets have been extracted from Ordnance Survey

(OS) and consist of the entire road network in Great Britain (GB). The
ITN dataset contains information for all roads and road junctions, while
the ITNUP dataset contains all man-made footpaths, subways, steps and
footbridges as well as cycle paths in all urban areas of Britain.

Socioeconomic characteristics are derived from the Office for
National Statistics (ONS), including information about population, po-
pulation density, workplace population, workplace density, number of
households and median income at the Lower Super Output Areas
(LSOAs)2 level. LSOAs are spatial datasets derived from OS where the
socioeconomic characteristics and the number of registered cars and
vans – derived from the Office for Low Emission Vehicles (OLEV) – are
matched.

Urban area polygons are spatial datasets derived from OS that
designate urban area's boundaries as defined by Ministry of Housing
Communities and Local Government and Defra report (Bibby and
Brindley, 2014) and used to indicate whether a point is located in an
urban or rural environment. Geolocated bus stops and bus stations as
well as Train and Light Rail stations3 have been derived from the Na-
tional Public Transport Access Nodes (NaPTAN) database. Finally, land
use data have been extracted from various sources. First, a list of
rateable values for non-domestic properties in England and Wales is
provided by the Valuation Office Agency (VOA). The VOA dataset
contains approximately 2.5 million records classified in over 100
classes based on a coding system, while addresses and postcodes for
most of the properties are also included. This dataset had to be geo-
coded and existing categories were reclassified to 17 new classes, so as
to reduce complexity. The new classes are shown in Table A2 in the
Appendix. Moreover, considering that ports and airports have an im-
pact on the transport network of their surrounding area (Hesse, 2013),
their locations are derived from the British Port Association and the
Civil Aviation Authority respectively. Finally, electric vehicle charging

Fig. 1. Maximum (left), average (centre) and minimum (right) AADT values for all road types.

2 Approximately 35,000 areas designed by the Office for National Statistics
(ONS) for England and Wales, with population minimum of 1000.

3 This dataset includes all National Rail as well as all local metro, tram and
light rail system stations such as London Underground, London Overground,
Docklands Light Railway (DLR), London Tramlink, Tyne and Wear Metro
(Newcastle), Merseyrail (Liverpool), Manchester Metrolink, NET (Nottingham),
Supertram (Sheffield), West Midlands Metro (Birmingham - Wolverhampton),
West Yorkshire Metro (Leeds) and Blackpool Tramway.
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point locations are taken from OLEV. Considering location availability,
we were able to map the land use datasets. A summary of all used
datasets is shown in Table A1 in the Appendix.

4. Methodology

To estimate AADT, three major steps are considered. First, we use
the data described in section 3 to design the variables to be used as
model inputs. All variables are designed using GIS. Second, we feed the
variables into the selected algorithms and use validation metrics to
assess model's performance. Finally, we calculate the weighted average
errors for each road type and across the road network.

4.1. Feature design

The initial step in our approach is to consider each point's spatial
position and incorporate characteristics of the point's environment and
location. We first want to take into account that urban areas generate
and attract more activity and that the larger the area the more transport
is generated (Caceres et al., 2018). Second, we need to bear in mind
that the urban areas dataset contains all build up areas whether they are
large urban centres or small towns, likely to exhibit different traffic.
Finally, we also want to account for points marginally contained within
or marginally excluded from the urban area polygons. In order to ad-
dress these three issues, for each point we determine whether it is either
urban or rural and also calculate four distance measures. (i) distance
from urban area (ii) distance from major urban area4 (iii) distance from
urban area centroid5 and (iv) distance from major urban area cen-
troid4,5. Distances to urban areas are calculated as straight lines (Eu-
clidean distances) from each point to the nearest edge of the nearest
urban/major urban area polygon, while for centroids, distances are
calculated as straight lines from each point to the centroids.

In terms of roadway characteristics, we introduce two indicators for
toll roads6 and ring roads and also take into account the “road nature”
related to each count point, which demonstrates whether a point is
located on a single carriageway, double carriageway, slip road,
roundabout as indicated by OS and either Trunk7 or Principal road as
indicated by the Department for Transport (2014).

In terms of variables reflecting the characteristics of an area, rather
than a single point, we follow the work of Koperski et al. (1998) based
on the concept of service areas8 which are created around each point.
The service areas are of six different sizes (500m, 800m, 1000m,
1600m, 2000m and 3200m) for all road types as shown in Fig. 2. We
use the concept of service area in the case of land use, accessibility to
motorways and some of the public transport characteristics. Service
areas are overlaid with the VOA and charging points datasets as well as
with the ports and airports datasets, so as to assess land use within each
area. Accessibility to motorways which is associated with higher traffic

volumes (Apronti et al., 2016; Zhao and Park, 2004), is also assessed by
overlaying service areas with motorway junctions. Bus stops and bus
stations are treated the same way.

Finally, we take into account the socioeconomic characteristics –
already available at LSOA level – as well as train and light rail stations.
For the latter we first utilise the ITNUP9 dataset and create 800m
service areas around each train station10 and then we calculate the
proportion of each LSOA covered by station service areas, so as a station
accessibility attribute is also available at LSOA level. Lastly, we overlay
count point service areas with LSOAs and introduce socioeconomic and
station accessibility characteristics for each count point. Specifically,
we incorporate the mean values for station accessibility, population
density, workplace density, income and workplace plus population
density, the last variable being used in Fu et al. (2017). In addition, the
summed values of population, workplace population, households and
registered vehicles are also calculated.

The feature design process generates 41 independent (33 numerical
- 8 categorical) and the dependent variable (AADT). The variables are
summarised in Table 1.

4.2. AADT estimation

Considering the large geographic extent and mixed characteristics,
we expect AADT values and other variables to exhibit large variations
across our study area. For example large differences are expected be-
tween urban and rural areas (Morley and Gulliver, 2016). For this
reason, we first apply a clustering algorithm to take into account (dis)
similarities among count points and their surroundings and group
points with similar characteristics. Then, we apply three models,
namely standard multivariate linear regression, Random Forests (RF)
and Support Vector Regression (SVR) within each cluster and validate
the results. In order for the models to be comparable based on the va-
lidation metrics, we feed all designed features to all models without
undertaking further statistical tests (e.g. checking for collinearity or
feature importance). That is, if one model is able to automatically
handle complexities within the dataset, we consider this as an asset of
the particular model. The process is applied for each road class (A, B, C,
U) and each service area individually. Finally, for each road type we
select the service area where the algorithm resulted into the lowest
errors and merge the selected points to construct the full dataset, so as
we can detect the optimal service area size for each road type and point
location. That allows us to identify the optimal distance where a par-
ticular road is influenced by its surroundings.

4.2.1. Clustering
We use the K-prototypes (Huang, 1998) algorithm, suggested by He

et al. (2006), which integrates the K-means and K-modes processes for
numeric and categorical data respectively (Huang, 1997a) to cluster
mixed type data11 – see list of variables in Table 1. K-prototypes,

4 We take into account the six largest urban agglomerations in England and
Wales as defined by Pointer (2005). These areas are: The Greater London, West
Midlands (Birmingham), Greater Manchester, West Yorkshire (Leeds and
Bradford), Tyneside (Newcastle and Sunderland) and Liverpool Urban Areas.

5 Where centroid is defined as the geometric centre of each urban area
polygon.

6 The “toll road” feature also includes the London Congestion Charge Zone,
where all count points within the zone are considered to be toll roads.

7 Trunk roads indicate long distance roads, usually connecting cities and
having heavy traffic flows (Department for Transport, 2014)

8 This is an improvement on the work of Zhao and Chung (2001), Zhao and
Park (2004), Sarlas and Axhausen (2014) and Doustmohammadi and Anderson
(2016) which uses buffers of different radii. Service areas construct buffers by
taking into account the street network instead of Euclidean distances. We
consider this measure to be more suitable for our case study, since it can cap-
ture the actual predefined distance a vehicle has to cover from/to the traffic
count point.

9 Notice that the use of ITNUP indicates that access to train stations can be by
foot as well, using the footpaths, subways, steps, footbridges and cycle paths,
although this data is available for urban areas only. If a train station is located
at any rural area, we use the ITN instead.

10 This threshold is considered as the standard distance one would consider
walking to reach a station in most research (e.g. Cardozo et al., 2012; Gutiérrez
et al., 2011)

11 Our choice has been dictated by the fact that most clustering algorithms,
for example the K-means, do not take into account categorical data, as based on
Euclidean distance. Alternatives such as the chi-square (Greenacre &
Primicerio, 2015) have been found to perform poorly (Faith et al., 1987;
McCune and Grace, 2002). Kaufman and Rousseeuw (1990) advocates the use
of the K-medoids algorithm incorporating the Gower's similarity coefficient
(Gower, 1971) although the computational cost when using this type of simi-
larity metric increases and it is therefore unsuitable for large datasets (Huang,
1998).
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instead of taking samples from the dataset, uses the whole dataset and
thus it does not suffer from sampling bias and it is less computationally
intensive compared to K-medoids or various Hierarchical Clustering
algorithms that can handle mixed variable types. For numerical

variables, K-prototypes uses squared Euclidean distances as in K-means,
while for categorical variables, the dissimilarity measure is defined by
the total mismatches of the attribute categories of two objects (Huang,
1998) so that the overall distance metric is equal to the squared

Fig. 2. Count point service areas.

Table 1
Independent variables.

Variable Description Type

1. Urban/Rural A count point's surrounding environment Categorical
2. Distance to Urban Area The straight Euclidean distance from a count point to an urban area polygon edge Numerical
3. Distance to Major Urban Area The straight Euclidean distance from a count point to a Major urban area polygon edge Numerical
4. Distance to Urban Area Centroid The straight Euclidean distance from a count point to the geometrical centre of an urban area polygon Numerical
5. Distance to Major Urban Area Centroid The straight Euclidean distance from a count point to the geometrical centre of a major urban area polygon Numerical
6. Toll Road Whether or not the count point is located at a toll road Categorical
7. Ring Road Whether or not the count point is located on a ring road Categorical
8. Road Nature Whether the count point lies on a single or dual carriageway, slip road or roundabout Categorical
9. Road Category Whether the count point lies on a Primary or Trunk road Categorical
10. Junction Accessibility Whether the road where the count point is located has access to a motorway based on the specified service area Categorical
11. Charging Points The number of charging points within each service area Numerical
12. Ports Whether the road where the count point is located has access to a port based on the specified service area Categorical
13. Airports Whether the road where the count point is located has access to an airport based on the specified service area Categorical
14. Bus Stops The number of bus stops within each service area Numerical
15. Bus Stations The number of bus stations within each service area Numerical
16. Train Accessibility The adjacent LSOAs' average train station coverage Numerical
17. Population The total population of a count point's adjacent LSOAs Numerical
18. Population Density The average population density of a count point's adjacent LSOAs Numerical
19. Workplace Population The total workplace population of a count point's adjacent LSOAs Numerical
20. Workplace Population Density The average workplace population density of a count point's adjacent LSOAs Numerical
21. Workplace plus Population Density The average workplace plus population density of a count point's adjacent LSOAs Numerical
22. Income The average median income of a count point's adjacent LSOAs Numerical
23. Households The total number of households of a count point's adjacent LSOAs Numerical
24. Registered Vehicles The total number of registered cars and vans of a count point's adjacent LSOAs Numerical
25–41. VOA (17 features – Table A2) The total number of VOA elements in the predefined count point's service area Numerical
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Euclidean distance to measure (dis)similarity for numerical variables
and the matching (dis)similarity for the categorical variables,

= +
= =

d X Y x y x y( , ) ( ) ( , )
j

m

j j
j

m

j j
1

2

1

r c

(1)

where X and Y are the two mixed-type objects, mr and mc are the
numbers of numeric and categorical attributes respectively and γ is a
weight to avoid favouring either type of attribute (Huang, 1997b). δ
indicates the dissimilarity (mismatches) for the categorical variables,
where

=
=

x y
x y
x y

( , )
0 ( )
1 ( )j j

j j

j j (2)

We also transform the data to address the problem of different
measurement units and ranges. Data transformations make features
dimensionless to overcome the problems resulting from the dependence
on different measurement units and the deviations among variable
variances that affect cluster quality and formations (Rokach and
Maimon, 2015; Zhang et al., 2019) so that each variable can play an
equal role in the analysis (Greenacre and Primicerio, 2013; Han et al.,
2012; Mohamad and Usman, 2013).12

In terms of the specific transformation, we apply the min-max
normalisation, the most common form of normalisation, which sets all
variables within the range of 0 to 1 based on:

=x x x
x x

min( )
max( ) min( )

i

(3)

where min(x) and max(x) are the minimum and maximum values of
each variable respectively. We also bear in mind that the parameters
thought to be more relevant in separating the groups should be assigned
a higher influence factor (Hastie et al., 2011), i.e. weights13 to raise
their importance of certain variables which are considered more critical
in cluster formation (Gebotys and Elmasry, 1989; Hummel et al., 2017).
Weights can be assigned by multiplying the variables with a constant
(Akhanli and Hennig, 2017; Hammah and Curran, 1999). In our case,
we want to form clusters where AADT values are similar and in-
dependent variables are relatively correlated with the dependent within
the same cluster, so as to have accurate predictions. We want the de-
pendent variable to have a high enough weight (range) to influence the
formation of the cluster, although without dominating it.14 Hence, we
follow Bacher et al. (2004) who apply random lower weights to vari-
ables separating the clusters to achieve equal influence and similarly,
Opsahl and Panzarasa (2009) who also assign random weights between
1 and 10 to links (edges) on their work on clustering networks. That is,
we change variable ranges and assign weights of 1 and 10 to the

independent and dependent variables respectively.15 We achieve that
by implementing a generalised version of the min-max standardisation
above which can be used to transform a range of values into another
[α,β], i.e16.

= +x x x
x x

a( ) min( )
max( ) min( ) (4)

with α=1 and β=10 we can get the required range. In the case of the
AADT, we set values within the range of 1 to 10 and do not consider the
value of 0 for the dependent variable, since there are no observations
with zero value.

As the K-prototypes algorithm requires to define the number of
clusters (K) beforehand clustering is implemented, we employ the
“elbow” method which is considered as the optimal since it is the only
one considering mixed data types.17 The elbow method examines the
percentage of variance as a function of the number of clusters
(Bholowalia and Kumar, 2014), the idea being that starting with K=2
and increasing the number of clusters, at some point the marginal gain
drops dramatically and gives an angle in the graph (Kodinariya and
Makwana, 2013) indicating the optimal K. When testing 20 clustering
processes, related to 4 road types and 6 service area sizes, the optimal
number for K ranged between 4 and 6 depending on the case examined
each time. For clarity reasons, we select five clusters for all cases, e.g.
Fig. A1 in the Appendix.

4.2.2. AADT estimation
We first randomly split the dataset into two groups, 80% of the

observations for training and 20% for testing and we use the training
dataset to implement three different models, namely 1) standard mul-
tivariate linear regression (OLS), 2) Random Forest (RF) and 3) Support
Vector Regression (SVR).

The multivariate linear regression model is as follows:

= + + + +AADT x x..i i j ij i0 1 1 (5)

where: AADTi is the dependent variable at the ith observation, i=1, …,
n, xij is the value of the jth independent variable in the ith observation,
j=1, …, m, β0 is a constant term, βj is the regression coefficient for the
jth independent variable, εi is the error term and m is the number of
independent variables. Random Forest (RF) is a machine learning
technique, used for classification and regression, introduced by
Breiman (2001). RF are a collection of decision trees, an example of so-
called ensemble methods, based on bootstrapping (Efron, 1979) and
bootstrap aggregation (Breiman, 1996). The RF regression prediction is
given by:

=
=

f
B

T x1 ( )rf
B

b

B

b
1 (6)

where: B is the number of trees and Tb(x) is the bth random forest tree
grown from b bootstrapped data. Here, we use 500 trees and 5 variables
for the forest to sample at each split. Finally, support Vector Regression
(SVR) is the extension of Support Vector Machine (SVM) classifier
(Cortes and Vapnik, 1995) proposed by Drucker et al. (1997). SVR aims

12 Large variable range tend to have large effect on the resulting clustering
structure (Kaufman and Rousseeuw, 1990; Mohamad and Usman, 2013). As
variable measurement units and their respective ranges play a significant role in
the cluster formations, methodological guidance on the use of transformation is
very clear-cut in the literature, as applying data transformation is considered
essential for most practical applications to enhance performance (Bishop,
2013). In particular, numerical variables should be transformed to scale their
effect on the results (Larose, 2005) and conventional distance measures (e.g.
Euclidean) should not be used without applying transformations on the data
(Mohamad and Usman, 2013).

13 The weights can be unequal among the variables to define their influence
(Friedman and Meulman, 2004) and can also be zero if they do not possess any
important information (Hammah and Curran, 1999).

14 Considering we have 41 independent and 1 dependent features of different
types and ranges, applying the K-prototypes algorithm without transforming
the data, results into clusters dominated by the independent variables only,
while the same output is observed when all variables have equal influence. On
the other hand, transforming only the predictors, results into clusters domi-
nated by AADT values, since the ranges are extremely different.

15 We acknowledge that some variables do not directly affect all vehicles;
hence their contribution to AADT may be questionable (e.g. charging points are
only useful for electric vehicles). However, we do not examine the contribution
of each variable to different types of vehicles, but to AADT for all motorised
vehicles. Moreover, we focus on the accurate estimation and model comparison,
thus we have chosen to give all independent variables the same weight, so as to
be able to draw rational inferences when comparing models.

16 As it can be seen, the required ranges are set by applying data transfor-
mations and consequently weighting is achieved without multiplying by a
constant.

17 Other methods include the “Silhouette” method, the Calinsky – Herabasz
Criterion, Bayesian Information Criterion (BIC) and Akaike Information
Criterion (AIC) among others.
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Fig. 3. Clusters for ‘A' (top left), ‘B' (top right), ‘C' (bottom left) and ‘U' (bottom right) roads.
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to find a function f(x) where predicted values are at most ε from the
observed ones. The general SVR equation for non-linear predictions is
given by (Basak et al., 2007):

= +
=

f x kx x b( ) ( ) ,
i

N

i i i
1 (7)

where: αi, αi∗ are the Lagrange multipliers, k〈xi,x〉 is the kernel18 and b
is the bias. We use the radial basis Kernel and by replacing in (7) we
have:

=
=

y a a x x( ) exp( )
i

N

i i i j
1

2

(8)

where: = 1
2 2 and set to 0.1.

4.2.3. Validation
Prediction accuracy is validated using the test set comprising 20% of

the dataset. We use two validation measures, the Mean Absolute
Percentage Error (MAPE)

=
=

MAPE
n

A F
A

100

t

n
i i

i1 (9)

where: Ai is the observed value, Fi is the predicted value and n is the
number of observations, and the Root Mean Square Error

= =RMSE
F A
n

( )t
n

i i1
2

(10)

4.2.4. Weighted average
Weighted average is calculated on the lowest identified MAPEs for

each model j across clusters i for each road class c,

=
=

WMAPE
AADT

AADT
MAPEj c

i

K
i c

i c
i j c,

1

,

,
, ,

(11)

where: WMAPEj, c is the weighted average MAPE for model j in road
class c, AADTi, c is the total traffic for cluster i at road class c, MAPEi, j, c
is the MAPE for cluster i, model j and road class c and K is the number of
clusters. Then, we similarly calculate the overall weighted average
MAPE across road types for the whole road network for each model j,

=OWMAPE AADT
AADT

WMAPEj
c

c
j c,

(12)

where: AADTc is the total traffic counted for road class c. Similarly,
we also calculate the weighted values for the corresponding RMSEs.

5. Results

As the first result from this study, it is interesting to comment on the
estimated clusters, as they exhibit similar patterns across road types.
This is shown in Fig. 3, where the clusters and related optimal service
area sizes are colour-coded. In particular, for each of the four road
types, i.e. A, B, C and U

- cluster 1 (red) contains points located on roads where traffic counts
tend to be higher, such as ring and trunk roads in the case of ‘A' road
class and evenly split between urban and rural areas. For ‘B', ‘C' and
‘U' roads points are placed at locations of higher transport sig-
nificance, almost exclusively located in urban areas;

- cluster 2 (yellow) includes relatively high traffic values with points
in ‘A' roads located both in urban and rural environments, while for
other road types this cluster is mainly formed by urban locations;

- cluster 3 (blue) consist of medium AADT values with points for all
road types located within urban areas, significantly concentrated in
city centres. In particular, ‘A' road points are observed within de-
signated major urban areas as well as the city centres of some
medium and small urban centres;

- cluster 4 (white) also contains medium AADT, although usually
smaller than the values in cluster 3. These points are mainly located
in suburban areas of large urban areas as well, but also in the centre
of smaller settlements. Some of the points are also observed in rural
areas, especially in the case of lower class roads;

- finally, cluster 5 (green) contains the lowest AADT values which are
normally located in rural areas and the outskirts of urban centres.

As an additional result, our work casts light on the performance of
different methods across the five clusters formed for each of the four
road types. Fig. 4 displays both the MAPEs and RMSEs for the 120
combinations of clusters and road types for each of the three methods
implemented in this study.

As one can see in the Fig. 4 and Table 2, the two Machine Learning
methods are fairly equivalent and outperform the regression method. In
the case of the SVR, the MAPE ranges between 2% (cluster 3 in C roads)
and 276.9% (cluster 5 in C roads) while the MAPEs achieved by RF
range between 2.2% (cluster 3 in B roads) and 288% (cluster 5 in C
roads). Among the three methodologies we implemented, linear Re-
gression exhibits the highest MAPEs in almost all cases, with values
falling between 2.1% (cluster 3 in C roads) and 324.8% (cluster 5 in C
roads). Linear Regression also produce a very big error in cluster 1 of U
roads, probably due to the very small number of observations in this
cluster (31 points – 25 for training and 6 for testing). Considering this
result unreliable, we exclude it from Fig. 4, although it is interesting to
see that the SVR performs well also in this case despite the very small
number of observations. Similar conclusion emerges when assessing the
performance of the methodologies implemented in this study based on
the RMSEs, therefore adding robustness to the conclusion that the two
Machine Learning methods are fairly equivalent and outperform the
regression method (Table 2). It is worth mentioning however that RF
produces lower RMSE than SVR in the case of cluster 1 – ‘A' roads which
is by far the combination with the highest level of traffic (Table A3).
Linear Regression continues to produce the largest errors and again
results into very large error in cluster 1 at U roads (not shown in Fig. 4).

One can also appreciate from Fig. 4 that the predicting patterns, as
measured by the MAPE and RMSE are similar for all models, with
higher MAPEs usually observed in cluster 5 and higher RMSEs in cluster
1 across road types. This is however a simple reflection of the fact that
cluster 5 comprises observations with relatively low traffic which
translates in higher MAPE, while cluster 1 contains cases with high
level of traffic so that the RMSE (which tends to be influenced by the
level of the observations) is corresponding high. The range of the RMSE
values across clusters make comparison difficult – as an example it goes
from about 5000 in the case of cluster 1 to as a low as 55 in the case of
cluster 5 in C roads. The relatively small values for most combinations
of clusters and roads in Fig. 4 shows that the 3 methods produce similar
results when measured in terms of vehicles per day, in a way that they
may all satisfy users' needs unless they focus on specific types of roads
and traffic flows for which a specific method can work better than
another.

This is confirmed by Table 2, which presents MAPEs and RMSEs,
first averaged across clusters and eventually across road types to obtain
an overall MAPE and an overall RMSE for each model. Traffic volumes –
presented in Table A3 – are used throughout as weights in the averaging
process. One can see that MAPE is highest for ‘C' and ‘U' roads and
smaller for ‘A' and ‘B' roads with the lowest ones observed at ‘B' roads.
Moreover, one can see more clearly that SVR is the best performing
model when measured based on the weighted MAPE, while regression
has the highest MAPE for all road types. SVR again outperforms RF in
‘B', ‘C' and ‘U' roads, with the MAPE of SVR being 0.2% lower than RF in

18 The kernel refers to a function that maps data from one space to another
higher dimensional feature space (Hastie et al., 2011)
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Fig. 4. (a) MAPE (left) and RMSE (right) for ‘A' roads.
(4b) MAPE (left) and RMSE (right) for ‘B' roads.
(4c) MAPE (left) and RMSE (right) for ‘C' roads.
(4d) MAPE (left) and RMSE (right) for ‘U' roads.
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‘B' roads and increasing at ‘C' and ‘U' roads respectively, e.g. 27% versus
29.3% in the case of ‘U' roads. For ‘A' roads, however, the performance
of SVR and RF is essentially identical and the gap of these two methods
with the linear regression shrinks to 0.8 percentage, as is the overall
MAPE with SVR performing slightly better than RF but only by 0.01.

In terms of RMSEs, it can be seen that the errors are higher for
higher class roads and decrease for the lower class roads as expected.
This same expected pattern is also observed within the clusters of each
road class for the unweighted errors as shown in Fig. 4 and Table 2.
However, RMSE values are lower in ‘B' compared to ‘C' roads where
AADT values are usually lower as shown in Fig. 1. The averaged RMSEs
show that errors are again higher for Linear Regression and are also
balanced between SVR and RF, with RF resulting to lower errors half of
the time. However, observed differences are small and the mean dif-
ference between RF and SVR is 217 vehicles across all road types in
favour of RF.

As a final result, we are able to elaborate on pattern of the optimal
service areas, i.e. the area producing the lowest MAPE, across clusters
and road types, as shown in Fig. 5. Here, a clear pattern is evident for
road classes ‘B' and ‘C', where the service areas are small and similar for
clusters 1 to 4 and increase at cluster 5. On the contrary, the optimal
service areas for ‘U' roads follow the opposite pattern starting at large
service area for cluster 1 and gradually decreasing to reach the
minimum (500m) for cluster 5. Service areas for ‘A' roads are of
medium size and also minimise for clusters 3, 4 and 5. In addition it can
be observed that small to medium service areas dominate the figures,
with only two large service areas observed at ‘U' roads cluster 1
(3200m) and ‘B' roads cluster 5 (2000m).

In addition, one can observe that clusters 3 and 4 fluctuate around
small to medium service area sizes and tend to increase as the road class
decreases in significance (from ‘A' to ‘U'), in contrast with cluster 2
where the service area decreases together with the respective road
class. Cluster 1 exhibits an increasing pattern and cluster 5 – re-
presenting the “rural” areas – is optimised at small service areas for
road classes ‘A' and ‘U' and at higher ones for ‘B' and ‘C' roads.

6. Discussion

This study has focused on the development of a methodology to
accurately and effectively predict AADT. The procedure has been ap-
plied to AADT figures collected for all roads in England and Wales,
therefore providing a rigorous and comprehensive test of the process
outlined in this article. We started by including several variables pos-
tulated to affect traffic flows, based on results from previous studies in
the literature, as inputs into predictive models. These variables portray
a detailed representation of roadway, land use, socioeconomic and
public transport characteristics. Specifically, utilisation and manipula-
tion of spatial data within GIS, facilitated feature design and the ana-
lysis, so as to incorporate related socioeconomic, land use and roadway
attributes – used as AADT predictors – which are directly associated
with the count points' spatial locations.

The output from our models has been assessed using statistical va-
lidation metrics normally employed in the literature, in particular
MAPE and RMSE. As the focus of our approach is on prediction, the
metrics above were computed on the test dataset, i.e. 20% of the
sample, we had available. The fact that our choices conform to the
standard in the literature both in terms of inputs and metrics to assess
the output make our results even more compelling, as we are able to
deliver a remarkable accuracy of the AADT predictions obtaining out-
of-sample MAPEs as low as 2%. This contrast markedly with the results
arising from the applications in the literature, where in some cases
lowest errors are 50% for similar road types (e.g. Selby and Kockelman,
2013) or ranging between 39% and 400% in others (Wang et al., 2013).

We attribute the significant improvement in accuracy to two inter-
related aspects of our approach: data transformation and clustering.
First of all, the clustering algorithm revealed groups where data exhibit
similar characteristics while the application of data transformations
allowed the clustering algorithm to create groups where both similar
AADT values and related characteristics have been taken into account.
This can be concluded both from section 5 where the clusters are pre-
sented and even more so from Fig. 6 where points in city centres are

Table 2
Original and weighted MAPEs and RMSEs.

Road class Cluster Service area MAPE (%) RMSE (vehicles per day)

OLS RF SVR OLS RF SVR

A Roads 1 – red 800 7.7% 6.7% 6.9% 10,418 8987 10,410
2 – yellow 1600 4.5% 4.3% 4.4% 1720 1652 1718
3 – blue 500 32.3% 32.8% 31.3% 1339 1316 1334
4 – white 500 12.0% 11.9% 11.8% 752 742 746
5 – green 500 38.2% 34.1% 35.2% 628 578 620
Weighted Average 15.2% 14.4% 14.4% 2429 2193 2423

B Roads 1 – red 800 8.6% 5.0% 2.7% 2636 1295 869
2 – yellow 1000 3.2% 2.3% 2.5% 440 334 376
3 – blue 800 2.5% 2.2% 2.1% 207 166 177
4 – white 800 3.3% 3.2% 3.1% 105 94 92
5 – green 2000 47.8% 43.3% 46.6% 163 149 151
Weighted Average 7.4% 5.9% 5. 7% 815 471 381

C Roads 1 – red 500 16.5% 7.7% 7.8% 5002 2609 2888
2 – yellow 800 3.9% 3.6% 3.3% 339 293 292
3 – blue 1000 2.1% 2.3% 2.0% 85 86 77
4 – white 800 87.5% 87.0% 78.1% 87 73 68
5 – green 1600 324.8% 288.0% 276.9% 73 56 61
Weighted Average 37.1% 31.8% 30.3% 1408 796 863

U Roads 1 – red 3200 368.7% 10.6% 4.6% 58,650 1210 768
2 – yellow 800 3.9% 3.9% 3.6% 216 210 211
3 – blue 1000 21.7% 19.6% 18.4% 72 64 65
4 – white 1000 71.4% 67.3% 64.0% 31 27 26
5 – green 500 146.1% 144.0% 134.6% 42 34 33
Weighted Average 75.2% 29.3% 27.0% 7327 235 181

ALL ROADS Overall Weighted Average 15.69% 14.48% 14.47% 2413 2119 2336
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Fig. 5. Optimal service areas by road class (left) and cluster (right).

Fig. 6. A road clusters for Greater London (left) and Greater Manchester (right).
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clustered together, indicating areas with similar characteristics (e.g. a
large number of shops and businesses) and picking up underlying
roads.19

However, error deviations among the models, clusters and road
types presented in Table 2, show that the models' performance – in
terms of MAPE – is dependent on two conditions. First is the value of
the dependent variable (i.e. the amount of traffic per traffic count
point) within each cluster, where high MAPEs are observed for clusters
with low AADT values – usually clusters 4 and 5 – in most cases.
Nonetheless, this expected outcome is due to the fact that the estimated
variable can have values very close to zero (Caceres et al., 2018) and
consequently even slight deviations would exaggerate the error. For
example, a misprediction of 10 vehicles would have a different impact
on MAPE for an observed value of 100 compared to an observed value
of 100,000. However, the exception of the unexpectedly high MAPE in
cluster 3 for ‘A' roads, can be due to the characteristics of the areas
where the points are located. As it is shown in more detail in Figs. 6 and
7 the points are located at city centres of large and major urban areas,
usually associated with diverse land use and complexity. Thus, this
cluster can be further disaggregated to improve accuracy (Greenacre
and Primicerio, 2013).

Second condition to affect models' performance is the number of
data instances (i.e. sample) within each cluster, particularly in the case
of Linear Regression. Specifically, Linear Regression results into very
high MAPE for the smallest sample across the data set (31 points at

cluster 1 – ‘U' roads) and also is over 9% higher compared to RF and
SVR for the second smallest sample (59 points at cluster 1 – ‘C' roads)
and 3.5% - 6% higher for the third smallest sample (86 points at cluster
1 – ‘B' roads). Sample effect is also noticeable at the RMSEs, where
Linear regression again produces very large error in cluster 1 at ‘U'
roads, while all models also result into high RMSEs at cluster 1 at ‘C'
roads even compared with cluster 1 – ‘B' roads where traffic counts are
higher.

It is important to mention that sample size affects overall model
performance. For example, models perform similarly – and potentially
more accurately – in the case of ‘A' roads, including most of the traffic
count points comprised in our sample (i.e. approximately 15,000 out of
19,000 points). As ‘A' roads account for over 95% of the total traffic in
our database – see Table A3 – it turns out that the overall MAPE is fairly
similar to the MAPE for ‘A' roads, to the great benefit of linear regres-
sion in terms of comparison across methods. That is, if one is to take
into account the traffic values estimated by DfT (Table A4) it appears
that ‘A' roads account for 57%, while ‘C' and ‘U' roads combined –
where errors are higher – account for 34% of the total traffic. Conse-
quently, MAPEs weighted based on Table A4 results in only 8% higher
error for OLS compared to RF (27.2% versus 19.2%) and 8.6% higher
error compared to SVR (27.2% versus 18.6%). This leads to the con-
clusion that again SVR performs better than RF and Linear Regression
performance is overstated by the sample.

As a final remark, we look into cluster 1 at ‘A' roads. From Fig. 8 it
can be observed that the points clustered here are mainly associated
with ring roads (e.g. north circular in London – also in Fig. 6), mo-
torway extensions (e.g. part of A23 from Crawley to Brighton – Fig. 9)
as well as roads connecting urban centres – usually trunk roads – such

Fig. 7. Cluster 3 - ‘A' Roads. Fig. 8. Cluster 1 - ‘A' Roads.

19 In the case of road, the north circular (the ring road in north London) is
clearly visible among the red dots.
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as the A19 (Fig. 9). Moreover, 96% of these points in this cluster are
double carriageways, 15% ring roads and over 10% have an access to
motorways within 800m. In addition, from Table A3 it can be seen that
points in this cluster have an average of approximately 75,000 vehicles
per count point, while for motorways (not included in our analysis)
there are approximately 74,000 vehicles per point. This leads to the
conclusion that count points included in this cluster can potentially
have strong similarities with motorways, indicating that traffic on these
roads is not necessarily related with the road's surrounding environ-
ment. With regards to this point it can be concluded that road classes
can be confused specifically when data from DfT and OS – or other
sources – are combined. For example, busy roads based on the one
source may be classified as minor according to the other. Consequently,
roads should be classified based on the traffic and not ownership as it
has also been pointed out by Xia et al. (1999) who faced similar issues.

7. Conclusions and further research

Based on the results presented here, further research requirements
have become evident. First of all, the extension of the modelling ap-
proach proposed in this article require the identification of ways to
classify points with unknown traffic (AADT) measurement to existing
clusters. Considering that AADT values are not available, methods to
classify data with missing variables need to be explored – perhaps by
identifying the shortest distance from the new points to the centre of

cluster centroids. One can also identify the variables with the smallest
degree of overlap across clusters, and use this limited set of variables in
the process of allocating new points to existing clusters. For K-proto-
types – and similar clustering algorithms such as the K-means – clus-
tering centroids and the corresponding variables can be identified and
consequently, distances of new points to existing centroids can easily be
computed. The identification of distinctive variables, implies of course
further investigation of the clusters, so as to order the factors influen-
cing cluster formation according to their importance. This would also
enable better interpretation of results in a way that can be beneficial to
transport, city planning as well as environmental studies. In fact, pre-
liminary analysis on the impact of several variables to cluster forma-
tion, has revealed that there are variables taking a much more distinct
set of value for each group and road type, while the contribution of
AADT was found to have an impact on cluster formation, as it should be
expected, although not dominant.

These aforementioned factors can also be further explored with
statistical models and methods, so as to identify and explain the degree
of influence on traffic flow variations across the road network, while
also addressing the limitations identified in similar studies. The col-
lection of additional data and incorporation of explanatory variables
that have the potential to improve performance (Domingos, 2012;
Junqué de Fortuny et al., 2013) can also be explored in future studies. It
would also be interesting to implement models like ours for individual
vehicle types so as to reveal patterns peculiar to specific traffic flows, as

Fig. 9. A23 (left) and A19 (right) roads in cluster 1.
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well as to further expand this research by estimating mileage for the
corresponding street segments where traffic counts are located. The
significance of mileage cannot be overstated since it is extensively used
in numerous studies in road transport, such as estimating air pollutant
emissions (e.g. Labib et al., 2018; Patarasuk et al., 2016), and there can
be no accurate calculation of mileage without precise AADT (Leduc,
2008). Moreover, implementation of other clustering and validation
techniques – e.g. automated weighting clustering algorithms proposed
in other studies (e.g. Chen and Wang, 2013; Huang et al., 2005) and k-
fold cross validation (Koul et al., 2018) – could reveal different patterns
of traffic flows and affecting factors as well as potentially provide more
accurate error measurement. Finally, considering data availability and

computational capacity a spatio-temporal modelling approach for a
detailed and comprehensive assessment of AADT and changes in AADT
across space and time should be considered in future studies.
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Appendix

Table A1
Outline of used datasets.

Dataset Source Description Spatial

1. Traffic count points Department for Transport (DfT) Geocoded count points in England and Wales N
2. Integrated Transport Ne-

twork (ITN)
Ordnance Survey (OS) road network in Great Britain (GB) – roads and road junctions Y

3. Urban Paths (ITNUP) Ordnance Survey (OS) man-made footpaths, subways, steps, footbridges and cycle paths in Britain's urban areas Y
4. Lower Super Output Ar-

eas (LSOAs)
Ordnance Survey (OS) Designated areas for England and Wales with minimum 1000 population Y

5. Socioeconomic Charact-
eristics

Office for National Statistics (ONS) population, population density, workplace population, workplace density, number of house-
holds and median income at each LSOA

N

6. Number of registered v-
ehicles

Office for Low Emission Vehicles (OLEV) Number of registered cars and vans for each LSOA N

7. Urban Area polygons Ordnance Survey (OS) Urban Areas boundaries Y
8. Bus stops and stations National Public Transport Access Nodes

(NaPTAN) database
Geolocated bus stops and stations in Britain N

9. Train and light train sta-
tions

National Public Transport Access Nodes
(NaPTAN) database

Geolocated train and light rail stations in Britain N

10. Ports British Port Association Geolocated passenger and commercial ports N
11. Airports Civil Aviation Authority Geolocated passenger airports N
12. Charging points Office for Low Emission Vehicles (OLEV) Geolocated charging points for electric vehicles N
13. Non-domestic proper-

ties
Valuation Office Agency (VOA) Geolotagged and classified properties in England and Wales N

Table A2
VOA re-classified variables.

Class Elements

Research, Education and Training Schools, Colleges, Libraries, Universities, Language and Music Schools, etc.
Factories, Workshops and Industrial Activity Energy Production Facilities, Factories, Workshops, Mines, Oil Fields, Recycling Plants, Shipyards, Scrap Yards
Healthcare Hospitals, GPs, Surgeries, Clinics
Leisure Public Houses, Bars, Nightclubs, Restaurants, Art Galleries, Cinemas and Theatres, Coffee shops
Office and Business Space Offices, Banks, Business Units
Public Services, Infrastructure and Buildings Post Offices, Community Centres, Police and Fire Stations, Prisons, Courts
Shops, Stalls, Kiosks and Markets Shops, Kiosks, Showrooms, Stores
Super/Hyper Stores Superstores, Malls
Sport Stadia, Sport Centres, Golf Courses, Tennis Centres, Football Grounds
Vacation Sites, Accommodation and Facilities Campsites, Caravan Sites, Hotels, Guest Houses, Holiday Units, Hostels, Motels, Beach Houses
Petrol Stations Petrol Stations
Vehicle Infrastructure Vehicle Repair Workshop, Garages, Car Wash
Warehouse and Storage Warehouses, Depots, Storage Depots, Land Used for Storage
Parking Space Car/Vehicle Park Sites and Park Spaces, Motorcycle Bays
Animal Husbandry, Farming and Agriculture Aviaries, Farms, Animal Shelters, Stud Farms
Marine Infrastructure Mooring Sites, Quays, Wharfs, Lifeboat Stations, Marine Control Centres
Under (re)construction Properties and Premises Undergoing (re)Construction
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Table A3
Traffic values by road class and cluster.

Road Class Cluster Number of points Traffic Sum Traffic per point Share

A Roads 1 – red 521 39,224,718 75,287.37 14.2%
2 – yellow 2170 76,883,890 35,430.36 27.8%
3 – blue 1672 25,533,749 15,271.38 9.2%
4 – white 5627 92,841,986 16,499.38 33.6%
5 – green 4680 41,880,043 8948.73 15.2%
Total 14,670 276,364,386 Share of traffic in sample 95.5%

B roads 1 – red 86 1,613,758 18,764.63 22.6%
2 – yellow 216 2,516,417 11,650.08 35.2%
3 – blue 194 1,429,658 7369.37 20.0%
4 – white 252 1,090,089 4325.75 15.2%
5 – green 284 501,520 1765.92 7.0%
Total 1032 7,151,442 Share of traffic in sample 2.5%

C roads 1 – red 59 886,950 15,033.05 24.7%
2 – yellow 207 1,561,951 7545.66 43.5%
3 – blue 147 660,926 4496.10 18.4%
4 – white 218 192,124 881.30 5.3%
5 – green 427 290,185 679.59 8.1%
Total 1058 3,592,136 Share of traffic in sample 1.2%

U Roads 1 – red 31 269,195 8683.71 12.3%
2 – yellow 187 594,486 3179.07 27.2%
3 – blue 557 739,595 1327.82 33.9%
4 – white 1070 509,433 476.11 23.3%
5 – green 196 69,499 354.59 3.2%
Total 2041 2,182,208 Share of traffic in sample 0.8%

ALL ROADS Overall Total 18,801 289,290,172 Share of all road traffic 100%

Table A4
Total traffic share by road class.

Road Class Traffic Volume – Vehicle Miles Travelled (VMT) in billions Share

A 144.9 57%
B 22.9 9%
C 52.5 20%
U 35 14%
Total 255.3 100%

Fig. A1. “Elbow” method indicating K=5.
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