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ABSTRACT

Class-imbalance extent metrics measure how imbalanced the data are. In pattern classi-
fication, it is usually expected that the higher the imbalance extent, the worse the clas-
sification performance, and thus an appropriate imbalance extent metric should show a
negative correlation with the classification performance. Existing metrics, such as the
popular imbalance ratio (IR), only consider the e↵ect of the sample sizes of di↵erent
classes. However, we note that the dimensionality of imbalanced data also a↵ects the
classification performance. Datasets with the same IR can present distinct classification
performances when their dimensionalities are di↵erent, making IR suboptimal to reflect
the imbalance extent for classification. We also observe that the classification perfor-
mance becomes better with more discriminative features. Inspired by these observations,
we propose a new imbalance extent metric, the adjusted IR, by adding a penalty term of
the number of discriminative features that is e↵ectively determined by the Pearson corre-
lation test. The adjusted IR adaptively revises the IR when the number of discriminative
features varies. The empirical studies demonstrate the e↵ectiveness of the adjusted IR, in
terms of its better negative correlation with the classification performance.

c� 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In real-world classification problems, we often encounter im-
balanced data in which the sample sizes of di↵erent classes
are largely distinct. For example, fraudulent transaction detec-
tion is an important task for credit card companies to prevent
huge financial losses. The number of fraudulent transactions is
usually much smaller than that of non-fraudulent ones, which
makes standard classifiers tend to misclassify fraudulent trans-
actions as non-fraudulent ones. However, this is not what we
desire, because the fraudulent transactions are actually the ones
that we aim to detect.

Imbalanced learning [1–5] is a valuable research area study-
ing how to better classify imbalanced data, especially when we
aim to detect a class with very few instances. The classes with
large sample sizes are called majority classes, while those with
small sample sizes are called minority classes.

⇤⇤Corresponding author: Tel.: +44(0)1227 82 7008
e-mail: rui.zhu@city.ac.uk (Rui Zhu)

To determine how imbalanced the data are, class-imbalance
extent metrics have been developed, playing an important role
in imbalanced learning. For example, such a metric can be
decisive in developing a new algorithm, which re-weights the
training instances to reverse the negative e↵ect of imbalance.
In addition, when we aim to demonstrate the e↵ectiveness of a
new imbalanced learning algorithm, we often show that it is su-
perior to existing methods in classifying the data that are very
imbalanced, because highly-imbalanced data are usually hard
to classify. Thus we expect an appropriate class-imbalance ex-
tent measure to be negatively correlated with the classification
performance of imbalanced data.

The most popular class-imbalance extent measure is the im-
balance ratio (IR), which is simply calculated as the ratio of the
sample size of the largest majority class and that of the small-
est minority class. Thus the larger the value of IR, the larger
the imbalance extent. However, IR is not an e↵ective imbal-
ance extent measure when we have multiple classes, because
the information of the classes with sample sizes in between the
two extremes is not considered, and IR is considered as a low-
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resolution metric for multi-class imbalanced data. Ortigosa-
Hernández et al. [6] propose the imbalance degree (ID) to mea-
sure the class-imbalance extent of multi-class imbalanced data.
ID considers the information from all classes in the data and is
a high-resolution metric. However, the penalty term involving
the number of minority classes makes ID not well correlated
with the classification performance. This is because it is not al-
ways true that the class-imbalance extent is higher for the data
with more minority classes [7]. Zhu et al. [7] propose a new
metric, the likelihood-ratio imbalance degree (LRID), which is
based on the likelihood ratio test. It is a high-resolution metric
and is negatively correlated with the classification performance.

However, the class-imbalance extent measures proposed in
literature all focus on describing the class distribution, which
only considers the sample sizes of di↵erent classes. Besides the
sample size, the dimensionality (i.e. the number of variables
or features) is another important property of a dataset, which
can a↵ect the classification performance. Dimension reduction
methods to select or extract discriminative features can improve
classification performances [8–10]. We note that the dimen-
sionality of an imbalanced dataset can also a↵ect the classifi-
cation performance. Given datasets with the same class distri-
bution, it is possible that their classification performances are
distinct when their dimensionalities are di↵erent. For example,
suppose we have two datasets that the distributions of their sam-
ple sizes of di↵erent classes are the same. Then we will obtain
the same class-imbalance extent for the two datasets by using
the existing metrics, because these metrics only consider the
class distribution. Now if one dataset adds more features that
contain discriminative information than the other dataset, we
can expect that the classification performance of the first dataset
will be better than the other, because of the valuable discrimi-
native information introduced by the additional discriminative
features. In this case, the existing metrics do not work because
they produce the same imbalance extent for both datasets and
cannot show a negative correlation with classification perfor-
mance. We need a smaller imbalance extent for the first dataset
while a larger one for the second dataset, even though the two
datasets have exactly the same class distribution.

This motivates our proposal to adjust the IR by penalising it
with the dimensionality of imbalanced data, as we aim to estab-
lish a new metric that presents a better negative correlation with
classification performance. In statistics and machine learning,
adjusting the metrics by the dimensionality has been often used
in model selection to select a parsimonious model for the ulti-
mate aim, in line with the Occam’s razor principle. One famous
example is the Akaike information criterion (AIC), which is a
metric to assess how a statistical model, e.g. a linear regression
model, fits a given dataset [11]. We usually expect a good statis-
tical model to have high goodness-of-fit, i.e. can fit the data as
well as possible, and to be as a simple model as possible. This
is because a model with a large number of variables can have
high goodness-of-fit, but results in overfitting to the data which
is harmful to predict future cases. AIC achieves this expecta-
tion by adjusting the commonly used goodness-of-fit measure,
the log likelihood, by a penalty term that penalises the number
of variables in the model. Inspired by the metrics such as AIC,

we aim to improve the IR, the most widely used imbalance ex-
tent metric, by penalizing it with the dimensionality of the data.

Therefore, in this letter we propose a new class-imbalance
extent measure, the adjusted imbalance ratio (adjusted IR),
by penalising the original IR with a penalty term involving
the number of discriminative features in a dataset. We first
present some empirical evidence to support our argument that,
for datasets with the same class distribution, their classifica-
tion performances can be di↵erent when they have di↵erent
dimensionalities. We also show that the classification perfor-
mance will get better if the number of discriminative features
increases, given that the total number of features keeps the
same. A discriminative feature is able to distinguish di↵erent
classes, and we can expect a dataset with more discriminative
features to have better classification performance. Thus instead
of using the total number of features of a dataset, we design a
penalty term that is based on the number of discriminative fea-
tures that are e↵ectively determined by the Pearson correlation
test. The adjusted IR can provide a smaller value for data with
more discriminative features while a larger value for data with
fewer discriminative features, when the two datasets have the
same class distribution. Hence in this case, the adjusted IR is
negatively correlated with the classification performance while
the IR cannot show this essential property.

The contributions of this letter are two-fold. First, we pro-
pose a new class-imbalance extent metric, the adjusted IR, to
consider the e↵ects of both the dimensionality and the class
sizes of imbalanced data on the classification performance. To
the best of our knowledge, it is the first time that the dimen-
sionality is involved in designing an imbalance extent metric.
Second, we also show extensive simulation studies on the ef-
fect of the dimensionality on the classification performance of
an imbalanced dataset, which supports our proposal for using
the data dimensionality to equip IR with better correlation with
classification performance.

The rest of this letter is organised as follows. We first show
some empirical results of the e↵ect of the dimensionality of
imbalanced data on classification performance, and propose the
adjusted IR in Section 2. We then in Section 3 demonstrate that
the proposed adjusted IR has good negative correlations with
the classification performances. In Section 4, we discuss the
e↵ectiveness of using the number of discriminative features in
the penalty term, comparing it with simply using the number of
features. Finally, we draw the conclusions in Section 5.

2. Methodology

In this section, we propose a new class-imbalance extent met-
ric, the adjusted IR, that considers both the class distribution
and the dimensionality of an imbalanced dataset. Before intro-
ducing the new metric, we show some empirical results on how
the dimensionality a↵ects the classification performance of an
imbalanced dataset, which motivates our proposal.
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(a) S1: no discriminative information.
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(b) S2: some discriminative information.
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(c) S3: large discriminative information.
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(d) S4: very large discriminative information.

Fig. 1: The F1 scores for data with di↵erent degrees of discriminative information.

2.1. How does the dimensionality a↵ect the classification per-

formance of an imbalanced dataset?

The imbalance ratio (IR) is the most commonly used measure
to describe the imbalance extent of a dataset. IR is defined as

IR =
Nmaj

Nmin
, (1)

where Nmaj is the sample size of the majority class and Nmin is
the sample size of the minority class. When there are multi-
classes, i.e. the number of classes is larger than 2, Nmaj is the
sample size of the largest majority class and Nmin is the sample
size of the smallest minority class. It is clear that when IR = 1,
we have an exactly balanced dataset. When IR > 1, the larger
the IR, the larger the imbalance extent of the dataset.

We usually expect that a dataset with higher IR is more dif-
ficult to classify, such that, if a new imbalanced classifier has
better classification performance on this dataset than other ex-
isting classifiers, we can verify the superiority of the new clas-
sifier. However, this is often not true for IR.

For classification tasks, we also expect better classification
performance if we reasonably expand the original feature space,
e.g. create more new features from the original features, which
is also one of the motivations for applying the kernel tricks [12].
Hence, it is possible that two datasets with the same IR but dif-
ferent dimensionalities p can have very di↵erent classification
performances. That is, it is not suitable to claim that these two
datasets have the same imbalance extent, although they have
the same IR, because we may expect the dataset with more dis-
criminative features has better classification performance.

To support the above argument, we show some empirical re-
sults from the following two simulations. Firstly, in simu-

lation 1, we aim to study how the classification performance
is changed when we add additional features with di↵erent dis-
criminative abilities to the imbalanced data. Secondly, in simu-
lation 2, we aim to study how the classification performance is
changed when the features are a mixture of discriminative and
non-discriminative features with di↵erent mixing proportions.

2.1.1. Simulation 1: additional features with di↵erent discrim-

inative abilities

We simulate datasets with six values of p: 2, 10, 50, 100, 500
and 1000. For each p, we simulate two classes with Nmin and
Nmaj instances, respectively. We test five pairs of (Nmin,Nmaj):
(10, 50), (10, 100), (10, 500), (10, 1000) and (10, 5000), corre-
sponding to IR = 5, IR = 10, IR = 50, IR = 100 and IR = 500,
respectively. That is, given a fixed IR, we study the classifica-
tion performances of datasets with six di↵erent p’s.

The two classes are simulated from two multivariate nor-
mal distributions, N(µmin,⌃min) and N(µmaj,⌃maj), respectively,
where the subscripts ‘min’ and ‘maj’ denote the minority class
and the majority class, respectively. For p = 2, we set µmin =

(1, 1)T , µmaj = (2, 2)T and⌃min = ⌃maj =
⇣

0.5 0
0 0.5

⌘
. We use p = 2

as the base line and add features with di↵erent degrees of dis-
criminative ability for p > 2. Here we believe that given fixed
variances, the larger the di↵erence between µmin and µmaj, the
higher the discriminative abilities of the features. We simulate
the following four situations for p > 2.

S1 When non-discriminative features are added: we set
µmin = (1, 1, 1, . . . , 1|  {z  }

p�2

)T , µmaj = (2, 2, 1, . . . , 1|  {z  }
p�2

)T and ⌃min =

⌃maj = diag(0.5, 0.5, 0, . . . , 0|  {z  }
p�2

), where diag(·) denotes a di-
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agonal matrix. Thus under this setting, we simply add
features with the same values for both classes with zero-
variances, which does not have discriminative ability.

S2 When features with modest discriminative information
are added: we set µmin = (1, 1, 1, . . . , 1|  {z  }

p�2

)T , µmaj =

(2, 2, 1.5, . . . , 1.5|        {z        }
p�2

)T and ⌃min = ⌃maj = diag(0.5, . . . , 0.5|        {z        }
p

).

S3 When features with large discriminative information
are added: we set µmin = (1, 1, 1, . . . , 1|  {z  }

p�2

)T , µmaj =

(2, 2, 2, . . . , 2|  {z  }
p�2

)T and ⌃min = ⌃maj = diag(0.5, . . . , 0.5|        {z        }
p

).

S4 When features with very large discriminative informa-
tion are added: we set µmin = (1, 1, 1, . . . , 1|  {z  }

p�2

)T , µmaj =

(2, 2, 3, . . . , 3|  {z  }
p�2

)T and ⌃min = ⌃maj = diag(0.5, . . . , 0.5|        {z        }
p

).
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(a) 10% features with discriminative information.
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(b) 50% features with discriminative information.
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(c) 90% features with discriminative information.

Fig. 2: The F1 scores for data with di↵erent k.

For each situation above with fixed p and IR, i.e. for a fixed
parameter setting, we simulate 10 datasets with 10 di↵erent
seeds. We apply the support vector machine (SVM) to classify
the data and record the F1 scores which are widely used in mea-
suring the classification performance of imbalanced data [2].
The average of the 10 F1 scores is used as the classification re-
sult for a situation with fixed p and IR. For SVM, we use the
svm function in R’s ‘e1071’ package [13] with linear kernel.

The F1 scores for the four situations are shown in Fig. 1. To
achieve better visualisation, we use the log scale on the hor-
izontal axis for p. We have the following observations from
Fig. 1. First and most importantly, for S2, S3 and S4, given
a fixed IR, the classification performance becomes better when
p increases, which supports our argument that it is not suit-
able to use the same IR to describe the imbalance extent of the
data with di↵erent dimensionality. We can also observe that
the more discriminative the additional features, the smaller the
p we need to achieve F1 scores of ones. Secondly, when non-
discriminative features are added as in S1, the classification per-
formance varies with di↵erent p’s to a small extent for all IRs,
but there is no clear pattern. This indicates that by adding non-
discriminative features, we cannot obtain better classification
performance. Thirdly, for each situation, datasets with small
IRs tend to have better classification performances compared
with those with large IR, especially when p is small. This also
makes sense because when all other settings are fixed, we ex-
pect datasets with smaller imbalance extent easier to classify.

2.1.2. Simulation 2: additional discriminative and non-

discriminative features with di↵erent mixing proportions

In real-world data, features are usually not all discriminative
or non-discriminative as in simulation 1. Here we simulate data
with a mixture of discriminative and non-discriminative fea-
tures and study the change of classification performance when
the mixing proportion changes. Some settings here are similar
to those of simulation 1.

We simulate datasets with six di↵erent values of p: 2, 10,
50, 100, 500 and 1000. For each p, we simulate two classes
with Nmin and Nmaj instances, respectively. We test five pairs of
(Nmin,Nmaj): (10, 50), (10, 100), (10, 500), (10, 1000) and (10,
5000), corresponding to IR = 5, IR = 10, IR = 50, IR = 100
and IR = 500, respectively.

The two classes are from two multivariate normal distribu-
tions, N(µmin,⌃min) and N(µmaj,⌃maj). For p = 2, we set
µmin = (1, 1)T , µmaj = (2, 2)T and ⌃min = ⌃maj =

⇣
0.5 0
0 0.5

⌘
, which

is also used as a base line. We add both discriminative and non-
discriminative features with di↵erent mixing proportions for
p > 2. For discriminative features, we set their means as 1 and
2 for the two classes, respectively, while for non-discriminative
features, we set their means for both classes as 1s. For each
p > 2, we randomly select k% features from the p � 2 features
(except for the first two features) as discriminative features and
the rest are non-discriminative features. The covariance ma-
trices for all settings are ⌃min = ⌃maj = diag(0.5, . . . , 0.5|        {z        }

p

).

Thus for each p > 2, we add k% discriminative features and
(100� k)% non-discriminative features. We test three values of
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k: 10, 50 and 90.
For fixed p, IR and k, we simulate 10 datasets with 10 di↵er-

ent seeds and record the average of F1 scores from SVM as the
classification result for a specific parameter setting.

The F1 scores for the simulated data with di↵erent k’s are
shown in Fig. 2. The patterns are similar to those in Fig. 1.
For fixed IR and k, the F1 score increases as p increases, and
for a fixed IR, as k increases, the classification performance be-
comes better. They suggest that the classification performance
becomes better when more discriminative features are added
given all other settings fixed. This also supports our proposal
for adjusting IR by the number of discriminative features, con-
sidering the correlation between an imbalance measure and the
dimensionality of an imbalanced dataset.

To sum up, we draw the following conclusions from the sim-
ulation studies. First, for datasets with the same IR but di↵erent
dimensionalities p, we can observe di↵erent classification per-
formances. Thus it is not suitable to use the same IR to describe
the imbalance extent of these datasets, considering the required
negative correlation between the imbalance extent measure and
the classification performance. Secondly, for a fixed IR, the
larger the number of discriminative features, the better the clas-
sification performance. This makes sense because additional
discriminative features can bring more discriminative informa-
tion to enlarge the separation between classes and help classifi-
cation. This observation is also consistent with the motivation
for applying the kernel trick that with a proper expansion of the
feature space we may obtain better classification results.

2.2. Adjusted IR

The above empirical results suggest that as the number of
discriminative features increases, we need a smaller imbalance
extent to be negatively correlated with the classification per-
formance. Therefore in this letter, we propose a new imbalance
measure, the adjusted imbalance ratio (adjusted IR), to consider
the e↵ect of dimensionality on the classification performance.

In the rest of this section, we first introduce how to determine
which features are discriminative by a simple yet e↵ective sta-
tistical hypothesis testing method, the Pearson correlation test.
We then propose the adjusted IR based on a penalty term in-
volving the number of discriminative features.

2.2.1. The Pearson correlation test

To determine which features are discriminative, we employ
the Pearson correlation test, which can e↵ectively detect the
non-zero correlation between two variables. If the correlation
between a feature vector and the label vector is non-zero, then
we can treat this feature as discriminative.

Given a dataset with N instances and p features, {(xi, yi)}Ni=1,
where xi = [xi1, xi2, . . . , xip]T 2 Rp⇥1 and yi 2 {�1,+1}, we
denote the jth feature as x j = [x j1, x j2, . . . , x jN]T 2 RN⇥1 ( j =
1, 2, . . . , p) and the label vector as y = [y1, y2, . . . , yN]T .

In the Pearson correlation test, we test the null hypothesis H0
that the Pearson correlation ⇢ j between the jth feature variable
Xj and the label variable Y is zero, i.e. ⇢ j = 0, against the al-
ternative hypothesis H1 that ⇢ j , 0. The test statistic is defined

as

t j = r j

s
N � 2
1 � r

2
j

, (2)

where r j is the sample Pearson correlation between x j and y
and t follows a Student’s t-distribution with N � 2 degrees of
freedom. We reject the null hypothesis H0 if t j > tN�2,1�↵ or
t j < �tN�2,1�↵, where ↵ is the significance level of the test.

For x j, if we reject H0, then we believe that the correlation
between Xj and Y is non-zero and the jth feature is discrimina-
tive. We apply the Pearson correlation test to each feature and
count the number of tests with H0 being rejected. This number
represents the number of discriminative features and we denote
it as p

⇤ to distinguish it from the total number of features p.

2.2.2. Adjusted IR
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Fig. 3: Adjusted IR for di↵erent p when IR= 100.

We propose the adjusted IR as follows

Adjusted IR = IR � � log(p
⇤), (3)

where p
⇤ is the number of discriminative features determined

by the Pearson correlation test and � is the parameter that con-
trols the importance of the penalty term. The penalty term
log(p

⇤) can adjust the e↵ect of the dimensionality on the clas-
sification performance. It is clear that for datasets with a fixed
IR, the adjusted IR decreases as the number of discriminative
features p

⇤ increases. Thus the adjusted IR can have a better
negative correlation with the classification performance, since
the classification performance becomes better as p

⇤ increases.
The larger the value of the adjusted IR, the higher the imbalance
extent of one dataset.

Fig. 3 shows the values of adjusted IR with � = 1 for di↵er-
ent p when IR= 100. The horizontal axis shows the value of p

instead of p
⇤ to better compare IR and the adjusted IR. Com-

paring the shape of the curve of adjusted IR and the curves of
F1 scores in Fig. 1 and Fig. 2, we can expect good correlations
between the adjusted IR and the F1 scores. We will show more
results on the correlations for the adjusted IR in section 3. On
the contrary, IR is a constant for all p, which makes it not a
good imbalance extent measure being independent of classifi-
cation performance.

We note that in some extreme cases it is possible to have
p
⇤ = 0, in which case log(p

⇤) is not defined. To address this
problem, we simply set p

⇤ = 1 when p
⇤ = 0.
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3. Experiments

In the following experiments, we compare the performances
of IR and the adjusted IR, based on their correlations with
the classification performances on both simulated data and real
data. For the adjusted IR, we have to decide the significance
level ↵ to get p

⇤. Here we simply take the commonly used
↵ = 5%. We also set � = 1 for simplicity.

3.1. Simulated data

Table 1: The correlations between the adjusted IR the F1 scores of SVM for
simulations 1 and 2.

Criterion IR= 5 IR= 10 IR= 50 IR= 100 IR= 500

Simulation 1 SRCC -0.80 -0.78 -0.77 -0.76 -0.77
PCC -0.75 -0.75 -0.75 -0.75 -0.76

Simulation 2 SRCC -0.89 -0.89 -0.89 -0.89 -0.94
PCC -0.83 -0.87 -0.85 -0.85 -0.89

The datasets simulated in section 2 are adopted here. In sim-
ulations 1 and 2, we generate 10 datasets with 10 di↵erent seeds
for each parameter setting. We take the average of the 10 ad-
justed IR for the 10 datasets as the adjusted IR for each specific
parameter setting.

Following [6] and [7] , we calculate both the Spearman rank
correlation coe�cient (SRCC) and the Pearson correlation co-
e�cient (PCC) to assess the correlation between the adjusted
IR and the F1 score. For simulation 1, we combine the F1
scores and the adjusted IRs for datasets generated in situations
S2, S3 and S4 with fixed IR and calculate the correlations be-
tween them. We do not include S1 in this calculation because
S1 is an extreme case where the additive features are exactly
the same for both classes and the standard deviations of these
features are zeros which makes r j in equation (2) not defined.
For simulation 2, we combine the F1 scores and the adjusted
IRs for datasets generated for k = 10, k = 50 and k = 90 with
fixed IR and calculate the correlations between them.

The correlations between the adjusted IR and the F1 scores
for the two simulations are shown in Table 1. Obviously, the
adjusted IR have good negative values of SRCC and PCC for
all values of IR, while IR cannot show its correlation with the
classification performances in this case because it is fixed.

To compare the performances of IR and the adjusted IR more
straightforwardly, we use all datasets in simulations 1 and 2
and calculate the correlations between the imbalance metrics
and the classification performances. In other words, we do not
fix IR in this case. The values of SRCC and PCC are shown
in Table 2. It is clear that the adjusted IR has better negative
correlations for both simulations and � = 1 is a proper choice
for the simulated data.

Table 2: The correlations of IR and the adjusted IR with the F1 scores of SVM
for simulations 1 and 2. The values in bold faces denote the best performances.

Criterion IR Adjusted IR

Simulation 1 SRCC -0.08 -0.24
PCC -0.13 -0.14

Simulation 2 SRCC -0.18 -0.36
PCC -0.17 -0.18

Table 3: The description of real datasets.

Name Class p p⇤ IR Adjusted F1
frequencies IR score

glass1 (138, 76) 9 3 1.8 0.7 0.09
pima (500, 268) 8 7 1.9 -0.1 0.65
wisconsin (443, 239) 9 9 1.9 -0.3 0.96
ecoli1 (259, 77) 6 3 3.4 2.3 0.73
new-thyroid1 (180, 35) 5 5 5.1 3.5 0.96
segment0 (1973, 329) 18 17 6.0 3.2 0.99
glass6 (179, 29) 9 6 6.2 4.4 0.82
yeast3 (1319, 169) 8 4 8.1 6.7 0.75
page-blocks0 (4912, 559) 10 10 8.8 6.5 0.73
vowel0 (898, 89) 13 7 10.1 8.1 0.83
led7digit vs 1 (406, 37) 7 5 11.0 9.4 0.82
glass2 (197, 17) 9 2 11.6 10.9 0.01
cleveland-0 vs 4 (160, 13) 13 11 12.3 9.9 0.58
glass4 (201, 13) 9 5 15.5 13.9 0.28
abalone9-18 (688, 42) 8 7 16.4 14.4 0.34
dermatology-6 (330, 20) 34 21 16.5 13.5 0.98
glass5 (205, 9) 9 4 22.8 21.4 0.30
yeast4 (1432, 51) 8 4 28.1 26.9 0.00
poker-9 vs 7 (234, 8 ) 10 3 29.3 28.2 0.21
yeast5 (1439, 44) 8 4 32.7 31.3 0.44

Table 4: The correlations of IR and the adjusted IR with the F1 scores of SVM
for real datasets. The values in bold faces denote the best performances.

Criterion IR Adjusted IR

Real data SRCC -0.41 -0.50
PCC -0.51 -0.54

3.2. Real data

Twenty real imbalanced datasets for binary classification are
downloaded from the KEEL-dataset repository [14]. A sum-
mary of the datasets can be found in Table 3. The datasets are
sorted by the values of IR in ascending order. By adjusting
log(p

⇤), the values of adjusted IR show a di↵erent ranking or-
der compared with IR.

Similarly to the simulated data, the linear SVM is applied to
all datasets. We randomly split each dataset to a training set
containing 70% instances of each class and a test set containing
the rest of the dataset. We repeat the random split ten times and
record the mean F1 scores which are shown in the last column
of Table 3.

We report the values of SRCC and PCC between the F1
scores and the imbalance metrics in Table 4. Clearly, the ad-
justed IR has better negative SRCC and PCC compared with IR,
which demonstrates the e↵ectiveness of including the penalty
term log(p

⇤) for these data, and � = 1 remains a good choice
for the real data.

4. Discussion

The adjusted IR defined in equation (3) adjusts IR by the
log transformation of the number of discriminative features,
log(p

⇤). However, it is also straightforward to use the log trans-
formation of the total number features, log(p), without the pro-
cess to identify discriminative features. In this section, we aim
to show that it is necessary to adopt the number of discrimi-
native features p

⇤ in the penalty term, in order to have a more
e↵ective imbalance extent measure.

In this section, we denote the adjusted IR with log(p) as ‘ad-
justed IR (p)’ and that with log(p

⇤) as ‘adjusted IR (p
⇤)’. Fig. 4

shows the curves of adjusted IR (p) and adjusted IR (p
⇤) for

IR= 100. As with Fig. 3, the horizontal axis shows the values
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Table 5: The correlations of the adjusted IR (p) and the adjusted IR (p
⇤) with the F1 scores of SVM for simulations 1 and 2. The values in bold faces denote the

best performances.

Measure Criterion IR = 5 IR = 10 IR = 50 IR = 100 IR = 500

Simulation 1
Adjusted IR (p) SRCC -0.68 -0.69 -0.68 -0.68 -0.69

PCC -0.71 -0.72 -0.72 -0.71 -0.71

Adjusted IR (p
⇤) SRCC -0.80 -0.78 -0.77 -0.76 -0.77

PCC -0.75 -0.75 -0.75 -0.75 -0.76

Simulation 2
Adjusted IR (p) SRCC -0.74 -0.74 -0.74 -0.75 -0.81

PCC -0.77 -0.81 -0.82 -0.81 -0.81

Adjusted IR (p
⇤) SRCC -0.89 -0.89 -0.89 -0.89 -0.94

PCC -0.83 -0.87 -0.85 -0.85 -0.89
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Fig. 4: The adjusted IR (p) and adjusted IR (p
⇤) for di↵erent p when IR= 100.

of p to make the comparison more straightforward. It is ob-
served that the curve of adjusted IR (p

⇤) is above that of the
adjusted IR (p), because p

⇤  p.
The correlations with the F1 scores for the adjusted IR (p)

and the adjusted IR (p
⇤) are reported in Table 5. We can observe

that SRCC and PCC of the adjusted IR (p
⇤) are better than those

of the adjusted IR (p) for both simulations and for all values of
IR, which shows the e↵ectiveness of using p

⇤ to adjust IR.
This result makes sense because for a fixed p, the classifi-

cation performance becomes better when the proportion of dis-
criminative features increases, which can be observed in Fig. 2.
In this case, the adjusted IR (p) does not change and cannot
reflect the change in classification performance, while the ad-
justed IR (p

⇤) is negatively correlated with the classification
performance.

5. Conclusions and future work

In this letter, by studying how the classification performance
of an imbalanced dataset can be a↵ected by its dimensionality,
and by showing that the classification performance can become
better as the number of discriminative features increases for a
fixed IR, we propose a new class-imbalance extent metric, the
adjusted IR. The adjusted IR considers the e↵ect of the dimen-
sionality of discriminative features in imbalanced data on the
classification performance, and applies the Pearson correlation
test to identify the discriminative features.

For simplicity and illustrative purposes, � = 1 already shows
promising performance in the experiments to verify the e↵ec-
tiveness of our proposed idea. Nonetheless, for di↵erent data, a
di↵erent value of � can be expected to produce an even better
measure of imbalance extent; this is an interesting direction to

explore further in the future. In addition, the adjusted IR is de-
signed to enhance IR, which is more suitable for two-class data,
and thus similarly to IR, the adjusted IR only considers the in-
formation from the two extreme classes, ignores that from other
classes, and is a low-resolution metric in the case of multi-class
data. Extending the proposed idea to adjusting and enhanc-
ing existing metrics for multi-class data, for example, ID [6]
or LRID [7], by further considering the number of discrimi-
native features, is another interesting future research direction.
Moreover, the e↵ect of dimensions on classifying imbalanced
data can also be considered when designing novel imbalanced
learning algorithms.
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