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Abstract. Personalised 3D modelling of the heart is of increasing in- 

terest in order to better characterise pathologies and predict evolution. 

The personalisation consists in estimating the parameter values of an  

electromechanical model in order to reproduce the observed cardiac mo- 

tion. However, the number of parameters in these models can be high 

and their estimation may not be unique. This variability can be an ob- 

stacle to further analyse the estimated parameters and for their clinical 

interpretation. In this paper we present a method to perform consistent 

estimations of electromechanical parameters with prior probabilities on 

the estimated values, which we apply on a large database of 84 differ- 

ent heartbeats. We show that the use of priors reduces considerably the 

variance in the estimated parameters, enabling better conditioning of the 

parameters for further analysis of the cardiac function. This is demon- 

strated by the application to longitudinal data of paediatric cardiomy- 

opathies, where the estimated parameters provide additional information 

on the pathology and its evolution. 

 

 

1 Introduction 
 

Tridimensional Personalised Cardiac Models are of increasing interest for clinical 

applications. They compute the myocardial motion under the influence of sim- 

ulated electromechanics and haemodynamics, in order to simulate a heartbeat. 

Their equations usually depend on a large number of parameters, so after ex- 

tracting a patient’s heart geometry from clinical imaging, the first step to build a 

personalised simulation is to estimate parameter values for which the simulation 

matches the measured heartbeat. 
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Recent works have shown that the personalised parameter values can cap-  

ture intrinsic properties of the heart [1]. In particular, the simulations can help 

predict the possible behavior of the heart to some changes associated to some 

specific conditions (such as exercise or drug treatment), leading to applications   

in therapy planning [2]. Although these studies are very promising, progress is 

facing three main obstacles: 

– the difficulty to find large homogeneous cardiac databases where the same 

information is available for all the cases 

– the non-uniqueness of the parameter values due to the sparsity of clinical 

measurements compared to the high number of parameters of the models 

– the computational time required to run models (from few minutes to several 

days for the most complex ones). This can be a burden in the parameter 

estimation requiring many simulations, and even worse for large databases 

Here we present a cardiac modelling study overcoming these difficulties by first 

building a homogeneous cohort of more than 61 patients including 22 controls 

and 39 children with various cardiomyopathies. For each case, MRIs were ac- 

quired, together with pressure and heart rate measurements,  resulting  in  84  

heart mesh geometry and haemodynamic conditions. On the modelling side, we 

performed the estimation of 6 parameters to reproduce the stroke volume and 

pressure measurements. This was performed with prior probabilities on the pa- 

rameter values, in order to overcome the problem of the parameters uniqueness. 

Finally, the personalisation for the full cohort was performed in a relatively short 

time (around 2 days), thanks to a ”multi-fidelity” optimization scheme which 

predicts changes in simulations of the 3D model with a much faster and simpler 

0D model. 

This led to more consistent parameter values across the 84 cases, on which we 

studied the relationship to clinical condition and its evolution. In particular, us- 

ing the follow-up data patients with cardiomyopathy we show that the evolution 

of parameters naturally suggest and improvement of the heart condition under 

therapy. Finally we demonstrate that these estimated parameters could also be 

complementary to the clinical measurements in order to characterise better the 

difference between healthy and cardiomyopathy cases. 

 

2 Clinical Data 
 

We used two different cohorts (C1 and C2) in this study. The two protocols were 

approved by the local Research Ethics Committees. First 22 volunteers (C1) who 

participated to a clinical study to assess the cardiovascular response after the 

ingestion of a high-energy (1635 kcal), high-fat (142g) meal after fasting for 12h, 

closely following the protocol in [3]. In this study, short axis cardiac cine MRI 

sequences were acquired before the ingestion and at one or more time points 

within 1h of the ingestion of the meal, in order to study the evolution of the   

blood flow in the arteries. After the meal ingestion, both the heart rate and the 

cardiac output increased by around 15%. However no substantial changes were 



 

 

 

observed in the mean, diastolic and systolic pressures during digestion (compared 

to the intra-patient variability of the measurement). 

The second cohort (C2) consists in 39 children with various cardiomyopahies, 

ranging from class I to IV on the Ross and NYHA classifications [4] for heart 

failure symptoms, from two different clinical centers. The cine MRI was acquired 

at their enrollment and for 4 of them, at follow-up (after few months). The most 

common symptom among this cohort is a dilation of the left ventricle (Dilated 

CardioMyopathy) with low ejection fraction. 

 
 

 

 

Fig 1a: Typical mesh geometry of 

a heart in the cohort (C1) 

Fig 1b: Mesh geometry of a paedi- 

atric heart with Dilated Cardiomy- 

opathy (DCM) in the cohort(C2) 

 
 

We performed the cardiac modelling of a total of 41 different instants across 

the 22 volunteers of the first cohort, and at the 39 enrollment times and 4 

available follow-up times of the second cohort. This lead to a total of 84 complete 

set of cine MRI, cuff pressure measurements and heart rates. See Figs.1a,1b for 

typical heart geometries from each cohort. 

 

3 Personalised Cardiac Modeling 
 

3.1 3D Electromechanical Cardiac Model 
 

From each MRI, a high-resolution biventricular tetrahedral mesh of the patient’s 

heart morphology (around 15 000 nodes) is generated with a method similar to 

the one in [5]. On this mesh, a myocardial fibre direction is defined at each node 

of the mesh by varying the elevation angles of the fibre across the myocardial 

wall from α1 = −80 on the epicardium to α2 = 80 on the endocardium. 

The depolarization times in the myocardium were computed with the Eikonal 

model using default values of conductivities and the APD was computed from the 

Heart Rate with classical values of the restitution curve. Myocardial forces are 

computed based on the Bestel-Clement-Sorine model as detailed in [6]. It models 

the forces as the combination of an active contraction force in the direction of the 
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fibre, in parallel with a passive anisotropic hyperelasticity driven by the Mooney- 

Rivlin strain energy. In this paper, we only consider two main parameters of the 

model: the Maximal Contractility σ and the Passive Stiffness c1. 

Finally the mechanical equations are coupled with a haemodynamic model 

which implements the 4 phases of the cardiac cycle, and describes the pressure 

in the cardiac chambers with global values (see [6] for implementation details). 

In particular, the pressure of the aortic artery in particular is modeled with a 4-

parameter Windkessel model [7], which main parameters are blood inertia L, 

the arterial compliance C and the proximal and distal (peripheral) resistances 

ZC and R. A mean venous pressure Pve has to be set as well. In the following, ZC 

and L are set at a default value, while C, R and Pve are estimated parameters. 

 
3.2 Parameter Estimation with Priors 

A typical parameter estimation problem is composed of simulated quantities 

called the ”outputs” O (such as the simulated Stroke Volume and Mean Pres- 

sure), and a set of model parameters P . The estimation consists in finding ad- 

equate values x of the parameters such that the output values O(x) in the 3D 

model simulation fit the ”observed values” from the clinical measurements O of 

interest. 

This is done by minimizing a cost function (or score) S(x, O) between the 

simulated values O(x) and the target values O: 

S(x, O) = ||O(x) − O||2 + λR(x) 

where R(x) is a penalty (or regularisation) term, weighted with λ, that can be 

formulated as a quadratic form with mean value µR and covariance matrix ∆: 

R(x) = (x − µR)∆−1(x − µR)T 

In Bayesian Inference, this is equivalent to finding the maximum a posteriori 

with a Gaussian prior and a Gaussian likelihood. 

Finally, since the parameters are positive, it is more meaningful to consider 

that the logarithm of the parameter values follow a Gaussian distribution rather 

than the parameter themselves, so the optimisation is perfomed over the loga- 

rithm of the parameters values. 

In this scope, we focus on the set of 5 parameters P : c1, σ, R, C and Pve, 

in order to fit 3 target outputs to their clinical measurements, which are the 

Stroke Volume SV the Aortic Diastolic Pressure DP and  Mean  Pressure  MP. 

We then performed two different personalisations: first, one (P1) without priors 

on the parameter  values  during  the  optimization  (λ=0).  This  allowed us to 

have a first assessment of the variability of the  parameters  and of the values 

which lead to the best simulations. It was then followed by a second 

personalisation (P2), with priors on the values of both c1 and C equipped with 

diagonal covariance matrix: 

µR = 

1
µc1 

l 

, ∆ = 

1
δc1   

0 
l 

(1) 
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We observed in P 1 that simulations with c1 around 500 000 Pa lead to good 

behavior compared to the dynamics observed in echocardiographic images. For 

the arterial compliance C, we used a prior based on the mean value of 1.8e−8 S.I. 

as reported in [8]. 

Therefore µc = ln(500 000) = 13.12, δc = 0.5 and µC = ln(1.8e−8) = 

−17.83, δc = 1. 

 
3.3 Efficient Multi-Fidelity Optimization 

The optimization in each personalisation problem was performed with a ”multi- 

fidelity” approach [9] based on our recent work in cardiac model personalisation 

[10], where the outputs of the 3D model are approximated during the optimiza- 

tion by simulations from a very fast low-fidelity model called ”0D model”, made 

of around twenty equations only. 

As explained in [10], a small number of 3D ”sigma-simulations” can indeed 

be used to approximate many 3D simulations in a large parameter space. This     

is done by first finding similar 0D simulations with the same outputs of interest 

(such as the pressure and stroke volume), then building a mapping between the 

parameters of the corresponding 3D and 0D simulations. 

This multifidelity method was here adapted for the two personalisation prob- 

lems, where the 0D and the 3D models share the same haemodynamic variables 

R, C and Pve from the Windkessel model. In this specific case, the variations of 

pressure and stroke volume with respect to these variables are very similar, and 

we found to have better approximation results by only computing a mapping 

betwwen c1 and σ (as opposed to all the personalised parameter in our original 

approach) to the 0D model parameters. 

As a result, our Multi-Fidelity Optimization Method performs the optimiza- 

tion of 3D parameters based on 0D model approximations which are very fast to 

compute. It only requires the computation of successive sets of 5 simulations of 

the 3D model (the sigma-simulations). In particular, the simultaneous personal- 

isation (P1) of the 84 hearts was completed in around 36 hours, and in 48 hours 

for (P2). 

 

4 Results 
 

In Table 1 we report the mean of both the estimated values (Mean) and log- 

arithmic estimated value (Log-Mean), as well as the standard deviation of the 

logarithm of the estimated values (Log-Std ). 

As expected, we  can notice that the standard deviation of all the parameters  

in the population is reduced between (P1) and (P2). Interestingly, the goodness   

of fit was not impacted in the personalisation by  the use of prior probabilities    

on c1  and σ  in (P2). Most cases are fitted under 1.2ml for the stroke volume    

and 0.5 mmHg for the pressure measurements with few outliers. This means    

that the prior could be stronger in order to further reduce the variability while 

maintaining simulations which match the clinical measurements. 



 

 

 

Table 1: Statistics of the estimated parameters in the estimations (P1) and (P2) 

 

 
Mean (P1) 

o (MPa) 

156 

c1 (kPa) 

37.8e1 

R (MPa.m3.s) 

48.0 

C (MPa-1.m-3) 

6.13e-3 

Pve (mmHg) 

44.6 

Log-Mean (P1) 18.51 12.60 17.62 -18.96 8.62 

Log-Std (P1) 0.98 0.66 0.37 0.32 0.44 

Mean (P2) 71.1e7 4.44e1 84.1 7.29e-3 32.01 

Log-Mean (P2) 18.03 12.98 18.2 -18.77 8.32 

Log-Std (P2) 0.41 0.22 0.26 0.25 0.27 

 

 
4.1 Application to Longitudinal Analysis of the Cardiac Function 

 

From a clinical point view, an interesting application of the modeling is to char- 

acterise the state of the heart function, beyond the information given by the 

clinical measurements and the imaging. The underlying idea is that some of the 

estimated parameters values can capture properties of the heart which cannot 

be directly measured from the imaging (such as the myocardial contractility). 

This additional information on the heart could contribute to the diagnosis, by 

comparing the estimated parameters with the parameters of other known cases. 

To analyse the relationship between the parameter values and the clinical 

condition, we performed here a linear discriminant analysis (LDA) over the pa- 

rameter values and the heart rate, in order to classify between the two cohorts. 

This leads to the computation of two vectors w and b such that given a vector 

X of parameter x, the predicted cohort is C2 if ATX + b > 0, and C1 otherwise. 

The vector w corresponds to the most discriminative direction in the pop- 

ulation between healthy and cardiomyopathy cases. In this context, this axis 

could be a candidate to characterise whether the cardiac function at a given 

time is closest to a healthy heart, or a heart with cardiomyopathy, based on the 

parameters values observed in the two cohorts. 

For example, we display in Fig ?? the projection of the parameters on this 

vector (x-axis) and a orthogonal direction to w. Most healthy cases (dark blue 

dots) are on left side of the black line (w < 0) and most cardiomyopathy cases 

(red dots) are on the right (w > 0). 

Interestingly, this could also help to quantify the evolution of the patient’s 

heart condition under the influence of the pathology and the therapy. Indeed, for 

all the cardiomyopathy cases for which we have the follow up data, we can notice 

a decrease in the coordinates along the horizontal axis (see the pairs of brown, 

light blue, green and orange dots. The larger dot is the follow-up). This could be 

interpreted as an improvement of the cardiac function with the therapy, which is 

at least becoming closer to the condition of an healthy heart. One of the cases (in 

light blue) is on the ”healthy” side of the classification at follow-up. Finally, the 

predictive power of such a classifier can be assessed, through leave-one out cross-

validation. This is done by training the classifier on all the cases but one, and 

predicting the diagnosis for the remaining case. If we perform the LDA over the 5 

estimated parameters and the heart rate, the number of 



 

 

 

 

 

 
Fig. 2: Projection of the parameter on the main direction w of a LDA classifier between 

the healthy cases (dark blue dots) and cardiomyopathy (other dots) cases (x-axis) and 

an principal orthogonal direction of this vector (y-axis). The dots in light blue, brown, 

orange and green correspond to 4 patients for which the data was available both at 

baseline (small dot) and follow-up (larger dot). 

 

 
prediction errors is 11. The same classifier trained on the 3 outputs (stroke 

volume and pressures) and the  heart  rate makes 9 prediction  errors. However,    

if we train the classifier with both the 5 estimated parameters and the clinical 

measurements and the heart rate, it only makes 6 classification errors. 

In this context, this can mean that the estimated parameters were able to 

capture a more complex information on the cardiac function than the clinical 

measurements of volume and pressure only, both through the 3D personalisa- 

tion and the comparison with the other values estimated in the population. This 

information was then used by the simple linear classifier to improve it accuracy 

in the diagnosis of a patient. 

 

5 Conclusion and Discussion 
 

In this manuscript, we presented a cardiac modelling study based on the estima- 

tion of 5 model parameters from 3 clinical measurements of stroke volume and 

pressures, on a large cohort of 61 patients. We used recent ideas developments in 

”multi-fidelity” personalisation, to drive a very fast and computationally efficient 

estimation of these parameters with priors. Both the personalisations with and 

without priors were performed simultaneously for all the patients on our cluster, 



 

 

 

and converged respectively in less than 36 and 48 hours. We showed that the 

use of priors during optimization reduces the variability of the estimated values 

in the population, leading to more consistency for further applications. 

We then analyzed the estimated parameter values with respect to the clini- 

cal conditions of the patients. A linear discriminant analysis (LDA) was used to 

characterise the cardiac function the cases along the most discriminative axis be- 

tween the two cohorts. For cardiomyoathy patients, we showed that the evolution 

in time along this axis suggests that their cardiac function is improving under 

therapy. Finally, we also demonstrated how the estimated parameter values could 

be complementary to clinical measurements in the context of diagnosis. 

A direct extension of this study is to estimate values for more model pa- 

rameters, from a larger set of measurements such as the flow or the myocardial 

strain. On the cardiomyopathy point of view, this could help to further dis- 

criminate between the various types of cardiomyopathy, with applications in 

risk stratification of heart failure. Another interesting direction of study is the 

further analysis of longitudinal data in order to better understand both the 

short-term and long-term variabilities in cardiac function, with applications on 

the prediction of disease evolution and therapy planning. 
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