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ABSTRACT
The multiconfiguration time-dependent Hartree (MCTDH) method is a powerful method for solving the time-dependent Schrödinger equa-
tion in quantum molecular dynamics. It is, however, hampered by the so-called curse of dimensionality which results in exponential scaling
with respect to the number of degrees of freedom in the system and, thus, limits its applicability to small- and medium-sized molecules. To
avoid this scaling, we derive equations of motion for a series of truncated MCTDH methods using a many-mode second-quantization formu-
lation where the configuration space is restricted based on mode-combination levels as also done in the vibrational configuration interaction
and vibrational coupled cluster methods for solving the time-independent Schrödinger equation. The full MCTDH wave function is invariant
with respect to the choice of constraint (or gauge) operators, but restricting the configuration space removes this invariance. We, thus, analyze
the remaining redundancies and derive equations for variationally optimizing the non-redundant matrix elements of the constraint operators.
As an alternative, we also present a constraint that keeps the density matrices block diagonal during the propagation and the two choices are
compared. Example calculations are performed on formyl fluoride and a series of high-dimensional Henon–Heiles potentials. The results
show that the MCTDH[n] methods can be applied to large systems and that an optimal choice of constraint operators is key to obtaining the
correct physical behavior of the wave function.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5142459., s

I. INTRODUCTION

Quantum molecular dynamics simulations are important tools
for understanding time-dependent processes in molecules such as
chemical reactions, non-adiabatic transitions, and systems with
time-dependent Hamiltonians. For few-dimensional systems, the
time-dependent Schrödinger equation (TDSE) can be solved very
efficiently using standard numerical methods.1 However, applying
these methods to slightly larger systems (more than four atoms)
quickly becomes impossible due to the inherent exponential scaling
with respect to the system size known as the curse of dimensional-
ity. Over the years, numerous methods with different wave-function

parameterizations and propagation schemes have been developed
for extending the range of applicability of quantum molecular
dynamics.

One of the well-established methods is multiconfiguration
time-dependent Hartree (MCTDH),2,3 which provides a versatile
and efficient framework for time-dependent wave-packet propaga-
tion. It applies the time-dependent variational principle (TDVP) to
a multi-configurational Ansatz expanded in time-dependent Hartree
products and is thus a compact way of representing the exact
wave function on a basis that adapts itself to the evolving wave
packet. By varying the number of time-dependent functions used
to describe each degree of freedom (often called single-particle
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functions (SPFs), but we denote them as time-dependent modals in
line with our previous work4), the MCTDH method spans between
the exact wave function and time-dependent Hartree (TDH) in the
limit of a single time-dependent Hartree product. The TDH method
is an important approximation in its own right and has recently
been reformulated in second quantization (SQ) and an exponential
parameterization, which makes it applicable to study systems with
more than 105 degrees of freedom.4 However, the accuracy of TDH
is limited and a multi-configurational wave function is required
for obtaining physically correct results for many systems of inter-
est.3,5 Compared to the exact method, MCTDH allows converged
results for much larger systems to be obtained. The computational
scaling is, however, still exponential with respect to the number of
degrees of freedom. Several methods have been developed to reduce
the computational cost and scaling of MCTDH such as multilayer
MCTDH (ML-MCTDH)6–9 and alternative formulations based on
various forms of time-dependent Gaussian bases such as Gaussian
MCTDH (G-MCTDH),10,11 variational multi-configurational Gaus-
sian (vMCG),12,13 and coupled coherent states (CCS).14,15 These are
in turn related to multiple spawning methods (see Ref. 16 for a recent
review).

In this paper, we take a different approach to mitigating
the exponential scaling of MCTDH. Following previous ideas,17–20

we seek to reduce the number of configurations included in the
MCTDH wave function. We propose a systematic way by formu-
lating a hierarchy of MCTDH[n] methods, which include up to
n-mode excitations with respect to a selected reference configura-
tion. This choice of configurations is in line with our vibrational
configuration interaction (VCI)21,22 and vibrational coupled cluster
(VCC)23–25 methods for solving the time-independent Schrödinger
equation. Thus, MCTDH[n] converges toward full MCTDH in the
limit where n equals the number of degrees of freedom in the
system, M. The equations of motion (EOMs) for MCTDH and
MCTDH[n] are derived using a SQ formalism21 to keep the formu-
lation in line with our previous work on time-independent theory,
TDH,4 and time-dependent vibrational coupled cluster (TDVCC).26

In addition, once the SQ is in place, SQ provides a short deriva-
tion compared to first quantization with natural introduction of key
quantities for both MCTDH and MCTDH[n] bringing also some
resemblance to SQ formulations in electronic-structure theory. We
note that SQ formulations have previously been introduced in the
context of (ML-)MCTDH for systems of indistinguishable parti-
cles.9,27,28,30,31 Our SQ treats distinguishable degrees of freedom
(modes) and, thus, differs in the sense that a set of elementary
operators is introduced for each mode.

The full MCTDH wave function is invariant with respect to
unitary transformations of the time-dependent modals. This redun-
dancy is removed by a choice of Hermitian constraint (or gauge)
operators, g̃m

umvm = i⟨ϕ̃m
um(qm, t)∣ ˙̃ϕm

vm(qm, t)⟩ (with ϕ̃m
um being the

um’th time-dependent modal in mode m), which are often just set to
zero. Using only a selected set of configurations, however, removes
parts of this redundancy and makes the choice of constraint opera-
tors affect the accuracy of the wave function. In previous studies17–20

the simple choice of g = 0 has been employed in the EOMs combined
with a transformation to natural modals (orbitals) after each propa-
gation step in order to keep the importance of the missing configura-
tions small. This ad hoc procedure is physically motivated, but each
transformation changes the wave function if the configuration space

is truncated. That is, in general more configurations are needed to
express the same wave function in the transformed basis and if these
are neglected, the transformation becomes inexact. Thus, the time
evolution of the wave packet becomes dependent on the frequency
of the basis transformations, i.e., the step size of the integrator. In
this work, we derive EOMs for MCTDH[n] where the constraint
operators are variationally optimized in line with previous work on
MCTDH for systems of identical fermions31–33 and bosons.34 It is
shown that the non-redundant matrix elements of the constraint
operators, which keep the MCTDH[n] wave function variationally
optimal can be obtained by solving a set of linear equations. These
equations correspond to a linear least squares (LLS) minimization
of the time derivative of the (n + 1)-excited configurations, and
thus, the effect of adding the next level of excitations is minimized.
We furthermore discuss an alternative constraint, which keeps the
one-mode density matrices block diagonal and, thus, makes the
reference configuration a product of natural modals. This choice
keeps the density matrices block diagonal by construction of the
EOMs unlike the ad hoc approach described above. The fully varia-
tional and the density-matrix constraints are compared to the simple
choice of g = 0 for different MCTDH[n] methods in a series of test
calculations.

The remainder of the paper is structured as follows. Section II
presents the general terminology and theoretical foundation as well
as the SQ formulation used in the derivation of the EOMs. In Sec. III,
the MCTDH EOMs are derived in SQ and the MCTDH[n] meth-
ods are presented in Sec. IV. Section V describes the implementa-
tion, while Sec. VI presents the numerical results. Finally, Sec. VII
presents a summary and future outlook.

II. GENERAL THEORY
Considering a system with M degrees of freedom (modes)

with coordinates q = {q1, q2, . . ., qM}, the exact time-dependent
wave function can be written as a linear combination of Hartree
products, Φr,

Ψ̄(q, t) =∑
r

Br(t)Φr(q). (1)

The Hartree product is a product of one-dimensional functions
denoted as modals,

Φr =
M

∏

m=1
ϕm

rm(qm), (2)

where rm = 0, 1, . . ., Nm
− 1 for each mode. The wave function in

Eq. (1) is expanded on the basis of time-independent Hartree prod-
ucts. However, it is also possible to use a time-dependent Hartree-
product basis {Φ̃r(q, t)}. This allows for a more compact form of
the wave function, which is the foundation for the MCTDH method
introduced in Sec. III.

In the following sections, all wave functions and operators will
be represented using the SQ formulation presented in Sec. II A.

A. Second-quantization formulation of many-mode
dynamics

Following the SQ formulation of Ref. 21, vibrational wave
functions and operators are represented by creation am †

rm and
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annihilation am
rm operators, which create or annihilate occupation

in modal rm of mode m. These elementary operators satisfy the
commutator relations,

[am
rm , am′ †

sm′ ] = δmm′δrmsm′ , (3a)

[am
rm , am′

sm′ ] = 0, (3b)

[am †
rm , am′ †

sm′ ] = 0. (3c)

The state with no occupation is denoted as the vacuum state |vac⟩,
which satisfies ⟨vac|vac⟩ = 1 and the killer condition,

am
rm ∣vac⟩ = 0. (4)

A time-dependent Hartree product can be written as

∣Φ̃r⟩ =
M

∏

m=1
ãm †

rm ∣vac⟩, (5)

where the ãm †
rm operators create time-dependent modals. If the time-

dependent creation operators are related to those of the time-
independent basis by a unitary transformation, the ãm †

rm and ãm
sm

operators also satisfy Eq. (3) (we refer to Ref. 4 for further discussion
of time-dependent creation and annihilation operators). In order
to manipulate wave functions, we introduce the number-conserving
shift operator,

Ẽm
rmsm ≡ ãm †

rm ãm
sm , (6)

which shifts occupation from modal sm to rm in mode m.

1. Operators in second quantization
A general Hermitian operator of the form O = O0 +∑mOm +⋯

can be written in SQ as

O = O0 +∑
m
∑

rmsm
Om

rmsm Em
rmsm

+ ∑

m1<m2

∑

rm1 rm2 sm1 sm2

Om1m2
rm1 rm2 sm1 sm2 Em1

rm1 sm1 Em2
rm2 sm2 + . . . , (7)

with integrals

Om1m2...mn
rm1 rm2 ...rmn sm1 sm2 ...smn ≡ ⟨r

m1 rm2 . . . rmn
∣Om1m2...mn

∣sm1 sm2 . . . smn
⟩.

The exact vibrational Hamiltonian operator can be represented
by such an expansion, but since the exact potential-energy sur-
face (PES) is generally not known, we often choose to represent
the Hamiltonian in the computationally favorable sum-of-products
(SOP) form,3,23,35

H =∑
t

ct ∏
m∈mt

hmt , (8)

where mt is a mode combination (MC), i.e., the set of modes that are
operated on by term t. The one-mode operators can be written both
in terms of the time-independent and the time-dependent basis as

hmt
= ∑

rmsm
hmt

rmsm am†
rm am

sm = ∑

rmsm
h̃mt

rmsm(t)ãm†
rm (t)ãm

sm(t). (9)

III. MCTDH IN SECOND QUANTIZATION
We now introduce the MCTDH method, which is a very

efficient method for representing the exact time-dependent wave
function [Eq. (1)] in a compact way by employing a variationally
optimized, time-dependent modal basis for each mode.

A. Definitions
MCTDH has previously been derived in first quantization

(FQ).2,3 We present here a new derivation based on a many-
mode SQ formulation21 in line with our previous work on time-
independent vibrational-structure theory and TDH.4 Note that
our SQ formulation is fundamentally different from harmonic-
oscillator ladder operators applied to anharmonic vibrational
problems.36

In MCTDH, the modal space of each vibrational mode is
divided into an active space of size nm with indices um, vm, and
wm and a secondary space of size (Nm

− nm) with indices xm and
ym. The indices rm and sm denote modals of unspecified occupancy
and we use greek letters αm and βm to denote modals belonging to
the underlying primitive basis. The MCTDH wave function is then
written as

∣Ψ̄⟩ =
n1

∑

u1=1
⋅ ⋅ ⋅

nM

∑

uM=1
Cu1...uM(t)

M

∏

m=1
ãm †

um (t)∣vac⟩ =∑
u

Cu∣Φ̃u⟩, (10)

where the ãm †
um (t) operators create the time-dependent modals. The

time-dependent modals are assumed to be orthonormal at time
t = 0, i.e., the standard commutator relations [Eq. (3)] apply. In
order to conserve orthonormality between the active-space modals
[ d

dt [ã
m
um(t), ãm′ †

vm′ (t)] = 0], the following commutator relation must
be satisfied:

[ãm
um(t), ˙̃am †

vm (t)] = −ig̃m
umvm(t), (11)

where

gm
= ∑

umvm
g̃m

umvm Ẽm
umvm (12)

is a Hermitian (but otherwise arbitrary) one-mode operator3

denoted in the following as the constraint operator for mode m. Note
that the FQ analog to (11) is ⟨ϕ̃m

um(qm, t)∣ ˙̃ϕm
vm(qm, t)⟩ = −ig̃m

umvm(t),
which is a well-known expression in the MCTDH theory.3 This
gauge freedom is a result of the fact that the active spaces can
be rotated without changing the total wave function. If the con-
figuration space is truncated, however, some elements of the gm

matrices become non-redundant. This issue will be addressed in
Sec. IV.

Before deriving the MCTDH EOMs, we introduce the following
definitions. The notation is a necessary hybrid of what is standard
in the MCTDH community3 with our formulation (m, um) used in
previous VCC, VCI, and TDVCC26 works.

Single-hole functions:

∣Ψ̄−m
um ⟩ = ãm

um ∣Ψ̄⟩ = R̄−m †
um ∣vac⟩. (13)

Single-hole coefficients:

Cum
vm = Cu1...um−1vmum+1...uM(t). (14)
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Single-hole Hartree products:

∣Φ̃−m
u ⟩ = ãm

um ∣Φ̃u⟩ = Ã−m †
u ∣vac⟩. (15)

Restricted summation:

∑

r

−m
=∑

r1

⋅ ⋅ ⋅∑

rm−1
∑

rm+1

⋅ ⋅ ⋅∑

rM

. (16)

Density matrices:

D̃m
umvm = ⟨Ψ̄∣Ẽm

umvm ∣Ψ̄⟩ = ⟨vac∣R̄−m
um R̄−m †

vm ∣vac⟩. (17)

Mean-field matrix elements:

F̃m
umrm = ⟨Ψ̄∣ãm †

um [ãm
rm , H]∣Ψ̄⟩. (18)

We note that the SQ definition of the mean-field matrix
elements is analogous to the generalized Fock matrix used in
electronic-structure Hartree–Fock (HF) and multi-configurational
self-consistent field (MCSCF) theory.37

B. SQ derivation of the MCTDH EOMs
The EOMs are derived using the Dirac–Frenkel TDVP,2,3

⟨δΨ̄∣(H − i
∂

∂t
)∣Ψ̄⟩ = 0, (19)

using the variation,

∣δΨ̄⟩ =∑
u
δCu∣Φ̃u⟩ +

M

∑

m=1
∑

um
δãm †

um ∣Ψ̄−m
um ⟩, (20)

where δãm †
um is a linear variation of the creation operator for modal

um of mode m. We also introduce the time derivative,

∣
˙̄Ψ⟩ =∑

u
Ċu∣Φ̃u⟩ +

M

∑

m=1
∑

um

˙̃am †
um ∣Ψ̄−m

um ⟩. (21)

Varying the Cu coefficients leads to

⟨Φ̃u∣H∣Ψ̄⟩ − i⟨Φ̃u∣
˙̄Ψ⟩ = 0, (22)

which results in the EOM of the configuration-space coefficients,

iĊu = ⟨Φ̃u∣H∣Ψ̄⟩ − i
M

∑

m=1
∑

vm
⟨Φ̃u∣˙̃am †

vm ∣Ψ̄−m
vm ⟩

= ⟨Φ̃u∣H∣Ψ̄⟩ − i
M

∑

m=1
∑

vm
⟨Φ̃−m

u ∣[ã
m
um , ˙̃am †

vm ]∣Ψ̄−m
vm ⟩

=∑

v
⟨Φ̃u∣H∣Φ̃v⟩Cv −

M

∑

m=1
∑

vm
g̃m

umvm Cum
vm

= ⟨Φ̃u∣(H − g)∣Ψ̄⟩, (23)

using ⟨Φ̃u∣ = ⟨Φ̃−m
u ∣ãm

um from (15) as well as Eq. (4). In the last equal-
ity, we have introduced g = ∑mgm. Independent variation of the
creation operators corresponding to the active modals results in

⟨Ψ̄−m
um ∣δãm

um H∣Ψ̄⟩ − i⟨Ψ̄−m
um ∣δãm

um ∣
˙̄Ψ⟩ = 0. (24)

Inserting Eqs. (21) and (23) leads to

⟨Ψ̄−m
um ∣δãm

um(I −∑
w
∣Φ̃w⟩⟨Φ̃w∣)H∣Ψ̄⟩ = i∑

m′
∑

vm′
⟨Ψ̄−m

um ∣δãm
um ˙̃am′ †

vm′ ∣Ψ̄
−m′

vm′ ⟩

− ⟨Ψ̄−m
um ∣δãm

um g∣Ψ̄⟩. (25)

We now introduce the resolution of the identity written as a purely
active-space part, a single-excited (to secondary space) part, and
higher excitation levels,

I =∑
u
∣Φ̃u⟩⟨Φ̃u∣ +∑

m
∑

u

−m
∑

xm
ãm †

xm ∣Φ̃−m
u ⟩⟨Φ̃

−m
u ∣ã

m
xm + . . . . (26)

This enables us to write the left-hand side (LHS) of (25) as

⟨Ψ̄−m
um ∣δãm

um(I −∑
w
∣Φ̃w⟩⟨Φ̃w∣)H∣Ψ̄⟩

=∑

xm
∑

w

−m
⟨Ψ̄−m

um ∣δãm
um ãm †

xm ∣Φ̃−m
w ⟩⟨Φ̃

−m
w ∣ã

m
xm H∣Ψ̄⟩

=∑

xm
[δãm

um , ãm †
xm ]∑

w

−m
⟨Ψ̄−m

um ∣Φ̃−m
w ⟩⟨Φ̃

−m
w ∣[ã

m
xm , H]∣Ψ̄⟩

=∑

xm
[δãm

um , ãm †
xm ]⟨Ψ̃−m

um ∣[ãm
xm , H]∣Ψ̄⟩

=∑

xm
[δãm

um , ãm †
xm ]F̃m

umxm . (27)

In the first step, we note that on inserting Eq. (26) only terms that
are one-mode excited in mode m can contribute due to the bra. In
the second step, we have used δãm

um ãm †
xm = ãm †

xm δãm
um + [δãm

um , ãm †
xm ]

and noted that the first term is zero when applied to the bra and
the commutator is a scalar which can be moved outside the bra-ket.
The right-hand side (RHS) of Eq. (25) is reduced to

i∑
m′
∑

vm′
⟨Ψ̄−m

um ∣δãm
um ˙̃am′ †

vm′ ∣Ψ̄
−m′

vm′ ⟩ − ⟨Ψ̄−m
um ∣δãm

um g∣Ψ̄⟩

= ⟨vac∣R̄−m
um δãm

um∑

m′
∑

vm′

⎛

⎝

i˙̃am′ †
vm′ −∑

wm′
g̃m′

wm′vm′ ãm′ †
wm′

⎞

⎠

R̄−m′ †
vm′ ∣vac⟩

= i∑
vm
[δãm

um , ˙̃am †
vm ]⟨vac∣R̄−m

um R̄−m †
vm ∣vac⟩

− ∑

vmwm
g̃m
wmvm[δãm

um , ãm †
wm]⟨vac∣R̄−m

um R̄−m †
vm ∣vac⟩

= i∑
vm

D̃m
umvm[δãm

um , ˙̃am †
vm ] − ∑

vmwm
D̃m

umvm g̃m
wmvm[δãm

um , ãm †
wm],

(28)

where we have used (3) several times. In the second equality, we
have used the fact that the m′≠m terms do not contribute since they
contain factors that for mode m′ correspond to

⟨vac∣ãm′

um′
⎛

⎝

i˙̃am′ †
vm′ −∑

wm′
g̃m′

wm′vm′ ãm′ †
wm′

⎞

⎠

∣vac⟩

= i[ãm′

um′ , ˙̃am′ †
vm′ ] −∑

wm′
g̃m′

wm′vm′ [ãm′

um′ , ãm′ †
wm′ ]

= g̃m′

um′vm′ −∑

wm′
g̃m′

wm′vm′ δum′wm′ = 0. (29)
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Altogether, the EOM for the time-dependent modals is

i∑
vm

D̃m
umvm[δãm

um , ˙̃am †
vm ] = ∑

xm
F̃m

umxm[δãm
um , ãm †

xm ]

+ ∑

vmwm
D̃m

umvm g̃m
wmvm[δãm

um , ãm †
wm]. (30)

C. Linear parameterization of the time-dependent
modals

Equation (30) is valid for any parameterization of the time-
dependent modals (e.g., linear or exponential as discussed in Ref. 4).
We choose a linear parameterization in terms of an orthonormal,
time-independent primitive basis represented by the am †

αm and am
βm

operators,

ãm †
rm (t) =∑

αm
am †
αm Um

αmrm(t), (31a)

ãm
sm(t) =∑

βm

am
βm Um∗

βmsm(t). (31b)

Inserting these into (30) results in expressions such as
[δãm

um , ˙̃am †
vm ] = ∑αmβm δUm∗

αmum[am
αm , am †

βm ]U̇m
βmvm = ∑αm δUm∗

αmum U̇m
αmvm

in all terms. Assuming arbitrary variations gets rid of the δUm∗
αmum

elements, resulting in

iU̇m
αmum = ∑

vmxm
[(D̃m

)
−1
]umvm F̃m

vmxm Um
αmxm +∑

vm
Um

αmvm g̃m
vmum . (32)

Note that the variations are in principle arbitrary, but the definition
of the gm operators ensures that the Um matrices stay unitary at all
times (disregarding numerical errors introduced by inexact prop-
agation). The density matrices may become singular due to some
active modals having zero weight in the wave function and, thus, the
matrix inversion needs to be regularized as discussed in Refs. 3 and
38. We note that a propagation scheme which avoids the density-
matrix inversion completely has been developed,39,40 but in this
work, we apply standard numerical integrators and, thus, regular-
ization is required. The xm summation requires the set of secondary
modals which is only defined as the orthogonal complement to the
active space. To avoid constructing the full orthogonal complement
explicitly, we choose to convert this to an expression involving only
the active-space modals,

∑

xm
F̃m
vmxm Um

αmxm =∑

rm
F̃m
vmrm Um

αmrm −∑

um
F̃m
vmum Um

αmum

=∑

βm

(δαmβm − P̃m
αmβm)F̌m

vmβm , (33)

where F̌m
vmβm = ∑rm F̃m

vmrm Um
βmrm [see (37) for the expression involving

only active-space modals] and P̃m
αmβm = ∑um Um

αmum Um∗
βmum is a matrix

element of the one-mode projector for mode m. This results in the
final EOM,

iU̇m
αmum = ∑

βm

(δαmβm − P̃m
αmβm)∑

vm
[(D̃m

)
−1
]umvm F̌m

vmβm

+∑
vm

Um
αmvm g̃m

vmum . (34)

For numerical reasons, the one-mode projector is
implemented as

P̃m
αmβm = ∑

umvm
Um

αmum[(S̃m
)
−1
]umvm Um∗

βmvm , (35)

where S̃m
umvm = [ãm

um , ãm †
vm ] is the overlap matrix for mode m. This

ensures that Pm remains a projector if the time-dependent modals
become non-orthonormal due to inexact numerical propagation of
the EOMs.

D. The mean-field operator for a sum-of-products
Hamiltonian

For a SOP Hamiltonian as defined in Eq. (8), the matrix
elements of the mean-field operator can be evaluated as

F̃m
umrm = ∑

t∈{tm
act}

ct⟨Ψ̄∣ãm †
um [ãm

rm , ∏
m∈mt

hmt
]∣Ψ̄⟩

= ∑

t∈{tm
act}

ct∑
wm
∑

v

−mC∗vm
um

×

⎛

⎝
∑

w

−mCw ∏

m′∈mt∖m
h̃m′t
vm′wm′ ∏

m′′∉mt

δvm′′wm′′
⎞

⎠

h̃mt
rmwm

= ∑

t∈{tm
act}

ct∑
wm
(∑

v

−mC∗vm
um

Tmt
vm
wm
)h̃mt

rmwm

= ∑

t∈{tm
act}

ct∑
wm

H̃mt
umwm h̃mt

rmwm , (36)

where {tm
act} only includes terms that operate on mode m. The

Tmt tensor is constructed by performing dim(mt) − 1 one-index
transformations on the C tensor. Contracting the tensors over all
modes except m results in the mean-field intermediates with ele-
ments H̃mt

umvm . We note that the derivative of the configuration-space
coefficients [Eq. (23)] can be obtained with almost no additional
effort during the calculation of the mean-field intermediates.

The half-transformed matrix elements used in Eq. (34) are
defined as

F̌m
vmβm =∑

rm
F̃m
vmrm Um

βmrm = ∑

t∈{tm
act}

ct∑
wm

H̃mt
vmwm ȟmt

βmwm , (37)

where ȟmt
βmwm = ∑αm hmt

βmαm Um
αmwm is obtained as a side product

of transforming the Hamiltonian integrals to the time-dependent
basis.

IV. THE MCTDH[n] METHODS
We now introduce the MCTDH[n] hierarchy of methods

for approximating the full MCTDH wave function in a system-
atic way. The general idea is to define a reference state ∣Φ̃i⟩ and
include all configurations that are up to n-mode excited with respect
to the reference (equivalent to the VCI[n] methods of Refs. 21
and 22).

We partition the active space for each mode into an occupied
modal indexed by im and nm

− 1 virtual modals indexed am, bm,
and cm. As discussed in Sec. III, the secondary modals defined as the
orthogonal complement to the active space are indexed by xm and
ym. Furthermore, um, vm, and wm denote active modals (occupied or

J. Chem. Phys. 152, 084101 (2020); doi: 10.1063/1.5142459 152, 084101-5

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

virtual), while rm and sm are used to denote any modal (unspecified
occupancy), and αm and βm denote primitive-basis modals. See Fig. 1
for an illustration of the modal spaces.

The occupied modals are used for constructing the reference
state,

∣Φ̃i⟩ =∏
m

ãm †
im ∣vac⟩, (38)

from which we define excitations within the active space,

∣ãm⟩ = τ̃mam ∣Φ̃i⟩ = ∏
m∈m

ãm †
am ∏

m′∉m
ãm′ †

im′ ∣vac⟩, (39)

where m ≡ {m0, m1, . . . } is a MC containing the excited modes.
The MCTDH[n] wave function is then written as

∣Ψ̄⟩ = Ci∣Φ̃i⟩ + ∑

m∈MCR[I]
∑

am
Cm
am ∣ã

m
⟩, (40)

where MCR[I] is the mode-combination range (MCR) of the
included configurations (excluding the empty set, i.e., the refer-
ence state that we have separated out explicitly). Including up to
n-mode excitations in MCR[I] defines the MCTDH[n] method,
i.e., the sum is limited to MCs for which dim(m) ≤ n. Thus,
we do not restrict the configuration space based on a function
of configuration indices (which can to some extent be thought
of as quantum numbers) as done in some previous studies,17–19

i.e., the sum over am is never truncated. The MCTDH[n] wave
function includes all possible configurations that are excited up
to n modes with respect to the reference configuration, and thus,
the truncation is always performed in the sum over MCs. Note
that MCR[I] can in principle include any set of MCs, but here,
we simply truncate the expansion based on one given excitation
level. This criterion treats all modes equally, but it is theoretically
fully possible to treat a subset of modes differently from the rest.
Including selected higher-order excitations is an important sub-
ject for future investigation which will be pursued in forthcoming
work.

A. Derivation of the MCTDH[n] EOMs
From the MCTDH[n] wave-function Ansatz [Eq. (40)] we

define the variation,

∣δΨ̄⟩ = δCi∣Φ̃i⟩+ Ci∣δΦ̃i⟩+ ∑

m∈MCR[I]
∑

am
(δCm

am ∣ã
m
⟩ + Cm

am ∣δã
m
⟩) (41)

FIG. 1. Schematic representation of the reference configuration in MCTDH[n] for a
three-mode system with the modal spaces indicated.

and the time derivative,

∣
˙̄Ψ⟩ = Ċi∣Φ̃i⟩ + Ci∣

˙̃Φi⟩ + ∑

m∈MCR[I]
∑

am
(Ċm

am ∣ã
m
⟩ + Cm

am ∣˙̃a
m
⟩). (42)

Using the Dirac–Frenkel TDVP, we obtain EOMs for the
configuration-space coefficients,

iĊi = ⟨Φ̃i∣(H − g)∣Ψ̄⟩, (43)

iĊm
am = ⟨ã

m
∣(H − g)∣Ψ̄⟩, (44)

which are equivalent to (23). Varying the active-space modals yields,

0 = ⟨Ψ̄−m
um ∣δãm

um(H − i
∂

∂t
)∣Ψ̄⟩. (45)

Applying the time derivative and inserting (43) and (44) results in

0 = ⟨Ψ̄−m
um ∣δãm

um(H − g)∣Ψ̄⟩ − i⟨Ψ̄−m
um ∣δãm

um

×

⎛

⎝

Ċi∣Φ̃i⟩ + ∑

m∈MCR[I]
∑

am
Ċm
am ∣ã

m
⟩

⎞

⎠

= ⟨Ψ̄−m
um ∣δãm

um(I − P̃I)(H − g)∣Ψ̄⟩

= ⟨Ψ̄−m
um ∣δãm

um(I − P)(H − g)∣Ψ̄⟩ + ⟨Ψ̄−m
um ∣δãm

um P̃X(H − g)∣Ψ̄⟩,
(46)

where we have introduced the projection operators,

P = P̃I + P̃X = ∣Φ̃i⟩⟨Φ̃i∣ + ∑

m∈MCR[I]
∑

am
∣ãm⟩⟨ãm∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

P̃I

+ ∑

m′∈MCR[X]
∑

bm′
∣b̃m

′

⟩⟨b̃m
′

∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

P̃X

, (47)

and defined MCR[X] as the set of excluded mode combinations, i.e.,
those not accounted for explicitly in the wave function. The first
term on the RHS of Eq. (46) yields the standard MCTDH modal
EOMs [Eq. (30)]. Note that the density matrices and mean fields
are of course calculated differently in MCTDH[n] (see Sec. IV C).
This term can only be non-zero if the variation is orthogonal to
the active space, i.e., δãm

um = ∑xm kxm ãm
xm . The second term can only

be non-zero if the variation is contained in the active space, i.e.,
δãm

um = kim ãm
im + ∑am kam ãm

am , and thus, both terms need to be zero
individually. The second term defines a linear set of equations for
determining the variationally optimal g operator as will be derived
and discussed in Sec. IV B.

B. Variational optimization of the constraint operators
Setting the second term of (46) equal to zero results in

0 = ∑

m′∈MCR[X]
∑

bm′
⟨Ψ̄∣ãm †

um δãm
um ∣b̃m

′

⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

(⟨b̃m
′

∣H∣Ψ̄⟩ − ⟨b̃m
′

∣g ∣Ψ̄⟩)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B

. (48)

Factor A can be evaluated by using the fact that the operator
Ẽm

imim + Ẽm
bmbm acts as the identity when applied to the ∣b̃m

′

⟩ state, i.e.,
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mode m is either occupied (m ∉m′) or excited to modal bm

A : ⟨Ψ̄∣ãm †
um δãm

um(Ẽm
imim + Ẽm

bmbm)∣b̃m
′

⟩

= [δãm
um , ãm †

im ]⟨Ψ̄∣Ẽm
umim ∣b̃m

′

⟩ + [δãm
um , ãm †

bm ]⟨Ψ̄∣Ẽm
umbm ∣b̃m

′

⟩. (49)

We note that um must be virtual in the first term and occupied in
the second in order to get a non-zero contribution. The B term
is evaluated by noting that only the parts of the g operator that
shift occupation between occupied and virtual modals give non-zero
contributions,

B : Km′

bm′ −∑
m′
∑

am′
(⟨b̃m

′

∣Ẽm′

im′ am′ ∣Ψ̄⟩g̃m′

im′ am′ + ⟨b̃m
′

∣Ẽm′

am′ im′ ∣Ψ̄⟩g̃m′

am′ im′ ),

(50)

with Km′

bm′ ≡ ⟨b̃
m′
∣H∣Ψ̄⟩. If MCR[I] is closed under one-mode de-

excitation (i.e., one cannot de-excite from an included to an excluded
configuration), the first term in (49) and the middle term in (50)
vanish. Inserting this into (48) results in

0 = ∑

m′∈MCR[X1] ∣m∈m′
∑

bm

[δãm
im , ãm †

bm ]∑

bm′

−m
⟨Ψ̄∣Ẽm

imbm ∣b̃m
′

⟩

×(Km′

bm′ − ∑
m′∈m′
⟨b̃m

′

∣Ẽm′

bm′ im′ ∣Ψ̄⟩g̃m′

bm′ im′), (51)

where we have defined MCR[X1] as the set of excluded MCs that
are one-mode excited with respect to an included MC. Assuming
independent variations (i.e., setting δãm

im = ∑um kum ãm
um , where kum

can be chosen arbitrarily), this becomes

0 = ∑

m′∈MCR[X1] ∣m∈m′
∑

bm′

−m
⟨Ψ̄∣Ẽm

imbm ∣b̃m
′

⟩

×(Km′

bm′ − ∑
m′∈m′
⟨b̃m

′

∣Ẽm′

bm′ im′ ∣Ψ̄⟩g̃m′

bm′ im′). (52)

Using ⟨b̃m
′

∣Ẽm
bmim ∣Ψ̄⟩ = Cm′∖m

bm′∖m , this can be re-written as a set of
linear equations for determining the virtual-occupied blocks of the
constraint operators,

∑

m′
∑

bm′
Am m′

ambm′ g̃m′

bm′ im′ = Bm
am , (53)

where we have defined

Am m′

bmbm′ ≡ ∑

m′∈MCR[X1] ∣m,m′∈m′
∑

bm′

−m,m′Cm′∖m
bm′∖m

∗
Cm′∖m′

bm′∖m′ , (54)

Bm
bm ≡ ∑

m′∈MCR[X1] ∣m∈m′
∑

bm′

−mCm′∖m
bm′∖m

∗
Km′

bm′ . (55)

Equation (53) is a set of linear equations of dimension Ntot
vir

× Ntot
vir with Ntot

vir ≡ ∑m(n
m
− 1) for determining the virtual-occupied

blocks of the g̃m matrices. All other elements are redundant and
can in principle be chosen arbitrarily (i.e., set to zero), but we
require the constraint operators to be Hermitian in order to conserve

orthonormality of the time-dependent modals and, thus, set the
occupied-virtual elements accordingly. Note that this can only be
done if the MCR[I] is closed under one-mode de-excitation. Oth-
erwise, the term in (50) depending on g̃m

imam could not be eliminated
and Hermiticity would have to be enforced making the Lagrange and
McLachlan TDVPs inequivalent (see Ref. 33).

Solving (53), optimizes the occupied modal in each mode such
that the reference for the truncated CI expansion becomes opti-
mal for representing the wave function. Note that the equations are
also defined in the limit nm = Nm

∀ m, i.e., the off-diagonal blocks
of the g̃m matrices are also non-redundant when the active space
includes all modals for each mode. Using (53), for obtaining g̃m

bmim ,
elements require some consideration, however. First of all, explicit
calculation of the Km

bm intermediate for constructing the Bm
am vector

is computationally expensive and will become a bottleneck. In our
implementation, this is solved by avoiding the construction of Km

bm

and combining the Hamiltonian transformation and the contraction
with the C coefficients (see Sec. V). Second, the A matrix is not guar-
anteed to be non-singular and the problem may become ill-posed
and require regularization as discussed in Sec. V. Furthermore, for
systems with many degrees of freedom, solving Eq. (53) may become
costly. These potential issues lead us to examine another choice of
constraint which keeps the density matrices block diagonal in all
modes (see Sec. IV C).

As a final perspective, Eq. (53) can also be derived as a LLS
minimization of the time derivative of the (n + 1)-mode excita-
tions for MCTDH[n]. Considering the EOM for the coefficients of
m′ ∈MCR[X1],

iĊm′

bm′ = ⟨b̃
m′
∣(H − g)∣Ψ̄⟩. (56)

Setting this expression equal to zero and assuming that MCR[I] is
closed under one-mode de-excitation results in an overdetermined
linear system of equations,

∑

m
∑

am
⟨b̃m

′

∣Ẽm
amim ∣Ψ̄⟩g̃m

amim = Km′

bm′ . (57)

Solving this using normal equations yields Eq. (53). Thus, the vari-
ational constraint operators are seen to minimize the time evolu-
tion of the excluded configurations that are one-mode excited with
respect to an included configuration.

C. Density matrices and natural-modal constraints
The blocks of the MCTDH[n] density matrices are evaluated as

D̃m
imim = ∣Ci∣

2 + ∑

m′∈MCR[I] ∣m∉m′
∑

am′
∣Cm′

am′ ∣
2, (58)

D̃m
amim = ∑

m′∈MCR[I] ∣m∈m′
∑

bm′

−mCm′

bm′m,am

∗
Cm′∖m
bm′∖m , (59)

D̃m
ambm = ∑

m′∈MCR[I] ∣m∈m′
∑

cm′

−mCm′

cm′m,am

∗
Cm′

cm′m,bm
, (60)

where Cm′

bm′m,am
has indices bm′

∀ m′ ∈m′m and index am for mode m.

Note that for m′ = {m}, Cm′∖m
bm′∖m = Ci.
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It is now relevant to consider a choice of constraint opera-
tors that keeps the one-mode density matrices diagonal (or block
diagonal) during the propagation. For MCTDH, the choice of natu-
ral modals does not change the wave function,3,41 but for approx-
imate MCTDH[n], it seems reasonable to choose natural modals
for defining the reference state.17,18,42 As shown in Sec. IV B, only
the virtual-occupied blocks of the gm operators are non-redundant
and, thus, able to change the wave function, i.e., rotations among
the virtual modals do not affect the accuracy of the results. Thus,
we now derive equations for determining the gm operators such that
the density matrices become block diagonal, i.e., D̃m

amim = 0 at all
times.

If the propagation starts from a set of natural occupied
modals [or perhaps iterative natural modals (ItNaMos)43], we
require,

0 = ˙̃Dm
amim = ∑

m′∈MCR[I] ∣m∈m′
∑

bm′

−m

× (Cm′

bm′m,am

∗
Ċm′∖m
bm′∖m + (Cm′∖m

bm′∖m

∗
Ċm′

bm′m,am
)

∗
)

= −i ∑

m′∈MCR[I] ∣m∈m′
∑

bm′

−m
(Cm′

bm′m,am

∗
⟨b̃m

′∖m
∣(H − g)∣Ψ̄⟩

− (Cm′∖m
bm′∖m

∗
⟨b̃m

′

m,am ∣(H − g)∣Ψ̄⟩)
∗
)

= i⟨Ψ̄∣[H − g, Ẽm
amim]∣Ψ̄⟩. (61)

This leads to

⟨Ψ̄∣[H, Ẽm
amim]∣Ψ̄⟩ = ⟨Ψ̄∣[gm, Ẽm

amim]∣Ψ̄⟩, (62)

where the LHS reduces to

⟨Ψ̄∣[H, Ẽm
amim]∣Ψ̄⟩ = ∑

t∈{tm
act}

ct∑
um

⎛

⎝

h̃mt
umam⟨Ψ̄∣Ẽm

umim ∏

m′∈mt∖m
hm′t
∣Ψ̄⟩

− h̃mt
imum⟨Ψ̄∣Ẽm

amum ∏

m′∈mt∖m
hm′t
∣Ψ̄⟩
⎞

⎠

= F̃m∗
imam − F̃m

amim , (63)

and the RHS becomes

∑

umvm
g̃m

umvm⟨Ψ̄∣[Ẽm
umvm , Ẽm

amim]∣Ψ̄⟩

=∑

bm

(δambm D̃m
imim − D̃m

ambm)g̃m
imbm , (64)

where we have used the assumption that D̃m
amim = 0. Note that this

assumption may become invalid due to inexact propagation of the
EOMs.

Thus, the constraint operators for propagation in natural occu-
pied modals can be obtained by solving the linear equations,

∑

bm

(δambm D̃m
imim − D̃m

ambm)g̃m
imbm = F̃m∗

imam − F̃m
amim , (65)

for all m. Propagating in the full set of natural modals and not just
occupied natural modals is also possible by choosing the g̃m

ambm ele-
ments such that the D̃m

ambm matrix is diagonal (see Refs. 3 and 41).
The linear equations in Eq. (65) become singular if one of the vir-
tual modals gets the same natural occupation number as the occu-
pied modal, i.e., if one of the eigenvalues of the virtual–virtual
block becomes equal to D̃m

imim . Thus, Eq. (65) needs to be regu-
larized in order to ensure a stable propagation.3 Note, however,
that the block-diagonal constraint does not give rise to singu-
lar constraint operators if two virtual modals get the same nat-
ural occupation as is the case when propagating in all natural
modals.

TABLE I. Overview of the different choices of g and their benefits and drawbacks.

MCTDH[n,g0] g = 0

Benefits • Simple
• The choice of g is never singular
• Minimizes the time evolution of the modals, which enables the use of a
constant mean-field (CMF) integrator44

Drawbacks • Not variational
• The occupied modals are not optimized with respect to rotations within the
active space

MCTDH[n,D] Obtain g by solving Eq. (65)
Benefits • Makes the reference state a product of natural modals with high occupation
Drawbacks • Not variational

• May become singular and require regularization

MCTDH[n,V] Obtain g by solving Eq. (53)
Benefits • Fully variational solution to the time-dependent Schrödinger equation
Drawbacks • Computationally expensive

• May become singular and require regularization
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The question now is whether this choice of gm is better than
the variationally optimized one derived in Sec. IV B. The TDVP is
no longer satisfied, but the occupation in the occupied modals is
kept as large as possible during the propagation. Also, the natural-
modal constraint is simpler and computationally cheaper than the
fully variational constraint. See Table I for a summary of the various
choices of g.

D. Separability
The MCTDH[n] wave function is based on a linear Ansatz like

VCI, and it is therefore relevant to discuss the features of the theory
with respect to separability of non-interacting subsystems. It is well-
known in the time-independent theory that the exact wave function
for an additively separable Hamiltonian, H = HA + HB, is multiplica-
tively separable, |α⟩ = |αAαB⟩, and the energy is additively separable,
E = EA + EB.37 Likewise, in the time-dependent case, the EOMs for
the different subsystems should decouple.

Consider the MCTDH[n] wave functions for the subsystems A
and B,

∣Ψ̄A⟩ = (CiA + ĈA)W̃A∣vac⟩ ∣Ψ̄B⟩ = (CiB + ĈB)W̃B∣vac⟩, (66)

where W̃A∣vac⟩ = ∣Φ̃A
i ⟩ is the reference configuration for subsys-

tem A and ĈA = ∑aA
CA
aA τ̃

A
aA creates the excitations. The total wave

function is then

∣Ψ̄⟩ = (CiA + ĈA)W̃A(CiB + ĈB)W̃B∣vac⟩

= (CiACiB + CiAĈB + CiBĈA + ĈAĈB)∣Φ̃i⟩. (67)

If the wave functions of the subsystems are truncated at n-mode
excitations, the total wave function includes up to 2n-mode excita-
tions and is, thus, not representable within the MCTDH[n] model.
This problem becomes more pronounced as the number of sub-
systems increases, and thus, it is expected that higher excitation
levels are required in order to obtain the same accuracy for larger
systems. However, if the time evolution of the modals is chosen
such that the weights of the reference configurations are kept as
large as possible during the propagation of the EOMs, the impor-
tance of the ĈAĈB term is kept small which results in smaller
errors.

We note that for the time-independent theory the VCC model
behaves correctly with respect to separability. This has recently
been extended to the time-dependent context in Ref. 26 where
a detailed discussion of the separability properties of TDVCC is
given.

V. IMPLEMENTATION
The MCTDH[n] methods together with the full MCTDH

method have been implemented in the MidasCpp program,45 which
also features efficient implementations of TDH4 and TDVCC,26 an
array of methods for time-independent vibrational-structure calcu-
lations,23,25,35 tools for automatic PES generation,46–48 coordinate
optimization,49,50 etc. The MCTDH module has been implemented
to interact with the time-independent wave-function modules of
MidasCpp such that it can obtain initial wave functions and modal
bases from prior vibrational self-consistent field (VSCF),35,51,52 VCI,
and MCTDH calculations.

The MCTDH EOMs are propagated in time using the general-
purpose routines introduced in Ref. 4. For all calculations in this
work, we use the Dormand–Prince 8(5,3) explicit Runge–Kutta
method53 with adaptive step-size control (medium-tight tolerance)
as well as dense output for obtaining equidistant values of the
autocorrelation function.

In order to entirely avoid the risk of the matrices used for
optimizing the g̃m

amim elements becoming near-singular, a smooth
regularization scheme like the one used for inverting density matri-
ces3 is always used in solving Eqs. (53) and (65). The matrices are
diagonalized and the eigenvalues are regularized as

λreg = λ + ϵ exp(−λ/ϵ), (68)

before constructing the inverse. The choice of ϵ is not very critical,
and in this work, we use ϵ = 10−12 for MCTDH[n,V] and ϵ = 10−6

for MCTDH[n,D].
The mean-field intermediates and the derivative of the

configuration-space coefficients are in both MCTDH[n] and the
full MCTDH implementation calculated by looping over terms in
the Hamiltonian. The wave-function coefficients are then trans-
formed with the one-mode operators one by one (using a specialized
routine for MCTDH[n]). After each transformation, the following
one-mode operator is skipped and the remaining transformations
are performed in order to construct the Tmt coefficients used for
calculating Hmt [see Eq. (36)]. The loop over operator terms has
been parallelized using OpenMP. The one-mode transformation in
MCTDH[n] is implemented by partitioning of each one-mode oper-
ator into four types of one-index contractions, passive, up, down, and
forward,24,54

hmt
= h̃mt

imim Ẽm
imim +∑

am
h̃mt

amim Ẽm
amim +∑

am
h̃mt

imam Ẽm
imam + ∑

ambm

h̃mt
ambm Ẽm

ambm

= hmt
p + hmt

u + hmt
d + hmt

f . (69)

Ideally, down contractions should be applied first followed by for-
ward and up in order to obtain the lowest computational cost. How-
ever, in order to calculate mean fields, we perform all contractions
belonging to one operator before proceeding to the next instead of
swapping them. Integrating the mean-field (and B vector) calcula-
tion in the general framework described in Ref. 24 with automatic
identification and exploitation of intermediates is a topic for future
investigation.

The Bm
am elements are calculated by considering all combina-

tions of contraction types for each term in the Hamiltonian that are
able to create a one-mode excited configuration from an included
configuration. Instead of applying the up contractions to the ket
coefficients (which would result in a tensor of higher dimensional-
ity), they are evaluated as down contractions on the Cm′∖m

bm′∖m

∗
coeffi-

cients [see Eq. (55)]. In this way, no tensors of higher order than n
are constructed for MCTDH[n,V].

VI. RESULTS
A. Computational details

In the following, the numerical results for the MCTDH[n]
methods with different choices of constraint operators are
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presented. Calculations are performed on formyl fluoride and a
series of high-dimensional Henon–Heiles potentials,

HHenon-Heiles = −
1
2

M

∑

m=1

∂2

∂q2
m

+
1
2

M

∑

m=1
q2

m + λ
M−1

∑

m=1
(q2

mqm+1 −
1
3

q3
m+1),

(70)

with λ = 0.111 803. The formyl fluoride PES has been cal-
culated using the adaptive density-guided approach (ADGA),46

including up to three-mode couplings with relative and abso-
lute thresholds, ϵrel = 10−2 and ϵabs = 10−6. The electronic-
structure points are obtained from the TURBOMOLE program.55

The one and two-mode parts of the PES have been calculated
using coupled cluster with singles, doubles, and scaled pertur-
bative triples [CCSD(F12∗)(T∗)]56 and the correlation consistent
double-ζ basis set optimized for explicitly correlated methods (cc-
pVDZ-F12).57 The three-mode part has been calculated using the
resolution-of-the-identity 2nd-order Møller–Plesset perturbation
theory (RI-MP2)58,59 and the correlation consistent triple-ζ basis set
(cc-pVTZ).60 The frozen-core approximation has been used in the
calculation of the correlation energy. The electronic-structure points
have been fitted using up to 12th-order polynomials for each mode
(the coupling terms have a maximum combined polynomial order
of 12). The final PES contains 2667 terms and is provided as the
supplementary material.

All MCTDH[n] calculations are performed using a B-spline
basis set,61 which is transformed into a set of orthonormal VSCF
modals before starting the propagation. In all calculations presented
here, a VSCF wave function is used as initial wave packet.

In order to quantify differences between MCTDH wave func-
tions, we use the squared difference norm,

∥Ψ1 −Ψ2∥
2
= ∥Ψ1∥

2 + ∥Ψ2∥
2
− 2 Re ⟨Ψ1∣Ψ2⟩, (71)

and the Hilbert-space angle,

ϑ = arccos(
∣⟨Ψ1∣Ψ2⟩∣

∥Ψ1∥∥Ψ2∥
). (72)

The latter is only sensitive to the shape of the wave function and not
to phase and norm errors.3

Spectra are obtained by performing fast Fourier transform
(FFT) on the autocorrelation function,

S(t) = ⟨Ψ̄(0)∣Ψ̄(t)⟩ = ⟨Ψ̄∗(t/2)∣Ψ̄(t/2)⟩, (73)

where the last equality holds if the initial wave function is real
and the Hamiltonian is symmetric.3 The last expression is prefer-
able (and thus used in the following) because the wave function
is more accurate at earlier times due to inexact numerical propa-
gation and in the case of MCTDH[n] also the approximate form
of ∣Ψ̄(t)⟩.

B. Intramolecular vibrational-energy redistribution
We first apply the MCTDH[n] methods to study the

intramolecular vibrational-energy redistribution (IVR) of formyl
fluoride—specifically the decay of the autocorrelation function. The
initial wave packet is generated by performing a state-specific VSCF

calculation on the one-mode part of the PES targeting the state
where the C–H stretch is excited to the second excited state
[0, 0, 0, 0, 0, 2], i.e., an uncoupled-anharmonic-oscillator compu-
tation. The dynamics studied below is, thus, initiated from the cou-
pling between modes. The MCTDH calculations are performed with
nm = 6 ∀ m. Figure 2 shows the absolute value of the autocorre-
lation function for MCTDH[n] with n ∈ [2, 4], using the different
constraint operators. The results clearly show that three-mode
excitations are necessary in order to describe the decay of
the autocorrelation function. None of the MCTDH[2] meth-
ods reproduce the correct decay and optimizing the con-
straint operators does not improve the results significantly. For
MCTDH[3], the MCTDH[3,V], and MCTDH[3,D] methods out-
perform MCTDH[3,g0]—especially after 104 a.u. The MCTDH[4]
wave functions include enough configurations to obtain high accu-
racy for all three choices of constraint.

C. Accuracy of the MCTDH[n] wave functions
We continue to examining the accuracy and convergence of the

MCTDH[n] hierarchy for different choices of constraint operators.
Figure 3 shows Hilbert-space angles and weights of the reference
configuration for MCTDH[n] with n ∈ [2, 5] for a 6D Henon–
Heiles potential. The initial wave packets are generated by perform-
ing VSCF calculations on the harmonic part of the potential shifted
by 0.5 in all directions. The results show clear convergence with
respect to the excitation level—particularly for the MCTDH[n,D]
and MCTDH[n,V] methods. The low-order MCTDH[n,g0] meth-
ods exhibit the largest errors and the effect of going from n = 2 to
n = 3 is not impressive. This can be explained from the fact that
the MCTDH[n,g0] wave functions are not variational, and thus,
it is not guaranteed that extending the parameter space leads to
more accurate results.62 The MCTDH[n,g0] EOMs do not at all
take into account that the occupied modal in each mode is special,
and therefore, the number of configurations needed for an accurate
description of the dynamics is large compared to the two other meth-
ods. The MCTDH[n,D] hierarchy converges nicely and the refer-
ence configurations have high weight during the entire propagation.
The accuracy of the MCTDH[n,V] wave functions is comparable
to MCTDH[n,D]. The density-matrix constraint is seen to provide
more accurate wave functions for n = 2 and n = 3 at longer times,

FIG. 2. Absolute value of the autocorrelation function of formyl fluoride, where the
C–H stretch is initially excited to the second excited state. For all methods, we use
nm = 6 for all modes.
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FIG. 3. Hilbert-space angles compared to the full MCTDH wave function (left column) and weight of the reference configuration of MCTDH[n] (right column) for a 6D Henon–
Heiles potential with nm = 6 ∀ m. Top: g = 0, middle: natural-modal constraint, and bottom: variational constraint. The initial wave packet is a Gaussian shifted by 0.5 in all
directions.

while the higher-order methods benefit most from the variational
constraint. This may seem counterintuitive at first, but it is impor-
tant to note that the TDVP only minimizes the local error of the time
derivative. Thus, as also seen in Fig. 3, the short-time errors can be
expected to be the smallest for the MCTDH[n,V] wave functions,
while the behavior at longer times is less predictable.

In order to see if the same conclusions apply to a more complex
system, we also present the Hilbert-space angles of the MCTDH[n]
wave functions for the IVR calculations on formyl fluoride presented
in Sec. VI B. These are shown in Fig. 4. As for the 6D Henon–
Heiles potential, the MCTDH[n] hierarchy converges systematically
toward the full MCTDH wave function. The MCTDH[n,V] wave
functions are most accurate at short times, but for n = 2 and n = 3,
the picture becomes less clear later on. Overall, the accuracy does not
depend strongly on the choice of the constraint operator, although

FIG. 4. Hilbert-space angles with respect to the full MCTDH wave function of
the MCTDH[n] methods for the IVR calculations on formyl fluoride presented in
Sec. VI B.
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FIG. 5. Top: Hilbert-space angle and squared difference norm compared to the full MCTDH wave function for MCTDH[2] calculations on two uncoupled 2D Henon–Heiles
potentials. Bottom: Autocorrelation function for full propagation and a zoom. The initial wave packet is a Gaussian shifted by 0.5 in all directions.

FIG. 6. Spectra (left) and reference weights (right) for a 50D Henon–Heiles potential with nm = 6 ∀ m. The initial wave packet is a Gaussian shifted by 0.5 in all directions.
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FIG. 7. Spectra (left) and reference weights (right) for a 100D Henon–Heiles potential with nm = 6 ∀ m. The initial wave packet is a Gaussian shifted by 0.5 in all directions.

the MCTDH[4,V] wave function is the most accurate through the
entire propagation.

D. Separability
We now study the separability of MCTDH[n] wave functions

by applying the MCTDH[2] methods to a system of two uncou-
pled 2D Henon–Heiles potentials. For each of the two subsystems
all MCTDH[2] wave functions are exact, but the time evolution of
the modals matters in the description of the combined system where
four-mode excitations are required for constructing the exact wave
function. Figure 5 shows Hilbert-space angles, squared difference
norms, and autocorrelation functions of the MCTDH[2] methods
compared to the full MCTDH wave function. The results clearly
show that the MCTDH[2,D] wave function performs much better
than MCTDH[2,g0] because the weight of the reference configura-
tion is kept large during the propagation as discussed in Sec. IV D.
The MCTDH[2,V] wave function is also significantly better than
MCTDH[2,g0], but the density-matrix constraint still performs best
because the reference weight is kept large instead of minimizing the
importance of the three-mode excitations. None of the MCTDH[2]
wave functions are exact (as opposed to the time-dependent VCC

counterpart), but it is evident that the separability errors can in
this case be kept small by optimizing the time evolution of the
modals. We, however, expect the absolute errors to increase with the
number of non-interacting subsystems and calculations performed
on three uncoupled 2D Henon–Heiles potentials (not shown here)
support this.

E. High-dimensional Henon–Heiles potentials
We now apply the MCTDH[n] methods to larger Henon–

Heiles potentials where full MCTDH calculations are unavailable.
We note that the ML-MCTDH method has been applied to Henon–
Heiles systems with up to 1458 dimensions.9 However, in our
present work, we choose the initial conditions such that all modes
are displaced which will make the choice of a tree structure for ML-
MCTDH difficult, as the displaced modes cannot all belong to the
same logical coordinate.

Figures 6–9 show data for 50D, 100D, 250D, and 500D Henon–
Heiles potentials, respectively. For all calculations, an active space
of nm = 6 ∀ m is used, and the initial wave packet is gener-
ated by performing a VSCF calculation on a harmonic potential
shifted by 0.5 in all modes resulting in a shifted Gaussian wave

FIG. 8. Spectra (left) and reference weights (right) for a 250D Henon–Heiles potential with nm = 6 ∀ m. The initial wave packet is a Gaussian shifted by 0.5 in all directions.
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FIG. 9. Absolute value of MCTDH[2] autocorrelation functions for a 500D Henon–
Heiles potential with nm = 6 ∀ m. The initial wave packet is a Gaussian shifted by
0.5 in all directions.

packet. For the 50D potential, both MCTDH[2] and MCTDH[3]
calculations are performed, while only MCTDH[2] is available for
the larger systems. For the 500D potential, the auto-correlation
function is shown instead of the spectrum because the spectral

resolution is not as high as for the lower-dimensional systems. We
note that especially for MCTDH[2,g0], the step sizes of the inte-
grator became quite small compared to those of the corresponding
MCTDH[2,D] and MCTDH[2,V] calculations. This is the reason
for the shorter propagation times for the g = 0 constraint seen in
Figs. 7–9.

The results clearly show that optimizing the constraint oper-
ators is key to obtaining physically meaningful autocorrelation
functions and spectra. The MCTDH[n,g0] methods generally pro-
duce even qualitatively wrong wave functions which is due to the
weights of the reference configuration dropping to ∼0 very early.
On the other hand, the MCTDH[n,D] and MCTDH[n,V] meth-
ods are able to maintain a high weight of the reference con-
figuration, and thus, calculate meaningful autocorrelation func-
tions and spectra of these large systems. As seen in Fig. 6 the
results obtained from MCTDH[2,V], MCTDH[2,D], MCTDH[3,V],
and MCTDH[3,D] are very similar, and thus, including more
configurations in the wave function is in this case less important than
optimizing the time evolution of the modals. In other words, going
from MCTDH[2,g0] to MCTDH[2,V] or MCTDH[2,D] improves
the results much more than increasing the number of configurations
by going to MCTDH[3,g0].

FIG. 10. Spectra for MCTDH[2,D] compared to X-TDH for 50D (top left), 100D (top right), and 250D (bottom) Henon–Heiles potentials.
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In Fig. 10, the MCTDH[2,D] results are compared to spectra
obtained from X-TDH4 calculations. The comparison with TDH
spectra shows that the mean-field approximation is able to cap-
ture the low-energy structure of the spectra, but the complex pat-
terns at high energy (especially seen in the 250D spectrum) are not
reproduced at all in TDH. We note that the TDH spectra resem-
ble the MCTDH[2,D] spectra more than the MCTDH[2,g0] do.
This can again be explained from the fact that TDH is a varia-
tional (and separable) theory, while MCTDH[2,g0] is not. Although
the MCTDH[2,g0] wave function includes more configurations, the
time evolution of the modals is not optimal which results in poor
spectra.

F. Timings and parallelization
Table II shows central processing unit (CPU) times per deriva-

tive evaluation for formyl fluoride propagated to t = 100 a.u. using
one thread on a CPU running at 2.3 GHz. The results show that sig-
nificant computational savings are possible compared to using the
full MCTDH method and that the number of configurations can be
kept small, which reduces the memory requirements. It is impor-
tant to note that the difference in the computational cost between
MCTDH and a given MCTDH[n] method will increase with the size
of the system. Also note that the relatively high computational cost
per derivative is due to the large number of terms in the formyl
fluoride PES (2667).

We finally study the parallel speedup obtained by using shared-
memory parallelization (OpenMP) on the loop over operator terms.
Figure 11 shows the parallel speedup (on a node with two 18-core
CPUs running at 2.3 GHz) for formyl fluoride when integrating the
MCTDH[3,D] EOMs for a time period of 100 a.u.∼2.4 fs. The initial
wave packet is obtained by performing a VSCF ground-state calcu-
lation on the one-mode part of the Hamiltonian. The speedup has
been fitted to Amdahl’s law,

speedup(N) =
1

(1 − p) + p
N

, (74)

where N is the number of parallel processes. Thus, an estimate
for the parallel proportion of the execution time, p, is obtained.
The results show that a factor ∼16 speedup is obtainable by using
the parallel implementation on a node with 36 threads. The fit to
Amdahl’s law results in a parallel proportion of the execution time of
p = 0.963.

TABLE II. Number of configurations and CPU time per derivative evaluation (in
seconds) for formyl fluoride.

tderiv (s)

Excitation level Nconfig g0 D V

2 406 0.42 0.42 1.1
3 2 906 1.6 1.6 3.7
4 12 281 4.7 4.9 10
Full 46 656 11

FIG. 11. Parallel speedup of an MCTDH[3,D] calculation on formyl fluoride with
nm = 6 ∀ m.

VII. SUMMARY AND OUTLOOK
The MCTDH EOMs have been derived in SQ and a new hierar-

chy of approximate methods, MCTDH[n], which reduce the number
of configurations by including up to n-mode excitations with respect
to a reference has been introduced. It has been shown that reduc-
ing the number of configurations removes some of the redundancies
in the MCTDH wave function, which makes the MCTDH[n] wave
functions depend on the choice of constraint (or gauge) operators,
g. Linear equations for obtaining a fully variational MCTDH[n,V]
wave function have been derived together with an alternative con-
straint, which keeps the one-mode density matrices block diago-
nal during the propagation resulting in the MCTDH[n,D] meth-
ods. These have been compared to the g = 0 case denoted as
MCTDH[n,g0].

The numerical results show that the MCTDH[n] hierarchy con-
verges systematically toward the full MCTDH wave function and
that optimizing the constraint operators is key to obtaining accu-
rate results. The fully variational constraint leads to high accuracy,
but the optimization of the gm operators makes it more expen-
sive than the two other choices. Using the density-matrix constraint
leads to cheaper propagation and physically meaningful results even
in the case where n is much smaller than the number of degrees
of freedom in the system as exemplified by the MCTDH[2,D] cal-
culations on Henon–Heiles potentials with up to 500 dimensions.
The MCTDH[n,D] methods also perform well for non-interacting
subsystems (compared to both MCTDH[n,g0] and MCTDH[n,V])
because the weight of the reference configuration is kept large during
the propagation. However, the MCTDH[n] methods do by construc-
tion not behave correctly with respect to separability as opposed
to the TDVCC method introduced in Ref. 26. We, thus, expect
the TDVCC method to perform better for larger systems and the
current investigation of constraint operators in MCTDH[n] is an
important step on the way to introducing time-dependent modals in
TDVCC.

The MCTDH[n] methods introduced in this work truncate the
configuration space based on a maximum excitation level alone.
The MCR[I] can, however, include selected higher-order excita-
tions as long as it is closed under one-mode deexcitation for
MCTDH[n,V]. This is of importance when studying systems where
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one (or a few) degrees of freedom are special. An example could be
double-well systems, but also when studying non-adiabatic dynam-
ics using the single-set formalism3 a balanced description of the
nuclear wave function on all PESs is required. An extension of
MCTDH[n] to cover this case will be the topic of a forthcom-
ing publication. As a further outlook, the MCR[I] does not need
to be constant in time. It is therefore possible to define crite-
ria for dynamically including (or removing) higher-order excita-
tions in the wave function during the propagation in line with
Ref. 20.

Finally, an exponential parameterization of the modal transfor-
mation (possibly also the configuration space) in MCTDH inspired
by the X-TDH method of Ref. 4 is also relevant for consideration.
This non-linear parameterization will ensure that the active modals
are kept orthonormal at all time eliminating the need for a non-
orthogonal projector. Future research will tell if this leads to a more
efficient implementation.

SUPPLEMENTARY MATERIAL

The PES for formyl fluoride is attached as the supplementary
material.
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