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Abstract—Various methods have been developed to build mod-
els for predicting drug response in cancer treatment based on pa-
tient data through machine learning algorithms. Drug prediction
models can offer better patient data classification, optimising sen-
sitivity identification in cancer therapy for suitable drugs. In this
paper, a computational model based on Deep Neural Networks
has been designed for prediction of anti-cancer drug response
based on genetic expression data using publicly available drug
profiling datasets from Cancer Cell Line Encyclopedia (CCLE).
The model consists of several parts, including continuous drug
response prediction, discretization and a drug sensitivity result
output. Regularization and compression of neuron connections
is also implemented to make the model compact and efficient,
outperforming other widely used algorithms, such as elastic net
(EN), random forest (RF), support vector regression (SVR) and
simple artificial neural network (ANN) in sensitivity analysis and
predictive accuracy.

Index Terms—Cancer treatment, Drug sensitivity prediction,
Computational model, Deep Neural Network

I. INTRODUCTION

Cancer, a multifactorial disease with a highly heterogeneous
nature has been at the forefront of research for decades,
with emphasis to have been put on the development of
more targeted cancer diagnostics and therapeutics. Since the
1980s, several cancer-related molecular features have been
identified [1], advancing the knowledge based on which cancer
therapies and drugs are being developed.

With the development of large-scale pharmacogenomic
screening and profiling of cancer cell lines, precision medicine
in cancer treatment (PMiCT) has become popular due to its
effectiveness in tailoring medical treatment based on each pa-
tient’s characteristics, offering insight in the role of molecular
features that cancer cells exhibit and their correlation with
predicting treatment outcome and therefore survival rates [2].
One important aspect of PMiCT is the computational predic-
tion of drug responses based on multiple types of genome-
wide molecular data using computational tools. Two of the
most significant public resources for data profiling, CCLE
and GDSC [3], offer information on cancer gene mutations,
genetic expression data (Affymetrix, RNA-seq), copy number
variations and drug sensitivity.

Recently, deep learning techniques have been used to aid
processes in medical treatment and clinical decision support.
However, in a classical statistic or machine learning (ML)
regression model, the algorithms tend to make a moderate
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instead of an accurate prediction, restricted by the complexity
of the model and the under study datasets. In 2017, Tiancheng
et al. developed a software that can accurately diagnose breast
cancer using deep neural networks (DNN) [4], demonstrating
the effectiveness of DNN in dealing with large datasets and
the potential of use in determining cancer treatment strategies.
In this paper, a comprehensive predictive model for anti-
cancer drug sensitivity has been developed. The model uses
the genetic expression profile as the input, and outputs a
score on drug sensitivity for each patient case. It consists of
several parts with a pan-cancer single-drug scheme, whereby
in each part, 3 main functional sections are constructed: (i) pre-
training feature selection, using the support vector regression
based recursive feature elimination (RFE), (ii) continuous drug
response prediction, with a multiple layer DNN and (iii)
sensitivity discretization, with the interquartile range (IQR) to
have been used to discretize and transform the drug response
to sensitivity prediction. The constructed model has been
regularized and compressed using the latest techniques in deep
neural network to simplify computation. Compared to other
methods such as elastic net (EN), random forest (RF) and
support vector regression (SVR), the proposed method is more
accurate in prediction and efficient in sensitivity analysis.

A. Previous work and under study dataset

Prior to the CCLE and GDSC projects, models were mainly
built based on the NCI-60 database. Francesco et al. [5]
proposed one response prediction model using genetic pro-
gramming. In 2012, CCLE was published, allowing mapping
of genetic features such as gene expression, copy number
and gene mutations to anti-cancer drug response [2], with a
designated drug response measurement, ’activity area’, to have
been introduced to simultaneously capture the efficacy and
potency of a drug. Followingly, Jang et al [6] compared the
performance of different regression and classification models
and showed that (i) elastic net has a good prediction perfor-
mance across all platforms and (ii) genetic expression is the
most important input for assessing the role of drug response.
An integrated approach was later proposed with the drug
target inhibition being taken into consideration for IC50 values
prediction, demonstrating a better performance compared to
random forest based methods [7]. Other methods such as
multitask learning [8] and dual-layer network [9] were also



proved to have an improved performance compared to elastic
net and other standard regression methods. Only recently, was
the first application of machine learning in drug response
prediction presented, using CCLE and GDSC datasets [10],
offering new insight in the role of multiple molecular factors
in prediction of cancer treatment.

II. PROBLEM FORMULATION

The aim of the proposed model is to predict the anti-
cancer drug sensitivity based on genetic expression and drug
response data derived from the CCLE dataset, while achieving
minimization of the errors of the predicted drug response,
proposed as per below:
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where f denotes the model (mapping) we want to find, ¥ is
the hyper-parameter in it; y and x present the anti-cancer
drug response and genetic expression respectively. The genetic
expression (RNAseq) and drug response data from CCLE
were selected for model training. The genetic expression data
contain 56318 genes from 1047 human cell lines, while the
drug response data contain IC50, EC50, Amax and ActArea
measurements of 24 anti-cancer drugs across more than 400
human cell lines for each of them respectively.

III. METHOD

The proposed model is based on a pan-cancer single-drug
response prediction scheme that offers sensitivity prediction
for a single therapeutic compound based on datasets derived
from different cancer types. Each part consists of three blocks:
feature selection, response (continuous) prediction and dis-
cretization, with the proposed model’s overall structure to
be illustrated in Fig. 1. Feature selection reduces the input
dimension and filters the noisy features. Response on contin-
uous prediction is constructed to predict the target ActArea
values from the genetic expression input. The discretization
part mainly focuses on transforming the continuous prediction
results to the sensitivity prediction scores. Since our model
scheme is based on pan-cancer single-drug datasets (different
entries from different cancer types are used for the prediction
of a single drug response), for each drug an independent model
is trained using the proposed model.

A. Feature Selection

Recursive feature elimination (RFE) was used, utilising an
external estimator (usually a model) that assigns weights to
features (e.g. the coefficients of a linear model). This algorithm
selects smaller feature sets recursively, which means that
in each iteration a smaller number of features remain until
the desired number of features is reached. The advantage
of RFE is that it usually selects the most informative fea-
tures with respect to the target, while maintaining a strong
potential relationship between target and features, reducing
the dimensions by deleting the irrelevant features. For the
estimator, the epsilon-support vector regression (SVR) was
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chosen to be used for the scope of this work, based on
the principle of solving the optimisation problem as below:

y—y<
y—y<€
notes the predicted target, § = (w,x) + b, { , ) denotes the
dot production, and € is the designated margin (tolerance). For
feature selection, the ¢ margin in the SVR estimator was set
at 0.1 and the desired feature number was set at 1000.

minimize 3||w||? subject to where ¢ de-

B. Deep Neural Network

A DNN has been developed to process the features after
dimension reduction. The proposed DNN has 12 dense layers
which are adopted in the model. Other structures have been
tested, including convolutional neural network (CNN) and
recurrent neural network (RNN). Empirically, the conventional
dense layers achieve a better result. In this model, tanh and
ReLU are set as the activation functions alternately to combine
the advantages of both nonlinear functions.

1) Hyper-parameters Optimization: In the neural network
construction, a heuristic optimization approach has been used
to decide on the parameters, with input data to be split at 70%
for training and 30% for validation. Firstly, one hidden layer
with 10 nodes and 'ReLU’ activation function in each node
was initialized. The maximum number of nodes for each layer
was set at 200. The number of nodes was then increased in
the current layer by 10. If the mean square error (MSE) of an
unseen (validating) set improved, the function was repeated;
if the MSE could not be improved or the maximum number
of nodes was reached, the current node number was kept
the same. The number of layers could also increase with the
addition of one more hidden layer with 10 nodes through the
use of the 'ReL U’ activation function. Finally, in the training
phase, the Adam [11] optimization algorithm was used, due to
the combining advantages of AdaGrad and RMSProp and its
computational efficiency and ease of implementation.

2) Regularization and Compression: In order to improve
the predictive accuracy, avoid overfitting and make the model
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Fig. 2. The proposed optimized neural network.

more efficient, several regularization and compression tech-
niques have been applied. In detail, /; and [ regularizations
were adopted in the cost function, as they make values of
weight matrices decrease and sparse. Also, Dropout [12],
a regularization technique that randomly drops units (along
with their edges) with a pre-defined probability p, was ap-
plied to the first 3 hidden layers, with a dropping rate p
set at 0.4, reducing the overfitting problem significantly in
several individual datasets. Finally, a compression technique
introduced in [13] was applied to the neural network. After
pruning, trained quantization and huffman coding, the model
was further simplified, while maintaining similar performance.
Following the aforementioned processes used for computation
and process, the resulted DNN is summarized in Fig. 2.

C. Discretization

In order to assess drug sensitivity and therefore define drug
response effectiveness, discretization of the ActArea values
was performed, with the resulting scores defined as ’sensitive’,
’resistant’ or “'moderate’. To avoid errors caused by outliers in
the measurements, the upper and lower quartiles were used in
the discretization scheme as follows: first the distribution and
the 25, 75 percentile values were defined for each of the 24
drugs; if an ActArea value was equal or larger than the 75
percentile value, it was marked as sensitive; if the ActArea
value was equal or less than the 25 percentile value, it was
marked as resistant, otherwise, the ActArea value was marked
as moderate.

IV. RESULTS
A. Preprocessing

With the help of the Python packages cmapPy and pan-
das, the selected data files from CCLE were imported and
visualized. In the dataset, the index of the input matrix was
identified by the cell line name, with each name to be defined
by (i) the sample name and (ii) the tissue name (cancer type).
All the index annotation details can be found in the ATCC
database [14]. The columns identify human genes, with their
primary annotations and names defined in Zerbino et al.’s
study [15]. For the drug response set, the ActArea is selected
from four recorded response measurements: EC50, IC50,
Amax and ActArea, with all extracted from drug effectiveness
results of in vitro experiments. Cell lines that did not have a
measured ActArea value and measured responses without a
corresponding genetic expression value were removed from
the analysis. For the expression set alone, genes that had zero

expression values across all cell lines were also deleted. In
this work, min-max normalization was used to scale the range
of features to (0, 1) interval.

B. Continuous prediction

The performance of our proposed NN based model was
compared to the elastic net (EN) regression, random forest
(RF) regression, simple ANN with random feature selections
(with same number of dense layers and linear activation
function). The performance of each algorithm was measured
by the mean squared error (MSE) and validated using Monte
Carlo cross-validation. In the Monte Carlo cross-validation,
the full training dataset was partitioned by random sampling
into two subsets: a training set and a validating (or testing)
set. The proportion of the data going into each subset was
defined as 70% of the data for training and the rest 30% for
testing, which led to an average of 130 samples in the testing
set. This process was repeated 5 times, as each time a new
partition was created for each independent model training for
each drug. The MSEs were calculated for each test set, with
the average overall performance to be shown in Table I.

Our constructed model achieved an average 0.1538 in MSE
measurement for all 24 drugs, ranging from a minimum of
0.0714 to a maximum of 0.2689. Compared to the other
methods implemented as part of this investigation, the pro-
posed model strongly outperformed each one of them in all 24
drugs. The average reduction in MSE for our neural network
based model over elastic net across 24 drugs exceeded 50%
and achieved maximum 78.1% for drug PD-0325901. Also,
for the drugs 17-AAG, Topotecan, PD-0325901, Paclitaxel
and AZD6244, whereby the rest 4 methods showed noticable
predicted errors, our model could still capture the pattern and
demonstrate a great performance of an average of 0.2187 in
MSE.

C. Sensitivity prediction

With respect to the continuous prediction, the sensitivity
prediction of each drug was derived as follows: first the
original ActArea values of all 24 drugs were discretized into
3 categories (sensitive, resistant and moderate) based on their
IQR; the predicted continuous results were then classified
based on the same condition of the original values classi-
fication under the assumption that the response distribution
remains unchange. The prediction accuracy of all 24 drugs can
be seen in Table II, with the results to verify the improved
performance of the proposed algorithm.

D. Timing aspect

Fig. 3 shows the accuracy and the training time specifica-
tions between our proposed method and the rest of the 4 tested
algorithms. The training time is measured in seconds/each drug
and then processed in logarithmic transformation. Compared
to elastic net, our proposed method not only performed better
in terms of accuracy but also reduced the training time by a
large proportion.



TABLE I
THE PREDICTIVE MSE ACROSS 24 DRUGS OVER RANDOM FOREST, SVR, ELASTIC NET, SIMPLE NEURAL NETWORK AND THE PROPOSED METHOD (PM)

Drug name RF SVR EN NN PM Drug name RF SVR EN NN PM
AEW541 0.358 0.324 0.293 0426 0.126 || Irinotecan 0.683 0.694 0.626 1.071 0.107
Nilotnib 0.522 0.521 0456 0525 0.215 || Topotecan 1.060 1.013 0915 1.468 0.152
17-AAG 1.079 0933 0.899 1.108 0.206 || LBW242 0.375 0462 0500 0.358 0.140
PHA-665752 0.223  0.225 0.233 0241 0.071 PD-0325901 1.716 1.039 1.230 2.388  0.268
Lapatinib 0.347 0.298 0313 0448 0.121 PD-0332991 0.287 0346 0.288 0.373  0.118
Nutlin-3 0268 0.262 0.245 0243  0.123 || Paclitaxel 1.651 1.387 1.091 2.103 0.256
AZD0530 0.693 0.583 0.611 0.679 0.178 || AZD6244 1.048 0.882 0974 1470 0.210
PF2341066 0314 0.307 0.291 0389 0.156 || PLX4720 0.510 0.514 0334 0579 0.2206
L-685458 0.313  0.290 0303 0.376  0.146 || RAF265 0.569 0.539 0521 0.560 0.100
ZD-6474 0.556 0.569 0472 0.576 0.138 || TAE684 0.724  0.594 0.593 0.732  0.162
Panobinostat ~ 0.465  0.457 0466 0.736  0.105 || TKI258 0420 0.339 0.299 0512 0.157
Sorafinib 0.244 0.218 0.273 0.238  0.080 || Erlotinib 0.355 0320 0.341 0437 0.121
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V. CONCLUSION

In this work, a computational model for prediction of cancer
drug sensitivity was developed and tested on a range of genetic
expression derived from a drug profiling dataset (CCLE).
The proposed model, based on the principle of Deep Neural
Networks, performs feature selection, continuous prediction
and discretization, using the genetic profiling information as
the model’s input, calculating a drug sensitivity score as the
output (sensitive, resistant or moderate). Comparison metrics
were also generated to evaluate the performance of the model
for prediction of 24 drugs, demonstrating better prediction
efficiency compared to all other methods, with a maximum
78% reduction in MSE compared to the elastic net method.
The model achieved the best mean sensitivity in prediction
with an accuracy of 0.7631, while reducing considerably the
processing training time.

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

and R. Pal, “An Integrated Approach to Anti-Cancer Drug Sensitivity
Prediction,” IEEE/ACM Transactions on Computational Biology and
Bioinformatics, vol. 11, no. 6, pp. 995-1008, 2014.

H. Yuan, I. Paskov, H. Paskov, A.J. Gonzalez, and C.S. Leslie, “Multi-
task learning improves prediction of cancer drug sensitivity,” Scientific
Reports, vol. 6, no. 1, pp. 31619, 2016.

N. Zhang, H. Wang, Y. Fang, J. Wang, X. Zheng, and X.S. Liu,
“Predicting Anticancer Drug Responses Using a Dual-Layer Integrated
Cell Line-Drug Network Model,” PLOS Computational Biology, vol.
11, no. 9, pp. 1004498, 2015.

M.Q. Ding, L. Chen, G.F. Cooper, J.D. Young, and X. Lu, “Precision
oncology beyond targeted therapy: Combining omics data with machine
learning matches the majority of cancer cells to effective therapeutics,”
Molecular Cancer Research, vol. 16, no. 2, pp. 269-278, 2018.

D.P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2014.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from
overfitting,” The Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929-1958, 2014.

S. Han, H. Mao, and W.J. Dally, “Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding,”
CoRR, vol. abs/1510.00149, 2015.

“ATCC: The Global Bioresource
https://www.atcc.org/.

D.R Zerbino, P. Achuthan, W. Akanni, M.R. Amode, et al., “Ensembl
2018,” Nucleic Acids Research, vol. 46, no. D1, pp. D754-D761, 2017.

Center,” [Online].



