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Abstract. Introduction: The increasing incidence of pancreatic cancer will make

it the second deadliest cancer in 2030. Imaging based early diagnosis and image

guided treatment are emerging potential solutions. Artificial intelligence (AI) can help

provide and improve widespread diagnostic expertise and accurate interventional image

interpretation. Accurate segmentation of the pancreas is essential to create annotated

data sets to train AI, and for computer assisted interventional guidance. Automated

deep learning segmentation performance in pancreas Computed Tomography (CT)

imaging is low due to poor grey value contrast and complex anatomy. A good solution

seemed a recent interactive deep learning segmentation framework for brain CT that

helped strongly improve initial automated segmentation with minimal user input. This

method yielded no satisfactory results for pancreas CT, possibly due to a sub-optimal

neural network architecture. We hypothesize that a state-of-the-art U-net neural

network architecture is better because it can produce a better initial segmentation

and is likely to be extended to work in a similar interactive approach. Methods:

We implemented the existing interactive method, iFCN, and developed an interactive

version of U-net method we call iUnet. The iUnet is fully trained to produce the best

possible initial segmentation. In interactive mode it is additionally trained on a partial

set of layers on user generated scribbles. We compare initial segmentation performance

of iFCN and iUnet on a 100CT dataset using Dice Similarity Coefficient analysis.

Secondly, we assessed the performance gain in interactive use with three observers on

segmentation quality and time. Results: Average automated baseline performance was

78% (iUnet) vs 72% (FCN). Manual and semi-automatic segmentation performance

was: 87% in 15 min. for manual, and 86% in 8 min. for iUNet. Discussion: We

conclude that iUnet provides a better baseline than iFCN and can reach expert manual

performance significantly faster than manual segmentation in case of pancreas CT. Our

novel iUnet architecture is modality and organ agnostic and can be a potential novel

solution for semi-automatic medical imaging segmentation in general.
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Interactive 3D U-net for the Segmentation of the Pancreas 2

1. Introduction

The increasing incidence of pancreatic cancer (PC) will make it the second deadliest

cancer in 2030[1]. This incidence has reached up to 2400 newly reported cases

(Netherlands) in 2017[2]. Efforts to find a cure remain unsuccessful, as the 5-year

overall survival rate continues to be stable at approximately 5% for the last 30 years[3].

The difficulty is that the physical complaints of PC frequently appear in a late stage of

the disease, turning the patient incurable.[4]

Image-based early diagnosis and image guided treatment are emerging potential

solutions. Computed Tomography (CT) is routinely used for the diagnostic workup as

well as followup in patients with PC. However, in up to 30%, the diagnosis of PC is

delayed or a patient is wrongfully diagnosed with PC. Image-guided treatment could

provide precision targeting to enhance curative options.

Artificial intelligence (AI) can help provide and improve widespread diagnostic

expertise and accurate interventional image interpretation. Recent advances

have successfully been applied to imaging diagnostic tasks across dermatology[5],

ophthalmology[6, 7] and radiology[8, 9, 10]. These innovative technologies should be

adaptable for the automatic detection of PC in CT images. Potentially, AI could

become a considerable aid in screening programs to detect the disease in an earlier

stage, therefore increasing the effectiveness of therapy.

Accurate segmentation of the pancreas is essential to create annotated datasets to

train and develop AI, and for computer assisted interventional guidance. The quality and

size of the training dataset are crucial for the performance of AI systems[6, 11]. Training

data requires accurate outlines of organs and lesions of interest. Any ambiguities in the

outline will affect performance in limited datasets. To really cover the wide range

of pancreas shapes and surrounding tissue, several hundreds of CT images must be

annotated which is labor intensive. Interventional image guidance requires accurate

outlines of the pancreas and relevant anatomy.

Automated deep learning segmentation performance in pancreas CT imaging is

low due to poor grey value contrast and complex anatomy. The difficulty arises due

to a lack of contrast between pancreas parenchyma and bowel, especially with the

duodenum. Moreover, large variations in size of the pancreas volume and large variation

in peripancreatic fat tissue, on top of textural variations of the pancreas parenchyma,

increase the difficulty as well[12]. Cutting edge technologies like Wolz et al. [13] reached

only 70% Dice Similarity Coefficient(DSC) using multi atlas technology. Even recent

state of the art deep learning techniques, like Gibson et al.[14] are still limited to 78%

DSC.

A potential solution seemed a recent interactive deep learning segmentation

framework for brain CT, that helped to strongly improve initial automated segmentation

with minimal user input. Wang et al.[15] proposed a semi-automated technique (iFCN),

which utilizes Fully Convolutional Networks(FCN) that handles user interactions to

interactively improve the initial segmentation.
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Interactive 3D U-net for the Segmentation of the Pancreas 3

The iFCN solution yielded no satisfactory results for pancreas CT, possibly due

to a sub-optimal neural architecture. Wang utilized a simple dilated FCN, while the

results using U-net have demonstrated state-of-the-art performance[16]. Moreover, their

framework still depends heavily on organ specific post-processing of the segmentation

that took advantage of the sharp boundaries. However, for the segmentation of the

pancreas, this post-processing step is inadequate as sharp distinguishable borders are

not always present. Our experiments for automatic segmentation yielded a 68% DSC

for the iFCN using this method.

We hypothesize that a state-of-the-art U-net neural architecture is better than

iFCN because it can produce a better initial segmentation and is likely to be extended

to work in a similar interactive approach.

2. Methods

2.1. Ethics and information governance

This work, and the local collection of data on implied consent, received national

Research Ethics (IRB) Committee approval from the Radboud UMC IRB2017-3976.

De-identification was performed in line with the General Data Protection Regulation

(EU) 2016/679.

2.2. Datasets and clinical taxonomy

The image data is derived from two independent datasets and will hence be distinguished

independently.

D1: The first dataset is used to train the neural network. This set is sourced from a

public dataset[14], which contains 90 late venous phased abdominal CT images and a

respective reference segmentation. These were drawn from two datasets: The Cancer

Image Archive (TCIA) Pancreas-CT dataset and the Beyond the Cranial Vault (BTCV)

Abdomen dataset. Both datasets are comprised of scans that contain non-pancreatic

related pathologies.

D2: The second dataset is used to validate our interactive U-net. Ten CT-scans were

randomly selected from a dataset containing 1905 late venous phased abdominal CT

scans, which were acquired in the year 2015 at the Radboud UMC. The image pixel

spacing in the x and y-axis are 0.781mm, and varies in the z-axis between 1 and 3 mm.

This data is derived from patients who were treated in the oncology department at the

time of scanning. The cohort consist of 941 males and 964 females, with a mean age

is 58.4 ± 13.3 years. Exclusion criteria are patients who were diagnosed with pancreas

related pathologies.
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Interactive 3D U-net for the Segmentation of the Pancreas 4

During the training stage, the training set will be denoted as T = {Xi;Yik}, where X

is the training image and Y is the reference label map, with i corresponding to a specific

training case and k denotes the one-hot classification layer. The one-hot classification

label set k is {0, 1, 2,..., K} with 0 being the background label and K denoting the

number of labels included in the set. Here, in this work, we demonstrate results with

K=1 to distinguish background and pancreas classes. Ŷ denotes the estimated label map

produced by the trained FCN. Ŷ ′ denotes the prediction with the scribbles incorporated.

2.3. Image Preprocessing

Data was preprocessed to fit the available computing facilities for the purpose of per-

forming relevant experiments. Future algorithms should reduce the preprocessing re-

quirement. Before the feature extraction we pre-processed the data with a few basic

processing steps to reduce the input dimensionality. The preprocessing step starts with

by applying a Gaussian filter with a sigma value of 0.75, to smooth the image for resam-

pling. Then we rescale the image window from a range of -160 to 240 HU to a range of -1

and 1. Values below or above this range are clipped to -1 or 1 respectively. This window

was chosen based on a basic soft tissue window[17]. Lastly, we crop the image based

on a bounding box, which is automatically generated based on the reference standard

segmentation. The bounding box is defined by the maximum and minimum index value

corresponding to the segmentation in 3 dimensional axes. Around this bounding box

we expand a 5% margin with respect to the dimensions of the specific image. The re-

sulting volume is ultimately resampled to a volume of 64 x 64 x 24 voxels using trilinear

interpolation. After preprocessing, the pixel spacing ranges between for the x-axis (1.7

- 2.7) mm, y-axis (0.79 - 1.8) mm and z-axis (3.34 - 4.7) mm.

2.4. Baseline Training

The baseline training is performed to find adequate network weights for the generation

of an initial segmentation. This training involved realistic, 1000 fold augmentation of

the data by randomly translating, rotating and adding noise at each training epoch.

The fractional translations ranged between –3 to +3 voxels. Image pixel translations

are computed using trilinear interpolation. Random rotations ranged between –10o and

+10o. Low level Gaussian noise was added with a uniform sigma range of 0 - 3 HU,

based on the noise level found in acryl, which depicts similar HU values as soft human

tissue.[18]

The segmentation performance is quantified by the DSC. We used a differentiable

DSC version in the loss function, which has been proposed by Milletari et al.[19] for

training the FCNs. We minimize the loss function for each of the K classes. The

implementation of DSC in our loss function for class k is as follows:

Lk = − 2
∑Nv

i=1 ŶikYik∑Nv
i=1 Ŷi +

∑Nv
i=1 Yik

(1)

Page 4 of 14AUTHOR SUBMITTED MANUSCRIPT - PMB-109631.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Interactive 3D U-net for the Segmentation of the Pancreas 5

Conv. + Relu

6
4

6
4

1
2

8

1
2

8

2
5

6

5
1

2

2
5

6

5
1

2

2
5

6

2
5

6

1
2

8

1
2

8

6
4

6
4

N
  C

la
ss

e
s

C

C

C

D DD U U U

D UMax pool+ Conv. 

+ Relu + BN 
Upsample + Conv. 

+ Relu + BN 
Concatenation

Conv. + Relu + BN 

+ Addition
C

IN
P

U
T

Conv. + Softmax

Figure 1: The iUnet architecture. The number in each box corresponds to the number

of filter feature maps. The black boxes retrain during the interactive phase, the others

remain fixed.

(a) Initial segmentation (b) Initial segmentation with scribbles

(c) Refined segmentation

Figure 2: Example of the update process for the refinement of a segmentation. In all

the images the red area depicts the segmentation created by our tool and the green

delineation represents the ground truth. (a) displays the initial segmentation. (b)

displays the initial segmentation including the scribbles. The red lines indicate the

areas that need to be added to the segmentation. The blue line indicates the area that

is falsely segmented and needs to be removed from the segmentation. (c) displays the

result after refining the segmentation

The total loss is calculated as the mean over all classes:

Ltotal =
1

K

K∑
k=0

Lk (2)
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Interactive 3D U-net for the Segmentation of the Pancreas 6

Medical 
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Figure 3: Framework for interactive segmentation

2.5. Extending Unet for interactive training

In interactive mode a U-net framework can be made interactive by retraining a few it-

erations with user feedback by freezing all but a few specific layers. This is fast because

it only requires a few iterations and one image to learn and it mitigates the risk of over-

fitting. This approach is a concept of transfer learning, where knowledge gained prior

during training is updated with new data to find a more robust model[20]. There are

no general rules as to which layers to freeze. Generally only the last layer is retrained

and this is what we propose as well. This is motivated by the observation that the first

few layers are already trained to identify basic image level features, but the later layers

become progressively more specific to actual segmentation. We also choose to add a

layer in the deepest section for retraining in the (see Figure 1), as these layers contain

the largest receptive field. Esser et al. [21] demonstrated altering these layers (also

referred to as latent space between the encoder and decoder of the U-net) they are able

to control a large receptive field in the output.

2.6. Interactive training

During the interactive retraining of the network a previously described selection of iUnet

layers are retrained (see Figure 1) using scribbles. The flowchart for the interactive

segmentation is illustrated in Figure 3. The user generates an initial segmentation Ŷ

from the medical image X. With the initial segmentation obtained by the trained FCN,

the user can provide a set of scribbles to provide new information to the iUnet to guide

the update of Ŷ . The scribbles are denoted as Sk, with k denoting the corresponding

label. In contrast to the standard training protocol that treats all pixels equally, now

pixels are weighted based on a weight map. This weight map, w, equals the size of the

label map, Y, and is initialized uniformly. The user-provided scribbles are considered

improvement over the current segmentation and should have a higher impact on the

loss function, therefore receive a weight of 3. Lastly, voxels at a small distance from the

scribbles reflect a region of segmentation uncertainty, and therefore receive a weighting

of 0. This distance was determined by a threshold (0.2) of the geodesic distance map,
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Interactive 3D U-net for the Segmentation of the Pancreas 7

generated from the image, the scribbles and voxel indices. The function presented in

Equation 3 is used to minimize the objective function. This loss function is based on

the DSC, weighted by a voxel-specific weight map w, and a loss for volume difference

to optimize the objective function.

Lk = − 2
∑Nv

i=1wiŶ
′
i kŶik∑Nv

i=1 Ŷ
′
i k +

∑Nv
i=1 Ŷik

+ λ
(∑Nv

i=1 Ŷik − Ŷi′k∑Nv
i=1 Ŷik

)2

(3)

In order to predict multiple classes for segmentation, we calculate the total loss,

which is depicted in formula 4.

Ltotal =
1

K

K∑
k=0

Lk (4)

2.7. Implementation

All models are implemented in Keras with the Tensorflow 1.12 backend. We extended

the U-net architecture to use 3D convolutional filters. Each layer uses a padding size

of (1,1,1), in order to preserve the feature map size. We use Adam optimization with

an initial learning rate of 1e-4. We train the baseline iUNet for 2000 iterations, which

takes about 12 hours, with a batch size of 8. The model is trained on a desktop running

Windows 10 and leveraging a Nvidia RTX 2070 with CUDA 10.0 edition. The interactive

training of the network was performed on a desktop with a Nvidia GTX 1080 running

Ubuntu 16.04. A custom GUI, build in VTK and QT5, running via X-server were used

to generate and optimize the segmentations.

2.8. Experiment 1: Baseline 3D U-net, iFCN and iUNet comparison

In the first experiment we compare the automatic segmentation performance of the Cicek

et al.[22] 3D U-net, iFCN and our proposed iUNet. The performance is quantified in

DSC using a 5-fold cross validation on D1. The dataset is randomly divided into 5

equally sized folds. Four out of five folds of segmentations are used to train while the

remaining fifth group is used as the development set. This strategy is repeated 5 times

such that the DSC on the development set is computed. The accuracy reported in

the paper is the average DSC obtained on the development set after each fold. To

substantiate the statistical significance, we also perform a Wilcoxon signed-rank test.

2.9. Experiment 2: iUnet validation

In the second experiment we compare manual expert segmentation to our iUnet

segmentation method, based on the DSC and time to create the segmentation.

A validation protocol is defined to compare the manual segmentation to the iUnet

segmentation method. A team consisting of three radiological experts were appointed

to perform the segmentations, and are referred to as readers. The ten cases in dataset

D2 are divided into two subsets containing 5 scans. To minimize the learning effect
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Interactive 3D U-net for the Segmentation of the Pancreas 8

we alternate the subsets and the segmentation method per reader. Dependant on the

segmentation method, specific constraints are defined. The manual segmentation was

performed using ITK-snap with full access to the segmentation features. The time

measurement of interactive time starts from the moment that the first annotation is

placed, and stopped after the segmentation is saved. There is no time constraint to

create the segmentation. The interactive segmentation was performed using our custom

made framework. Each reader is given 2 test cases before the start of the validation to

get familiar with this tool. At the start of the experiment, the reader gets the instruction

to only focus on global features, as adjustments on specific-voxel level would counteract

the purpose of the tool. The recording of the time starts from the moment the reader

generates the initial segmentation, and is stopped after the segmentation is saved.

A consensus standard reference is produced in order to measure the segmentation

performance. This consensus reference standard is produced by two readers based on

the full resolution images. These segmentations are cropped to the same dimensions as

the scans in the validation set and are used to measure the DSC relative to a produced

manual and interactive segmentations.

The data is analyzed in three methods. First, the performance is determined for

the manual segmentation by the comparison of the observer-to-observer differences to

determine the agreement between the readers. A pairwise comparison approach between

each label is performed and reported separately in DSC.

Second, we compare the consensus reference standard to the manual, automatic

and iUnet segmentation method, recorded in DSC. The DSCs are depicted in a violin

plot to give a full picture on the variance within the data.

Finally, we will perform a Wilcoxon signed-rank test to determine the significance of

the improvement of the segmentation quality over the invested time and the satisfactory

score of the observer.

3. Results

Experiment 1 resulted in a DSC of 75.3% ± 8.1% for the Cicek et al. 3D U-net, a DSC

of 72.3 % ± 11.4 % for dilated FCN and a DSC of 78.1% ± 8.7% for the iUnet.
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Interactive 3D U-net for the Segmentation of the Pancreas 9
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Figure 4: Performance of the Cicek et al. U-net[22], Dilated FCN

network architecture and our 3D U-net in a 5-fold cross validation

using dataset D1.

The Wilcoxon signed-rank test found that p < 0.001 in the comparison of the

manual segmentation vs the interactive U-net

Table 1: DSC values among 3 observers for manual pancreas

segmentation.

Dice coefficient Kappa value

observer

1 2 3

observer 1 1 0.87 0.85

observer 2 1 0.86

observer 3 1

Average intra observer DSC is 0.86 (95% CI; 0.85-0.87)
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Figure 5: Boxplot of the DSC of the manual segmentation vs the

iteractive segmentation on dataset D2

The Wilcoxon signed-rank test found that p = 0.017 in the comparison of the manual

segmentation vs the interactive U-net.
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Figure 6: Boxplot of the time required to produce a segmentation

for dataset D2

The Wilcoxon signed-rank test found that p < 0.001 in the comparison of the manual
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segmentation time vs the interactive U-net segmentation time.
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Figure 7: Performance of the fully automatic segmentation vs the

interactive segmentation on Dataset D2

The Wilcoxon signed-rank test found that p < 0.001 in the comparsison of the manual

initial segmentation vs the interactively refined segmentation.

4. Discussion

The results demonstrate that iUnet achieves expert performance in nearly twice the

speed of expert radiologists. Observers with iUnet assistance reached 86.0 DSC versus

87.5 DSC in manual mode, but in a median 48.4% time reduction. This was achieved by

developing an interactive version of U-Net that showed a significantly higher segmenta-

tion performance than iFCN.

In comparison with the most common automatic segmentation method we observe

the following. As expected, the standard Cicek UNet (DSC 75.3% ± 8.1%) showed

improved performance over baseline iFCN (72.3% ± 11.4%). The slightly worse

performance than our baseline iUnet (78.1% ± 8.7%) can be attributed to fine tuning

to the problem at hand. Thereby we need to note that we similarly optimized iFCN.

Furthermore, both U-net architectures are more robust as demonstrated by the smaller

performance deviations and the violin distribution plot showing less outliers. These

observations confirm our choice for the development of an interactive version of UNet.

The iUnet reaches a higher DSC for the automatic segmentation on a validation set

compared to the training set. After comparison of the images, we see that the pancreas

in D2 are mostly all strongly delineated with adipose tissue. The poorer performance
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on our training set is likely associated with the lesser amount of visceral fat present in

this patient, causing the boundaries between pancreas and surrounding tissues to be

less well defined. Roth et al.[23] found that the body-mass-index has a strong influence

on the difficulty of the segmentation task, and we speculate that this is the main reason

for the higher DSC on the validation set. Size difference in the data sets plays a minor

role in range with the statistical test range.

The initial iUnet has trouble picking up on the contours of the pancreas in certain

anatomical regions, especially at the uncinate process. Visually, this area looks similar

to the the adjacent tissue. Also, this area contains a lot of anatomical variation between

subjects, which makes it hard for the network to learn a general feature.

Overall the performance of the interactive segmentation reaches expert level. We

found an inter-observer variation, which on average has an 86.0% agreement. So

reasonably, this is the maximum average DSC we expect to find for the interactive

segmentation as well.

We were able to define two major contributors to the interobserver variability. The

first cause is that due to the low-resolution images, it is visually hard to delineate

similar tissues, as crucial landmarks are lacking. Secondly, the border of the pancreas

contains a lot of partial volume artifacts, leading to disagreements whether the partial

volume artifacts were parts of the pancreas. Due to the low-resolution images, this is

a substantial amount. The outer-edge contains on average 25.1% of the volume of the

segmentation.

The interactive experiments identified that the adaptability of the iUnet strongly

depends on the training protocol, i.e the introduction of strong data augmentation in

the training gives the U-net more flexibility to pick up on specific features[9]. To further

increase iUnet’s ability to generalize, it is of interest to use a larger training set with more

patients, since a large training set with a wide variety helps to learn common features

among different subjects. We speculate that we could improve the performance gain

even more, if we train the decoder of the network on a huge similar dataset separately

prior to the training of the decoder with the dataset for our specific use case.

Caution needs to be taken with the amount of layers that are opened for retraining.

The algorithm might disregard the adjacent area due to a lack of constraints. Therefore

the algorithm has enough freedom to learn the scribbles by itself, causing the algorithm

to diverge. After the first iteration we see an initial drop of the DSC.

After the first iteration the algorithm tends to under-segment the pancreas. This is

however easily corrected by drawing additional scribbles so the iUnet converges to yield

a more appropriate segmentation. To counteract this phenomenon we hypothesize that

it will be beneficiary to add in a probabilistic representation in a latent space variable,

to encourage a disentangled distribution over the generative factors q(z|x) to be closer

to an isotropic Gaussian N(0, I).

In the future, we need to focus on the definition of clinically acceptable segmentation

accuracy, which has yet to be defined depending on the use-case, e.g. guiding abdominal

interventions. We do expect that the segmentation time will improve as a result of
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improvements in GPU technology. The availability of larger amounts of GPU memory

will allow the processing of whole CT volumes at a higher resolution. Future work

can potentially augment the tissue-segmentation map with multiple labels per pixel to

encode local tissue features, or with additional channels that encode continuous features.

Lastly, bounding boxes should be provided by the user, but they could potentially be

obtained by automatic detection to increase efficiency further.

5. Conclusion

We conclude that iUnet provides a better baseline than iFCN and can reach expert

manual performance significantly faster than manual segmentation in case of pancreas

CT. Our novel iUNet architecture can potentially be a novel solution for semi-automatic

medical imaging segmentation in general.
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