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In recent years, there has been considerable interest in the prospect of machine learn-
ingmodels demonstrating expert-level diagnosis inmultiple disease contexts. However,
there is concern that the excitement around this field may be associated with inade-
quate scrutiny of methodology and insufficient adoption of scientific good practice in
the studies involving artificial intelligence in health care.
This article aims to empower clinicians and researchers to critically appraise studies of
clinical applications of machine learning, through: (1) introducing basic machine learn-
ing concepts and nomenclature; (2) outlining key applicable principles of evidence-
based medicine; and (3) highlighting some of the potential pitfalls in the design and
reporting of these studies.

Introduction

Machine learning (ML), a form of artificial intel-
ligence (AI), has generated considerable excitement in
recent years, particularly through a number of promi-
nent publications demonstrating the ability of these
ML models to achieve expert-level diagnosis in multi-
ple disease contexts.1–6

The very first AI-based technology approved by
the US Food and Drug Administration was an

ophthalmic application, IDxDR, an algorithm for
screening diabetic retinopathy.7 This was approved in
April 2018 by the US Food and Drug Administra-
tion under its breakthrough device program, and has
been followed by an increasing number of applications
across a range of health-related indications.8 Interest
in this area is intense, but there is a need to ensure
that this excitement is tempered by scientific rigor and
critical appraisal. In a recent systematic review, we
conducted an evaluation of the “state-of-the-art” AI
for disease diagnosis using medical imaging, focusing
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on deep learning models (an advanced subfield of
ML characterized by neural networks).9 Although this
review identified more than 20,000 studies in the field,
less than 1% of these studies had sufficiently high
quality design and reporting to be included in themeta-
analysis. Clear and transparent reporting of methodol-
ogy and results, fit for AI studies, are needed. Without
this, readers cannot judge whether reported findings
are justified in the context of potential sources of bias,
and the extent to which the findings of such studies are
reproducible and generalizable.

With the introduction of reporting guidance, such
as the Consolidated Standards of Reporting Trials
(CONSORT)10 and the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses,11 substantial
improvements have been made in the completeness of
reporting across the medical literature. The application
of similar reporting standards in the diagnostic field
has been more challenging, with no single standard
applicable to all diagnostic models. The Standards
for Reporting Diagnostic accuracy studies12 guide-
lines addresses accuracy studies of single test evalua-
tions only, whereas multivariate diagnostic probabil-
ity functions are better addressed by the transpar-
ent reporting of a multivariable prediction model for
individual prognosis or diagnosis (TRIPOD).13 With
the rise of AI in medicine, researchers from other
fields with diverse research backgrounds and publica-
tion cultures have entered the medical field. Whereas
the medical community has become accustomed to
complying with agreed international standards of
reporting, this appears to be much less prominent in
other fields such as statistics, mathematics, or compu-
tational science.

Ophthalmology has been a leader in the AI health
revolution, with particular interest being in the gener-
ation of algorithms that can perform diagnostic or
grading tasks from imaging. Eye health has therefore
become a test bed of innovation in the AI sector, and
provides a rich source of case examples to illustrate the
potential of ML algorithms in medical applications but
also the pitfalls around the designs and reporting of
such studies. Key information that should be reported
on includes: technical specifications (e.g., which optical
coherence tomography [OCT] device has been used);
contextual study setting and cohort information
(e.g., eligibility/selection criteria, demographics, clini-
cal setting, time period, geographic location, the
manner of enrolment, patient flow, missing data); and
howdatawere processed (e.g., file image enhancements,
cropping, storage file format).14 Notably, ML models
feature additional technical aspects that have yet to
be comprehensively addressed yet in current reporting
guidance. In response, extensions to several reporting

guidelines (including TRIPOD-ML, CONSORT-AI
and SPIRIT-AI) are in development.15–17

In this article, we hope to provide a reader’s guide
for those wanting to critically appraise studies of
clinical applications of ML, particularly in the high-
priority area of classification tasks to support its use in
screening, diagnosis, and monitoring based on medical
imaging.

Questions to Consider

Was the Study Methodology Prespecified?

Prespecification of study methodology should
include: a description of the unmet need, the intended
place of the model within a diagnostic pathway, the
inclusion/exclusion criteria, the approach to validation,
primary and secondary outcomes that will be evalu-
ated, power calculation, and the statistical analysis
plan.

A fundamental aspect of the study, key to the inter-
pretation of its results, is to understand the intended
use of theMLmodel in the diagnostic process.Will this
test be used for triage or diagnosis? If used in a triage
situation, specific test requirements relevant to mass
screening could apply. Will this model be used as an
isolated test, used in combination with other diagnostic
elements (e.g., multimodal imaging), or used as an add-
on or replacement test during the workup? If the ML
model is a component of the diagnostic decision-tree,
researchers should define how the information arising
from the model fits within the overall diagnostic proba-
bility function.18,19 We call for the need to clarify a
priori the purpose of the MLmodel and for authors to
use this to guide selection of the optimal study design.20

A priori reporting of the study methodology helps
tackle a number of biases, including publication bias,
where “negative” studies (i.e., those failing to reject
the null hypothesis) are less likely to be published,
and where the evidence base may be skewed in favor
of models showing high performance.21 Additionally,
selective reporting of outcomes may occur, whereby
the study is reported but only includes those outcomes
that show the model in the best light.22 This may be a
particular pressure where a company holds a financial
interest in a model and may profit from the exclusive
reporting of positive outcomes. Both challengesmay be
addressed by the prospective registration of studies.23
Documenting the intended study methodology a priori
enhances transparency.24

Sample size and a statistical analysis plan should
be prespecified. In a recent systematic review of deep
learning studies, reporting of prespecified sample size
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calculation to ensure sufficient power was scarce.9
Although there is currently a lack of consensus on how
to consider sample size in studies of ML models, it
should still be prespecified according to the minimal
clinical significant difference and the hypothesis of the
study.25,26

Is the Model Being Evaluated in its Intended
Stage in the Care Pathway?

Diagnosis is a process of integrating information
derived from various stages in the patient pathway.
Each stage, whether it be the presenting history, clinical
examination, or a series of investigations, constitutes
an individual data point along a stepwise diagnostic
process. At each step, there is a transition from a pretest
to posttest disease probability, and it is the combination
of information derived at each step that makes up the
final diagnosis decision.27,28

It is therefore important to understand where the
dataset was generated from within a care pathway.
For example, fluorescein angiography might only
be ordered in those where OCT reveals suspicious
findings. Consequently, pretest disease probability in
patients undergoing fluorescein angiography is likely
higher than those undergoing OCT. In the case of
retrospective datasets containing routinely collected
imaging data, this information is usually unavailable or
is poorly recorded. Similarly, open-source data libraries
(in ophthalmology, most notably the MESSIDOR
dataset for fundus photographs29 and the OCT dataset
from Guangzhou Medical University and Shiley Eye
Institute30) may provide vast volumes of images, yet
details on indication for the investigation is typically
absent.

Any new test, including ML models, developed
using a given dataset should not be considered in isola-
tion from its clinical pathway. When considering the
validation of models based on a precurated dataset, it
is important to ask: for what purpose was this dataset
originally curated? And, does the disease probability
within this cohort differ to the setting in which the
model will be deployed?

Do the Authors Provide Sufficient Clarity on
How the Data Were Split?

The terminology around datasets has been a
common source of confusion in ML studies as
authors have used many of the key terms interchange-
ably. Common practice in developing ML diagnos-
tic algorithms is to split a dataset for development
into training, tuning, and internal validation test sets

Figure 1. Overview of datasets involved in a machine learning
diagnostic algorithm: model development and evaluation.

(split sample validation). Subsequent external valida-
tion test sets, for out-of-sample external validations,
are also often sought to test for generalizability of
the model. We recommend a standard nomenclature
comprising the terms “development” and “validation”
for the stages of development and evaluation, and the
terms “training set,” “tuning set,” and “validation test
set” (either an internal validation test set or external
validation test set) for the datasets used (Fig. 1).9

Model Development
The training set contains “seen” data used to fit the

model in an iterative fashion, and this is where most of
the learning occurs. The tuning set is usually a smaller
dataset containing examples separate to the training
set. It provides an opportunity for ML engineers to
observe the performance of a model and fine-tune the
model weights (hyperparameters). In that sense, the
tuning set also contains seen data. Both training and
tuning should be considered part of themodel develop-
ment process because changes in observed performance
prompts new adjustments to the model architecture.
The internal validation test set on the other hand,whilst
also part of the model development process, contains
“unseen” imaging examples of the same patient cohort
with which to test the performance of the finalized
model. There should be no overlap between the seen
and unseen datasets; therefore, description of the
splitting between the training and validation/tuning
datasets needs to be clearly documented.

Model Validation
Robust external validation of a model should be

performed in an out-of-sample external validation test
dataset.13 This dataset should be distinctly separate
from the development dataset (temporally and/or
preferably geographically) and validation should be
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performed by independent investigators. Model valida-
tion is discussed further in Question 8.

Are the Image Labels Likely to Reflect the
True Disease State?

To assess the accuracy of any model, we need
to assess against the ground truth (more commonly
known to clinicians as the gold standard). Knowing
the provenance of the ground truth is critical, and
is more often an issue in ML compared with other
diagnostic studies because of the sizes of datasets
involved and the demands this may therefore place on
any manual labeling process. Considerations include:
Are the labels added manually or automatically gener-
ated from associated records (e.g., electronic health
systems)? Are any ground truth labels missing? Were
the images labeled prospectively or retrospectively? In
some situations, retrospective labeling may be benefi-
cial as it benefits from additional information (such as
further follow-up data confirming a diagnosis).

A fundamental question is, how confident we are
that these labels are indeed ground truth? It is impor-
tant to know if these labels are based on a single
note in a linked electronic health record or something
more robust such as a linked definitive result (such as
biopsy), an independent review of the image, or expert
consensus? In cancer, the ground truth normally has a
high degree of certainty because it is based on histol-
ogy (and in some cases cancer-free survival). For most
ophthalmic applications, the best ground truth avail-
able is usually expert opinion. However, the reliability
of expert opinion should be critically appraised. It may
vary considerably in robustness from, single expert to
multiple expert majority vote, multiple expert consen-
sus and multiple independent expert opinion with
disagreements escalated to an adjudicator. Even the
term “expert” could have different meanings: subspe-
cialist for a certain number of years, board-certified
specialist, or certified readers from a reading center.

A useful measure for the reliability of ground truth
labels is interobserver agreement between the labelers,
and it would be good practice to prespecify a thresh-
old for inclusion of cases where there is nonconsen-
sus. By reporting interobserver agreement, readers can
at least make a judgment on the likelihood that the
ground truth label is correct. For example, low agree-
ment may signify ambiguous cases, and a decision
should be made about whether it is appropriate to
train an algorithm based on unreliable ground truth
labels or whether these images should be excluded.
Other methods to enhance the labeler’s likelihood to
accurately diagnose disease may also be used, such

as presenting extra clinical information alongside the
image, using combined information from multimodal
imaging or another diagnostic test to confirm findings,
and/or providing access to previous images that may
give additional contextual information and provide a
more appropriate benchmark. The additional benefits
are that the comparator against which an algorithm
is measured is also more representative of real-world
practice, making the study results more clinically appli-
cable. In our review of ML diagnostic algorithms,
only 4 of 82 included studies considered the provi-
sion of additional clinical information, such as clinical
vignettes or historical images, to the health care profes-
sional.9

How Is Diagnostic Accuracy Reported?

The terminology used to report diagnostic accuracy
in ML may initially seem inaccessible to readers used
to medical studies, however many of the statistical
concepts are familiar. For example, recall is equivalent
to sensitivity, precision is equivalent to positive predic-
tive value, and confusionmatrix is equivalent to contin-
gency table. There is a clear need for both communi-
ties to understand each other’s terminology: in medical
applications, diagnostic accuracy is usually reported
as sensitivity, specificity, and area under the curve; in
ML applications, models are also commonly reported
in terms of accuracy, F1 score, and dice coefficient.
The provision of the actual contingency tables ensures
clarity, and to some extent bypasses this issue.

Our recommendation is that, at a minimum, the
contingency tables (true positives, true negatives, false
positives, and false negatives), should be reported at
a justified prespecified threshold. This information
allows the calculation of all other relevant measures
familiar to both medical andML communities (Fig. 2).
Contingency tables also provide additional value in
multiclass classification tasks, where a model is trained
to predict three or more disease classes, as opposed
to a binary classification task (disease present/not
present, class A or B). In multiclass classification, it
may be of clinical interest to see if systematic misclas-
sifications are occurring (for example, if subretinal
fluid was systematically misclassified as intraretinal
fluid).

Is the Dataset Used in Model Development
Reflective of the Setting in Which the Model
Will Be Applied?

The performance of a model is highly dependent on
the training data. When considering a suitable training
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Figure 2. Overview of confusionmatrix/contingency table. Differences in nomenclature formachine learning (boldface type) and classical
statistics (italic type) and where overlapping (boldface and italic) are highlighted.

set, the need for size in a dataset is well recognized,
but the need for data quality and appropriateness
is often overlooked. It is important that the dataset
is appropriate for training the algorithm for deploy-
ment in a specific real-world situation. Underrepre-
sentation of important diagnostic features or disease
states during development may profoundly limit its
performance once it is released into its intended clinical
arena.

One such consideration is whether the dataset repre-
sents the complete spectrum of diagnostic cues for
the target population. Spectrum bias, where disease
manifestations within a dataset (i.e., disease sever-
ity, stage, distribution of alternate diagnoses) do not
adequately reflect the target patient population, is a
common problem, particularly because many investi-
gators may opt for datasets which represent extremes
(i.e., normal vs severe disease).25,31 For example, if a
diagnostic algorithm was developed for the presence or
absence of diabetic retinopathy (DR) and model was
validated using a sample population with normal eyes
and only severe cases of DR eyes, the model’s ability
to discriminate diabetic eyes from normal eyes will be
overestimated (“two-gate design” or diagnostic case-
control design). If this algorithm was released in a real-
world situation, it may performwell on detecting severe
nonproliferativeDR (NPDR) or proliferativeDR cases
but classify an unacceptable number of mild or moder-
ate grade NPDR as normal.

A related problem that is well described in the ML
literature is class imbalance, where classes (or disease
categories) are not equally represented in the train-

ing dataset.32 This may cause the opposite problem
to that seen in the previous example. For example,
a population-based dataset of fundus images from
patients with diabetes reflecting normal prevalence will
mostly be normal, mild NPDR, or moderate NPDR;
only a small number will be proliferative DR cases.
A model trained on these data can learn to favor
the more prevalent mild or moderate DR class as a
diagnosis based on disease probability, rather than
salient pathological features in the image. To tackle
this problem, algorithm developers often adopt various
methods to balance the classes (either adding copies
of the underrepresented class: oversampling or taking
away instances of the overrepresented class: under-
sampling). Although this commonly used technique is
helpful in algorithm training, investigators sometimes
replicate the class distribution in the validation test set,
which is most likely to ensure optimum model perfor-
mance, even if it is an unrealistic disease prevalence.
Reporting results in this way is somewhat unhelpful
because it becomes difficult to extrapolate whether the
same level of accuracy can be replicated in a real patient
cohort.

Therefore, important considerations include: is the
disease prevalence in the internal validation test dataset
representative of the target population in the real
world? Are there under- or overrepresented subgroups
within the training dataset? Have the authors applied
any inclusion or exclusion criteria which create a selec-
tion bias? Have the authors applied a sampling method
(i.e., random sampling) to reduce the risk of spectrum
bias?
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Is the Output of the Model Interpretable and
Can it Be Interrogated? Are Differential
Diagnoses and Estimates of Confidence
Provided?

As a clinician, knowledge about the probability of
disease presence within a list of differential diagnoses
(and its associated estimates of confidence) is a neces-
sity for good clinical decision-making. Adequate reflec-
tion of the diagnostic process by providing supporting
evidence alongside a diagnosis suggested by an ML-
based tool may complement the capability to interro-
gate the system thereby facilitating clinical adoption.
Imagine a situation where, despite robust diagnostic
validation, there remains disagreement between a clini-
cian’s and anML algorithm’s diagnosis.When rational-
izing treatment decisions and managing risks, having
the ability to interpret and interrogate recommenda-
tions made by ML models is vital. For successful
clinical adoption of ML-based tools, clinician trust is
key.31,33

In non-ML predictive modeling, input param-
eters of a model may have been chosen in a
hypothesis-driven and rule-based manner.27,34 For
instance, considering today’s pathophysiological
understanding of diabetic retinopathy (based on
a biological model), hemoglobin A1c would be a
reasonable indicator to include in a model for predict-
ing progression of retinopathy.35 On the contrary,
common ML techniques for image-based diagnosis in
ophthalmology, such as deep learning, may potentially
use thousands of inscrutable input parameters fed
into a complex model of weighted connections to
create data-driven predictions without any supporting
evidence.33,36,37

Understandably, this way of modelling stays fairly
abstract to the human mind (“black box” decision
making) and in turn makes it harder to detect bias,
overfitting, and confounding. A recent example of
a deep learning model for detection of pneumonia
demonstrates this point nicely. The resulting model
performed very well, but was found to be exploiting
confounding variables in the images such as noting if
the scan was taken on a portable machine (exclusively
used in sicker patients).38 Similarly, an algorithm for
the detection of skin cancer from dermoscopic images
of skin lesions was found to be using the presence of
skin markings within the photograph as an indicator
of likely malignancy.39

Concerns have therefore been raised regard-
ing trustworthiness, particularly within the field of
medicine, because of the potentially impactful nature
of decisions.33 Several methods evolving around visual-
ization have been suggested to mitigate this issue (i.e.,

occlusion, saliency, or class activation maps).40,41
These techniques provide a way of visualizing key
predictive features within an image, and can at least
allow a degree of recognition on whether irrelevant
features were used as predictors.

Is the Performance Reproducible and
Generalizable?

For the successful adoption of an ML diagnos-
tic tool in clinical practice, it is important that the
predictive accuracy has been shown to be robust
beyond the cohort they have been developed in (exter-
nal validation). It is a known phenomenon that classi-
fication performance of predictive models, including
ML models, can be overestimated in internal valida-
tion alone.42 External validation should be considered
as a continuum rather than a single event. External
validation may include: evaluation in a dataset that is
independent of the original dataset but similar in terms
of its setting and population; evaluation in a dataset
that is independent, but differs in either the popula-
tion (e.g., ethnicity, socioeconomic status) or the setting
(e.g., screening, primary care, secondary care); evalu-
ation in the same or new populations over time to
test for degradation of the model performance as the
population evolves; evaluation in a dataset that differs
for technical reasons (e.g., images taken on different
scanners). These factors may profoundly affect the
performance of a model and highlight the need for
reproducibility and generalizability to be evaluated.
For instance, anMLmodel developed on an unselected
database of images fromaDRscreening service is likely
to perform optimally in that setting, and less well in
either a primary optometry setting or a hospital eye
service.

For diagnostic tests outside ML, it has already been
established that there is a lack of validation studies.42
External validation in ML-based diagnostic models is
arguably even more important because of the “black
box nature” of these systems and the inability to inter-
rogate the models’ decisions. In a recent systematic
review assessing studies that used deep learning to
diagnose diseases from medical imaging, only 6 of
18 studies within ophthalmology reported on external
validity. Vollmer and colleagues suggested that insuf-
ficient reporting on the particularities of ML models
may delay opportunities for external validation by an
independent research group.31

A specific pitfall for ML applications develop-
ing models based on high-dimensional data (such as
ophthalmic images) is “overfitting.” Imaging is consid-
ered high-dimensional data, because theoretically, each
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pixel or voxel may be considered as a separate input
parameter into the model. To develop an ML model
on images or scans may therefore require a substan-
tial amount of training data to avoid overparameter-
ized classification models in which the input parame-
ters are too numerous in relation to the sample size.
In turn, overparameterized classification models may
be prone to overfitting, which refers to a situation in
which there are insufficient outcome events relative to
the number of predictors. Overfitting is a common
problem in high-dimensional data. The model adjusts
to spurious signals and unimportant findingswithin the
training data, and this results in poor generalizability
to new data while giving overly optimistic estimates of
performance.25,43,44

In summary, to test the generalizability of the
algorithm’s performance, authors should therefore seek
to externally validate their results in an out-of-sample
external validation to avoid overly optimistic estimates.
This should be done in a temporally, or preferably
geographically, separate study population, and ideally
by an independent research group.45 Validation should
be considered not as a one-off event but as an
ongoing process to test performance in any new arenas
of intended use, and to ensure that performance is
maintained over time.

Conclusion

Machine learning algorithms have shown significant
potential for offering expert-level diagnostic capabil-
ity across a wide range of diseases. Because of the
increasing ease with which models can be generated on
publicly available datasets, there will be an increasing
deluge of reports of AI diagnostics and other inter-
ventions claiming impressive sensitivity and specificity.
Enthusiasm around this novel technology should not
overrule the need for robust critical appraisal, and this
will require an increasing community of people with
expertise bridging the worlds of medicine, statistics,
and computer science. This brief article is intended as
an introduction to some of the key points to consider
when critically appraising studies reporting ML appli-
cations in clinical medicine, particularly around image-
based classifiers. New standards specific to reporting
studies of ML interventions in health care such as
TRIPOD-ML, SPIRIT-AI, and CONSORT-AI are in
development, and it is hoped that they will lead to
improvements in the design and reporting of such
studies.15–17 Improved understanding of the field will
help readers decide whether they can have confidence
in the study findings, and whether the results are gener-

alizable and clinically applicable. Although evaluation
of diagnostic accuracy is a key step of the valida-
tion process, understanding the effect of any given
algorithm on patient outcomes requires assessment in
the context of the whole patient pathway with a focus
on patient outcome, and ideally within the context of
a prospective randomized clinical trial. This is particu-
larly important in black box algorithms in which a lack
of understanding of the underlying model increases
the risk of unexpected negative consequences, which
may only be seen after implementation of the device
within a clinical pathway. Provided we can achieve the
appropriate scientific evaluation and real-world regula-
tion of ML health-related interventions, this exciting
tool can fulfil its potential to be a powerful technology
for patient benefit and health system improvement.
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