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ABSTRACT
We present an approach for automatic extraction of measured values from the astrophysical
literature, using the Hubble constant for our pilot study. Our rules-based model – a classical
technique in natural language processing – has successfully extracted 298 measurements of the
Hubble constant, with uncertainties, from the 208 541 available arXiv astrophysics papers. We
have also created an artificial neural network classifier to identify papers in arXiv which report
novel measurements. From the analysis of our results we find that reporting measurements
with uncertainties and the correct units is critical information when distinguishing novel
measurements in free text. Our results correctly highlight the current tension for measurements
of the Hubble constant and recover the 3.5σ discrepancy – demonstrating that the tool presented
in this paper is useful for meta-studies of astrophysical measurements from a large number of
publications.

Key words: publications, bibliography – methods: data analysis – astronomical data bases:
miscellaneous – cosmological parameters.

1 IN T RO D U C T I O N

The increase in publication output of the scientific community
has, in recent years, surpassed the level at which most academics
can stay up to date. Even if one chooses a narrow focus, more
papers are published each month than can be practically read by
any one individual in the given time. Further, if one wishes to
make a formal study of the value of a given parameter, across the
multiple publications in which such measurements are reported,
this problem is compounded by the need to find the various
publications in the first place. The results of such studies are not
only interesting as observations on the state of the community
and its collective knowledge, but also very useful for determining
consensus (or lack thereof) and highlighting issues which merit
further study. Structured analysis of the body of existing measure-
ments can be used to refine simulations and models, and also to
motivate directions in research if discrepancies or consensus can be
found.

For example, a series of papers from de Grijs & Bono (2014,
2015, 2016, 2017) discussed publication bias in measurements of
the distances to the Local Group Galaxies, and Galactic rotation
properties. Similarly, Croft & Dailey (2015) compiled measure-
ments of cosmological parameters between 1990 and 2010, and
noted a confirmation bias when comparing the scatter between the
resulting measurements, given reported uncertainties. Licquia &
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Newman (2015) compiled measurements of Milky Way properties
from the literature, and performed a sophisticated statistical analysis
on the resulting data. Regarding the Hubble constant, John Huchra
undertook to compile published measurements of the Hubble
constant between 1996 and 2010, and his results1 have been used as
a basis for many meta-studies, such as Gott et al. (2001) and Zhang
(2018). Additionally, a review of the measurements of the Hubble
constant is given by Freedman & Madore (2010).

However, conducting such meta-studies is time-consuming, and
often laborious – factors which themselves can lead to human and
clerical errors in the collating of information. But with this growth in
publication output there is a growing corpus of literature – especially
in the physical sciences – which, along with recent advances in
machine learning and natural language processing techniques, may
be leveraged to automate some of these tasks (e.g. Kerzendorf
2017). Astrophysics is full of examples of parameters which may
be determined through multiple experimental and observational
techniques, and where discrepancies between the resulting values
are of particular interest in discussions of the underlying physics.
Automating the process of gathering and analysing these measure-
ments would make many avenues of research faster and easier,
and open up new possibilities for examining the dissemination of
information in the astrophysics community.

To this end we are developing a tool to automatically find, collate,
and analyse measurements present in astrophysical literature. The

1https://www.cfa.harvard.edu/ dfabricant/huchra/hubble/index.htm
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Table 1. Examples of the TEX source for typeset measurement reporting in astrophysical literature, along with the numerical value extracted (and converted
to standard units for the Hubble constant, km s−1 Mpc−1) by the models detailed in Section 4. These examples are all related to attempts to extract the Hubble
constant. The arXiv identifier for each source article is provided – note that all examples originate in article abstracts. The examples have been grouped into
the following (in descending order): well formatted examples, well-formed examples which are reporting a different quantity, assumed values of the Hubble
constant (i.e. not actual measurements), values related to the Hubble constant (but not measurements), examples where the incorrect number has been identified
by the algorithm, and typesetting errors.

Number arXiv identifier Value Tokenized TEX source

Well formatted
1 astro-ph/0001156 70 For a flat universe with H { 0 } =70 km s ∧{ -1 } Mpc ∧{ -1 } and q { 0 } = 0.5
2 astro-ph/0001533 74 H { 0 } = 74 ∧{ +18 } { -15 } (95 per cent stat.) ∧{ + 22 } { -22 } (sys.) km s ∧{ -1 } Mpc ∧{ -1 }
3 astro-ph/0012376 72 consistency with H { 0 } = 72 \pm 8 km s ∧{ -1 } Mpc ∧{ -1 }
4 astro-ph/0604129 70.8 constraint on the Hubble constant : H { 0 } = 70.8 ∧{ + 2.1 } { -2.0 } \mathrm { km / s / Mpc }

Well formatted – different quantity
5 0802.3219 13.7 The result is H { 0 } ∧{ -1 } = 13.7 ∧{ + 1.8 } { -1.0 } \mathrm { Gyr }
6 1406.7695 222 Hubble parameter data , such as [...] measurement of H (z) = 222 \pm 7 km/sec/Mpc at z = 2.34
7 astro-ph/0309739 0.96 we find that H { 0 } t { 0 } = 0.96 \pm 0.04

Assumed values
8 astro-ph/0307223 71 For a cosmological model with H { 0 } = 71 km s ∧{ -1 } Mpc ∧{ -1 } , \Omega { M } = 0.3
9 0705.4505 70 (when using H { 0 } = 70 km s ∧{ -1 } Mpc ∧{ -1 })
10 astro-ph/0112489 60 For all practical purposes H { 0 } = 60 is recommended with a systematic error of
11 astro-ph/0110631 70 adopted Hubble constant of H { 0 } \simeq 70 { km s ∧{ -1 } Mpc ∧{ -1 } } on the Hubble diagram

Related values
12 astro-ph/0001298 65 the Hubble constant to be H { 0 } \lesssim 65 \eta ∧{ -1 / 8 } km/s/Mpc at the two sigma level
13 astro-ph/9909260 4 the derived value of the Hubble constant would increase by 4 km s ∧{ -1 } ∼{ } { Mpc } ∧{ -1 }
14 astro-ph/9905080 3 an uncertainty of only 3 km s ∧{ -1 } Mpc ∧{ -1 } of the Hubble constant
15 0705.0354 5 and \Delta H { 0 } = 5 per cent for the Hubble constant
16 astro-ph/0609109 25 to be \Delta H / H { 0 } \sim (25 \pm 15) per cent

Incorrect number identified
17 astro-ph/0112040 0.0 \Omega { \Lambda } = 0 , H { 0 } = 50 km s ∧{ -1 } Mpc ∧{ -1 }
18 astro-ph/0110054 1 of { T { 0 } } \times { H { 0 } } ; (iii) the Einstein-de Sitter model (\Omega { 0 } = 1 , [...])
19 astro-ph/0602109 0.1 and z = 0.1 , the value of the estimated H { 0 } is positively biased with
20 astro-ph/0305008 −1.0 of the dark energy is w = -1 , then H { 0 } t { 0 } = 0.96 \pm 0.04

Typesetting errors
21 astro-ph/0210529 6.5 × 109 H { 0 } = 65 { km s ∧{ -1 } mpc } ∧{ -1 }
22 0807.0647 0.765 these tests yield H { 0 } = 0.765 ∧{ + 0.035 } { -0.033 } km s ∧{ -1 } Mpc ∧{ -1 }

resulting data base of measurements would allow for researchers
to quickly find an overview of a given parameter, either to find a
statistically derived consensus value, or to gain an understanding
of the distribution of measured values for a given quantity. Such a
collection of data points – which would, of course, contain origin
publications and potentially other contingent data (experimental
technique, for example) – would also be an excellent starting point
for more sophisticated meta-studies and targeted investigations.
Additionally, with many papers being submitted to online, open-
source repositories, the data base may be automatically kept up to
date with a minimal amount of manual intervention.

The first step in reaching this goal is an investigation into the
available data (textual and catalogue), both in terms of data structure
and format, and some examination of the way in which data are
presented in scientific writing. Following on from this, models for
data extraction must be created, which will highlight important
obstacles and future avenues of exploration, which in turn will
inform the later implementation of more advanced machine learning
techniques. The models we discuss in this paper will primarily
be rule-based, and aimed at extracting measurements of named
quantities. A ‘measurement’ in this context specifically refers to a
numerical value with associated uncertainties and units. Concrete
examples of measurement reporting from astrophysics publications
are given in Examples 1–4 in Table 1.

For the purposes of this work we shall be focusing on finding
instances of the Hubble constant in astrophysical texts – the
parameter which describes the expansion rate of the Universe at
the current epoch. We have chosen the Hubble constant for two
reasons: First, the uniformity of its naming conventions – both in
written English and mathematical syntax – makes it a good test for
our explorations into the data. Secondly, the debate over its value
– both historically and in the present (Planck Collaboration XVI
2014; Freedman 2017; Riess et al. 2018b) – will allow us to check
for the presence of expected trends in our results. In future work we
shall be extending the method to allow for any named parameter –
even those with linguistically complex names.

In this paper we shall describe our exploration of the astrophysical
literature available from the arXiv repository, rule-based models for
measurement extraction, and artificial neural network models for
measurement classification (a schematic overview of the project
is presented in Fig. 1). We shall begin in Section 2 with a brief
overview of aspects of the data, and move on to Section 3 to describe
our pipeline for producing a unified, easily manipulable set of files.
In Section 4 we shall discuss our model for extraction of values of
the Hubble constant from arXiv papers, describing the initial model
and the improvements required to reduce noise in the output. Using
our model we are able to find a strong signal in the data centred
around the accepted region for the value of the Hubble constant.
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Figure 1. Schematic overview of the project. LATEX source files are extracted from the arXiv repository, converted into a more practical format (XML), and
then spans containing reported measurements of a given entity (in this case the Hubble constant, H0) are identified and processed. The resulting processed data
may then be tabulated and analysed.

Additionally we find structure expected from the current state of
the community, notably the two concentrations of results at ∼68
and ∼73 km s−1 Mpc−1 seen from 2013 to the present (see Fig. 5).
Then in Section 5 we discuss the training of an artificial neural
network classifier for determining if a given paper reports a novel
measurement. This is used in conjunction with our extracted values
of the Hubble constant to examine the distributions of quoted and
novel values in both the time and measurement value axes. Little
structure is observed in the time axis, but strong patterns are seen
in the value axis (notably a strong peak seen at ∼75 km s−1 Mpc−1,
the accepted region of the true value). Finally, in Section 7, we
outline future directions for this work, and obstacles which must be
overcome in extracting measurements for entities with linguistically
complex names.

2 DATA

The arXiv, operated by the Cornell University Library, represents
one of the largest open-source repositories of scientific literature
available. It has seen considerable uptake in the physical sci-
ences, especially astrophysics, and hence it will be used in this
work as a source of text for data extraction and model training
purposes.

The arXiv makes available LATEX source files for the vast majority
of its articles, roughly 91 per cent, and we shall be focussing on this
subset for our preprocessing steps. We investigated the distribution
of file types (based on file extension) across all the arXiv source
files to determine if there was another prevalent file type which
should be accounted for. The source files include all manner of

different file extensions, from various TEX and LATEX extensions
(e.g. .tex, .TEX, .latex, .ltx, etc.) to unusual compression
formats (e.g. ‘.cry’), and many others inbetween. Entries without
LATEX source files fall into a number of groupings, such as entirely
different source file types or withdrawn papers, and a summary of
these may be seen in Table 2 and Fig. 2. The largest grouping,
aside from TEX and LATEX source files, is for articles available only
in PDF format (7.5 per cent). Due to the complexity of extracting
well-formatted textual data from PDFs, we shall exclude such files
during preprocessing, operating under the assumption that there
is no systematic disparity between the general trend in LATEX-
submitted papers versus PDF-submitted papers. Verifying this claim
is beyond the scope of this paper, and the following results are based
on this working assumption.

Our data consist of the source files for all arXiv articles up
until September 2017 (the earliest article being from July 1991),
corresponding to a total of 1309 498 articles. Our preprocessing
pipeline (see Section 3), which requires that the LATEX source
files be present for the article, yields 208 541 processed astro-
physics articles. Of these 195 369 articles (94 per cent) have an
‘abstract’ section (i.e. the article has made use of the LATEX-specific
‘\abstract’ command), which will be a useful structure in our
analysis. The reason for this reduction is that some of the processed
articles have TEX-only source files, and therefore cannot include
the LATEX ‘\abstract’ command (or many other useful LATEX
structures). Additionally we also find 142 179 articles (68 per cent)
with both an identifiable abstract and conclusion. The conclusions
are identified using ‘\section’ structures with titles containing
either ‘conclusion’ or ‘summary’ (case insensitive search).

MNRAS 492, 3217–3228 (2020)
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Table 2. Distribution of arXiv source file categories, with common file extensions (note that these extensions may
employ different capitalizations), descriptions of the categories, and percentage occurrences in arXiv. See Fig. 2 for a
representation of these distributions with time.

Category File extensions Description Percentage

tex .tex, .latex, .ltx TEX or LATEX source files present 90.94
pdf .pdf No source provided, only PDF 7.46
withdraw N/A Source contains only filenames containing ‘withdraw’ 0.39
ps .ps All files in PostScript format 0.38
html .html All files in HTML format 0.05
text N/A Source contains only file(s) named ‘text’ 0.01
other N/A Unusual source directory 0.76

Figure 2. Distribution of arXiv source file groupings (see Table 2) with
time. Group occurrences are plotted using a log-scale. TEX/LATEX source
files dominate the distribution, followed by PDF files.

In addition, we have utilized the data set compiled by Croft &
Dailey (2015) as validation data and a source of example literature
in this work. The data set consists of 638 compiled values of eight
cosmological parameters from 468 papers. Of these, 214 papers
(46 per cent) are successfully processed by the pipeline described
in Section 3. More specifically, 124 of the 638 measurements in this
data set (19 per cent) are Hubble constant measurements, originating
from 122 of the 468 papers (26 per cent). Of these 122, 80 papers
(65 per cent) are successfully processed by our pipeline. The low
efficiency for the conversion of these papers is due to the data set
being biased towards older publications, which either do not have
LATEX source files (e.g. source is in PostScript format), or otherwise
are unusually formatted due to lack of standardization. These papers
in this data set are used as a starting point for examining occurrences
of astrophysical measurements in literature, and also as a gold-
standard data set (albeit single-class) for validation of classifiers in
Section 5.2.

3 PIPELINE

LATEX files are not ideal for natural language processing tasks, as
they contain a large amount of information which is of use only in
type-setting contexts. However, information relating to document
structure is of great use when manipulating and analysing the text
contained in the article – for instance, the ability to distinguish
sections, easily identify article abstracts, and so on. As such, we
require a document format into which the LATEX source files can be
converted which will retain the structural information we desire,

but will facilitate ease of access in computational settings. To
this end we employ LaTeXML,2 a program which converts LATEX
files (including style and class files, thus accounting for custom
commands and macros) into XML format. The hierarchical structure
of XML is well suited to representing the structure of scientific
literature, where articles contain sections which themselves contain
subsections and then paragraphs and so on, and the high availability
of XML libraries in all major programming languages make this
document format a desirable choice for our purposes.

File extensions are used to find the required documents from the
arXiv source directories (discounting figures and other unnecessary
files). As mentioned earlier, this leads to some issues with the large
variety of extensions employed by writers, with Table 2 indicating
the assumptions that have been made here when identifying LATEX
source files by extension. The preprocessing pipeline then processes
each article’s source files in the following steps:

(i) Article category tags are found from the arXiv metadata, and
articles without the astrophysics tag (‘astro-ph’) are discounted.

(ii) Article source files which match known TEX/LATEX file
extensions (e.g. .tex, .cls, .sty, .bib) are identified.

(iii) If more than one TEX file is present, each file is scored to
determine the main source file. This step is more complex than
expected, as it transpires that many source directories contain more
than one file with a ‘\begin{document}’ expression. Presence
of the ‘abstract’ keyword and the article title (taken from the arXiv
metadata) are used in this scoring. Approximate string matching is
used to find the article title, due to the discrepancies which may be
found between titles stored in the metadata, and that which appears
in the source text, often due to the presence/absence of mathematical
type-setting commands.

(iv) The highest scoring file is processed using LaTeXML.
(v) The text stored in the XML tree is tokenized and sentence

split, such that all words and punctuation tokens are separated with
whitespace, and each line contains a single sentence (and sentences
are not split between multiple lines). This stage facilitates use of
the data in a natural language processing context.

When run on the arXiv source data set this process yields 208 541
astrophysics articles in XML format, with a total of 12 868 failures
due to decoding or LaTeXML errors, giving a success rate of
94 per cent. This is considered sufficient coverage for our purposes.

4 MEASUREMENT EXTRAC TI ON

We now wish to produce an algorithm for extracting measurements
from text. There exist many machine learning techniques in the

2LaTeXML homepage: http://dlmf.nist.gov/LaTeXML/.
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natural language processing domain for this class of problem (e.g.
named-entity extraction, question-answering, etc.) that we may
apply in this scenario, however we shall begin by producing a
baseline model: a simpler model which trades effectiveness for
legibility, based on techniques which may be easily reasoned about.
The output of this model may then itself be used as a baseline when
experimenting with more complex models – this, indeed, shall be
the subject of future work (see Section 7) – and hence will be a
good test of these models’ effectiveness.

We shall begin with a method of measurement extraction based
on a simple keyword search. Given our processed arXiv articles it
is a simple task to search for a specified keyword in the document,
and instances of numerical values. We then make our primary
assumption: that the closest numerical value to a keyword instance
is a measurement of the entity to which the keyword refers. This
is a strong assumption, but shall be seen to produce useful results.
The next assumption we shall make is that numerical values and
the names of the entities to which they refer are found in the
same sentence – i.e. there is no multisentence inferencing required.
Examination of real-world scientific literature shows that neither of
these assumptions holds in all cases, but as a general trend they are
a good starting point for our model.

Here we shall focus on extracting measurements of the Hubble
constant from the arXiv astrophysical literature data set. The Hubble
constant is a good candidate for this type of keyword search as it
has a small number of recognizable identifiers which differ little
between authors. Notably, we have the following:

(i) Hubble constant
(ii) Hubble parameter
(iii) H0: written ‘H 0’, ‘H {0}’, ‘H \circ’, or ‘H {\circ}’

with optional capitalization of the second word in the above
phrases. These may easily be encoded by hand if one has some
knowledge of the typesetting conventions for the common mathe-
matical symbol.

We shall also be focusing primarily on measurements extracted
from article abstracts. Our reasoning for this is as follows: at a prag-
matic level, experimentation shows that paper abstracts include far
fewer extraneous or arbitrary numbers than the article bodies. These
numbers may include: year dates from citations, section/equation
reference numbers, secondary calculated values, assumed values,
and so on. Limiting the search to article abstracts greatly reduces
noise in the output, whilst preserving values of interest. This is
motivated with the assumption that any paper whose main subject
is the measurement of some physical quantity will give a summary
of said measurement in its abstract. Similar approaches have been
taken in data extraction work in the bio-medical field (Novichkova,
Egorov & Daraselia 2003; Usami et al. 2011). Based on observation
of scientific literature we would expect these summaries to be
of the form ‘we find name to be value±uncertainty’, or ‘symbol
= value±uncertainty’, or similar. Note that there are, of course,
many variations of these patterns, and the models discussed below
are designed to be as robust to them as possible.

For clarity, we shall list the above assumptions here:

(i) Closest numerical value to a keyword instance is a measure-
ment of the entity to which the keyword refers.

(ii) Numerical values and associated entity names appear in the
same sentence.

(iii) Values of interest appear in the article abstract.

4.1 Initial model

It transpires that the naive application of our assumption of taking
the closest number to a keyword produces a large amount of noise.
There are simply too large a variety of ways a simple series of digits
(and possibly a decimal point) can occur in a sentence – especially
in scientific text, which contains many numerical identifiers (e.g.
‘NGC 1277’ for a galaxy, or ‘0703.00001’ for an arXiv identifier),
and mathematical expressions. For example, consider the following
strings: ‘H {0}’, ‘H {z=1.5}’, ‘a=b-1’, ‘a = 1-b’, and so on.
Patterns such as these are common in scientific writing. We may
solve the first two by simply assuming that all numbers enclosed
in braces (‘{ }’) are related to LATEX math expressions and not
numerical values in their own right. The latter two present more
of an issue, however, as it is not evident that a simple rule may be
constructed to remove them which would not also interfere with
finding actual measurements.

However, there do exist some simple patterns which we may
account for. Any numerical string returned by the initial search for
numbers in the text which overlaps in the sentence with one of the
following patterns is rejected as a possible measurement:

(i) Year date, expressed as a series of four digits in parentheses,
where the resulting value lies in the range 1400–2100, e.g. ‘(1990)’

(ii) Year date followed by proper noun (capitalized word), e.g.
‘2013 Planck’

(iii) Identifier (any digits preceded by an uppercase string), e.g.
‘NGC 1277’

(iv) ArXiv identifier, e.g. ‘astro-ph0101001’ or ‘0703.00001’

These filters greatly reduce noise in certain numerical ranges
(notably 1980–2020, the standard range for references in modern
scientific literature), and generally reduce the number of outliers.

Using the above written forms of the Hubble constant and the
practical additions to the search method, we shall perform our search
on the available astrophysical literature. This returns 1730 values
from 1324 paper abstracts. The results are shown in Fig. 3(a). Note
that, for the sake of readability, 5 per cent of the returned data lies
outside the range of the figure (corresponding to 93 values).

The most striking issue with the plot is the large cluster of values
around 0. These are mostly caused by the search algorithm being
overly generous when searching for numerical values, or by a failure
of one of our earlier assumptions. For instance, we may find a
keyword in a sentence which does not actually report a measurement
of the keyword, but which does contain other numerical data, such
as Example 19 in Table 1. Or where the arrangement of characters
in the sentence causes the wrong number to be interpreted as the
‘closest’ (where grammatically the reader would understand the
relationship, but our simple algorithm cannot), such as Example 17
in Table 1. We may also find a different use of one of our keywords,
such as in a compound quantity involving a mathematical keyword –
for example, ‘H { 0 } t { 0 }’ in Example 7 in Table 1. It should be
noted that these issues also lead to noise in other numerical ranges,
but the nature of scientific literature (or, at least, astrophysical
literature) seems to lead to values around ∼0 appearing with great
frequency in text. Many of these are found to be literary devices
(e.g. section numbers), or digits in equations (e.g. x = 1 − y).

We may also note the strong lines present at 50 and 100 km
s−1 Mpc−1. These are common assumed values for the Hubble
constant. Their presence (and the presence of other such assumed
values) is discussed in Section 6.
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(a) Initial Model (b) Improved Model

Figure 3. Outputs of models at different stages of development. Time- and value-domain histograms are also shown. Plot (a) shows the output of the initial
model. This plot shows all numbers matched to keyword instances in available arXiv astrophysics papers, using the approach described in Section 4.1. The
groupings at 0, 50, and 100 in the measurement axis are particularly notable, with the grouping at 0 primarily consisting of noise. Plot (b) shows the output
of the improved model. This plot shows all measurements (numerical values reported with an uncertainty and the correct dimensions) matched to keyword
instances in available arXiv astrophysics papers, using the approach described in Section 4.2. Here we may note the absence of the assumed values at 50 and
100 km s−1 Mpc−1, and the noise around 0 on the measurement axis.

4.2 Improved model

The largest issue with the above form of the search is in the
way numerical values are identified (i.e. the characters in the
string which correspond to numerical values). Simply filtering out
numbers which appear inside mathematical symbols and common
non-measurement patterns is insufficient. The next step shall be to
produce a more sophisticated regular expression for identifying
numerical values in text – specifically numerical values which
are a part of a measurement. A common signifier of a scientific
measurement is the presence of an uncertainty, and we shall take
advantage of this to filter out non-measurement numerics.

First we must consider the standard patterns used to report such
measurements. Examination of the literature yields the following
common patterns:

(i) Plus-minus symbol: 1.0 ± 0.5
(ii) Upper and lower bounds: 1.0+0.1

−0.2

(iii) Named uncertainties: 1.0+0.1
−0.2 (random) ±0.3 (statistical)

and combinations and repetitions thereof. There are, of course,
other more complex patterns which occur frequently, but these
represent the most common and easily codifiable, and hence shall be
our starting point. These may be encoded into a regular expression
which is used to identify measurement patterns in the text, which
may then be matched to the nearest keyword instance, as before.
We may now specify that a numerical value must be followed by an
uncertainty to be considered a ‘measurement’.

Further to this we may wish to specify the dimensions of the
measurement we are searching for. Once again we may construct a
regular expression, now to search for units following a number
(potentially with included uncertainties). This may be done by
simply assuming all LATEX math symbols and tokens consisting
of less than three characters following a number are part of its units.

A simple context-free grammar may then be used to parse the string
returned by the regular expression – as our regular expression is
becoming rather cumbersome at this point. This final parsing is
also used to remove any extraneous characters from the end of the
string, and convert the measurement into a standardized format
which may be more easily processed. The use of the context-
free grammar and this standardization allows for a variety of
mathematical syntax to be accepted in the units string – for example,
‘km s−1 Mpc−1’ and ‘km/s/Mpc’ are equivalent in our search, and
both would be equivalent to ‘s−1’ (given appropriate numerical
conversions).

We may now specify that for a number to be considered a
‘measurement’ it must possess both an uncertainty, and a given
dimensionality. Running this search for the Hubble constant, and
specifying units of km s−1 Mpc−1, we find 295 measurements from
225 paper abstracts. The results are shown in Fig. 3(b). Note, only
one value now lies outside the plotted region, which corresponds to
Example 6 in Table 1, as discussed below.

To summarize, we are now using the following assumptions:

(i) A numerical value cannot be a measurement if it is contained
within a pattern for a date or identifier (see Section 4.1 for concrete
rules).

(ii) A numerical value is a potential measurement if it appears
with an uncertainty and the expected dimensions.

(iii) The closest such numerical value to a keyword instance is a
measurement of the entity to which the keyword refers.

(iv) Numerical values and associated entity names appear in the
same sentence.

(v) Values of interest appear in the article abstract.

Our previous issues have now been mostly tackled successfully,
but a greater problem is now presented by author error. For instance
in Example 22 the author has confused their results for H0 and
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Figure 4. Plot combining output from the improved measurement extraction algorithm and the ‘new measurement’ classifier, showing all extracted numbers
with the correct dimensionality (km s−1 Mpc−1) from arXiv astrophysical paper abstracts. Data point symbols are used to indicate presence of an uncertainty
in the reported measurement (circle if present, triangle if not present), with the available uncertainties displayed using error bars. Symbol colour indicates the
output of the new-measurement classifier, interpreted as a probability of the measurement originating in a paper reporting a novel value – colourbar to the right
indicates probability value. The stacked histograms indicate distribution in the time- and value-domains (top- and right-hand panels, respectively), with the
blue histogram corresponding to measurements whose probability of being a novel measurement is greater than 0.5, and the yellow histogram for the remainder
(likely quoted values). The vertical lines correspond to the year of the publication of the HST key project (Freedman et al. 2001), 3-yr Wilkinson Microwave
Anisotropy Probe (WMAP) results (Spergel et al. 2007), and the 2013 Planck results (Planck Collaboration XVI 2014).

little h (where h = H0/100 [km s−1 Mpc−1]), thus leading to an
incorrect statement of their measurement – it should be noted that
the result is correctly reported elsewhere in the paper. Examination
of the outliers present in this plot confirms that each one is either
an author syntax error, or a genuine report of an unusual value.
It should be noted that these unusual values are often reported
alongside more expected values in the same section – for example
where different techniques, or inclusion of some additional physics
to a model, produce a significantly different result.

We may also note the absence of the 50 and 100 km s−1 Mpc−1

lines. This is to be expected, as these values are rough estimates,
and hence are generally not reported with any kind of uncertainty.
They are, however, usually reported with the correct units – and
these lines would indeed reappear if we required only the presence
of the correct units, but not an uncertainty. An example of this may
be seen in Fig. 4 later in this work.

5 C LASSIFYING N EW MEASUREMENTS

In addition to finding and extracting instances of reported measure-
ments in text we also wish to differentiate between quoted values
(from some previous work) and newly reported values (i.e. the
results of original work presented in the paper). Both are of interest
for different purposes: we may wish to measure the popularity of
certain values, as well as find and plot the progression of new values.
To begin we shall simply attempt to classify papers by whether or
not each paper reports any new measurements. Papers which do
report new measurements shall be considered positive samples, and
papers which do not (but which may still be quoting pre-existing
values) shall be considered negative samples.

For this classification task we shall be utilizing machine learning
algorithms (specifically artificial neural networks) as opposed to the
rules-based approach we employed in our measurement extraction
above. This is due to two primary reasons: first, producing rules
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to distinguish positive and negative samples is a very difficult
task, as the linguistic and structural cues are complex and hard
to codify (in part because they often extend over multiple parts of
the text). It is, however, possible to construct rules which may
select positive samples with high precision and low recall (i.e.
many false-negatives), which may be used to construct a training
data set, as discussed below. Using such a training data set we
can attempt to generalize from our initial assumptions, and uncover
patterns we could not easily have codified. Secondly, many machine
learning algorithms (e.g. neural networks) may be used to produce
probabilistic outputs, which is useful in analysis and in prioritising
data samples for investigation. As an example, the latter will be
useful in identifying promising samples for annotation in future
work.

5.1 Silver data

Before we train any type of classifier we must first produce a training
data set from our arXiv XML data. Here we shall produce a silver-
standard data set for training purposes – a ‘silver’ data set being
one where the labels are assigned based on heuristics, as opposed
to a ‘gold-standard’ data set where the labels are assigned manually
by a human. It should be noted that the Croft & Dailey (2015) data
set mentioned earlier is available as a small gold-standard data set
(with some selection bias) for validation purposes. This approach
of using heuristics on a large, unlabelled data set, coupled with a
smaller gold data set, is an effective substitute for large training
data sets when training initial/baseline models in machine learning
contexts (Mintz et al. 2009).

For this task we are primarily concerned that our silver data set has
a high precision, which may be attained at the expense of recall. In
practice this means we require a set of hand-crafted rules which can
positively identify articles which report a new measurement with
a high degree of precision (i.e. with the minimal number of false-
positives), but where the number of false-negatives (articles which
do report a new measurement but are reported as negative samples)
may be high. Such a set of rules would provide the positive training
samples for our classifier. To find the negative samples we make the
assumption that the large majority of papers are not reporting a new
measurement value (negative samples), and hence a random sample
of the negative articles from the silver data (those deemed by our
hand-crafted rules as being negative) should primarily consist of
true-negative articles. In this manner we may construct a balanced
training data set.

The question now is how to construct the rules which will produce
our silver-standard data: As discussed in Section 4, it is decided
that the classifier shall use article abstracts as input data. Hence
we must look to other sections of the document to base our rules:
after the abstract, the next logical locations would be the title and
conclusion. Experimentation with different set-ups and rules leads
to the conclusion that the optimal strategy is to use a combination
of these two. The procedure for identifying positive samples is as
follows:

(i) The presence of recognizable abstract and conclusion pas-
sages is verified (otherwise the document is rejected and shall not
be considered for inclusion in the training data).

(ii) The article title is checked for the presence of at least one of
the following words:

(a) measurement
(b) measuring
(c) determination

(d) determining
(e) estimation
(f) value
(g) parameter
(h) constraint

(iii) The measurement pattern described in Section 4.1 is used to
search the conclusion text, and a list of any measurements present
is found.

(iv) Each measurement is checked for the presence of an uncer-
tainty.

If all of the above steps produce a result (i.e. we find one of
the listed keywords in the article title, and a measurement with an
uncertainty is present in the conclusion), then the article is assumed
to be reporting a new measurement and is added to the list of
positive samples to be used in training. It should be noted that we
are not limiting ourselves to articles reporting a value of the Hubble
constant – any measured value is considered. This method has the
advantage of relative simplicity, as it does not rely on phrases or
more complex linguistic patterns, but only on word inclusion for
the title and pattern matching of LATEX mathematical notation (a
much more formalized and hence codifiable series of tokens) for
the conclusion.

However, this simplicity is only advantageous if it works. Manual
classification of a sample of the resulting silver data is conducted
to test the precision of the model: 200 articles evenly distributed
between positive and negative (according to the silver-algorithm)
are classified based on the article abstract (note: without the article
title) by one of the authors. The resulting manual classifications
give a total accuracy of 82 per cent for the silver algorithm over
the 200 samples, corresponding to a precision for the 100 silver-
positive samples of 88 per cent. This is considered sufficient for our
purposes, and hence the silver data set shall be used as training data
for our ‘new measurement’ classifier.

In total, 1612 positive samples are identified using the above
rules.

5.2 Classifier

We shall use an artificial neural network (ANN) classifier to classify
articles by whether or not they report a new measurement. We have
chosen to use ANNs as they are a standard algorithm in modern
machine learning, and shallow networks of the type we shall use
here are well studied and understood.

For the input to the model we shall use the article abstracts. Paper
abstracts are used for the reasons discussed earlier in Section 4.1, as
they represent a summary of the article contents. This is necessary
as using the entire paper leads to the training signal being too weak
and the model not learning effectively.

The abstract texts shall be converted into document matrices using
a word2vec model specially trained on the entire arXiv astrophysics
corpus. Word2Vec (Mikolov et al. 2013) is a group of models which
allow us to pre-train vector representations of words informed by
the entire corpus, which leads to greater generalization of resulting
models trained using these embeddings. This is done by attempting
to assign each word in a vocabulary to a vector such that ‘similar’
words are close together in the vector space. Words are considered
to be ‘similar’ if they are found in similar contexts – i.e. they are
often surrounded in a sentence by the same words. In practice we
may consider that two words are similar if they are interchangeable
in a sentence. For example, we might expect the words ‘galaxy’ and
‘star’ to both appear in sentences containing the words ‘telescope’
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and ‘observed’ – in the sentence, ‘I observed the galaxy through the
telescope’, we could replace ‘galaxy’ with ‘star’ and the sentence
would still be reasonable (i.e. has a high probability of appearing
in our corpus). However, if we replace the word ‘galaxy’ with the
word ‘potato’, the sentence becomes very unlikely. And so our word
embeddings for ‘galaxy’ and ‘star’ are similar, but both are different
to our embedding for ‘potato’. Using these embeddings, we may
now define distance metrics to compare the similarity between word
pairs (cosine distance is commonly used for this purpose), and other
such mathematical operations.

Hence, using the trained astrophysics word2vec model, the docu-
ment matrices for the article abstracts are created by concatenating
the resulting word-vectors into a single matrix. In our trained
word2vec model the word-vectors have dimensionality d = 100.

The structure of the classifier network is as follows:

(i) For an article with an abstract with word-count n, a document
matrix D, of dimensionality d × n, is constructed.

(ii) The document matrix is multiplied with a (trainable) projec-
tion matrix, P, of dimensionality d × d, producing the projected
document matrix D̃ = P × D.

(iii) The minimum, maximum, and mean are taken along the
rows of D̃ and concatenated to produce a single vector, x, of
dimensionality 3d.

(iv) The vector x is now fed into single dense layer with a single
output, as in: y = w · x + b

(v) The output of the dense layer is passed to a sigmoid function
to produce the final output of the classifier.

Using this set-up and the silver data set described in Section 5.1
we may now train our classifier. The data set is divided into training
and testing data sets, with a 90/10 per cent split, resulting in 1394
each of positive and negative samples for the training set, and 154
for the testing set (these numbers are determined by the number of
positive samples found by our rules from Section 5.1). This does not
include the validation data points from Croft & Dailey (2015). We
use the ADAM optimizer, a standard ANN optimizer, along with
mini-batching (32 samples per batch), for 100 epochs of training.
For each epoch the negative training data are resampled from the
available articles (as discussed in Section 5.1), maintaining class
balance with the positive training data, resulting in a better coverage
of the data over the course of training and exposing the model
to a richer set of negative samples. The training was conducted
with cross-entropy loss with L2 regularization, another standard
technique in current machine learning. This ANN was implemented
using the Flux machine learning library (Innes 2018) for the Julia
programming language (Bezanson et al. 2017).

It should be noted that longer training runs have been conducted,
but the model accuracy and loss are roughly stable from 100 epochs
out to 500 epochs. From this we see a final test accuracy of
∼78 per cent (true for both the final model of 100 and 500 epoch
training runs). Here we are using a prediction threshold of 0.5 for the
model. This may not be optimal, given the class-balanced training
data (albeit with increased relative coverage of negative samples).
However optimization of this threshold is beyond the scope of this
work, as the implied trade-off of recall and precision is application-
dependent. For our purposes, we achieve reasonable accuracy with
the standard 0.5 cut-off.

To evaluate the performance of our classifier we use the Croft &
Dailey (2015) data set and the 200 samples manually classified
as validation data for the silver-algorithm (see Section 5.1). It
should be noted that the Croft & Dailey (2015) data set is slightly
biased, and single-class, given its focus on a specific domain (i.e.

cosmology). The manually classified data contain 113 positive and
87 negative ground-truth samples. Both of these data sets were
excluded from the training data provided to the classifier. We find
that the model recovers 87 per cent of the Croft & Dailey (2015) data
set publications, compared to 30 per cent for the silver-algorithm
(adjusted for papers available after preprocessing). The model
also achieves an accuracy of 88 per cent over the 200 manually
classified samples – corresponding to a 92 per cent precision
and 86 per cent recall (for comparison, the silver-algorithm had
an 88 per cent overall accuracy, with 88 per cent precision and
78 per cent recall). This indicates that the model may generalize
beyond the silver-standard training data (which is a very limited
approach, recovering only 1612 samples from the entire arXiv
corpus), and may distinguish both positive and negative samples
to a reasonable degree of accuracy.

6 FI NAL RESULTS

We may now combine the results of our keyword-based search
with the output of our new-measurement classifier to examine
the development of reported values of the Hubble constant in
the arXiv literature. To this end we plot found values of the
Hubble constant with correct dimensions (km s−1 Mpc−1), both
with and without reported uncertainties, which appear in article
abstracts, for all viable papers (i.e. the 195 369 papers which have
a recognizable abstract section), and the result is shown in Fig. 4.
The vertical lines in the figure correspond to the dates of three key
publications in the field, to give context to the timeline: the HST
key project (Freedman et al. 2001), the 3-yr Wilkinson Microwave
Anisotropy Probe (WMAP) observations (Spergel et al. 2007), and
the Planck 2013 results (Planck Collaboration XVI 2014). It should
be noted that there are additional outliers outside the bounds of
this plot, corresponding to 1.6 per cent of the available data (nine
samples). Of these, 2 are author error, one is a historical value
(‘∼250 km s−1 Mpc−1’), one is a value of H(z) at a different redshift,
three are uncertainties reported separately to their measurement
(with units given), and one is a reported change in the value of the
Hubble Constant were a different assumption made in the model
(Mould et al. 2000, Example 13 in Table 1), and one is a reported
difference between local and global measurements (Wu & Huterer
2017). In total we find 573 values from 477 article abstracts. The
same data may be seen in Fig. 5, divided into the periods before,
after, and between the key publications mentioned above. A few
notable features of these plots are outlined below.

Clusters of values given without uncertainties may be seen at 50,
65, 70, 75, and 100 km s−1 Mpc−1. These correspond to commonly
used assumed values of the Hubble constant in cosmological
simulation and approximate calculations. It is interesting to note
that the usage of all but the 70 km s−1 Mpc−1 value drops off
after ∼2005, whereas the 70 km s−1 Mpc−1 value is in use until
∼2009. These decreases seem to follow the publications of HST
and WMAP, respectively, by a year or two, and it may be that the
growth in popularity of the values reported by those groups may
have led to a shift in any presumed value of the Hubble constant.

We may also see the spread of values decreasing with time
– both for the novel reported values, and the presumed values
as mentioned above. This decrease in spread is reflected in the
decrease in uncertainty on each individual measurement. These
effects are to be expected, due to improvements in experimental
techniques and equipment over time. However it should be noted
that the provided uncertainties do not show complete agreement
between the reported values, and closer examination shows two
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Figure 5. Histograms of the values from Fig. 4 between the publication
dates of key papers (Freedman et al. 2001; Spergel et al. 2007; Planck
Collaboration XVI 2014, ‘HST’, ‘WMAP’, and ‘Planck’ on the plot,
respectively). We may note the decrease in the spread of reported values
over time, along with the decrease in use of the 50 and 100 km s−1 Mpc−1

assumed values, and the eventual disagreement in the value of the Hubble
constant post-Planck, as demonstrated by the two peaks at ∼68 and ∼73 km
s−1 Mpc−1 (the peak at 70 is due to the most common assumed value during
this period).

distinct groupings of measurements in the post-Planck era (ignoring
a grouping at 75 km s−1 Mpc−1, which are without uncertainties and
therefore likely assumed values rather than reported), at ∼68 and
∼73 km s−1 Mpc−1. This corresponds to a known debate in the
literature, arising from the difference between the values from local
measurements of the Hubble parameter (Riess et al. 2018b), and
measurements inferred from the Cosmic Microwave Background
(Planck Collaboration XVI 2014), where the former finds a value of
67.4 ± 0.5 km s−1 Mpc−1 and the latter 73.45 ± 1.66 km s−1 Mpc−1

– a 3.5σ discrepancy. This tension may be due to uncorrected
systematic errors in the data, new physics, or an unknown feature of
one or both data sets, and each of these possibilities has been debated
in the literature (Bernal, Verde & Riess 2016; Chiang & Slosar
2018; D’Eramo et al. 2018; Poulin et al. 2018; Riess et al. 2018a;
Shanks, Hogarth & Metcalfe 2018; Bengaly, Andrade & Alcaniz
2019; Colgáin, van Putten & Yavartanoo 2019; Graef, Benetti &
Alcaniz 2019).

To better illustrate this discrepancy, the distribution of extracted
values has been plotted in reference to the Planck Collaboration
et al. (2018) value of the Hubble constant (H0 = 67.4 ± 0.5 km
s−1 Mpc−1), in units of quoted uncertainty (see Fig. 6). Following
Croft & Dailey (2015), all extracted measurements which include

an uncertainty have been converted into a σ difference from this
reference value, according to,

nσ = (H0,measured − H0,true)/σmeasured, (1)

where H0,true is the aforementioned reference value, and H0,measured

and σ measured are the extracted value and uncertainty. Asymmetric
uncertainties have also been accounted for. We may clearly see in
Fig. 6(c) (showing measurements published after Planck Collabo-
ration XVI 2014) a peak at approximately +3.5σ , corresponding
to the local measurements of the Hubble constant. This shows that
our algorithm has successfully recovered the current tension in the
field, and has the potential to provide an objective quantification
of the consensus of a given measureable property, and whether any
tension exists within the literature.

In Fig. 5 we may also see that measurements without uncertainties
are predicted to be less likely to originate in papers which are
not reporting a new measurement, using our neural network from
Section 5.2. This would agree with the assumption that these
assumed values are primarily used in simulations, or theoretical
work. It also agrees with the assumption that astrophysical articles
which have a numerical value with an associated uncertainty in
their abstract are likely reporting said value. It should be noted that
the predictions from the ‘new measurement’ classifier are not on a
per-measurement basis, but rather a per-publication basis, and it is
possible that a given publication will refer to both an assumed
or historical value, and a novel value (with uncertainty) in the
same abstract. This could account for the high positive prediction
probability of some unlikely values. It should also be noted that
some outlier values (for example the value at 44 km s−1 Mpc−1 in
Cackett, Horne & Winkler 2007) are noted as such by the paper
authors, who point out the inconsistency and suggest further study
of the discrepancy – none the less these are ‘valid’ measurements
from the perspective of our model, and hence their inclusion is a
feature of the unbiased nature of this model.

Finally, we may see from the histogram of measurement values
that there is a distinct peak in the distribution around ∼70 km
s−1 Mpc−1, which agrees with accepted wisdom on the value of the
Hubble constant. However, it is noted that little structure is apparent
in the time-domain histogram. There appears to be an increase in the
number of publications reporting a new value of the Hubble constant
in the months preceding the publication of WMAP, but this same
trend is not clear for the other landmark publications – and the
dearth of publications following WMAP is, perhaps, puzzling.

7 C O N C L U S I O N S

We present, to the best of our knowledge, the first attempt to
automate the extraction of measured values from the astrophysical
literature, using the Hubble constant for our pilot study. Our model
has successfully extracted measurements of the Hubble constant
from a corpus of 208 541 arXiv astrophysics papers, published
between July 1991 and September 2017, finding 573 measurements
from 477 papers. We demonstrate that the rules-based model, a
classical technique in natural language processing, is a powerful
method for extracting measurements of the Hubble constant from
a large number of publications. We have also developed an arti-
ficial neural network model to identify papers which report novel
measurements. The model was trained using article abstracts as
input data with the training data taken from our ‘silver’ data set,
which was constructed using information present in article titles
and conclusions. We applied the neural network model to the
available arXiv data, and demonstrated that our model works well
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(a) Entire Dataset (b) Before Planck 2013 (c) After Planck 2013

Figure 6. Plots showing the distribution of extracted Hubble constant measurements around the Planck Collaboration et al. (2018) value (H0 =
67.4 ± 0.5 km s−1 Mpc−1), in units of quoted uncertainty, given by equation (1). Error asymmetry has been taken into account for these plots. Separate
plots are shown for all extracted data points (a), and the distributions of values before (b) and after (c) the 2013 Planck publication (Planck Collaboration XVI
2014, a notable point in the recent history of the Hubble constant). A normal (μ = 0, σ = 1) distribution has been overlaid for readability. The tension in the
measured values of the Hubble constant may be easily discerned in these plots by the peak at approximately +3.5σ , which corresponds to the measurements
at ∼73 km s−1 Mpc−1, which is most strongly observed post-2013 Planck.

in identifying papers which are reporting new measurements. From
the analysis of our results we find that reporting measurements with
uncertainties and the correct units is critical information to identify
measurements in free text.

Our results correctly highlight the current well-known tension
for measurements of the Hubble constant. This demonstrates that
the tool presented in this paper is useful for meta-studies of
astrophysical measurements, and shows the potential to generalize
this technique to other areas.

However, in its current form the algorithms presented in Section 4
have some limitations. We are able to extract measurements of
entities with a small set of simple, atomic names – i.e. where there
is a set of continuous strings, each with little or no variation (e.g.
capitalization). This is ideal for entities such as the Hubble constant,
which has only a handful of standard linguistic and mathematical
expressions (listed in Section 4), and can therefore be easily encoded
for searching free text. However, the use of regular expressions and
simple keyword searches make this system fragile against minor
variations in standard syntax and typesetting, which is hard to
account for manually. Additionally, if we consider a more complex
entity (from a linguistic standpoint), such as ‘the radius of the
Milky Way’, we may imagine many constructions of this in written
English, followed by the problem of the lack of a standardized
mathematical symbol for this quantity. Our algorithm is currently
unable to deal with such linguistic complexity without a large
amount of effort on the part of the user to list the many possible
variations of an entity’s name – and, indeed, this would also lead
to the problem that the user may be unaware of many common
constructions of the entity they are searching for, which will lead to
poor recall.

Further, there are difficulties associated with our algorithm’s
assumption that all measurements appear in the same sentence as
the name of the entity to which they belong. This is problematic
as an assumption for two primary reasons: First, most simply, there
are instances where this assumption is broken. This can occur due
to complex or convoluted sentence construction, or the presence of
many caveats and contingent information. A second, more involved
problem is the circumstance where a measured entity has no agreed
upon mathematical symbol, and one is assigned to it earlier in the
text – or where there is an agreed-upon symbol, but it is commonly
used elsewhere (e.g. μ) and hence is defined for the reader. In such
a scenario the user can only reasonably supply a written name for

the quantity they are searching for, but in many cases we may find
the final result reported using its locally-agreed-upon symbol. In its
current form the model cannot account for this kind of relationship.

The next stages for this project shall involve the use of more
advanced natural language processing techniques to solve these
problems. We shall explore the use of traditional information
extraction approaches and modern neural techniques to improve the
versatility of the search algorithms with respect to entity names and
relationships above the sentence-level. Further, we will experiment
with named-entity extraction techniques to automatically detect
parameter names, allowing for the creation of a data base of named
measurements without the need for human specified entity names.
As part of this we shall be exploring relationships within complex
entity names. This would, for example, allow for automatically
detecting that the named entities, ‘mass of the Milky Way’, and,
‘radius of the Milky Way’, are both statements regarding properties
(mass and radius) of the same object (the Milky Way). This would
allow for more sophisticated data base population, and therefore
greater utility for the user. Future work will also deal with expanding
the scope of the model to include the extraction of contingent
information, such as experimental technique and stated parameters
(such as assumed cosmology in cosmological simulation papers).
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