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The hydroelastic waves in a channel covered by an ice sheet, without or with crack
and subject to various edge constraints at channel banks are investigated based on the
linearized velocity potential theory for fluid domain and the thin-plate elastic theory for
the ice sheet. An effective analytical solution procedure is developed through expanding
the velocity potential and the fourth derivative of the ice deflection to a series of cosine
functions with unknown coefficients. The latter is integrated to obtain the expression
for the deflection, which involves four constants. The procedure is then extended to the
case with a longitudinal crack in the ice sheet by using the Dirac delta function and its
derivatives at the crack into the dynamic equation, with unknown jumps of deflection
and slope at the crack. Conditions at the edges and crack are then imposed, from which
a system of linear equations for the unknowns is established. From this the dispersion
relation between the wave frequency and wave number is found, as well as the natural
frequency of the channel. Extensive results are then provided for wave celerity, wave
profiles and strain in the ice sheet. In-depth discussions are made on the effects of the
edge condition, and the crack.

1. Introduction

In the past few decades, research on the interaction between water waves and sea ice
has received a considerable amount of interest. Ice sheets have usually been modelled by
elastic plates resting on water. A notable example of such problems is the propagation
of water waves into a semi-infinite ice sheet floating on water. Evans & Davies (1968)
obtained an explicit solution based on a thin-plate theory by using the Wiener-Hopf
technique. Fox & Squire (1990, 1994) adopted the method of matched eigenfunction
expansion for this problem, where the conjugate gradient method was used to impose
continuity conditions at the interface and edge conditions. Balmforth & Craster (1999)
further extended Evans and Davies’ study by applying the Wiener-Hopf technique and
Fourier transforms for the thick plate model where the Timoshenko-Mindlin equation
was adopted for the deflection of the ice sheet. Other works on ocean waves interaction
with ice cover based on thin-plate theory can also be found in Sahoo et al. (2001) based
on an orthogonal mode-coupling relation which has been further expanded by Manam
et al. (2006) and Mondal et al. (2011), and be found in Chung & Fox (2002) based on the
Wiener-Hopf technique, in Andrianov & Hermans (2003) based on the Green’s function
technique, in Meylan & Squire (1996) for a circular ice floe and in recent work by Porter
(2019) for a rectangular ice sheet.
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Large stress and strains in ice may cause fracture and cracks, which can have an obvious
influence on the wave flow field. Squire et al. (2000) considered incident waves propagating
through a solitary crack of an ice sheet on water of infinite depth. Evans & Porter (2003)
solved a more general problem of arbitrary water depth. Further investigations were
made by Porter & Evans (2006, 2007) by considering multiple straight narrow parallel
cracks of infinite and finite length. Wave diffraction by a three-dimensional circular crack
was studied by Li et al. (2018). Other water waves-ice interaction problems associated
with polynyas and Marginal Ice Zone (MIZ) have also received a lot of attentions from
researchers, and a review of these studies can be found in a recent paper by Squire (2019).

Different from the above studies where the ice sheet is usually treated as unbounded,
which can be realistic in polar oceans, there is also an interest in wave/ice sheet
interaction in the confined regions such as in the river or channel. During the winter
season in cold regions, the water surface in a channel may be frozen and covered by an
ice sheet. The propagation of hydroelastic waves in ice-covered channels is quite different
from free surface waves in the open water channel (Chang et al. 1979; Witting 1984;
Ertekin et al. 1986; Mathew & Akylas 1990; Winckler & Liu 2015). For waves travelling
under infinitely long ice sheet in a wide channel, when the connection between the ice
cover with the channel sides were neglected, the flow in the channel can be simplified as
one-dimensional. Daly (1993) investigated the unsteady flow in an ice-covered channel
of rectangular section by solving three linearized governing equations respectively for
the mass, momentum conservation of the fluid and the motion of ice plate. Daly (1995)
further studied the stresses induced in the ice due to its elastic deformation when water
waves were travelling below. Xia & Shen (2002) considered the nonlinear interaction using
a fifth-order KdV equation for the ice cover in a channel. Beltaos (2004) involved the free
edge conditions of zero bending moment and shear force into analysis for waves passing
a transverse crack across the channel. Fuamba et al. (2007) investigated dam break
water wave propagation in a partially ice-covered channel numerically and experimentally.
The numerical model was proposed with a combination of one-dimensional Saint-Venant
equations for the free surface flow and water hammer equations for the flow beneath the
ice cover. Nzokou et al. (2009) considered the two-dimensional wave propagation in a
channel with ice cover by assuming the ice sheet to be frozen-into or simply-attached to
the channel banks. Later, Nzokou et al. (2011) developed a coupled model involving the
one-dimensional Saint-Venant equations and the dynamic beam equation, in which finite
element method was used to solve the fluid and beam equation separately.

A more recent work done by Korobkin et al. (2014) reconsidered waves propagating
along a rectangular channel fully covered by a continuous ice sheet clamped into the
channel walls, based on the linearized velocity potential theory for fluid flow and the thin-
plate elastic theory for the ice sheet. The Laplace equation for the fluid flow is solved
using eigenfunction expansion with each term satisfying the channel wall and bottom
conditions. For the ice sheet, the solution for the Euler-Bernoulli plate equation is also
expanded into a series with each term satisfying the clamped edge condition. Therefore,
the transverse Fourier expansions for the fluid and the transverse expansion for the
ice sheet have different eigenfunctions. When the dynamic and kinematic conditions on
the interface of fluid and ice are imposed, it is not straightforward to match these two
different eigenfunctions. Each term in the expansion for ice sheet is then further expanded
into Fourier series to match the expansion for the fluid flow. Therefore, the procedures
are not most effective for this problem. Apart from the problem caused by the above-
mentioned mismatch of the eigenfunctions, as they have mentioned in their conclusion,
the orthonormal modes adopted are only for the clamped-clamped edge condition. When
the edge conditions are changed, the suitable modes for the plate deflection need to be
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rederived and the problem has to be resolved, for example, the corresponding free edge
problem was considered later by Batyaev & Khabakhpasheva (2015). It should also be
mentioned that the formulation would have to be rederived for more general cases, such
as ice sheet with a crack.

In a channel, wave-ice sheet interaction occurs within a confined region between channel
walls whose effects as well as the edge constraints of ice cover on the walls cannot be
ignored. The importance of side wall effects on a body floating on the free surface are well
known and to account for these effects in solution procedure is a major challenge (e.g.,
Linton & Evans (1992), Wu (1998)). The problem is further complicated by the ice sheet
on the water surface, which is evidently reflected by the work of Korobkin et al. (2014).
Apart from mathematical modelling, there have been physical tests in the ice tank.
Examples include that by Dolatshah et al. (2018) for wave and ice sheet interactions
and that by Myland & Ehlers (2019) with structures. The problem of wave in an ice
tank is of real physical interest as well as mathematical interest. Therefore, we aim to
develop an effective and general procedure to solve this type of hydroelastic problems of a
channel covered by the ice sheet with or without a crack, and with various edge conditions
at the channel banks. The procedure enables us to use a series of cosine functions for
the expansion of the velocity potential, as well as the ice deflection. This removes the
difficulty of the mismatching mentioned above and allows us to solve a variety of the
problems effectively. In the present work, we first apply this novel method to study the
wave propagation in a channel with a continuous ice cover with arbitrary combination of
edge conditions at the channel banks. Then, we further consider a longitudinal crack in
the ice sheet, through introducing Dirac delta function and its derivatives at the crack
into the equation. This enables us to enforce the conditions at the crack easily and there
is no need to redrive the formulation. Because of the simplicity of the solution procedure,
we are able to uncover some insights of the nature of wave propagation in an ice-covered
channel with or without a crack.

The paper is organized as follows. The mathematical model and solution procedure
for water waves interacting with a continuous ice cover is developed in §2. For the
discontinuous situation, the procedure is extended in §3 for ice cover with a longitudinal
straight-line crack at an arbitrary position. Extensive results are provided in §4 for
dispersion relations, wave celerity, wave deflection and strain in the ice for different
combination of edge conditions at channel banks with or without a crack, and in-depth
discussions are made. Conclusions are given in §5.

2. Mathematical formulation and solution procedure for a continuous
ice sheet

The problem is shown in figure 1. A channel of rectangular section is covered by a
homogeneous ice sheet. The half-width of the channel and the water depth are denoted
as b and H, respectively. A Cartesian coordinate system Oxyz is defined with the origin
located at the lower surface of the ice sheet and the central plane of the channel, the
x-axis points in the longitudinal direction of the channel and z-axis points upwards. The
linearized incompressible velocity potential theory is used for the fluid flow. The potential
φ(x, y, z, t) satisfies the Laplace equation as

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0, −∞ < x < +∞,−b 6 y 6 b,−H 6 z 6 0, (2.1)
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(a)

(b)

Figure 1. Sketch of the hydroelastic wave propagation in a rectangular channel covered by ice
sheet. (a) 3D view; (b) view for cross section of the channel in which x axis points out of the
paper.

in the entire fluid domain of the channel, while the impermeable conditions are satisfied
on the channel walls and bottom, which give

∂φ

∂y
= 0, y = ±b; ∂φ

∂z
= 0, z = −H. (2.2)

The deflection of the ice sheet w(x, y, t) is governed by the Euler-Bernoulli equation as

ρihiwtt + L∇4w = p, (2.3)

where ρi is the density of the ice sheet, hi is its thickness, L = Eh3i /[12(1 − ν2)] is the
rigidity coefficient with E and ν being the Young’s modulus and Poisson’s ratio of the
ice sheet, respectively. The term on the right hand of (2.3) is the fluid pressure which
can be obtained from linearized Bernoulli equation, or p = −ρφt − ρgw, where ρ is the
density of water and g is the acceleration due to gravity. The kinematic condition is

∂w

∂t
=
∂φ

∂z
, z = 0. (2.4)

Considering periodic wave in both time and x direction, the deflection of the ice sheet
and the velocity potential can be written as below

w(x, y, t) = Re
{
W (y)ei(κx−ωt)

}
, −b 6 y 6 b, (2.5)

φ(x, y, z, t) = Re
{
−iωΦ(y, z)ei(κx−ωt)

}
, −b 6 y 6 b,−H 6 z 6 0, (2.6)
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where κ is the wave number and ω is the frequency. Using (2.5) and (2.6), the dynamic
equation of the ice sheet in (2.3) can be written as

−ω2ρihiW + L
(
κ4W − 2κ2W ′′ +W ′′′′

)
= ρω2Φ(y, 0)− ρgW, (2.7)

and from the kinematic condition, we can have

W (y) = Φz(y, 0). (2.8)

Taking into account the impermeable conditions on the channel bottom and wall, we can
further write the expression of the potential Φ(y, z) as

Φ(y, z) =

∞∑
n=0

bn cosh kn(z +H) cosσn(y + b), −b 6 y 6 b, (2.9)

where

σn =
nπ

2b
, k2n = σ2

n + κ2,

and the choice of σn is due to the wall conditions at y = ±b and that of kn is due to
Laplace equation.

To impose (2.8), it would be much more convenient to use the same expansion for both
W and Φ. However, to use Fourier cosine series directly for W will lead two problems: (1)
The term in the series of W cannot satisfy all the four edge conditions. The conditions
have to be imposed through W separately, which is not a trivial task. (2) The Fourier
series is not always differentiable but integratable. Therefore, we expand W ′′′′ into a
cosine series, which does not have to care about the edge conditions at this stage

W ′′′′(y) =

∞∑
n=0

an cosσn(y + b), −b 6 y 6 b, (2.10)

When it is integrated, the general expansion of W (y) becomes

W (y) = c0+c1(y+b)+c2(y+b)2+c3(y+b)3+
a0
24

(y+b)4+

∞∑
n=1

an
σ4
n

cosσn(y + b), (2.11)

where ci (i = 0 ∼ 3) are four constants. They can be written in terms of an based on
the specific four edge conditions. This means that unlike the expansion of the potential,
not each term in (2.11) satisfies the edge conditions, but W (y) itself does. From (2.11),
we can find that c0, c1, c2, c3 have the same dimensions as those of deflection, slope,
bending moment and shear force, respectively. Specifically, we have c1 = W ′(−b) and
c3 = 1

6W
′′′(−b).

Substituting (2.9) and (2.11) into (2.7) and (2.8) respectively, we have(
ρg − ω2ρihi + Lκ4

)
×[ ∞∑

n=1

an
σ4
n

cosσn(y + b) +
a0
24

(y + b)4 + c3(y + b)3 + c2(y + b)2 + c1(y + b) + c0

]

−2κ2L

[
−
∞∑
n=1

an
σ2
n

cosσn(y + b) +
a0
2

(y + b)2 + 6c3(y + b) + 2c2

]

+L

∞∑
n=0

an cosσn(y + b) = ρω2
∞∑
n=0

bn cosh knH cosσn(y + b), (2.12)
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∞∑
n=1

an
σ4
n

cosσn(y + b) +
a0
24

(y + b)4 + c3(y + b)3 + c2(y + b)2 + c1(y + b) + c0

=

∞∑
n=0

bnkn sinh knH cosσn(y + b). (2.13)

We may further expand functions of (y + b)j(j = 0 ∼ 4) into the orthogonal series of
cosine functions as

(y + b)j =

∞∑
n=0

d(j)n cosσn(y + b).

Equations (2.12) and (2.13) then give(
ρg − ω2ρihi + Lκ4

) ( (1−δn0)an
σ4
n

+ a0
24d

(4)
n + c3d

(3)
n + c2d

(2)
n + c1d

(1)
n + c0d

(0)
n

)
−2κ2L

(
− (1−δn0)an

σ2
n

+ a0
2 d

(2)
n + 6c3d

(1)
n + 2c2d

(0)
n

)
+ Lan

= ρω2bn cosh knH, n = 0, 1, 2..., (2.14)

(1− δn0)an
σ4
n

+
a0
24
d(4)n + c3d

(3)
n + c2d

(2)
n + c1d

(1)
n + c0d

(0)
n = bnkn sinh knH, n = 0, 1, 2...,

(2.15)
where δij is the Kronecker delta function. From these two equations, we obtain

an = αn3c3 + αn2c2 + αn1c1 + αn0c0, (2.16)

bn = βn3c3 + βn2c2 + βn1c1 + βn0c0, (2.17)

where

∆n = δn0

[
−k0 sinh k0H

(
(ρg − ω2ρihi + Lκ4)d

(4)
0

24
− κ2Ld(2)0 + L

)
+
d
(4)
0 ρω2 cosh k0H

24

]

+ (1− δn0)

[
−kn sinh knH

(
ρg − ω2ρihi + Lκ4

σ4
n

+
2κ2L

σ2
n

+ L

)
+
ρω2 cosh knH

σ4
n

]
,

αnj =
1

∆n

{
d(j)n

[
(ρg − ω2ρihi + Lκ4)kn sinh knH − ρω2 cosh knH

]
−12δj3κ

2Ld(1)n kn sinh knH − 4δj2κ
2Ld(0)n kn sinh knH + (1− δn0)α0j×[(

(ρg − ω2ρihi + Lκ4)d
(4)
n

24
− κ2Ld(2)n

)
kn sinh knH −

d
(4)
n ρω2 cosh knH

24

]}
,

βnj =
δn0L

∆n

[
−(1− κ2d(2)0 )d

(j)
0 −

δ3jκ
2d

(1)
0 d

(4)
0

2
− δ2jκ

2d
(0)
0 d

(4)
0

6

]
+

(1− δn0)L

∆n
×[

−
(

2κ2

σ2
n

+ 1

)
d(j)n −

12δj3κ
2d

(1)
n

σ4
n

− 4δj2κ
2d

(0)
n

σ4
n

+ α0j

(
−d

(4)
n

24

(
2κ2

σ2
n

+ 1

)
− κ2d

(2)
n

σ4
n

)]
.

(j = 0 ∼ 3, n = 0, 1, 2...)

In (2.16) and (2.17), αnj and βnj are known. These two systems of equations become
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complete when the edge conditions are used. For clamped, free and simply-supported
conditions, we respectively have at edge (Timoshenko & Woinowsky-Krieger 1959)

W = W ′ = 0; (2.18)

W ′′ − νκ2W = 0, W ′′′ − (2− ν)κ2W ′ = 0, (2.19)

W = 0, W ′′ − νκ2W = 0, (2.20)

where (2.5) has been used.
We may use the above procedure for the case with both edges clamped, as considered

by Korobkin et al. (2014). In such a case, (2.18) should be used for both y = ±b. Using
(2.11), we obtain ∑∞

n=1
an
σ4
n

+ c0 = 0;

c1 = 0;∑∞
n=1

an
σ4
n

cosnπ + 2b4

3 a0 + 8b3c3 + 4b2c2 + 2bc1 + c0 = 0;

4b3

3 a0 + 12b2c3 + 4bc2 + c1 = 0. (2.21)

Dividing (2.16) by σ4
n, performing the summation and substituting the result into (2.21),

we have

[A][C] = 0, (2.22)

where C is a column containing ci. For practical calculation, the infinite series in (2.22)
need to be truncated at a finite number. In general A is a 4 × 4 coefficient matrix (See
the Appendix). For the clamped condition, it can be further simplified into 3×3 because
c1 = 0 is already obtained. For non-trivial solution of C, we should have |A| = 0.
This provides the dispersion relationship between κ and ω, or at each given κ, we obtain
various ω which are the natural frequencies of the frozen channel. It should be noted that
from the dispersion relationship for ice sheet of infinite extent (e.g. Fox & Squire (1994)),
the wave number for travelling wave is unique at each frequency. Here at each ω, κ is not
unique. In fact, there is an infinite number of solutions of κ, which can be obtained from
|A| = 0 in (2.22). Each κ corresponds to a different travelling wave along the channel
and different transverse waves across the channel. At each of these particular frequencies,
we may choose one ci, and then solve (2.22) to obtain other ci and to obtain an and bn
from (2.16) and (2.17), respectively. This will then provide all the transverse modes for
both fluid flow in (2.9) and ice sheet deflection in (2.11). For other combinations of edge
conditions in (2.18)-(2.20), the same procedure in (2.21) and (2.22) can be obtained. The
only difference is then in the coefficients of A.

3. Ice sheet with a longitudinal straight-line crack

The formulation above can be extended to the case of ice sheet with a longitudinal
straight-line crack at y = l. In such a case W (y) will not be continuous at y = l. We
denote two smooth functions, namely W1(y) and W2(y), as the deflections of the beam
on two sides of the crack. Then the deflection of the entire beam can be written as (Wang
& Qiao 2007)

W (y) = W1(y) + [W2(y)−W1(y)]H(y − l), (3.1)

where H(y − l) is the Heaviside step function. Substituting (3.1) and its derivatives into
(2.7), we could modify the dynamic equation as

−ω2ρihiW + L
(
κ4W − 2κ2W ′′ +W ′′′′

)
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= ρω2Φ(y, 0)− ρgW + L
[
∆W ′′′(l)− 2κ2∆W ′(l)

]
· δ(y − l)

+ L
[
∆W ′′(l)− 2κ2∆W (l)

]
· δ′(y − l) + L∆W ′(l) · δ′′(y − l)

+ L∆W (l) · δ′′′(y − l), (3.2)

where ∆W (l), ∆W ′(l), ∆W ′′(l) and ∆W ′′′(l) are respectively the jumps of the deflection,
slope, the second and third derivatives of W at the crack, and δ(y− l), δ′(y− l), δ′′(y− l)
and δ′′′(y − l) are respectively the Dirac delta function and its derivatives with respect
to y.

When free edge conditions are assumed on both sides of the crack, indicating zero
bending moment and shear force, then (2.19) should be satisfied at y = l as

W ′′(l−)− νκ2W (l−) = W ′′(l+)− νκ2W (l+) = 0,

W ′′′(l−)− (2− ν)κ2W ′(l−) = W ′′′(l+)− (2− ν)κ2W ′(l+) = 0, (3.3)

where l− and l+ in (3.3) refer to the left- and right-hand sides of l, respectively. From
(3.3), we can further have

∆W ′′(l) = νκ2∆W (l), ∆W ′′′(l) = (2− ν)κ2∆W ′(l). (3.4)

Substituting (3.4) into (3.2), we can have

−ω2ρihiW + L
(
κ4W − 2κ2W ′′ +W ′′′′

)
= ρω2Φ(y, 0)− ρgW − νκ2LS · δ(y − l)
+ (ν − 2)κ2LD · δ′(y − l) + LS · δ′′(y − l) + LD · δ′′′(y − l) (3.5)

where S = ∆W ′(l) and D = ∆W (l). The kinematic equation of the ice sheet will remain
the same as (2.8). In (3.5), there are two extra unknowns, D and S. Two additional
equations can be obtained by the two conditions at the crack (y = l). For δ(y − l) and
its derivatives, they can be written in the form of cosine series as

∂kδ(y − l)
∂yk

=

∞∑
n=0

ϑ(k)n cosσn(y + b), k = 0, 1, 2, 3. (3.6)

Multiplying cosσm(y + b), integrating the result with respect to y from y = −b to y = b,
and further using the orthogonality of cosine functions and the property of the Dirac
delta function, we can obtain

ϑ(k)n =


δ0k
2b , n = 0

(−1)k ∂kfn(y)
∂yk

∣∣∣
y=l

, n > 1

where fn(y) = cosσn(y+b)
(1+δn0)b

. Then (2.14) will become

(ρg − ω2ρihi + Lκ4)

(
(1− δn0)an

σ4
n

+
a0
24
d(4)n + c3d

(3)
n + c2d

(2)
n + c1d

(1)
n + c0d

(0)
n

)
−2κ2L

(
− (1− δn0)an

σ2
n

+
a0
2
d(2)n + 6c3d

(1)
n + 2c2d

(0)
n

)
+ Lan +

(
νκ2fn(l)− f ′′n (l)

)
LS

+
(
−(2− ν)κ2f ′n(l) + f ′′′n (l)

)
LD = ρω2bn cosh knH, n = 0, 1, 2..., (3.7)

From (3.7) and (2.15), when considering a crack with free edges at y = l, (2.16) and
(2.17) would be modified as

an = αn5S + αn4D + αn3c3 + αn2c2 + αn1c1 + αn0c0, (3.8)



Waves in an ice-covered channel 9

bn = βn5S + βn4D + βn3c3 + βn2c2 + βn1c1 + βn0c0, (3.9)

When j 6 3, αnj and βnj are the same as those below (2.17). For j = 4 and 5, we can
have

αnj =
1

∆n

{
δj4Lkn sinh knH ×

[
−(2− ν)κ2f ′n(l) + f ′′′n (l)

]
+δj5Lkn sinh knH ×

[
νκ2fn(l)− f ′′n (l)

]
+ (1− δn0)α0j×[

(ρg − ω2ρihi + Lκ4)d
(4)
n

24
kn sinh knH − κ2Ld(2)n kn sinh knH −

ρω2d
(4)
n cosh knH

24

]}
,

βnj =
1

kn sinh knH

[
(1− δn0)

αnj
σ4
n

+
d
(4)
n

24
α0j + (1− δj4)(1− δj5)d(j)n

]
.

There are total 6 unknowns in (3.8) and (3.9), which can be determined by imposing
the 6 conditions including 4 on the channel walls and 2 at the crack. We may further
consider the case with both clamped edges at the channel banks discussed at the end of
the previous section. However, here a longitudinal straight-line crack at y = l is present.
Then two extra equations can be obtained from (2.19) as

2c2 + 6c3(l + b) +
a0
2

(l + b)2 −
∞∑
n=1

an
σ2
n

cosσn(l + b)

−νκ2
[
c0 + c1(l + b) + c2(l + b)2 + c3(l + b)3 +

a0
24

(l + b)4 +

∞∑
n=1

an
σ4
n

cosσn(l + b)

]
= 0,

6c3 + a0(l + b) +

∞∑
n=1

an
σn

sinσn(l + b)

−(2− ν)κ2

[
c1 + 2c2(l + b) + 3c3(l + b)2 +

a0
6

(l + b)3 −
∞∑
n=1

an
σ3
n

sinσn(l + b)

]
= 0.

(3.10)

They can then be combined with (2.21) for 6 × 6 matrix equation in general. The
coefficient matrix Aij for the case of clamped-clamped edge with a crack is displayed in
the Appendix. The subsequent procedure is virtually identical to that used for (2.22). It
is worth noting that at the crack, the free edge conditions in (3.10) may contain seemingly
non-convergent series in the coefficient matrix (See the Appendix). In such a case, we
may use (3.6) which is zero when y 6= l. Therefore, these non-convergent series can be
removed when the free edge conditions are imposed at y → l.

It should be noted that the method for the Bloch problem for a periodically spaced
infinite array of cracks (Porter & Evans 2006) could be used in the present problem.
However, the periodic potential they obtained may not automatically satisfy the imper-
meable condition on the vertical line below the crack. Also, the problem here is not always
periodic with regard to the channel width, which can be seen from (2.9). Furthermore,
to modify the method of Porter & Evans (2006) to the crack problem in the tank is not
a trivial task, while it is in the present method.
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Figure 2. Comparison for the first three and four natural frequencies respectively for
clamped-clamped edge and clamped-free edge. (a). Clamped-clamped edge: α = 100, µ∗ = 10,
(b). Clamped-free edge: α = 10, µ∗ = 1. (dotted-dashed lines: Bauer (1993); markers: present
results.)

4. Results and discussion

4.1. Verification through a 2D sloshing tank with an elastic lid

The problem outlined in §2 will reduce to the two-dimensional sloshing problem in a
tank with an ice cover when we set κ as zero in (2.5) and (2.6), and correspondingly
in αnj and βnj in (2.16) and (2.17), respectively. The solution procedure can be very
much simplified. The infinite series in (2.22) are truncated at a finite number N . It is
found that the coefficient matrix converges very quickly with N . In fact, the order of
the truncation error is found to be around O(10−4) when N = 50. For the results given
below N = 400. Figure 2 provides the comparison between the present results with those
by Bauer (1993) for verification, in which

ω∗ = ω(2b)2
√
ρihi/L; α =

ρg(2b)4

L
; µ∗ =

ρihi
ρH

.

We can find that the results are in an excellent agreement.

4.2. Dispersion relations

In the following calculations, the typical values for parameters are chosen as below:

ρ = 1000 kg/m3, ρi = 917 kg/m3, E = 4.2× 109 N/m2, ν = 0.3, g = 9.81 m/s2.

Other parameters are chosen as hi = 0.1 m, H = 5 m and b = 10 m. The nondimension-
alization for the variables denoted by an asterisk is based on g, ρ and H. In figure 3, we
display the curves of dispersion relationship for the first five wave frequencies varying
with wavenumber κ∗, corresponding to different edge conditions. From the figure, we
can see that the results for clamped-clamped edges are in good agreement with those of
Korobkin et al. (2014). We can find that the first natural frequencies, ω∗1 corresponding
to different edge conditions are very close to each other. The difference in ω∗m becomes
significant as m increases. Overall, at a given κ∗, the clamped-clamped edge corresponds
to the largest ω∗m, while the free-free edge to the smallest.

The results from unbounded ocean or b = +∞ as ω∗ =
(

1+L∗κ∗4

ρ∗i h
∗
i+

1
κ∗ tanhκ∗

) 1
2

are also

provided for comparison. It has only one ω for each κ and the wave in this case will
propagate only in the x direction. For the free surface flow or h = 0 in the channel, each
ωm corresponds to each transverse wave or each term of an in (2.10) is fully independent,
and true one-dimensional wave is possible. However, in the ice-covered channel, the edge
conditions in (2.18) to (2.20) make single transverse wave impossible and they are all
coupled. For a given b, the results at free-free edge condition are closer to those of
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Figure 3. Dispersion relations at b∗ = b/H = 2. Results of clamped-clamped, clamped-free and
free-free edges are shown by solid, dashed and dotted lines, respectively. Results of b = +∞
are shown as pentagram markers, and results from Korobkin et al. (2014) for clamped-clamped
edge are converted to be nondimensional and shown as diamond marks.
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Figure 4. (a) Dispersion relations and (b) wave celerity for both simply-supported edge
conditions at the channel banks. Dashed-dotted lines for b∗ = 1 and solid lines for b∗ = 2.

unbounded case than the other two edge conditions. This can be expected as there is no
connection between the ice with the walls in such a case.

When simply-supported edge conditions are assumed at both channel banks, the
corresponding results are shown in figure 4. To investigate the influence of channel width
on the dispersion relations, a narrower channel width, or b∗ = 1, is chosen for comparison.
From figure 4a, we can find that the corresponding natural frequencies ω∗m for each κ∗

will increase when the channel width decreases. The wave celerity can be written as
C∗m = ω∗m/κ

∗, which indicates that for each m, C∗m would be larger in a narrower channel
than in a wider channel, as shown in figure 4b. It is also worth noting that as we seek
the solution of progressive waves in the form of (2.6), therefore the wave number κ∗ does
not vary across the channel.

For other combinations of edge constraints at the banks, the dispersion relations can
be obtained in a similar way. For the above three types of edge constraints, the number
of their combinations can be up to six. In above analysis, we have mentioned four of
them. It is interesting to further investigate all these edge constraints and their effect
on the wave propagation, such as the wave celerity C∗m. From figure 5, we can find that
at a given wavenumber, for different edge constraints, the corresponding wave celerity
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Figure 5. Wave celerity C∗m (m = 1, 2) at b∗ = 2 corresponding to various edge constraints. For
each κ∗, the curves from above to below are respectively: clamped-clamped, clamped-simply
supported, simply supported-simply supported, clamped-free, simply supported-free and
free-free.
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Figure 6. Dispersion relations at b∗ = 2. Results of clamped-clamped edge at banks but a crack
at l∗ = 0,−0.25b∗. Solid lines: continuous case; Dashed-dotted lines: crack at l∗ = 0; Diamonds:
crack at l∗ = −0.25b∗.

is decreasing in the following sequence: clamped-clamped, clamped-simply supported,
simply supported-simply supported, clamped-free, simply supported-free and free-free.

For the ice sheet with a longitudinal straight-line crack, the solution procedure in §3
can be adopted. The influence of the crack on the dispersion relations is investigated
by setting the crack at different positions. From figure 6, we can observe that the first
natural frequency of the system with the crack at centre, or l = 0, is very close to that
of the continuous ice. The differences become much more obvious for the second and
third natural frequencies, which indicates that the crack has a greater effect on larger
frequencies. We can also observe that when the crack is away from the channel centre,
some natural frequencies are still around the results of central crack. However, more
natural frequencies may be found between these values for a certain κ∗.

When the crack is at the centre of the ice sheet, the problem is symmetric if the
edge conditions on both banks are the same. In such a case, it is expected that the ice
deflections on two sides of the central crack can be either symmetric or anti-symmetric.
Based on the kinematic equation, the corresponding flow field can be either symmetric or
anti-symmetric with respect to the central plane of the channel. For symmetric case, the
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Neumann boundary condition ∂φ/∂x = 0 can be imposed at the central plane. Therefore,
the central plane can be seen as a rigid surface, and the central crack case is identical to
the case of a continuous ice with clamped-free edge in a channel with width of b. For anti-
symmetric case, the Dirichlet boundary condition should be imposed, or φ = 0, at the
central plane. We further investigate the natural frequencies at a given wavenumber for
Case 1: central crack and clamped-clamped edge at banks of a channel with width of 2b
and Case 2: continuous ice sheet with clamped-free edge at banks of a channel with width
of b. By denoting the natural frequencies of Case 1 and Case 2 as respectively ωm and
ω̃m (m = 1, 2, 3. . . ), we find that ω2m−1 = ω̃m, which indicates that in the central crack
case (Case 1) the natural frequencies of odd numbers ω2m−1 (m = 1, 2, 3. . . ) correspond
to the symmetric situations while ω2m (m = 1, 2, 3. . . ) correspond to the anti-symmetric
situations. The corresponding discussion on the deflection of ice sheet or wave profiles
can be found in §4.3. When the crack is away from the centre of the channel, the problem
becomes asymmetric in geometry. In such a case, it does not correspond to symmetric
or anti-symmetric situations and the flows on both sides of crack become more complex.
As shown in figure 6, more natural frequencies appear in off-centre crack cases due to
the asymmetry of the problem.

4.3. Wave profiles

For a specific pair of κ∗ and ω∗m in the dispersion relation curve in figure 3, once one
of the non-zero nondimensional coefficients c∗i is prescribed, the others can be calculated
through (2.22). The corresponding wave profiles can then be further obtained. It should
be noted that the amplitude of the wave profile is proportional to c∗i , and therefore
choosing different value for c∗i will not change the shape of the wave profiles. For a given
real c∗i , we can obtain other real coefficients from (2.22). From (2.11), W (y) and its
derivatives are all real. For the case with clamped edge at y∗ = −b∗, we have c∗1 = 0
and therefore prescribe c∗3 = 1; while for the case with free edge at y∗ = −b∗, c∗1 = 1 is
chosen.

From (2.8) and (2.9), we have

W (y) =

∞∑
n=0

wn cosσn(y + b), −b 6 y 6 b. (4.1)

We plot w∗n = b∗nk
∗
n sinh k∗n for the first two ω∗m to show the contribution of each term in

the series to the wave profile in figure 7 for two cases without a crack. From the figure, we
can find that the first natural frequency (m = 1) corresponds to symmetric modes, as only
the terms with even n are non-zero. The second natural frequency (m = 2) corresponds
to anti-symmetric modes, as only the terms with odd n are non-zero. In figure 8, we
display the wave profiles corresponding to the first two natural frequencies for different
edge conditions at the same wavenumber. For cases with same edge conditions on both
banks, the deflection curves are respectively symmetric and anti-symmetric with respect
to y∗ = 0 at the first and second natural frequencies, which can be observed in figure 8a,b
and d. While for cases where different edge constraints being imposed at two banks, the
symmetry and anti-symmetry are no longer shown in the deflection curves, such as figure
8c, e and f. For clamped-free edge case, the deflection at the left-side bank is always zero
due to the clamped edge conditions while free at the right-side bank.

Similarly, the wave profiles are also displayed for the cases of clamped-clamped edge
at channel banks and a crack at various positions for their first natural frequencies. The
jumps of deflection and slope at the crack are displayed in figure 9 for a given unit c∗3. From
the figure, we observe that changing the position of the crack has an obvious influence on
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Figure 7. Amplitudes of transverse wave components for the first two natural frequencies ω∗
m at

b∗ = 2. (a). clamped-clamped edge: m = 1 (c∗3 = 1); (b). clamped-clamped edge: m = 2 (c∗3 = 1);
(c). free-free edge: m = 1 (c∗1 = 1); (d). free-free edge: m = 2 (c∗1 = 1).

the deflection and slope of the ice sheet. It is also worth pointing out that for crack case
we retain the expression of deflection in the form of (2.11). The ci (i = 0 ∼ 3) may still
be related to the edge conditions. However, they are no longer the same as those without
crack as they will be influenced by S and D. Specifically, for the clamped-clamped case,
when the crack indefinitely approaches the left bank, or l∗ → −b∗, the slope at left side
of the crack is zero based on the clamped edge conditions or W ′1(−b) = 0. Therefore,
based on the definition of S, which is the jump of the slopes at the crack, S should refer
to the slope at the right side of the crack, or W ′2(−b). In such a case when l∗ → −b∗, the
ice edge at the wall has become a free edge. Then the result is expected to be the same
as the free-clamped case without a crack. Thus, we take l∗ = −0.99999b∗ and give a unit
S∗ in the crack case, and we also give a unit slope c∗1 at y = −b for the free-clamped
case. The numerical results in figure 9 show that there is no difference between the ice
sheet deflection.

Further to the discussion on the central crack case in §4.2, the wave deflection across
the channel for the central crack case (Case 1) for the first six natural frequencies are
displayed in figure 10. For the odd number natural frequencies, the corresponding wave
profiles for the continuous ice with clamped-free edge at banks of the channel with width
of b (Case 2) are also displayed for comparison. Consistent with the discussion in §4.2, the
wave profiles of the central crack case for the natural frequencies of odd m are symmetric
to the central plane, while for the natural frequencies of even m, the corresponding wave
profiles are anti-symmetric to the central plane. Besides, for odd m, the deflection curves
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Figure 8. Wave profiles of hydroelastic waves in the channel at κ∗ = 1 and b∗ = 2. (a).
clamped-clamped edge (c∗3 = 1), (b). free-free edge (c∗1 = 1), (c). clamped-free edge (c∗3 = 1), (d).
both simply supported edges (c∗1 = 1), (e). clamped-simply supported edge (c∗3 = 1), (f). simply
supported-free edge (c∗1 = 1). Solid lines for the first natural frequency while dashed-dotted lines
for the second natural frequency.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-6

-5

-4

-3

-2

-1

0

1

 l
*
 = 0 (c

3
*=1)

 l
*
 = -0.25b

*
 (c

3
*=1)

 l
*
 = -0.50b

*
 (c

3
*=1)

 l
*
 = -0.75b

*
 (c

3
*=1)

 l
*
 = -0.99999b

*
 (S

*
=1)

 free-clamped edge (c
1

*
=1)
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Figure 10. Wave deflection of hydroelastic waves in the channel with clamped-clamped edge
at channel banks and a central crack for the first six natural frequencies ω∗

m (m = 1 ∼ 6) at
b∗ = 2,κ∗ = 1 and c∗3 = 1. From left to right and from top to bottom, m = 1, 2, 3, 4, 5 and
6. Results for continuous ice sheet of clamped-free edge in a channel for the first three natural
frequencies ω̃(m+1)/2 (m = 1, 3, 5) at b∗ = 1,κ∗ = 1, c∗3 = 1 are shown as circle markers for
comparison (the abscissa has been translated from [−1, 1] to [−2, 0] for comparison).

of Case 1 and Case 2 are the same, which in turn further verifies the effectiveness and
rationality of the solution procedure in §3.

4.4. Strain in the ice

The strain of the ice is an important physical parameter which is associated with
its fracture and breakup when it becomes excessive. Based on the usual definition of
principal stress (strain) (Timoshenko & Woinowsky-Krieger 1959), the principal strain λ

can be obtained as the eigenvalues of the strain tensor matrix ε = −hi2

(
wxx wxy
wxy wyy

)
,

or the solution of det[ε− λI] = 0. Then, we can simplify the principal strain as

λ1,2 =
hi
4

{[
κ2W (y)−W ′′(y)

]
cos(κx− ωt)±√

[κ2W (y) +W ′′(y)]2 cos2(κx− ωt) + [2κW ′(y)]2 sin2(κx− ωt)
}
.

Here λ1,2 is a function of β = κx− ωt. It has extremes λ
(i)
M , i = 1 ∼ 4, at ∂λ1,2/∂β = 0.

Thus, the maximum principal strain can be obtained from λM (y) = maxi=1∼4

{
λ
(i)
M

}
,

where

λ
(1)
M =

hi
2
|W ′′(y)| , λ

(2)
M =

hi
2
κ2 |W (y)| ,
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λ
(3)
M =

hi
2

∣∣∣(4κ2WW ′′ − 4κ2W ′
2
)
/Γ
∣∣∣ ,

λ
(4)
M =

hi
2

∣∣∣(−2κ4W 2 − 2W ′′
2

+ 4κ2W ′
2
)
/Γ
∣∣∣ ,

and

Γ = 2(κ2W −W ′′)

√√√√1 +

[
4κ2W ′2 − (κ2W +W ′′)2

]2 − (κ2W +W ′′)2(κ2W −W ′′)2

4κ2W ′2[κ2W −W ′′]2
.

It should be noted that λ
(3)
M and λ

(4)
M can exist only when

[
4κ2W ′

2 −
(
κ2W +W ′′

)2]2
>(

κ4W 2 −W ′′2
)2

. In figure 11, λM (y) is displayed for the waves corresponding to the first

two natural frequencies for the clamped-clamped, free-free, clamped-free, both simply-
supported, clamped-simply supported and simply supported-free edges. It can be seen
that for the clamped-clamped edge case, the maximum principal strain can be much larger
at the walls than those in other places, which indicates that the fracture or breakup may
be more likely to occur along the channel banks. When the constraint at the right-side
bank becomes free edge, or in the clamped-free edge case, the peak of the maximum
principal strain is still located at the clamped end. For free-free edge case, although the
peaks are still located at both banks, the curves become much flatter cross the channel
than those of the clamped-clamped case. However, results might be different in the both
simply-supported edge case, as observed in figure 11d, where the maxima of the maximum
principal strain occur at a distance from the edges. In such a case, cracks might be more
likely to occur at a distance away from the channel banks. We may further consider the

curves in figure 11a,d from the expressions of λ
(i)
M to investigate their difference. At banks

of clamped edges, we can have λ
(2)
M (±b) = 0 due to W (±b) = W ′(±b) = 0. We may also

find that the corresponding λ
(3)
M (±b) and λ

(4)
M (±b) equal to zero. Therefore, we can have

λM (±b) = λ
(1)
M (±b) = hi|W ′′(±b)|/2, which is related to the ice thickness and the second

derivatives of the deflection. While at the banks with simply supported edges, we have

W (±b) = W ′′(±b) = 0, so we can have λ
(1)
M (±b) = λ

(2)
M (±b) = 0. The results of λ

(3)
M and

λ
(4)
M at y = ±b equal to hiκ|W ′|/2, which indicates that the maximum principal strain

at the banks are related to the ice thickness, wavenumber and the slope at the edge.
For figure 11d, the peaks for the first natural frequency are quite close to the channel

banks, and these values are obtained from λ
(3)
M , which are slightly larger than those at

the channel banks. While for the second natural frequency, the peaks are located around
one/three quarter(s) of the channel and can be much larger than those at the channel

banks, which are obtained from λ
(1)
M .

The effect of a crack on the distribution of the maximum principal strains across the ice
sheet is also studied. It is worth noting that similar to the procedure in §3, non-convergent
terms associated with δ(y − l) and its derivatives need to be removed from the infinite
series in the expressions of W ′ and W ′′ when calculating the maximum principal strain
across the channel. In figure 12, we display the maximum principal strains across the
channel for clamped-clamped case with a crack at various positions for their first natural
frequencies. From the figure, we observe that with the crack moving from the centre to
the left bank, the maximum principal strains at the right bank keep increasing while
those at the left bank keep decreasing, which indicates that when there has already been
a longitudinal crack in the ice sheet near one bank, the connection between the ice sheet
and the opposite bank might be more likely to be damaged as well.
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Figure 11. The distribution of the maximum principal strains across the channel for the
(a). clamped-clamped (c∗3 = 1), (b). free-free (c∗1 = 1), (c). clamped-free (c∗3 = 1), (d). both
simply-supported (c∗1 = 1), (e). clamped-simply supported (c∗3 = 1), (f). simply supported-free
(c∗1 = 1) for the first and second natural frequencies at b∗ = 2,κ∗ = 1. Solid lines: first natural
frequency, dashed-dotted lines: second natural frequency.
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Figure 12. The distribution of the maximum principal strains across the channel for
clamped-clamped case with a crack at various positions for their first natural frequencies at
b∗ = 2, κ∗ = 1, c∗3 = 1. The curve for the continuous ice sheet with clamped-clamped edge at
the channel banks are displayed with diamond markers for comparison.

5. Conclusions

We have investigated the behaviour of the hydroelastic waves in a channel covered by
an ice sheet based on the linearized velocity potential and the thin elastic plate model.
An efficient analytical solution procedure is developed, which allows the solution for
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an ice sheet with various edge conditions and with a crack to be obtained easily. The
effectiveness of the solution procedure has been verified by comparison with the results
of a two-dimensional sloshing tank and with the existing result for ice sheet in channel
with clamped edges.

From the results, we observe that for a given wavenumber, the wave celerity is largest
when both edges of ice sheet are clamped into channel banks. The celerity decreases
when its two edge constraints change from clamped to simply-supported and further
decreases when they change to free. For the same edge constraints at two banks, the
wave profiles across the channel can be either symmetric or antisymmetric with respect
to the central plane of the channel, which corresponds to natural frequencies of odd and
even numbers, respectively. While for different edge constraints at channel banks, the
wave profiles become asymmetric. We also observe that the local peaks of the maximum
principal strain in the ice across the channel are usually occur at the clamped or free
ends at the first two natural frequencies. However, it is different for simply supported
edge, where the local peaks of the maximum principal strain are usually at some distance
from the edges.

The effect of position of the crack on the wave propagation is investigated through
the dispersion relations, wave profiles and strain distribution. It has been shown that
when the crack of free edges indefinitely approaches one channel bank, result tends to
that of ice sheet with the free end. Also, for ice sheet with the same edge conditions
at channel banks and a central crack, due to the symmetry, the corresponding natural
frequencies and the propagation features can be simply explained through symmetric
and antisymmetric cases, in which the Neumann and Dirichlet boundary conditions can
be imposed on the central plane of the channel, respectively.

The procedure developed in this paper can be further extended to problems with
multiple longitudinal cracks, where more complex interactions between water waves and
ice cover are expected. Furthermore, cracks of other forms of edge constraints can be also
investigated by this method. It is also worth noting that the effect of the wind pressure
on the ice sheet can be further incorporated into the present work. In such a case an
external pressure term can be added into the dynamic boundary condition of the ice
sheet, which requires a particular solution to be added into the general solution in this
paper.
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Appendix A. Coefficient matrix Aij of clamped-clamped edge with
and without a crack

From the clamped condition at the left bank, or W ′(−b) = 0, we have c1 = 0 and
therefore the general 6× 6 matrix A for the case with a crack can be reduced to 5× 5.
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For C = [c0; c2; c3;D;S], from (2.21) and (3.10), the coefficients Aij can be written as

A1j = δ1j

(
1 +

∞∑
n=1

αn0
σ4
n

)
+ (1− δ1j)

∞∑
n=1

αnj
σ4
n

; (A 1)

A2j = δ1j

(
1 +

2b4

3
α00 +

∞∑
n=1

cosnπ

σ4
n

αn0

)
+ 4δ2jb

2 + 8δ3jb
3

+ (1− δ1j)

(
2b4

3
α0j +

∞∑
n=1

cosnπ

σ4
n

αnj

)
; (A 2)

A3j = δ1j

(
4b3

3
α00

)
+ 4δ2jb+ 12δ3jb

2 + (1− δ1j)
4b3

3
α0j ; (A 3)

A4j = δ1j

[
(l + b)2

2
α00 −

∞∑
n=1

cosσn(l + b)

σ2
n

αn0

− νκ2

(
1 +

(l + b)4

24
α00 +

∞∑
n=1

cosσn(l + b)

σ4
n

αn0

)]
+δ2j

[
2− νκ2(l + b)2

]
+ δ3j

[
6(l + b)− νκ2(l + b)3

]
+ (1− δ1j)

[
(l + b)2

2
α0j −

∞∑
n=1

cosσn(l + b)

σ2
n

αnj

− νκ2

(
(l + b)4

24
α0j +

∞∑
n=1

cosσn(l + b)

σ4
n

αnj

)]
; (A 4)

A5j = δ1j

[
(l + b)α00 +

∞∑
n=1

sinσn(l + b)

σn
αn0

− (2− ν)κ2

(
(l + b)3

6
α00 −

∞∑
n=1

sinσn(l + b)

σ3
n

αn0

)]
−2δ2j(l + b)(2− ν)κ2 + δ3j

[
6− 3(2− ν)κ2(l + b)2

]
+ (1− δ1j)

[
(l + b)α0j +

∞∑
n=1

sinσn(l + b)

σn
αnj

− (2− ν)κ2

(
(l + b)3

6
α0j −

∞∑
n=1

sinσn(l + b)

σ3
n

αnj

)]
. (A 5)

We notice that non-convergent terms exist in the infinite series in A44, A45, A54 and
A55, which can be removed by using Dirac delta function and its derivatives in (3.6).
Subsequently, these equations become

A∗44 =

(
(l + b)2

2
− νκ2 (l + b)4

24

)
α04 −

∞∑
n=1

σn cosσn(l + b) sinσn(l + b)

b
×{

−(ρg − ω2ρihi + Lκ4) + ρω2 coth knH
kn

+ ν(2− ν)κ4L

− [(ρg − ω2ρihi + Lκ4) + 2κ2Lσ2
n + Lσ4

n] + ρω2 coth knH
kn

}
; (A 6)
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A∗45 =

(
(l + b)2

2
− νκ2 (l + b)4

24

)
α05 −

1

2b

−
∞∑
n=1

{
cos2 σn(l + b)

b

[
(2ν − 2)κ2Lσ2

n + ν2κ4L− (ρg − ω2ρihi + Lκ4) + ρω2 coth knH
kn

− [(ρg − ω2ρihi + Lκ4) + 2κ2Lσ2
n + Lσ4

n] + ρω2 coth knH
kn

]

+
α05 cosσn(l + b)

∆n

(
1

σ2
n

+
νκ2

σ4
n

)[
(ρg − ω2ρihi + Lκ4)d

(4)
n kn sinh knH

24

−κ2Ld(2)n kn sinh knH − ρω2 d
(4)
n

24
cosh knH

]}
; (A 7)

A∗54 =

(
(l + b)− (2− ν)κ2

(l + b)3

6

)
α04

+

∞∑
n=1

σ2
n sin2 σn(l + b)

b

[
−(ρg − ω2ρihi + Lκ4) + ρω2 coth knH

kn

− [(ρg − ω2ρihi + Lκ4) + 2κ2Lσ2
n + Lσ4

n] + ρω2 coth knH
kn

]

+

∞∑
n=1

sin2 σn(l + b)

b

 (2ν − 2)κ2
(
ρg − ω2ρihi + Lκ4 − ρω2 coth knH

kn

)
+ ν2κ4Lσ2

n

− [(ρg − ω2ρihi + Lκ4) + 2κ2Lσ2
n + Lσ4

n] + ρω2 coth knH
kn

 ; (A 8)

A∗55 =

(
(l + b)− (2− ν)κ2

(l + b)3

6

)
α05 + (2− ν)κ2

∞∑
n=1

sinσn(l + b)

σ3
n

αn5

+

∞∑
n=1

σn cosσn(l + b) sinσn(l + b)

b
×{

(ν − 2)κ2Lσ2
n − (ρg − ω2ρihi + Lκ4) + ρω2 coth knH

kn

− [(ρg − ω2ρihi + Lκ4) + 2κ2Lσ2
n + Lσ4

n] + ρω2 coth knH
kn

+

α05

∆n

[
kn sinh knH

(
(ρg − ω2ρihi + Lκ4)

d
(4)
n

24
− κ2Ld(2)n

)
− d

(4)
n ρω2 cosh knH

24

]}
; (A 9)

When there is no crack in the ice sheet, C = [c0; c2; c3] and only Aij (i, j = 1 ∼ 3) are
needed.
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