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Abstract: Prevalence of atrial fibrillation (AF) is high in heart failure patients supported by a
continuous flow left ventricular assist device (CF-LVAD); however, the long term effects remain
unclear. In this study, a computational model simulating effects of AF on cardiac function and blood
flow for heart failure and CF-LVAD support is presented. The computational model describes left and
right heart, systemic and pulmonary circulations and cerebral circulation, and utilises patient-derived
RR interval series for normal sinus rhythm (SR). Moreover, AF was simulated using patient-derived
unimodal and bimodal distributed RR interval series and patient specific left ventricular systolic
functions. The cardiovascular system model simulated clinically-observed haemodynamic outcomes
under CF-LVAD support during AF, such as reduced right ventricular ejection fraction and elevated
systolic pulmonary arterial pressure. Moreover, relatively high aortic peak pressures and middle
arterial peak flow rates during AF with bimodal RR interval distribution, reduced to similar levels
as during normal SR and AF with unimodal RR interval distribution under CF-LVAD support.
The simulation results suggest that factors such as distribution of RR intervals and systolic left
ventricular function may influence haemodynamic outcome of CF-LVAD support during AF.

Keywords: atrial fibrillation; normal sinus rhythm; CF-LVAD support; computational simulation;
cardiac function; cerebral blood flow

1. Introduction

Atrial fibrillation (AF) is associated with an increased risk of stroke, heart failure and cognitive
impairment, and it also increases the risk of death in heart failure patients [1–4]. The distribution
of RR interval frequencies in AF patients is mainly unimodal or bimodal [5]. Bimodal RR interval
distribution can be a sign of dual atrioventricular nodal pathway physiology [6]. AF and heart failure
may coexist and show bidirectional interactions, with heart failure promoting AF and AF with an
uncontrolled ventricular rate leading to ventricular tachycardiomyopathy [7,8]. Moreover, preceding
and pre-preceding RR interval durations seem to play a role in the left ventricular systolic function in
patients with chronic AF and dilated cardiomyopathy [9].

The prevalence of AF is high in heart failure patients supported by a continuous flow left
ventricular assist device (CF-LVAD) and it reaches up to 46% [10]. However, the effects of AF remain
unclear in heart failure patients implanted with a CF-LVAD for long-term support, and there is
no consensus on the risks associated with AF during heart pump support [11]. There are studies
reporting that AF is not associated with risk of death, stroke or thromboembolism during CF-LVAD
support [12–15]. LVADs may even induce favourable atrial structural and electrical remodelling in
the patients with AF; however, they may also be associated with increased mortality rates and risk of
thromboembolic events after CF-LVAD implantation [10,16,17], contradictory to the previous studies.
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Mortality rates in heart failure patients implanted with CF-LVAD may also depend on the type of
AF [18].

Decreased left ventricular ejection fraction under CF-LVAD support during AF is reported in [19],
whereas another study reported no significant difference in left ventricular ejection fraction in heart
failure patients with LVAD suffering from AF compared to those who did not have AF [20]. As the
impact of AF on CF-LVAD therapy remains unclear, more questions such as the effects of concomitant
procedures, the implanted device type, the treatment techniques for the arrhythmias and alternative
strategies for anticoagulation need to be addressed in heart failure patients with a CF-LVAD [21].
Therefore, a better understanding of the AF in patients with CF-LVADs may help to improve the
outcomes related to mechanical circulatory support.

Computational techniques have already been widely used to simulate different clinical scenarios
and healthy and diseased physiology, in addition to CF-LVAD therapies for different conditions, as well
as to understand the effects of AF on the ventricular rate and cerebral flow [22–24]. Computational
simulations may also help to understand the effects of AF on the cardiovascular system for heart failure
and CF-LVAD support. The aim of the study is developing a numerical model which can simulate
atrial fibrillation in heart failure patients and evaluating conditions observed during CF-LVAD support.

2. Materials and Methods

The numerical model presented in this study utilised a patient-derived RR interval series and
simulated atrial and ventricular functions, blood flow in the systemic, pulmonary, cerebral circulations
and CF-LVAD support during AF.

2.1. RR Interval Series

In this study, RR intervals were extracted from the patients’ Electrocardiogram (ECG) data sets
available on PhysioNet (https://physionet.org/). These were used as the duration of consecutive
heartbeats to simulate AF and normal SR [25] over a ten minute period. The distribution of RR intervals
during AF can be unimodal, bimodal or multimodal [5] depending on the average heartbeat duration
over a certain period [26]. Unimodal and bimodal RR interval distributions for AF were taken from
a long-term AF database, as given in [27]. The data in this database was digitised at a sampling
rate of 128 Hz at 16 bit resolution. The signals were band-pass filtered utilising a cut-off frequency
at 1 and 50 Hz to avoid power line interference [27]. RR interval data from three different subjects
was used in the simulations. The mean of the RR intervals simulating normal sinus rhythm (SR)
was 0.828 s with a 0.051 s standard deviation and 0.006 coefficient of variation. The mean of the RR
intervals simulating AF with a unimodal distribution was 0.512 s with a 0.106 s standard deviation and
0.207 coefficient of variation, whereas the mean RR interval duration simulating AF with a bimodal
distribution was 0.884 s with a 0.260 s standard deviation and 0.294 coefficient of variation in the
cardiovascular system model. The RR intervals and frequency histograms of the normal SR and AF
data used in the simulations is given in Figure 1.

https://physionet.org/
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Figure 1. (a) The RR intervals used in simulations to simulate normal sinus rhythm (SR) and atrial 
fibrillation (AF) with unimodal and bimodal sample distributions, the frequency diagrams of RR 
intervals used to simulate (b) normal sinus rhythm, (c) atrial fibrillation with unimodal RR interval 
distribution and (d) atrial fibrillation with bimodal RR interval distribution. Time bin is 5 ms in the 
frequency histograms. 

2.2. Cardiac Function 

Ventricular functions were described using the relationship between ventricular pressure and 
volume signals by utilising both active and passive contraction components. The left ventricular 
pressure signal (plv) during the active contraction of the left ventricle is driven by an activation 
function (fact,lv) and it utilises the end-systolic elastance (Ees,lv), left ventricular volume (Vlv) and left 
ventricular zero pressure volume (Vlv,0) [28]. The left ventricular passive pressure component (plv,p) 
was modelled using an exponential relationship between pressure and volume signals [28].  
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The activation function (fact,lv) was described using instantaneous time (t), the durations of active 
contraction (T1) and relaxation (T2) phases and the duration of an RR interval (RR) [29]. 

Figure 1. (a) The RR intervals used in simulations to simulate normal sinus rhythm (SR) and atrial
fibrillation (AF) with unimodal and bimodal sample distributions, the frequency diagrams of RR
intervals used to simulate (b) normal sinus rhythm, (c) atrial fibrillation with unimodal RR interval
distribution and (d) atrial fibrillation with bimodal RR interval distribution. Time bin is 5 ms in the
frequency histograms.

2.2. Cardiac Function

Ventricular functions were described using the relationship between ventricular pressure and
volume signals by utilising both active and passive contraction components. The left ventricular
pressure signal (plv) during the active contraction of the left ventricle is driven by an activation function
(fact,lv) and it utilises the end-systolic elastance (Ees,lv), left ventricular volume (Vlv) and left ventricular
zero pressure volume (Vlv,0) [28]. The left ventricular passive pressure component (plv,p) was modelled
using an exponential relationship between pressure and volume signals [28].

plv,a(t) = Ees,lv(Vlv −Vlv,0)fact,lv(t), (1)

plv,p = Ae(BVlv) − 1, (2)

plv = plv,a + plv,b, (3)

Left ventricular volume (Vlv) was described using the left ventricular radius (rlv), long axis length
(llv) and an additional coefficient (Klv), which includes effects of the contraction in the long axis
and scales the proportion between the left ventricular radius and volume over a cardiac cycle [28].
Change of the left ventricular radius (rlv) was described utilising the flow rates through the aortic and
mitral valves (Qav, Qmv), left ventricular volume, long axis length and the coefficient Klv [28].

Vlv =
2
3
πKlvr2

lvllv, (4)

drlv

dt
=

3(Qmv −Qav)

4πKlvllv

(
3Vlv

2πKlvllv

)−1/2

, (5)
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The activation function (fact,lv) was described using instantaneous time (t), the durations of active
contraction (T1) and relaxation (T2) phases and the duration of an RR interval (RR) [29].

fact,lv(t) =


1−cos((t/T1)π)

2 0 ≤ t < T1,
1+cos((t−T1)/(T2−T1)π)

2 T1 ≤ t < T2

0 T2 ≤ t < RR,

, (6)

The durations of the active contraction (T1) and relaxation (T2) phases in the cardiovascular system
model with normal SR were described by utilising linear relationships considering the physiological
data [30].

T1 = 0.33RR, (7)

T2 = 0.45RR, (8)

The left atrial pressure (pla) and volume (Vla) relationship was described using elastance
(Ela) [28,29].

pla(t) = Ela(t)(Vla −Vla,0), (9)

Left atrial volume (Vla) was described using the left atrial radius (rla), long axis length (lla) and an
additional coefficient (Kla) [28]. Change of the left atrial radius (rla) was described utilising the flow
rates through the mitral valve and pulmonary vein (Qmv, Qvp), left atrial volume, long axis length and
the coefficient Kla [28].

Vla =
2
3
πKlar2

lalla, (10)

drla

dt
=

3
(
Qpv −Qmv

)
4πKlalla

(
3Vla

2πKlalla

)−1/2

, (11)

Ela(t) = Emin,la + 0.5(Emax,la − Emin,la)fact.la(t−D), (12)

fact,la(t) =

 0 0 ≤ t < Ta,
1− cos

(
2π t−Ta

T−Ta

)
Ta ≤ t < RR,

(13)

Here, Emin,la and Emax,la are the minimal and maximal atrial elastances over a cardiac cycle,
respectively, and Ta is the atrial activation time instant. The right ventricular pressure and volume
signals were modelled in a similar way to the left ventricular pressure and volume signals using
different parameter values. The right atrial pressure and volume signals were modelled in a similar way
to the left atrial pressure and volume signals using different parameter values. Detailed information
about the model used to describe atrial ventricular functions can be found in [28].

The atrial contraction contributes to ventricular filling around 10%–15% over each cardiac cycle
for a healthy condition [31]. However, the absence of P-wave indicates an impaired function of atrial
contraction due to continuous atrial activity resulting from both ectopic and re-entrant sources [32].
The impaired atrial contraction was described in the cardiovascular system models simulating AF
using only the minimal atrial elastance (Emin,la) as given below [33].

Ela(t) = Emin,la, (14)

The systolic elastance in the cardiovascular system models, simulating heart failure with normal
SR and AF with unimodal and bimodal RR interval distributions, was adjusted to provide the similar
mean blood flow from the left ventricle over a 10 min period. Typical value of systolic elastance in
healthy subjects is around 2.5 mmHg/mL; however, it reduces significantly during heart failure [34].
Therefore, systolic elastance in the cardiovascular system model, simulating the heart failure with
normal SR, was set to 0.865 mmHg/mL to simulate reduced ejection fraction. A positive correlation
exists between the systolic function of left ventricle and the ratio of the preceding RR intervals in heart
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failure patients with AF [9]. The left ventricular end-systolic elastances in the cardiovascular system
models, simulating AF with unimodal (Ees,lv,u) and bimodal (Ees,lv,b) RR interval distributions, were
adjusted by adopting patient-specific correlations from heart failure patients, as given in [9], to provide
the similar mean blood flows in these models as in the cardiovascular system model simulating heart
failure with normal SR. The left ventricular end-systolic elastances in the cardiovascular system models
simulating AF were described as below.

Ees,lv,u = 0.27
RR1

RR2
+ 0.52, (15)

Ees,lv,b = 0.34
RR1

RR2
+ 0.80, (16)

2.3. Circulatory System

The circulatory system model includes the systemic and pulmonary circulation and cerebral
circulation. The model also simulates blood flow in the circle of Willis, as presented in [35]. Blood flow
in the circulatory system model was described using a lumped parameter model, which included
electrical analogues for resistance (R), compliance (C) and inertia (L). The heart valves were modelled
as ideal diodes allowing for one-way blood flow. The aortic blood pressure (pao) and flow rate
signals (Qao), as well as the aortic valve flow signal (Qav) in the circulatory system model, have been
given below.

dpao

dt
=

Qav −Qao

Cao
, (17)

dQao

dt
=

pao − paa −RaoQao

Lao
, (18)

Qav =
plv − pao

Rav
, (19)

Here, paa represents pressure in the aortic arch, Cao, Rao and Lao are the compliance, resistance
and inertance in the aorta, respectively, and Rav is the aortic valve resistance. The other compartments
in the circulatory system were modelled in the same way using different parameter values.

2.4. Continuous Flow Left Ventricular Assist Device (CF-LVAD) Support

To simulate CF-LVAD support, a model that estimates the pressure difference across an axial
CF-LVAD (∆pCF-LVAD), considering operating speed of the pump (ωCF-LVAD), flow rate (QCF-LVAD) and
change of the flow rate through the pump (dQCF-LVAD/dt) [36], was integrated into the cardiovascular
system model.

∆pCF−LVAD = Kω2
CF−LVAD −RCF−LVADQCF−LVAD − LCF−LVAD

dQCF−LVAD

dt
, (20)

RCF−LVAD = k1QCF−LVAD + k2, (21)

In the equations above, LCF-LVAD and RCF-LVAD are the inertance and resistance effects in the pump,
respectively. K, k1 and k2 are the estimated parameters [36]. The CF-LVAD was operated at a 10,500 rpm
rotation speed in the cardiovascular system models simulating the heart pump support. The CF-LVAD
model was implemented into the cardiovascular system model by modifying the equations which
describe change of the left ventricular radius (Equation (5)) and aortic pressure (Equation (19)) as below.

drlv

dt
=

3(Qmv −Qav −QCF−LVAD)

4πKlvllv

(
3Vlv

2πKlvllv

)−1/2

, (22)
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dpao

dt
=

Qav + QCF−LVAD −Qao

Cao
. (23)

Systemic arteriolar resistance was 1.25 mmHg/mL for the cardiovascular system model simulating
heart failure as it increases to maintain perfusion levels in the body for a failing heart [37]. It was reduced
to a healthy value, 0.75 mmHg/mL, for CF-LVAD support in the simulations, because mechanical
circulatory support restores the blood flow, and pressure levels in circulatory system baroreflex control
is expected to reduce the peripheral systemic resistance with increasing arterial pressure [38].

The electric-analogue of the heart chambers and the circulatory loop used to simulate normal SR
and AF with unimodal and bimodal RR interval distributions for heart failure and CF-LVAD support
is given in Figure 2. The list of abbreviations and the parameter values used in the circulatory loop and
cardiac functions is given in the Appendix A section.
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Figure 2. The electric-analogue of the heart chambers and circulatory loop used to simulate normal
sinus rhythm and atrial fibrillation with unimodal and bimodal RR interval distributions for heart
failure and Continuous Flow Left Ventricular Assist Device (CF-LVAD) support.

The simulations were performed using MATLAB Simulink R2017a. The set of equations was
solved using the ode15 s solver. The maximum step size was 1e-3 s and the relative tolerance was
set to 1e-3. All of the cardiovascular system models were run at a 40 s simulation time at a 75 bpm
constant heart rate, to obtain a periodic steady state solution, before the RR intervals were used as
temporal ranges for the heartbeats.
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3. Results

The mean values and standard deviations of maximal and minimal volumes in the heart chambers,
the left and right ventricular ejection fractions, the mean aortic and pulmonary arterial pressures
and middle cerebral arterial flow for normal SR and AF with unimodal and bimodal RR interval
distributions over each cardiac cycle, and cardiac and mean pump outputs for heart failure and
CF-LVAD support over a ten min period are given in Table 1.

Table 1. The mean values and standard deviations of maximal and minimal volumes in the heart
chambers (Vla,max, Vla,min, Vra,max, Vra,min, Vlv,ed, Vlv,es, Vrv,ed, Vrv,es), left and right ventricular ejection
fractions (EFVlv, EFVrv), mean aortic and pulmonary arterial pressures and middle cerebral arterial
flow rate (pao,mean, pap,mean, Qmca,mean) for normal sinus rhythm (NSR), and atrial fibrillation with
unimodal and bimodal RR interval distributions (UAF, BAF) over each cardiac cycle, cardiac and mean
pump outputs (CO, MPOs) over a ten minute period for heart failure and CF-LVAD support.

NSR UAF BAF NSR
CF-LVAD

UAF
CF-LVAD

BAF
CF-LVAD

Vla,max [mL] 106.2 ± 1.1 114.1 ± 2.2 102.8 ± 3.5 60.3 ± 1.2 65 ± 2.7 53.8 ± 5.1
Vla,min [mL] 83.3 ± 0.4 93 ± 2.3 69.3 ± 3.9 32.6 ± 1.4 44.1 ± 3.3 25 ± 3.6
Vra,max [mL] 54.7 ± 1.7 47.4 ± 3.0 67.2 ± 4.4 80.4 ± 3.3 65.6 ± 6.2 96.7 ± 8.4
Vra,min [mL] 33.1 ± 0.6 30.5 ± 1.1 37.9 ± 1.7 43.8 ± 1.5 37.5 ± 2.6 51.3 ± 4.0
Vlv,ed [mL] 161.7 ± 0.4 152.6 ± 0.9 146.2 ± 1.8 110.4 ± 2.2 113 ± 2.8 91.4 ± 5.6
Vlv,es [mL] 114.7 ± 1.5 122.8 ± 5.5 94.2 ± 9.8 66.1 ± 2.2 87 ± 7.0 48.3 ± 11.9
Vrv,ed [mL] 117.2 ± 1.7 101.4 ± 3.5 120.7 ± 3.6 138.4 ± 2.6 116.6 ± 5.4 139.9 ± 5.2
Vrv,es [mL] 70.2 ± 0.2 71.4 + 0.2 68.6 ± 0.9 66.6 ± 0.5 69.1 ± 2.1 64.6 ± 1.5
EFVlv [%] 29.1 ± 1.1 19.6 ± 3.9 35.5 ± 7.1 - - -
EFVrv [%] 40.1 ± 1.0 29.5 ± 2.8 43.1 ± 2.3 51.9 ± 1.3 40.5 ± 3.7 53.7 ± 2.8
pao,mean [mmHg] 83.1 ± 1.4 82.6 ± 2.5 85.6 ± 4.1 97.3 ± 0.5 98.9 ± 0.9 96.3 ± 1.4
pap,mean [mmHg] 30.9 ± 0.2 32.2 ± 0.4 29.1 ± 0.8 26.5 ± 0.5 29 ± 0.9 24.4 ± 1.5
Qmca,mean
[mL/min] 131 ± 3.0 132.5 ± 7.2 133.5 ± 13.7 144.3 ± 1.7 151.2 ± 3.0 138.5 ± 4.9

CO [L/min] 3.36 3.38 3.36 - - -
MPO [L/min] - - - 5.14 5.37 4.91

The waveforms of the left and right atrial and ventricular volumes for the simulated normal
SR and AF with unimodal and bimodal RR interval distributions during heart failure and CF-LVAD
support over a 6 s period are given in Figure 3.
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Figure 3. (a) Left atrial (LA) volumes for heart failure during normal sinus rhythm (SR) and atrial
fibrillation (AF) with unimodal and bimodal RR interval distributions; (b) LA volumes for CF-LVAD
support during normal SR and AF with unimodal and bimodal RR interval distributions; (c) right
atrial (RA) volumes for heart failure during normal SR and AF with unimodal and bimodal RR interval
distributions; (d) RA volumes for CF-LVAD support during normal SR and AF with unimodal and
bimodal RR interval distributions; (e) left ventricular (LV) volumes for heart failure during normal SR
and AF with unimodal and bimodal RR interval distributions; (f) LV volumes for CF-LVAD support
during normal SR and AF with unimodal and bimodal RR interval distributions; (g) right ventricular
(RV) volumes for heart failure during normal SR and AF with unimodal and bimodal RR interval
distributions; (h) RV volumes for CF-LVAD support during normal SR and AF with unimodal and
bimodal RR interval distributions.

Amplitude of the left and right atrial volume signals was relatively high during AF with bimodal
RR interval distribution. Similarly, amplitude of the left and right ventricular volume signals during
AF with bimodal RR interval distribution was higher, with respect to the amplitude of left and
right ventricular volume signals during normal SR and AF with unimodal RR interval distribution.
CF-LVAD support reduced the left atrial and ventricular volumes, whereas right atrial volumes and
right ventricular end-diastolic volumes increased under CF-LVAD support for all the simulated cases.
The waveforms for the left and right atrial and ventricular pressure signals for the simulated normal SR
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and AF with unimodal and bimodal RR interval distributions for heart failure and CF-LVAD support
over a 6 s period are given in Figure 4.Appl. Sci. 2020, 10, 876 9 of 16 
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Left atrial pressure during AF with bimodal RR interval distribution remained relatively low for 
heart failure. CF-LVAD support reduced the overall left atrial pressures for all the simulated cases, 
whereas right atrial pressures increased under CF-LVAD support. Left ventricular peak pressure was 
relatively high over some of the cardiac cycles during AF with bimodal RR interval distribution for 
heart failure, because of the simulated relation between left ventricular systolic elastance and 
preceding and pre-preceding cardiac cycle duration ratio. CF-LVAD support reduced the left 
ventricular pressures for all the simulated cases. Right ventricular pressures slightly decreased under 
CF-LVAD support. The waveforms for the aortic and pulmonary arterial pressure signals and left 
middle cerebral arterial blood flow rate signal for the simulated normal SR and AF with unimodal 

Figure 4. (a) Left atrial (LA) pressures for heart failure during normal sinus rhythm (SR) and atrial
fibrillation (AF) with unimodal and bimodal RR interval distributions; (b) LA pressures for CF-LVAD
support during normal SR and AF with unimodal and bimodal RR interval distributions; (c) right atrial
(RA) pressures for heart failure during normal SR and AF with unimodal and bimodal RR interval
distributions; (d) RA pressures for CF-LVAD support during normal SR and AF with unimodal and
bimodal RR interval distributions; (e) left ventricular (LV) pressures for heart failure during normal SR
and AF with unimodal and bimodal RR interval distributions; (f) LV pressures for CF-LVAD support
during normal SR and AF with unimodal and bimodal RR interval distributions; (g) right ventricular
(RV) pressures for heart failure during normal SR and AF with unimodal and bimodal RR interval
distributions; (h) RV pressures for CF-LVAD support during normal SR and AF with unimodal and
bimodal RR interval distributions.

Left atrial pressure during AF with bimodal RR interval distribution remained relatively low for
heart failure. CF-LVAD support reduced the overall left atrial pressures for all the simulated cases,
whereas right atrial pressures increased under CF-LVAD support. Left ventricular peak pressure was
relatively high over some of the cardiac cycles during AF with bimodal RR interval distribution for
heart failure, because of the simulated relation between left ventricular systolic elastance and preceding
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and pre-preceding cardiac cycle duration ratio. CF-LVAD support reduced the left ventricular pressures
for all the simulated cases. Right ventricular pressures slightly decreased under CF-LVAD support.
The waveforms for the aortic and pulmonary arterial pressure signals and left middle cerebral arterial
blood flow rate signal for the simulated normal SR and AF with unimodal and bimodal RR interval
distributions for heart failure and CF-LVAD support over a 6 s period have been given in Figure 5.
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Figure 5. (a) Aortic pressures for heart failure during normal sinus rhythm (SR) and atrial fibrillation
(AF) with unimodal and bimodal RR interval distributions; (b) aortic pressures for CF-LVAD support
during normal SR and AF with unimodal and bimodal RR interval distributions; (c) pulmonary arterial
(PA) pressures for heart failure during normal SR and AF with unimodal and bimodal RR interval
distributions; (d) PA pressures for CF-LVAD support during normal SR and AF with unimodal and
bimodal RR interval distributions; (e) left middle cerebral arterial (LMCA) flow rates for heart failure
during normal SR and AF with unimodal and bimodal RR interval distributions; (f) LMCA flow rates
for CF-LVAD support during normal SR and AF with unimodal and bimodal RR interval distributions.

Amplitude of the aortic pressure signal during AF with bimodal RR interval distribution was
higher with respect to amplitudes of the aortic pressure signals for the other cases. CF-LVAD
support reduced the systolic aortic pressure for all the cases while increasing the diastolic pressure.
Moreover, amplitudes of the aortic pressure signals were similar under CF-LVAD support for all
the cases. Pulmonary arterial pressure reduced under CF-LVAD support for all the simulated cases.
The amplitude of the middle cerebral arterial flow rate signal during AF with bimodal RR interval
distribution was higher with respect to the amplitudes of the middle cerebral arterial flow rate during
normal SR and AF with unimodal RR interval distribution. The amplitudes of the middle cerebral
arterial flow rate signals were similar for all cases where there was CF-LVAD support.
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4. Discussion

This study utilises a computational model simulating cardiovascular system dynamics and an
integrated CF-LVAD model. The cardiovascular system model allows to simulate different physiological
scenarios and mechanisms. For instance, the interaction between the preceding and pre-preceding RR
intervals and left ventricular systolic function in patients with chronic AF and dilated cardiomyopathy
was simulated in this study. Therefore, the effect of RR interval distributions on the haemodynamic
outcome CF-LVAD support can be simulated using the presented cardiovascular system model.

The mean RR interval duration in the cardiovascular system model simulating AF with unimodal
RR interval distribution was 0.512 s corresponding to a 117 bpm heart rate. Although such a high heart
rate is common in untreated AF patients, the current guidelines suggest to reduce the heart rate below
100 bpm in AF patients [39]. The RR interval duration in the cardiovascular system model simulating
AF with bimodal RR interval distribution was 0.884 s corresponding to 68 bpm. This is below the
suggested target heart rate. It should also be noted that the RR interval durations used in this study
are patient specific and the AF treatment is not included in the utilised numerical models.

The left ventricular ejection fraction was relatively low in the cardiovascular system simulating
AF with unimodal RR interval distribution. It has already been shown that there is a strong correlation
between the ejection fraction and the ratio of preceding and pre-preceding RR intervals during AF [40].
A higher preceding and pre-preceding RR interval ratio results in high ejection fraction as in the
cardiovascular system model simulating AF with bimodal RR interval distribution [40].

The low right ventricular ejection fraction during normal SR and AF with bimodal RR interval
distribution increased above 50% under CF-LVAD support similar to a healthy cardiovascular
system [41]. Although the right ventricular ejection fraction during AF with a unimodal RR interval
distribution increased as well under CF-LVAD support, it was around 40% which indicates an impaired
function. It is already known that the right ventricular function may be impaired in heart failure
patients with AF under CF-LVAD support [42]. The cardiovascular system model produced impaired
right ventricular function for relatively short cardiac cycles and unimodal RR interval distribution.
Systolic pulmonary arterial pressures also reported to be relatively high in LVAD implanted heart failure
patients with AF with respect to patients without AF [20]. Again, the cardiovascular system model
produced relatively high systolic pulmonary arterial pressures for unimodal RR interval distribution
under CF-LVAD support (Table 1). Higher aortic peak pressures and middle cerebral arterial peak flow
rates may result in increased cerebral hypertensive events [24]. Relatively high aortic peak pressures
and middle cerebral arterial peak flow rates were relatively high produced for bimodal RR interval
distribution without CF-LVAD support (Figure 5). The peak values in the aortic pressure and middle
cerebral arterial flow rate signals were reduced to similar values under CF-LVAD support for all the
cases (Figure 5). Such a result may show the beneficial effect of CF-LVAD therapy on the patients with
AF. However, it should be noted that the mean values of the aortic pressures and middle cerebral
arterial flow rates were different in each case under heart pump support. Although cardiovascular
system model generated similar cardiac outputs for each case, the mean pump outputs were remarkably
different. The different mean pump outputs were obtained for each case depending on the duration
of the cardiac cycles utilised in the simulations and varying CF-LVAD resistance used to describe
CF-LVAD support (Equation (21)).

The left and right atrial volumes are similar in healthy cardiovascular system [43–45]. However,
relatively high left atrial volumes were simulated in the cardiovascular system models for all of the
cases because the simulations were performed considering impaired systolic left ventricular function
which may cause dilation in the left atrium [46]. It should be noted that the left atrial volumes were
reduced to values comparable to healthy conditions for all the simulated cases under CF-LVAD support.

The simulation results in this study depend on the selected patient-specific relations and parameter
settings. However, it should be noted that utilised patient-specific relations and parameter settings
were able simulate conditions such as reduced right ventricular ejection fraction or high systolic
pulmonary arterial pressure, which are also observed in the clinical studies [20,42] for different cases.
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The simulations were performed using data from two different AF patients and one healthy individual.
The mean values and variability of the haemodynamic parameters for each cardiac cycle are given in
the Results section. A statistical comparison between the groups was not performed because the data
from one patient were utilised for each case. Nonetheless, the results provide useful insights about the
effect of preceding and pre-preceding RR intervals of AF and CF-LVAD support. The cardiovascular
system model utilises patient-derived series to simulate AF. Incorporating dynamical models that
simulate electrocardiogram signals or dual pathway atrioventricular nodal conduction [47–50] with
the existing cardiovascular system model may allow to simulate the dependence of the cardiovascular
response on the rate and regularity of ventricular activation in AF [51]. Elaborating the cardiovascular
system model to simulate atrioventricular nodal dynamics and the evaluation of CF-LVAD support
and validation of the results will be future work.

5. Conclusions

The presented cardiovascular system model simulates AF for unimodal and bimodal RR interval
distributions and Normal SR. Clinically-observed haemodynamic outcomes under CF-LVAD support
during AF such as reduced right ventricular ejection fraction or high systolic pulmonary arterial
pressure were simulated utilising patient-derived RR interval series and the interaction between
the preceding and pre-preceding RR interval and left ventricular systolic function. The results in
the submitted study show that patient specific conditions such as duration of preceding and pre
preceding RR intervals may play a role on the outcome of the CF-LVAD therapy during atrial fibrillation.
Moreover, the simulation results provide insights and possible future research directions for AF under
CF-LVAD support.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A

Table A1. List of abbreviations.

Nomenclature vp pulmonary veins
p pressure rica right internal carotid artery
V volume lica left internal carotid artery
Q flow rate rva right vertebral artery
t time lva left vertebral artery
R resistance roa right ophthalmic artery
L inertance loa left ophthalmic artery
C compliance ba basilar artery
AV aortic valve pca posterior cerebral arteries
MV mitral valve rpca right posterior cerebral artery
PV pulmonary valve lpca left posterior cerebral artery
TV tricuspid valve rpcoa right posterior communicating artery
EF ejection fraction lpcoa left posterior communicating artery
AF atrial fibrillation rsca right superior cerebellar artery
NSR normal sinus rhythm lsca left superior cerebellar artery
UAF AF with unimodal RR interval distribution racha right anterior choroidal artery
BAF AF with bimodal RR interval distribution lacha left anterior choroidal artery
CF-LVAD continuous flow left ventricular assist device rmca right middle cerebral artery
Subscripts lmca left middle cerebral artery
la left atrium mca middle cerebral artery
lv left ventricle raca right anterior cerebral artery
ra right atrium laca left anterior cerebral artery
rv right ventricle acoa anterior communicating artery
ao aorta pc pial circulation
aa aortic arch cc cerebral capillaries
ars systemic arterioles vc cerebral veins
cs systemic capillaries 1 segment one
vs systemic veins 2 segment two
ap pulmonary arteries max maximal
arp pulmonary arterioles min minimal
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Table A2. Parameter values used circulatory loop. R, L and C represent resistance, inertance and
compliance of the blood vessels, respectively. The value in the brackets show systemic arteriolar
resistance under CF-LVAD support.

R [mmHgs/mL] L [mmHgs2/mL] C [mL/mmHg]

Mitral Valve 0.0025 - -
Aortic Valve 0.0025 - -

Pulmonary Valve 0.0010 - -
Tricuspid Valve 0.0010 - -

Aorta 0.01 0.0001 0.04
Aortic Arch 0.05 0.0001 0.25

Systemic Arterioles 1.25 (0.75) 0.0001 2
Systemic Capillaries 0.24 - 4

Systemic Veins 0.1 - 30
Pulmonary Arteries 0.02 0.0001 3

Pulmonary Arterioles 0.1 0.0001 6
Pulmonary Veins 0.1 - 30

Internal Carotid Arteries 1.738 0.0001 -
Vertebral Arteries 5 0.0001 -

Basilar Artery 6.474 - 0.001
Posterior Cerebral Arteries 1 0.821 - 0.001
Posterior Cerebral Arteries 2 3.877 - 0.001

Posterior Communicating Arteries 321 - -
Superior Cerebellar Arteries 7.143 - -
Anterior Choroidal Arteries 125 - -

Middle Cerebral Arteries 8.940 - 0.001
Ophthalmic Arteries 125 - 0.001

Anterior Cerebral Arteries 1 9.761 - -
Anterior Cerebral Arteries 2 4.178 - 0.001

Anterior Communicating Artery 53.571 - -
Pial Circulation 3.6 - 0.5

Cerebral Capillaries 0.1 - 2
Cerebral Veins 0.1 - 6

Table A3. Parameter values used in the atrial and ventricular models. LA, LV, RA and RV represent left
atrium and ventricle and right atrium and ventricle, respectively, NSR, UAF and BAF represent normal
sinus rhythm, unimodal atrial fibrillation and bimodal atrial fibrillation, respectively, Emax, Emin and
Esys are the maximal and minimal elastances in atria and systolic elastance in ventricles, respectively,
and A and B are coefficients use in the model describing the passive component of the ventricular
pressure signal.

Emax
[mmHg/mL]

Emin
[mmHg/mL]

Esys
[mmHg/mL] A B

LA
NSR 0.3 0.2 - - -
UAF - 0.2 - - -
BAF - 0.2 - - -

LV
NSR - - 0.865 1 0.02

UAF - - 0.27(RR1/RR2)
+ 0.52 1 0.02

BAF - - 0.34(RR1/RR2)
+ 0.80 1 0.02

RA
NSR 0.3 0.2 - - -
UAF - 0.2 - - -
BAF - 0.2 - - -

RV
NSR - - 1 1 0.02
UAF - - 1 1 0.02
BAF - - 1 1 0.02
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