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Abstract

Due to its long-range propagation nature, radio frequency (RF) signals have been relied upon for

both the wireless information delivery and the wireless charging to the massively deployed low-power

devices in the upcoming era of Internet of Things (IoT). Therefore, intensive efforts have been invested

in the physical layer and the medium-access-control layer design for coordinating simultaneous wireless

information and power transfer (SWIPT) in the RF band. Distinguished from the existing works, we study

the coding-level control controlled SWIPT from the information theoretical perspective in a classic binary

symmetric channel. Due to its practical decoding implementation and its flexibility on the codeword

structure, the unary code is chosen as a joint information and energy encoder. The wireless power transfer

performance in terms of the energy carried per bit and of the battery underflow/overflow probability

is maximised by optimising the codeword distribution of the unary code, while satisfying the require

wireless information transfer (WIT) performance in terms of the mutual information. Furthermore, the
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Genetic Algorithm (GA) aided coding design is proposed to reduce the computational complexity. The

numerical results characterise the SWIPT performance and validate the optimality of our proposed GA

aided unary coding design.

Index Terms

SWIPT, unary coding, binary symmetric channel, mutual information, energy per bit and battery

overflow/underflow probability

I. Introduction

In the upcoming era of Internet of Things (IoT), massively deployed low-power devices may

swallow a major portion of the wireless communication throughput [1]. All functions of these

IoT devices, such as the data collection, data processing, data downloading and data uploading

are powered by their embedded batteries [2]. Frequent operations may quickly drain the batteries

having limited capacity. However, a lot of IoT devices are deployed in hardly reachable places.

Replacing the batteries or even replacing the IoT devices is a cumbersome task for the network

operator, which may substantially increase their operating expense.

Therefore, the network operators continuously seek for an economic way to recharging their

IoT devices. Some IoT devices are enabled to harvesting energy from renewable sources [3], such

as sunlight, wind, tide and sporadic radio frequency (RF) signals. However, the stochastic arrival

of the renewable energy imposes challenges on the design of the communication strategies [4].

For example, the optimal transmit power control should be re-designed by considering the energy

causality induced by the stochastic energy arrival. Hence, the operator prefers a controllable and

reliable remote charging paradigm to reduce the uncertainty of the renewable energy harvesting.

RF signal based wireless power transfer (WPT) beats its near-field counterparts1 as a promising

1Inductive coupling [5] and magnetic resonance based WPT [6] techniques can only transfer power to the near-field devices,
which are only several millimetres or centimetres away from the WPT transmitter.
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paradigm to recharge the IoT devices for the following reasons:

• It may transfer wireless power to the far-field IoT devices2;

• It may flexibly form a narrow-beam to charge a single device and form a wide-beam to

charge multiple devices;

• Sufficient legacy RF signal transmitters exist, which results in low investment on the WPT

infrastructure.

However, wireless information transfer (WIT) has already resided in the RF band. Introducing the

WPT in the same spectral band may severely degrade WIT performance, since they may compete

for the precious radio resources to fulfil their distinctive targets. Therefore, careful coordination

of both WIT and WPT in the RF band is required for simultaneously satisfying the devices

communication and charging demands, which yields an emerging technique of simultaneous

wireless information and power transfer (SWIPT) [7].

Intensive endeavours have been invested in SWIPT spanning from the signal design and

the transceiver design to the medium-access-control strategy as well as resource allocation and

networking scheme [8]–[12], [12]–[16]. For example, Clerckx et al. [8] designed the optimal

multi-sinusoidal signal for the dedicated WPT, while Y. Zeng et al. [9] focused on the design

of the multi-sinusoidal SWIPT signal. Zhou et al. [10] made the very first contribution to the

receiver arhictecture of SWIPT, which adopted either a power splitter, a time switcher or a

current splitter for simultanous reception of the information and energy. Moreover, Zhang et al.

[11] optimised transmit beamformer for the MIMO aided SWIPT transmitter. Furthermore, Lv

et al. [12] proposed an optimal time-domain resource allocation schemes for the time-division-

multiple-access (TDMA) aided multi-user SWIPT system, which aims for maximising the sum-

throughput and the fair-throughput of the users’ uplink transmission, respectively. Based on

2Normally, RF signals are capable of transferring wireless power to the IoT devices several metres away. If the transmit power
is sufficiently high, we may transfer wireless power several kilometres away.

March 31, 2019 DRAFT



4

[12], Yang et al. introduced the multiple antenna to the SWIPT transmitter, which results in

joint resource allocation schemes [13] in the spatial-, time- and power-domain. In order to

support the “ad hoc” access of the batteryless devices, Zhao et al. proposed several enhanced

carrier-sensing-multiple-access and collision avoidance (CSMA/CA) protocols and analyse their

attainable performance in [14] and [15]. Furthermore, Zhao et al. [16] also studied the optimal

deployment scheme of the SWIPT transmitters by considering the social characteristics of the

mobile SWIPT users.

Surprisingly, the research on the information theoretical essence of the SWIPT has not be-

come prosperous, since Varshney [17] firstly studied the tradeoff between the maximum mutual

information and the energy harvesting requirement in different channels. This seminal work

demonstrated that the performance of the SWIPT can be controlled by adjusting the codeword

structure, which provides the theoretical fundamental for the coding controlled SWIPT. Fur-

thermore, Varshney [18] also proposed a cross-layer architecture for jointly optimising both the

energy and information delivery from the information theoretical perspective, where a powerline

communication system was exemplified as a typical integrated information and energy transfer

system. Moreover, Tandon et al. [19] divided a codeword into several sub-blocks for satisfying

the receiver’s real-time energy demands. The optimal structure of the codeword is found for

maximising the mutual information in a binary symmetric channel (BSC). However, both of

[17] and [19] only considered memoryless information source in their analysis but ignored the

correlation among the bits in the output sequence of a practical encoder. Therefore, these works

optimised the transmit probabilities of the binary bits in order to achieve the maximum SWIPT

performance without considering a practical coding scheme.

The conventional source encoders generates equi-probable binary bits for maximising the

codewords’ capability of the information transmission. However, the codewords having equi-

probable binary bits are only capable of carrying a fixed amount of energy. Therefore, the
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conventional source encoder cannot satisfy the diverse energy requests of the receiver. The

constrained code [20] has a certain degree of freedom to adjust the codeword structure for

satisfying the WPT requirement without sacrificing the WIT efficiency.

As a typical constrained code, a run-length-limited (RLL) encoder was designed by Fouladgar

et al. [21] for minimising the battery overflow/underflow probability at the receiver subject to

the constraint on the achievable mutual information. Moreover, Tandon et al. [22] found the

lower-bound of the capacity of the BSC and Z channel, when the (d,∞) RLL code was adopted.

However, they only use the minimum run-length d to ensure the minimum energy delivery

requirement, which largely overlook the devices’ long-term energy requirements.

Furthermore, unary code has been widely used for the source coding [23]–[25] in wireless

communication, due to its low encoding and decoding complexity. Specifically, the unary code

was used by Babar et al. [23] for the joint throughput and dimming control in the visible light

communication system. However, the SWIPT performance of the unary code in the RF band

has not been studied from the information theoretical perspective.

Against this background, our novel contributions are summarised as below:

• We propose a practical unary coding aided SWIPT transceiver and analysed its performance

from the information theoretical perspective. The correlation among the information bits

generated by the unary encoder has been taken into account in the performance analysis.

• By considering the infinite battery capacity, the optimal codeword distribution is found for

maximising the average energy carried by a single output bit of the BSC, while satisfying

the mutual information requirement.

• By considering the finite battery capacity, the optimal codeword distribution is also found

for minimising the battery overflow/underflow probability of the receiver, while satisfying

the mutual information requirement.

• The optimal coding design is obtained by exploiting a low-complexity Genetic Algorithm
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Fig. 1. The transceiver architecture of a single-user SWIPT system.

(GA), which achieves almost the same performance of the exhaustive searching (ES).

The rest of the paper is organised as follows: the system model of the unary coding aided

SWIPT transceiver is introduced in Section II. The WIT performance is then analysed in Section

III, which is followed by the WPT performance analysis in Section IV. After formulating and

solving the optimal coding design problem in Section V, numerical results are illustrated in

Section VI. Finally, our paper is concluded in Section VII.

II. SystemModel

A. SWIPT Transmitter

The architecture of a SWIPT transmitter is portrayed in Fig.1, which is constituted by the

following functional modules:

• Information Source X outputs the messages randomly chosen from the message book X =

{X1, · · · ,XK}.

• Information and Energy Encoder encodes the messages into binary codewords, which can be

regarded as the coded source X̂. We adopt the unary encoder for mapping the j-th message

X j onto a j-bits codeword X̂ j having ( j−1) bit ‘1’ followed by a single bit ‘0’. The K-level

unary code provides K different codewords, as portrayed in TABLE I.

• Digital Modulator modulates the binary codewords onto the analogue RF signals. Amplitude

based modulator allocates different power to the codewords. In order to highlight the impact

of the codeword structure on the SWIPT performance, we adopt the on-off-keying (OOK)
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TABLE I
K-Level Unary Code

Messages Codewords Codeword Prob. Energy

X1 X̂1 = 0 p(X̂1) g(X̂1) = 0

X2 X̂2 = 10 p(X̂2) g(X̂2) = 1
2

X3 X̂3 = 110 p(X̂3) g(X̂3) = 2
3

.

..
.
..

.

..
.
..

XK X̂K = 11 · · · 1︸  ︷︷  ︸
(K−1) bit

0 p(X̂K ) g(X̂2k ) = K−1
K

based digital modulator. Bit ‘1’ is represented by the presence of the RF signal A sin(2π f t),

where A and f denotes its amplitude and frequency, respectively. When bit ‘1’ is transmitted,

the amount of energy carried by its modulated RF signal is expressed as

E(1) =

∫ T

0
A2 sin2(2π f t)dt =

A2

2
−

A2

8π f
sin(4π f T ), (1)

where T is the duration of the modulated symbol. Furthermore, bit ‘0’ is represented by

the absence of the RF signal. Its energy is thus E(0) = 0. Therefore, the energy carried by

a codeword is determined by its number of bit ‘1’.

B. SWIPT Receiver

The following modules are implemented at the SWIPT receiver for information recovery, as

illustrated in Fig.1:

• Digital Demodulator demodulates the information carried by the received RF signal. We

implement the energy detector to demodulate the RF signal modulated by OOK. The

resultant binary bit sequences constitute the coded destination Ŷ.

• Information Decoder decodes the received codeword in order to recover the original mes-

sage. The symbol-level trellis can be invoked for efficiently decoding the unary codeword

[23]–[25], which is capable of avoiding the catastrophic error propagation.

• Information Destination receives the recovered message, which is denoted as Y.
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Similar to [17], [19], [21]–[23], we consider an ideal SWIPT receiver, in which the RF signal

flows into the digital demodulator may be reused for energy harvesting. The following modules

are implemented at the SWIPT receiver for energy harvesting:

• Energy Harvester converts the RF signal received by the antenna to the direct current (DC).

• Battery is charged by the DC. We consider batteries having both infinite and finite capacity

in the optimal coding design.

C. SWIPT Channel

The impact of the channel attenuation between a transmitter and receiver pair can be modelled

by a BSC, as portrayed in Fig.1:

• When a bit ‘0’ is transmitted, the receiver may successfully receive bit ‘0’ with a probability

of (1 − ω), if the power of the accumulated noise and the ambient RF signal is lower than

the threshold of the energy detector, which also indicates no energy is harvested by the

receiver. Otherwise, the receiver may erroneously receive bit ‘1’ with a probability of ω,

which also indicates that the receiver may harvest a single unit of energy from the ambient

RF signal and the noise.

• When a bit ‘1’ is transmitted, the modulated RF signal may be severely attenuated by the

wireless channel. The accumulated power of the received modulated RF signal, the ambient

RF signal and the noise may be lower than the threshold of the energy detector, which may

result in the erroneous reception of bit ‘0’ and the failure WPT. This event may happen

with a probability of ω. By contrast, the successful reception of bit ‘1’ and the successful

WPT can be achieved with a probability of (1−ω), if the power of the accumulated signal

received is still higher than the energy detection threshold.
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Fig. 2. Markov modelling of the unary coded information source.

III. WIT Performance Analysis

We firstly analyse the WIT performance in terms of the lower bound of the SWIPT channel’s

mutual information.

A. Markov Modelling

The K-level unary encoded transmitter sends an arbitrary codeword chosen from the code-

book X̂ = {X̂1, X̂2, · · · , X̂K} for conveying both information and energy to the receiver, as

shown in TABLE I. The probabilities of these codewords being sent are denoted by P =

{p(X̂1), p(X̂2), · · · , p(X̂K)}. Sequentially sending a range of unary codewords generates a N-

bit sequence XN = {X1, X2, · · · , XN}. The correlation among the binary bits can be modelled by

a finite-state Markov chain, as illustrated in Fig.2.

State m of this Markov chain represents that we currently have a run of bit ‘1’ having a

length of m. As presented in TABLEI, the maximum allowable run-length of bit ‘1’ is (K − 1)

for a K-level unary code. Therefore, the Markov chain of Fig.2 spans from state 0 to K − 1.

The state transition from m to (m + 1) occurs with a probability of qm, if an additional bit ‘1’

is output by the encoder. The output of a bit ‘0’ terminates the current run of bit ‘1’, which

results in a state transition from m back to 0 with a probability of (1 − qm). A state sequence

SN = {S 1, S 2, · · · , S N} can be mapped onto the bit sequence XN = {X1, X2, · · · , XN}, as portrayed

in Fig.3. For an example of a 4-level unary code, a 6-states sequence S6 = {1, 2, 0, 1, 2, 3, 0}

corresponds to a bit sequence X6 = {1, 1, 0, 1, 1, 1, 0}.
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Fig. 3. Correlation among the state sequence and the bit sequences of the channel input/output.

The state transition probability qm is a function of the codeword distribution P, which is

formulated as:

qm = 1 − p(X̂1) − p(X̂2) − · · · − p(X̂m+1), (2)

for 0 ≤ m ≤ K − 1. The matrix Q of the state transition probabilities is expressed as:

Q =



1 − q0 q0 0 · · · 0 0

1 − q1 0 q1 · · · 0 0

...
...
...
. . .
...
...

1 − qK−2 0 0 · · · 0 qK−2

1 0 0 · · · 0 0



. (3)

The stationary distribution π = {π0, π1, · · · , πK−1} of the Markov chain can be obtained by solving

the following linear equations:



π ×Q = π

π × IK×1 = 1
, (4)

where IK×1 is a K × 1 column vector having all its entries equal to one. Both π and Q are
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essential for calculating the mutual information.

B. Mutual Information

When the N-bit sequence XN is input to the channel, the corresponding output bit sequence

is YN = {Y1, Y2, · · · , YN} after the imperfect transmission, as exemplified in Fig.3. The mutual

information between the coded source X̂ and the coded destination Ŷ can be formulated as

I(X̂; Ŷ) = H(X̂) − H(X̂|Ŷ). (5)

The entropy H(X̂) of the coded source can be expressed as

H(X̂) = lim
N→∞

H(XN)

N

(a)
= lim

N→∞

H(SN)

N

(b)
= lim

N→∞
H(S N |S 1, S 2, · · · , S N−1)

(c)
= lim

N→∞
H(S N |S N−1)

(d)
= H(S 2|S 1). (6)

In Eq.(6), the equality (a) is derived due to the certain mapping between the bit sequence XN

and the state sequence SN , as exemplified in Fig.3. The equality (b) is obtained by exploiting

Theorem 4.2.1 of [26]. The equality (c) is derived due to the Markov property of the unary coded

information source, while the derivation of the equality (d) is based on the stationary property

of the coded source X.

Observe from Fig.3 that the state sequence SN is also correlated to the bit sequence YN of the

channel output. In order to obtain the conditional entropy H(X̂|Ŷ), the following pair of Lemmas

are introduced for investigating the correlation between SN and YN:

Lemma 1: Given state S i at the i-th instant, state S i+1 is independent of the channel output

bits {Y1, · · · , Yi−1, Yi} at the previous instants.
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Proof: The Markov chain transits from state S i to S i+1 by sticking to the encoding principle

of the unary code. By contrast, the transition from state S i to bit Yi is induced by the imperfect

transmission in the channel. Obviously, the state transition from S i to S i+1 is uncorrelated to the

transition process from state S i to bit Yi. Given this fact, we prove the independence of S i+1 and

Yi in our technical report [27]3. We then prove that {Y1, · · · , Yi−1} are all uncorrelated to state

S i+1 for the following reasons: Firstly, {Y1, · · · , Yi−1} only depends on the states {S 1, · · · , S i−1},

respectively. Secondly, state S i+1 only depends on S i but it is independent of {S 1, · · · , S i−1},

when S i is given.

Lemma 2: State S i at the i-th instant is correlated to the channel output bits {Yi+1, Yi+2, ...} at

the subsequent instants. If the state transition probabilities satisfy {qm = q|m = 0, 1, · · · ,K − 1},

where q ∈ (0, 1) is a constant, S i is independent of {Yi+1, Yi+2, · · · }.

Proof: The basic principle is to find the inequalities of {p(S i = si|Yi+n = yi+n) , p(S i =

si)|n = 1, 2, · · · , }, where si ∈ {0, 1, · · · , 2k − 1} and yi+n ∈ {0, 1}. The sufficient condition is also

found to make the equalities hold. Please refer to [27] for the detailed proof.

Therefore, the conditional entropy H(X̂|Ŷ) is calculated as

H(X̂|Ŷ) = lim
N→∞

H(XN |YN)

N
= lim

N→∞

H(SN |YN)

N

(e)
= lim

N→∞

1

N

[
H(S 1|Y1, · · · , YN) +

N∑

i=2

H(S i|S i−1, · · · , S 1, Y1, · · · , YN)
]

( f )
= lim

N→∞

1

N

[
H(S 1|Y1, · · · , YN) +

N∑

i=2

H(S i|S i−1, Yi, · · · , YN)
]

(g)
≤ lim

N→∞

H(S 1|Y1, · · · , YN) + (N − 1)H(S 2|S 1, Y2)

N

= H(S 2|S 1, Y2). (7)

By exploiting the chain rule for entropy (Theorem 2.5.1 in [26]), we obtain the equality (e)

3This technical report is also uploaded as the supplemental material of this paper
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of Eq.(7). The equality (f) is derived by exploiting i) the Markov property and ii) Lemma 1.

According to Lemma 2, State S i is dependent of the channel output bits {Yi, Yi+1, · · · , YN}, which

results in the inequality (g).

By substituting Eqs.(6) and (7) into (5), the mutual information is further derived as

I(X̂; Ŷ)
(h)
≥ H(S 2|S 1) − H(S 2|S 1, Y2) = I(S 2; Y2|S 1) = H(Y2|S 1) − H(Y2|S 2, S 1)

= −
∑

s1

∑

y2

p(y2, s1) log2 p(y2|s1) +
∑

s1

∑

s2

∑

y2

p(y2, s2, s1) log2 p(y2|s2s1)

(i)
=

K−1∑

i=0

πi

{
H[qs1ω + (1 − qs1)(1 − ω)] − H(ω)

} ∆
= Iinf(X̂; Ŷ), (8)

where H(x) = − log2(x) − log2(1 − x) for 0 < x < 1. The inequality (h) of Eq.(8) is obtained

by substituting the upper bound H(S 2|S 1, Y2) of the conditional entropy H(X̂|Ŷ). We further

derive the equality (i) by exploiting the stationary distribution π of the Markov chain and the

corresponding matrix Q of the transition probabilities. The lower bound of I(X̂; Ŷ) derived in

Eq.(8) is attainable, according to Lemma 2. Therefore, it is the infimum of I(X̂; Ŷ) denoted as

Iinf(X̂; Ŷ), which is a function of the codeword distribution P, since entries in both Q and π are

functions of P.

IV. WPT Performance Analysis

As expressed in Eq.(1), if the symbol duration T equal to the period of the RF signal, a single

energy unit is defined as E(1) = A2

2 , when energy bit ‘1’ is sent. The amount of energy arriving

at the receiver depends on i) which codeword is transmitted, since different codewords carry

different number of energy bit ‘1’, and on ii) the imperfect transmission through the BSC, where

energy bit ‘1’ may be flipped to ‘0’ resulting in the energy loss and bit ‘0’ may be flipped to

‘1’ resulting in the energy gain.
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A. Infinite Battery Capacity

When the battery has an infinite capacity, we focus on the average energy carried by a single

bit received by the SWIPT receiver.

When the Markov chain of Fig.2 stays at state m, the K-level unary encoder may output

a bit ‘1’ with a probability of qm, while it may output a bit ‘0’ with a probability of (1 −

qm). Given the stationary distribution π derived by solving the linear equations of Eq.(4), the

stationary probability of the encoder outputting a bit ‘1’ can be calculated by p1 =
∑K−1

m=0 πmqm.

Similarly, the stationary probability of the encoder outputting a bit ‘0’ can be calculated by

p0 =
∑K−1

m=0 πm(1− qm). Therefore, after the imperfect transmission of the BSC, the probability of

bit ‘1’ being received by the SWIPT receiver, which is also the average energy harvested from

a single received bit is expressed as

E(Ŷ) = p1(1 − ω) + p0ω =

K−1∑

m=0

πm[qm(1 − ω) + (1 − qm)ω]. (9)

which is a function of the codeword distribution P, since {qm|0 ≤ m ≤ K − 1} are all functions

of P, according to Eq.(2). The entries in π are also functions of P, according to Eq.(4).

B. Finite Battery Capacity

When the battery has a finite capacity Bmax, we study the battery overflow probability po f at

the SWIPT receiver. Furthermore, we define a warning threshold Bmin, which is the minimum

required energy for supporting the routine operation of the SWIPT receiver. Therefore, we also

study the battery underflow probability pu f .

The instantaneous energy level can be modelled by the following queuing process:

B(t + 1) =



min {Bmin, B(t) + λ(t) − µ(t)} ,

max {B(t) + λ(t) − µ(t), Bmax} ,

(10)
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Fig. 4. Markov modelling of the battery queuing process B(t).

where B(t) is the energy level of the battery at the t-th instant, λ(t) is the amount of energy

arriving at the battery of the SWIPT receiver at the t-th instant and µ(t) is the amount of energy

departing from the battery at the t-th instant. The energy level B(t + 1) at the (t + 1)-th instant

is lower-bounded by Bmin and upper-bounded by the finite capacity Bmax. For a single instant

considered, an arbitrary unary codeword is sent by the SWIPT transmitter.

Specifically, the energy arrival λ(t) is a stochastic process, which has the following randomness:

• A codeword X j is randomly sent by the SWIPT transmitter with a probability of p(X j),

which originally conveys ( j − 1) energy unit.

• The bits in the codeword X j may be randomly flipped by the BSC.

We assume that the probability of the SWIPT receiver consuming a single energy unit in a bit

duration is ν. Therefore, if a codeword X j is sent by the SWIPT transmitter at the t-th instant,

the amount of energy µ(t) consumed by the SWIPT receiver is a Binomial distributed random

variable having parameters of ( j, ν).

The queuing process B(t) can be further modelled by another discrete Markov chain, as

illustrated in Fig.4. The states in this Markov chain span from Bmin to Bmax, which represent

all possible energy levels of the battery. We now study the state transition probabilities of this

Markov chain at a single instant, which is also the duration of a unary codeword. The probability
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of the energy level increment b = λ(t) − µ(t) is defined as ξb, which is expressed as

ξb =
∑

X j

∑

λ

p(µ(t) = λ(t) − b, λ(t) = λ,X j)

=

K∑

j=1

p(X j)
∑

λ

p(µ(t) = λ − b|λ(t) = λ,X j)p(λ(t) = λ|X j) (11)

Given the unary codeword X j sent at the t-th instant, the conditional probability of λ(t) = λ is

expressed as

p(λ(t) = λ|X j) =



(
j

λ

)
(1 − ω)λ−1ω j−1−λ

j

[
( j − λ)(1 − ω)2 + λω2

]
, 0 ≤ λ ≤ j,

0, otherwise.

(12)

Given the unary codeword X j and λ(t) = λ, the conditional probability p(µ(t) = λ−b|X j, λ(t) = λ)

is calculated as

p(µ(t) = λ − b|X j, λ(t) = λ) =



(
j

λ − b

)
νλ−b(1 − ν) j−λ+b, 0 ≤ λ − b ≤ j,

0, otherwise.

(13)

By substituting both Eqs.(12) and (13) into (11), we may obtain ξb as

ξb =

2k∑

j=1

p(X j)Φ(b, j), for − 2k ≤ b ≤ 2k, (14)

otherwise, ξb = 0, where we have

Φ(b, j) =



j∑

λ=b

(
j

λ − b

)(
j

λ

)
νλ−b(1 − ν) j−λ+b (1 − ω)λ−1ω j−1−λ

j

[
( j − λ)(1 − ω)2 + λω2

]
, 0 ≤ b ≤ j,

j+b∑

λ=0

(
j

λ − b

)(
j

λ

)
νλ−b(1 − ν) j−λ+b (1 − ω)λ−1ω j−1−λ

j

[
( j − λ)(1 − ω)2 + λω2

]
, − j ≤ b ≤ 0,

0, otherwise,

(15)

Without loss of generality, we assume that the battery has an energy level of B(t) = B at

the t-th instant. Therefore, at the (t + 1)-th instant, the energy level of the battery could be

B(t+1) = B+b, which also represents the state transition from B to (B+b) in the Markov chain
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of Fig.4. The corresponding state transition probability ξB,B+b can be then expressed as

ξB,B+b =



ξb, max(Bmin − B + 1,−K) ≤ b ≤ min(Bmax − B − 1,K)

and Bmin + 1 ≤ B ≤ Bmax − 1,

0, K < b ≤ Bmax − B and Bmin ≤ B < Bmax − K,

0, Bmin − B ≤ b < −K and Bmin + K < B ≤ Bmax.

(16)

If the current energy level B satisfies Bmax − K ≤ B ≤ Bmax and the energy level increment b

satisfies Bmax−B ≤ b ≤ K, the energy level of the battery at the end of this instant is constrained

to Bmax, according to Eq.(10). Therefore, the state transition probability ξB,Bmax is expressed as

ξB,Bmax =

K∑

b=Bmax−B

ξb, for Bmax − K ≤ B ≤ Bmax. (17)

Similarly, if the current energy level satisfies Bmin ≤ B ≤ Bmin+K and the energy level increment b

satisfies −K ≤ b ≤ Bmin−B, the energy level of the battery at the end of this instant is constrained

to Bmin, according to Eq.(10). Therefore, the state transition probability ξB,Bmin is expressed as

ξB,Bmin =

Bmin−B∑

b=−K

ξb, for Bmin ≤ B ≤ Bmin + K. (18)

With the aid of Eqs.(16)-(18), the state transition probability matrix Ξ = [ξi, j] is found. By

following the similar method of Eq.(4), the stationary distribution π̂ = {̂πBmin, · · · , π̂B, · · · , π̂Bmax} is

obtained for all the states in the Markov chain of Fig.4. Finally, the battery overflow probability

po f and the underflow probability pu f are then formulated as



po f =

Bmax∑

B=Bmax−K+1

π̂B

K∑

b=Bmax−B+1

ξb,

pu f =

Bmin+K−1∑

B=Bmin

π̂B

Bmin−B−1∑

b=−K

ξb,

(19)

According to Eq.(14), both po f and pu f are the functions of the codeword distribution P.
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V. Optimal Coding Design

A. Problem Formulation

We formulate the first optimal coding design by considering an infinite battery capacity at the

SWIPT receiver, when the 2k-level unary code is adopted at the SWIPT transmitter:

(P1): max
P

E(Ŷ), (20)

s. t.: Iinf(X̂; Ŷ) ≥ Rth. (20a)

The objective of (P1) is to maximise the average energy E(Ŷ) of Eq.(9) harvested from a single

received bit by finding the optimal codeword distribution P∗1, while satisfying the constraint (20a)

that the mutual information’s infinimum Iinf(X̂; Ŷ) of Eq.(8) should be higher than a rate threshold

Rth. Since we have R = I(X̂; Ŷ) ≥ Iinf(X̂; Ŷ), the actual information transmission rate R is also

higher than Rth.

We then formulate the second optimal coding design by considering a finite battery capacity

at the SWIPT receiver:

(P2): min
P

po f (or pu f ), (21)

s. t.: Iinf(X̂; Ŷ) ≥ Rth. (21a)

In contrast to (P1), we aim for minimising the battery’s overflow or underflow probabilities

in (P2) by finding the optimal codeword distribution P∗2, while satisfying the minimum rate

requirement Rth.

B. ES Aided Coding Design

The calculations of Iinf(X̂; Ŷ) and E(Ŷ) as well as po f and pu f all require the stationary

distribution π, which may only be obtained by numerically solving the system of linear equations
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Algorithm 1 ES algorithm for solving (P1)
Input: The crossover probability ω of the BSC; The probability increment ε for the ES; The minimum WIT requirement Rth;
Output: The optimal codeword distribution P∗1; The maximum average energy carried per received bit Emax(Ŷ);
1: Initialise a K-dimensional probability space for the exhaustive search: P← {mε|m = 0, 1, · · · , ⌊1/ε⌋}K ;
2: Initialise Emax ← 0;
3: while P is not null do

4: Let P1 ← an arbitrary K × 1 vector from P;
5: Calculate Iinf(X̂; Ŷ) by substituting P1 into (8);
6: if Iinf(X̂; Ŷ) ≥ Rth then

7: Calculate E(Ŷ) by substituting P1 into (9);
8: if E(Ŷ) > Emax then

9: Let Emax ← E(Ŷ) and P∗1 = P1;
10: end if

11: end if

12: Let P← P − P1;
13: end while

14: return Emax(Ŷ)← Emax and P∗1.

(4), given a specific state transition probability matrix Q. Therefore, the optimisation problems

(P1) and (P2) cannot be solved in polynomial time, when we have a high-level unary encoder.

We first provide an exhaustive searching (ES) based algorithm for solving the optimisation

problem (P1), whose pseudo code is provided in Algorithm 1. Its complexity O(⌊1/ε⌋K) depends

on the searching increment ε. If we increase ε for obtaining a more accurate result, the complexity

increases dramatically. Furthermore, Algorithm 1 can also be slightly adjusted for solving (P2),

which is omitted here for the page limitation.

C. GA Aided Coding Design

In order to reduce the computing complexity of the coding design but maintain its optimality,

we then propose a GA aided coding design for solving the optimisation problem (P2). By

exploiting both hybrid and mutation treatments on the ‘parents’, GA aided coding design is

capable of escaping from the local optimum, which is detailed in Algorithm 2. The main steps

of Algorithm 2 can be summarised as below:

• Step 1: Randomly generate N legitimate codeword distribution as a generation P, as shown

in Line 1 of Algorithm 2.
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• Step 2: Calculate corresponding mutual information, overflow probabilities and the survival

probabilities for all the codeword distributions in P, as detailed in Lines 4-15 of Algorithm

2, while update the minimum overflow probability po f ,min, as shown in Lines 16-18 of

Algorithm 2. If the mutual information of an individual codeword distribution violates

the minimum rate requirement Rth, its corresponding overflow probabilities are set to 1.

According to Line 14, this individual has a zero survival probability.

• Step 3: Randomly select individuals from P according to their survival probabilities plive

in order to generate the parental individuals Psel for the sake of giving birth to the next

generation, as detailed in Lines 19-26 of Algorithm 2. The individuals having lower overflow

probabilities can be selected with higher probabilities.

• Step 4: Obtain new generation P′ by carrying out cross over and mutation on the parental

individualsPsel in Algorithm 3 and repeat from Step 2. Finally, we may obtain the minimum

overflow probability po f ,min and the optimal codeword distribution P∗2.

Furthermore, Algorithm 3 provides the details of crossover and mutation operations on the

parental individuals. All the N child individuals are born by the crossover of a randomly chosen

parents from Psel, as shown in Lines 2-4 of Algorithm 3. Every child individual has a probability

of ε to mutate, as illustrated in Lines 5-13 of Algorithm 3. Specifically, Lines 8-11 ensures that

the mutated individual is a legitimate codeword distribution.

The complexity of the proposed GA aided optimal coding design is O(G2), where G is the

number of generations in Algorithm 2. The complexity is irrelevant to the level K of the unary

code. Therefore, when a high-level unary code is adopted for the SWIPT, the GA aided optimal

coding design is capable of substantially reducing the computational complexity. Furthermore, by

substituting po f in Algorithm 2 by pu f , we can readily obtain the optimal codeword distribution

for minimising the underflow probability. Furthermore, Algorithm 2 can also be slightly adjusted

for solving (P1), which is omitted here for the page limitation.
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Algorithm 2 GA aided optimal coding design for solving the optimisation problem (P2)
Input: The crossover probability ω of the BSC; The minimum WIT requirement Rth; The maximum number of generations

G; The population of a single generation N;
Output: The minimum overflow probabilities po f ,min; The optimal codeword distribution P∗2;
1: Randomly initialise a generation P← {P( j)| j = 1, · · · ,N}, where P( j) is a legitimate codeword distribution;
2: Initialise a generation index g← 1 and the minimum overflow probability po f ,min ← 1;
3: while g ≤ G do

4: Initialise the mutual information of the g-th generation I ← {Iinf,( j)| j = 1, · · · ,N}, where Iinf,( j) is calculated by substituting
P( j) into Eq.(8);

5: Initialise the overflow probabilities of the g-th generation po f ← {po f ,( j) ← 1| j = 1, · · · , N};
6: Initialise the survival probabilities of the g-th generation plive ← {plive,( j) ← 0| j = 1, · · · ,N};
7: Initialise the selected parental individuals Psel ← {Psel,( j) ← P( j)| j = 1, · · · ,N};
8: for ∀ j = 1, · · · ,N do

9: if Iinf,( j) ≥ Rth then

10: Update po f ,( j) by substituting P( j) into Eq.(19);
11: else

12: Update po f ,( j) ← 1;
13: end if

14: Update plive,( j) ←
(1 − po f ,( j))∑
j(1 − po f ,( j))

;

15: end for

16: if min po f < po f ,min then

17: Update po f ,min ← min po f ;
18: end if

19: for ∀ j = 1, · · · , N do

20: Generate ζ uniformly distributed in [0, 1];
21: Initialise a temporary index n ← 1;
22: while ζ − plive,(n) ≥ 0 do

23: Update ζ ← ζ − plive,(n) and n← n + 1;
24: end while

25: Update Psel,( j) ← P(n);
26: end for

27: Obtain a new generation P′ by inputting Psel into Algorithm 3 and update P← P′;
28: end while

29: return po f ,min and P∗2.

Algorithm 3 Crossover and mutation algorithm
Input: A selected parental individuals Psel; A mutation probability ε.
Output: A new generation P′;
1: Initialise a new generation P′ ← {P′( j) ← Psel,( j) | j = 1, · · · ,N};
2: for ∀ j = 1, · · · ,N do

3: Randomly choose a pair of individuals Psel,(m) and Psel,(l) from Psel;

4: Update P′( j) ←
Psel,(m) + Psel,(l)

2
;

5: Generate ζ uniformly distributed in [0, 1];
6: if ζ ≤ ε then

7: Update P′( j) ← P′( j) + γ, where γ ∼ N(0, I) ∈ R1×K ;
8: if min P′( j) < 0 then

9: Update P′( j) ← P′( j) −min P′( j);
10: end if

11: Normalise P′( j) ← P′( j)/
∑

P′( j);
12: end if

13: end for

14: return P′.

VI. Numerical Results

In this section, we characterise the performance of the unary coded SWIPT system by pro-

viding a range of numerical results.
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Fig. 5. Convergence of the GA aided coding design with different population N = {10, 100, 1000, 2000}, where the 4-level unary
code is adopted, the cross over probability of the BSC is ω = 0.2 and the minimum WIT requirement is Rth = 0.22 bit: (a)
The maximum WPT performance Emax(Y) with infinite battery capacity and (b) the minimum underflow probability pmin,u f with
finite battery capacity.

A. GA vs ES

First of all, we demonstrate the convergence of the GA aided coding design and compare

its performance to that of the ES aided counterpart in Fig.5. All the performance of Fig.5 is

attained by averaging over 50 random results. Observe from Fig.5 that the GA aided coding

design converges to the optimality in terms of both Emax(Y) and pmin,u f , as the generation

number increases. Furthermore, as shown in Fig.5(a), the GA aided coding design with medium

population N = 100 converges after only 10 generations. The maximum WPT attained is around

Emax(Y) = 0.5536 energy/bit, only 0.3% lower than that of the ES aided counterpart. However, as

shown in Fig.5(b), the minimum underflow probability of the GA aide coding design converges

a little slow. The minimum underflow probability pmin,u f = 0.0152 attained by the GA with

N = 100 after 20 generations is 3.5% higher than that of the ES aided counterpart. Since the

low-complexity GA aided coding design achieves almost the same performance with the ES, the

rest of the simulation results are obtained by invoking GA.
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Fig. 6. The SWIPT performance with an infinite battery capacity: (a)(2,4,8)-level unary codes in the BSC of ω = 0.2; (b)
4-level unary code in the BSC of ω = {0.3, 0.2, 0.1, 0}.

B. Infinite Battery Capacity

We then investigate the SWIPT performance by considering an infinite battery capacity in

Fig.6, where the WPT performance is characterised by the average number of energy units

carried by a single received bit. Observe from both Figs.6(a) and (b) that the maximum WPT

performance Emax(Y) reduces, as we increase the WIT requirement Rth. Note that Rth cannot

exceed the channel capacity due to the limited WIT capability of a specific. For instance, as

illustrated in Fig.6(a), the maximum WIT capability of 2-level unary code is 0.19 bit/symbol.

When we have Rth = 0.19 bit/symbol, the WPT performance reaches its lowest. We may further

observe from Fig.6(a) that the 8-level unary code has supreme SWIPT performance. As portrayed

in Fig.6, when the BSC becomese better, as we reduce the crossover probability ω, the SWIPT

performance of the 4-level unary code is improved.

C. Finite Battery Capacity

We finally investigate the SWIPT performance by considering a finite battery capacity in Fig.7.

Observe from Figs.7(a) and (d) that both the battery overflow and underflow probabilities are
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Fig. 7. The SWIPT performance with a finite battery capacity Bmax = 2 and Bmin = 0, while the receiver may consume an
energy unit with a probability of ν = 0.5: (a) (2,4,8)-level unary codes in the BSC of ω = 0.2 of the BSC; (b) 4-level unary
code in the BSC of ω = {0.3, 0.2, 0.1, 0}.

increased, as the WIT requirement becomes stringent. Since the unary codeword distribution has

to be adjusted in order to satisfy the harsh WIT requirement, the battery overflow and underflow

probabilities are inevitably sacrificed during the coding design. Furthermore, as illustrated in

Fig.7(a), a higher level of unary code has higher freedom for the sake of satisfying harsher WIT

requirements and reaching better WPT performance. Moreover, observe from Fig.7 when the

BSC becomes worse, as the crossover probability ω increases, the SWIPT performance of the

unary code is also degraded.

VII. Conclusion

A unary coded SWIPT transceiver is studied in this paper by considering a classic BSC.

The unary coded transmitter is modelled by a Markov chain having finite states, which is

relied upon for the WIT and WPT performance analysis. The optimal codeword distribution is

found by exploiting the low-complexity GA for maximising the average energy harvested from a

single received bit and for minimising the battery overflow/underflow probability, respectively, by

satisfying the minimum requirement of the information transmission rate. The numerical results
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demonstrates the feasibility of the GA aided coding design and they explicitly characterise the

tradeoff between the WIT and the WPT in the coding level.
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“Smart Surfaces: Large Area Electronics Systems for Internet of Things Enabled by Energy Harvesting,” Proceedings of

the IEEE, vol. 102, no. 11, pp. 1723–1746, Nov 2014.

[4] K. Yang, Q. Yu, S. Leng, B. Fan, and F. Wu, “Data and Energy Integrated Communication Networks for Wireless Big

Data,” IEEE Access, vol. 4, pp. 713–723, 2016.

[5] M. Manoufali, K. Bialkowski, B. Mohammed, and A. Abbosh, “Wireless Power Link Based on Inductive Coupling for

Brain Implantable Medical Devices,” IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 1, pp. 160–163, Jan

2018.

[6] H. H. Lee, S. H. Kang, and C. W. Jung, “MR-WPT With Reconfigurable Resonator and Ground for Laptop Application,”

IEEE Microwave and Wireless Components Letters, vol. 28, no. 3, pp. 269–271, March 2018.

[7] J. Hu, K. Yang, G. Wen, and L. Hanzo, “Integrated Data and Energy Communication Network: A Comprehensive Survey,”

IEEE Communications Surveys Tutorials, early access, August 2018.

[8] B. Clerckx and E. Bayguzina, “Waveform Design for Wireless Power Transfer,” IEEE Transactions on Signal Processing,

vol. 64, no. 23, pp. 6313–6328, Dec 2016.

[9] Y. Zeng, B. Clerckx, and R. Zhang, “Communications and Signals Design for Wireless Power Transmission,” IEEE

Transactions on Communications, vol. 65, no. 5, pp. 2264–2290, May 2017.

[10] X. Zhou, R. Zhang, and C. K. Ho, “Wireless Information and Power Transfer: Architecture Design and Rate-Energy

Tradeoff,” IEEE Transactions on Communications, vol. 61, no. 11, pp. 4754–4767, November 2013.

[11] R. Zhang and C. K. Ho, “MIMO Broadcasting for Simultaneous Wireless Information and Power Transfer,” IEEE

Transactions on Wireless Communications, vol. 12, no. 5, pp. 1989–2001, May 2013.

[12] K. Lv, J. Hu, Q. Yu, and K. Yang, “Throughput Maximization and Fairness Assurance in Data and Energy Integrated

Communication Networks,” IEEE IoT Journal, vol. 5, no. 2, pp. 636–644, April 2018.

[13] J. Yang, J. Hu, K. Lv, Q. Yu, and K. Yang, “Multi-Dimensional Resource Allocation for Uplink Throughput Maximisation

in Integrated Data and Energy Communication Networks,” IEEE Access, vol. 6, pp. 47 163–47 180, 2018.

March 31, 2019 DRAFT



26

[14] Y. Zhao, J. Hu, Y. Diao, Q. Yu, and K. Yang, “Modelling and Performance Analysis of Wireless LAN Enabled by RF

Energy Transfer,” IEEE Transactions on Communications, vol. 66, no. 11, pp. 5756–5772, Nov 2018.

[15] Y. Zhao, J. Hu, R. Guo, K. Yang, and S. Leng, “Enhanced CSMA/CA Protocol Design for Integrated Data and Energy

Transfer in WLANs,” in proceedings of IEEE Globecom 2018, Dec 2018.

[16] Y. Zhao, D. Wang, J. Hu, and K. Yang, “H-AP Deployment for Joint Wireless Information and Energy Transfer in Smart

Cities,” IEEE Transactions on Vehicular Technology, vol. 67, no. 8, pp. 7485–7496, Aug 2018.

[17] L. R. Varshney, “Transporting Information and Energy Simultaneously,” in 2008 IEEE ISIT, Jul. 2008, pp. 1612–1616.

[18] ——, “On Energy/Information Cross-Layer Architectures,” in 2012 IEEE International Symposium on Information Theory

Proceedings. IEEE, Jul 2012, pp. 1356–1360.

[19] A. Tandon, M. Motani, and L. R. Varshney, “Subblock-Constrained Codes for Real-Time Simultaneous Energy and

Information Transfer,” IEEE Trans. on Info. Theory, vol. 62, no. 7, pp. 4212–4227, Jul 2016.

[20] A. I. Barbero, E. Rosnes, G. Yang, and O. Ytrehus, “Constrained codes for passive RFID communication,” in 2011 IEEE

ITA, Feb. 2011, pp. 1–9.

[21] A. M. Fouladgar, O. Simeone, and E. Erkip, “Constrained Codes for Joint Energy and Information Transfer,” IEEE Trans.

on Comm., vol. 62, no. 6, pp. 2121–2131, Jun. 2014.

[22] A. Tandon, M. Motani, and L. R. Varshney, “On Code Design for Simultaneous Energy and Information Transfer,”

in 2014 Information Theory and Applications Workshop (ITA). IEEE, feb 2014, pp. 1–6. [Online]. Available:

http://ieeexplore.ieee.org/document/6804257/

[23] Z. Babar, M. A. M. Izhar, H. V. Nguyen, P. Botsinis, D. Alanis, D. Chandra, S. X. Ng, R. G. Maunder, and L. Hanzo,

“Unary-Coded Dimming Control Improves ON-OFF Keying Visible Light Communication,” IEEE Trans. on Comm.,

vol. 66, no. 1, pp. 255–264, Jan. 2018.

[24] W. Zhang, Z. Song, M. F. Brejza, T. Wang, R. G. Maunder, and L. Hanzo, “Learning-Aided Unary Error Correction Codes

for Non-Stationary and Unknown Sources,” IEEE Access, vol. 4, pp. 2408–2428, 2016.

[25] W. Zhang, M. F. Brejza, T. Wang, R. G. Maunder, and L. Hanzo, “Irregular Trellis for the Near-Capacity Unary Error

Correction Coding of Symbol Values From an Infinite Set,” IEEE Transactions on Communications, vol. 63, no. 12, pp.

5073–5088, Dec 2015.

[26] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. John Wiley & Sons, Inc., 2006.

[27] J. Hu, M. Li, and K. Yang, “Appendix of Performance Analysis of the Unary Coding aided SWIPT in a Single-User

Z-channel,” UESTC, Tech. Rep., October 2018. [Online]. Available: https://pan.baidu.com/s/1iss1wWSVFTWeKWPm-

zjWzA

March 31, 2019 DRAFT


