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Abstract

Decisions are occasionally accompanied by changes-of-mind. While considered a hallmark

of cognitive flexibility, the mechanisms underlying changes-of-mind remain elusive. Previ-

ous studies on perceptual decision making have focused on changes-of-mind that are pri-

marily driven by the accumulation of additional noisy sensory evidence after the initial

decision. In a motion discrimination task, we demonstrate that changes-of-mind can occur

even in the absence of additional evidence after the initial decision. Unlike previous studies

of changes-of-mind, the majority of changes-of-mind in our experiment occurred in trials

with prolonged initial response times. This suggests a distinct mechanism underlying such

changes. Using a neural circuit model of decision uncertainty and change-of-mind behav-

iour, we demonstrate that this phenomenon is associated with top-down signals mediated

by an uncertainty-monitoring neural population. Such a mechanism is consistent with

recent neurophysiological evidence showing a link between changes-of-mind and elevated

top-down neural activity. Our model explains the long response times associated with

changes-of-mind through high decision uncertainty levels in such trials, and accounts for the

observed motor response trajectories. Overall, our work provides a computational frame-

work that explains changes-of-mind in the absence of new post-decision evidence.

Author summary

We used limited availability of sensory evidence during a standard motion discrimination

task, and demonstrated that changes-of-mind could occur long after sensory information

was no longer available. Unlike previous studies, our experiment further indicated that

changes-of-mind were strongly linked to slow response time. We used a reduced version

of a previously developed neural computational model of decision uncertainty and

changes-of-mind to account for these experimental observations. Importantly, our model

showed that the replication of these experimental results required a strong link between
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changes-of-mind and high decision uncertainty (i.e. low decision confidence), supporting

the notion that changes-of-mind are related to decision uncertainty or confidence.

Introduction

Perceptual decision making is ubiquitous in our daily lives. As our decisions vary in difficulty,

so does our ability to make accurate and well-timed responses [1–3]. In some situations, an ini-

tial decision can be revised as new evidence arrives [4–11]. For instance, our interpretation of

a road sign can change as we approach it, which may result in a change-of-mind. Previous

work investigating changes-of-mind has predominantly focused on revising a decision in

response to new sensory evidence [7, 9, 10, 12], demonstrating that the frequency of changes-

of-mind increases with task difficulty, and that the majority of the changes improve choice

accuracy. Such reversals of decisions in response to new evidence have also been previously

linked to error correction [4, 5, 13, 14], indicating a strong association between the mecha-

nisms underlying these behaviours.

Signatures of change-of-mind behaviour have previously been explained by cognitive mod-

els [7, 9], which extended the drift-diffusion model of decision making [15–17]. A central fea-

ture of these models is the temporal accumulation of noisy momentary evidence over time:

when the accumulated evidence reaches a prescribed threshold, a choice is made. However, in

extended drift-diffusion models [7, 9], evidence accumulation continues after the initial deci-

sion, which may lead to a change-of-mind if the accumulated evidence reaches a second pre-

scribed threshold. Therefore, late-arriving sensory information, or any explicitly provided

additional evidence [6, 10], can feed into this extended accumulation process, thereby poten-

tially reversing the initial decision. In many situations, however, additional post-decision evi-

dence is not available, and it is not well understood whether models implying post-decision

evidence accumulation in changes-of-mind extend to these situations. Thus, the mechanism

underlying changes-of-mind in the absence of additional post-decision evidence remains

unclear [7, 18].

Recently, the neural correlates of change-of-mind behaviour in humans and primates have

been gradually revealed [8, 10]. In particular, fMRI recordings indicated a strong correlation

between changes-of-mind and increased activity in the prefrontal cortex [10]. This correlation

supported the argument that top-down signals could play an important role in error correction

mechanisms [19]. However, the neural mechanism by which these top-down signals lead to a

change-of-mind remains elusive. Furthermore, it is still unclear how this mechanism is linked

to other metacognitive processes partially mediated by the frontal cortex, particularly, the

encoding of decision uncertainty (or confidence) [20–22].

In this work, we investigated changes-of-mind in the absence of additional post-decision

sensory evidence. In contrast to previous studies, the majority of changes-of-mind we

observed were associated with prolonged initial response times. Using a neural circuit

model, we demonstrate that these changes-of-mind can be attributed to neural feedback con-

trol mediated by decision uncertainty. This suggests that top-down uncertainty monitoring

could play an important role in inducing changes-of-mind in the absence of additional post-

decision evidence, which is consistent with recent neurophysiological evidence [10, 19].

Overall, our work provides a computational framework that explains changes-of-mind in

the absence of additional post-decision evidence, from the sensory integration stage up to

the motor output.
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Results

Experimental results

Eleven participants completed a perceptual decision-making task (2400 trials) in which, upon

initiating a trial, a random dot kinematogram (RDK) stimulus [23, 24] appeared after a ran-

dom delay (uniformly distributed over 700–1000ms). The RDK stimulus was displayed for

800ms, followed by a choice prompt. Participants then decided whether the majority of the

dots were moving towards the right or the left. The participants were instructed to respond as

quickly and accurately as possible by moving a computer mouse cursor to one of the two

choice target locations in the top corners of the computer screen and clicking on it (Fig 1). The

difficulty of the task was varied via the motion coherence parameter, which controlled the prob-

ability of each dot moving in a target direction (left or right); see Methods and materials for

details of the experimental setup.

To check the validity of our paradigm, we analysed response times (z-scored within partici-

pants) as a function of accuracy and coherence level (Table 1). In our fixed-duration task, the

Fig 1. Experimental setup. Participants initiated a trial by clicking a start button at the bottom of the screen. After a short random delay (uniformly

distributed over 700–1000ms), a random dot kinematogram appeared for 800ms. Participants then chose between two targets: Left or Right.

Immediately after the choice, the feedback (red or green circle) was displayed for 300ms, followed by the fixation point (300ms).

https://doi.org/10.1371/journal.pcbi.1007149.g001

Table 1. Parameters of a linear mixed-effects model analysing response time (z-scored within participants) as a function of coherence and choice accuracy. The

model included a random intercept for participant and random slopes for coherence within participant.

Estimate Std. Error df t value Pr(>|t|)

Intercept 0.1737 0.0648 10.0320 2.6813 0.0230

Coherence -0.2302 0.1754 10.2769 -1.3124 0.2179

Is correct -0.1232 0.0061 26260.2576 -20.0404 <0.0001

Coherence by Is correct -0.6067 0.0457 26260.5434 -13.2891 <0.0001

https://doi.org/10.1371/journal.pcbi.1007149.t001
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term “response time” refers to the time it took participants to initiate a movement towards one

of the choice targets after stimulus offset (Fig 1). For correct choices, initial response times were

on average faster than in error choices (b = −0.12, t = −20.0, p< 0.0001). There was no evidence

for the main effect of coherence (b = −0.23, t = −1.3, p = 0.22); however, we found significant

interaction between coherence and choice accuracy (b = −0.6, t = −13.3, p< 0.0001). These

results indicate that response time decreased with coherence, but only in correct trials, which is

consistent with previous perceptual discrimination studies using the reaction-time task [7, 23].

Changes-of-mind occur even in the absence of post-decision sensory evidence. In the

vast majority of the trials, participants responded by moving the mouse cursor directly to a

choice target. However, in a fraction of trials, participants reversed their initial decision before

clicking on one of the choice targets (Fig 2). Similar to previous studies [7, 9, 12, 25], we

observed changes-of-mind in 3% trials (0.3% to 6.1%, median 2.4% across 11 participants).

However, previous studies investigated changes-of-mind in situations where late-arriving

evidence (i.e. due to processing delays) could prompt a reconsideration of the initial decision.

Under such circumstances, it was suggested that changes-of-mind can occur within 450ms

from initiating the response [7, 26], which strongly links such changes to signal transduction

delays. In order to limit the potential effect of late-arriving evidence on changes-of-mind,

in our experimental task, participants were instructed to respond only after stimulus offset.

Although in some trials the participants initiated their response before stimulus offset, this

behaviour was not associated with changes-of-mind. Specifically, participants responded after

the stimulus offset in 82% of the trials involving a change-of-mind (as opposed to 70% in trials

without a change-of-mind). Importantly, in 72% of these change-of-mind trials, decision rev-

ersal occurred later than 450ms after the stimulus offset. Taken together, these observations

suggest that in our experiment, the majority of changes-of-mind are not driven by late-arriving

post-decision sensory evidence.

In order to examine the relationship between choice accuracy and changes-of-mind, we

analysed choice accuracy as a function of coherence level in the presence and absence of

changes-of-mind (Table 2, Fig 3a). We found that accuracy increased with coherence (b = 6.3,

z = 7.1, p< 0.0001), consistent with previous work on perceptual decision making [23, 24].

In change-of-mind trials, choice accuracy was on average lower than in non-change-of-mind

trials (b = −1.3, z = −11.9, p< 0.0001). Moreover, the effect of coherence on accuracy was stron-

ger in non-change-of-mind trials (b = −6.8, z = −8.4, p< 0.0001) than in change-of-mind trials.

Despite the less accurate responses in change-of-mind trials, these changes-of-mind were bene-

ficial to the overall performance at intermediate-to-high coherence levels; the accuracy of

Fig 2. Response trajectories from two representative trials. Participants reached one of the two choice targets (red/

green areas) directly in non-change-of-mind trials (left), or after reaching towards the opposite target first in change-of-

mind trials (right).

https://doi.org/10.1371/journal.pcbi.1007149.g002
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changes-of-mind was above chance level for 0.128 (p = 0.005) and 0.256 (p = 0.0001) coherence

(see also Fig 3b), demonstrating that changes-of-mind corrected an impending erroneous

choice more often than introducing an error. Consequently, in change-of-mind trials, error-to-

correct changes were more frequent than correct-to-error changes at 0.128 and 0.256 coherence

levels (Fig 3b).

Table 2. Parameters of a generalized linear mixed-effects model analysing choice accuracy as a function of coherence and presence or absence of a change-of-mind.

The model included a random intercept for participant and random slopes for coherence within participant.

Estimate Std. Error z value Pr(>|z|)

Intercept 1.1751 0.1645 7.1440 <0.0001

Is CoM -1.3436 0.1129 -11.9051 <0.0001

Coherence 6.2918 0.8918 7.0555 <0.0001

Is CoM by Coherence -6.7564 0.8058 -8.3852 <0.0001

https://doi.org/10.1371/journal.pcbi.1007149.t002

Fig 3. Experimental results. (a) Psychometric function showing choice accuracy as a function of coherence level in the

presence (grey) and absence (black) of a change-of-mind. Accuracy generally increases as a function of coherence level,

but is lower in change-of-mind trials (grey) compared to non-change-of-mind trials (black). However, for intermediate-

to-high coherence levels (0.128 and 0.256), the accuracy of change-of-mind trials is above chance level (i.e.>0.5). (b)

Observed probability of a change-of-mind in all/correct/error trials as a function of coherence. Probability of a change-

of-mind peaks at low-to-intermediate coherence levels, and decreases sharply at high coherence levels, with correct

changes being more frequent than error changes at moderate to high coherence levels (0.128 and 0.256). (c) Response

times (z-scored within each participant) for correct and error change-of-mind and non-change-of-mind trials. The ‘<’

pattern of response times in the case of non-change-of-mind trials was consistent with previous observations [7, 23]. (d)

Observed probability of a change-of-mind as a function of coherence level grouped by the tertile of the initial response

time. The majority of change-of-mind trials occurred when response times were longest. In all panels, error bars indicate

standard error of mean.

https://doi.org/10.1371/journal.pcbi.1007149.g003
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Changes-of-mind are associated with slow initial decisions. To clarify the relationship

between the formation of an initial decision (as reflected in response times) and the subse-

quent emergence of a change-of-mind, we analysed the probability of a change-of-mind as a

function of coherence level and initial response time (Table 3, see also Fig 3c and 3d). The fre-

quency of changes-of-mind decreased with coherence (b = −3.0, z = −5.3, p< 0.0001). Cru-

cially, changes-of-mind were more likely to occur in trials with a prolonged response time

(b = 0.4, z = 4.6, p< 0.0001, see also Fig 3d). This is in stark contrast with previous studies that

linked changes-of-mind to fast initial responses [7, 27]. This discrepancy could be attributed

to the differences between the experimental tasks as discussed above, and therefore the poten-

tially different mechanisms underlying changes-of-mind. In the next section, we show that our

neural circuit model provides a qualitative account of the behavioural results, and provides

predictions on the mechanism underlying changes-of-mind in our experimental task.

Neural circuit model

To shed light on the potential mechanism underlying the observed changes-of-mind, we

adopted a previous computational model of decision uncertainty and changes-of-mind [28]

(Fig 4). This cortical circuit model was previously shown to account for decision uncertainty

and change-of-mind behaviour reported in previous work [7, 11, 22, 29], while capturing

recent neurophysiological evidence of encoding decision confidence [10, 19, 22].

In our model, we describe the activity of sensorimotor populations using the two-variable

(reduced spiking neural network) model of decision making [30], with two mutually-inhibit-

ing populations selective for leftward/rightward sensory evidence, endowed with self-excita-

tion (Fig 4, cyan box). The hand module consists of two neural populations that receive input

from a corresponding left-/right-selective sensorimotor population. Similar to the previous

work [28], the hand populations are modelled using a firing-rate type model (i.e. threshold-lin-

ear, see Methods). This minimizes the number of new model parameters introduced. The sim-

ulated response of the hand populations ultimately determines the model behaviour—in a

given simulated trial, a response is recorded when the activity of one of the populations of the

hand module reaches a prescribed threshold (see Methods). In our model, we have mapped

the output of the neural activity of the motor populations (Fig 4, cyan box) onto the horizontal

(x) position alongside the mouse cursor trajectories from our experimental data (see Methods).

We found that the model could produce motor response trajectories (along the horizontal

line) that are qualitatively similar to the experimental ones (Fig 5).

Here, we propose a version of the model which simplifies the neural circuit architecture

developed in [28] (see Methods and materials). Specifically, we used only one neuronal popu-

lation to encode decision uncertainty, termed the uncertainty-monitoring population (Fig 4,

red circle). We simulated this model (Fig 6) and we observed a phasic neural activity profile

for the uncertainty-monitoring population (Fig 6, red activity traces) that is reminiscent of

neural recordings from regions or neurons that encode decision uncertainty [19, 22]. In our

model, 600ms after stimulus onset, this uncertainty-monitoring population receives and

Table 3. Parameters of a generalized linear mixed-effects model analysing probability of a change-of-mind as a function of coherence and response time (z-scored

within participants). The model included a random intercept for participant and random slopes for response time and coherence within participant.

Estimate Std. Error z value Pr(>|z|)

Intercept -4.0716 0.2973 -13.6968 <0.0001

RT (z) 0.4186 0.0914 4.5799 <0.0001

Coherence -2.9697 0.5568 -5.3335 <0.0001

https://doi.org/10.1371/journal.pcbi.1007149.t003

Changes-of-mind in the absence of new post-decision evidence

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007149 February 3, 2020 6 / 21

https://doi.org/10.1371/journal.pcbi.1007149.t003
https://doi.org/10.1371/journal.pcbi.1007149


integrates the summed neural activities of the sensorimotor populations (Fig 4, two-way red

arrows), therefore continuously monitoring decision uncertainty during decision making. The

uncertainty-monitoring population then in turn equally excites both sensorimotor neuronal

populations, effectively providing them with excitatory feedback. When the activity of one of

Fig 5. Experimental mouse cursor trajectories in the x positional space (grey lines with markers) and model-

generated motor output (blue solid lines). See Methods for details on the linear mapping of the firing rates of the model

hand response populations onto the x positional space.

https://doi.org/10.1371/journal.pcbi.1007149.g005

Fig 4. Simplified neural circuit model of decision uncertainty. The sensorimotor module (cyan box) consists of two

mutually-inhibiting (lines with filled circles) neuronal populations selective for leftward and rightward motion with

recurrent excitation (curled black arrows). The uncertainty-monitoring population (red circle) receives summed input

from the sensorimotor populations. 600ms after stimulus onset, the summed input is integrated and fed back to the

sensorimotor populations (red arrow). The hand response module (grey box) consists of two mutually-inhibiting

neuronal populations that integrate the output from the corresponding sensorimotor population. Model results in all

subsequent figures were obtained via simulating the model using a single set of parameters (see Table 4 for parameter

values).

https://doi.org/10.1371/journal.pcbi.1007149.g004
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the sensorimotor populations reaches a prescribed threshold (42.5 Hz), the uncertainty-moni-

toring population stops integrating the summed input from the sensorimotor populations.

As in the previous modelling work [28], we observed this equal excitation to be maximal in

trials with error choices, during difficult tasks, and change-of-mind trials. This is due to the

increased absolute input to the uncertainty-monitoring populations under such conditions

(Fig 6), in which sufficient time is allowed for the uncertainty-monitoring population to inte-

grate the input (see also [28]).

In quantifying the model’s uncertainty as a function of coherence level, we found that

uncertainty level increases with coherence for error choices, but decreases for correct choices

(Fig 7), which is consistent with previous findings [11, 22, 29]. Furthermore, we found that

this positive uncertainty feedback loop is strongly associated with initial response times (Pear-

son’s r = 0.95), similar to previous experimental work on decision uncertainty [31]. Taken

together, these observations on the relationship between uncertainty, task difficulty, and

response time can serve as a basis for explaining the underlying mechanism for changes-of-

mind observed in our experimental task. However, in what follows, we first show that the

model qualitatively accounts for the behavioural effects observed in our experiment.

Model accounts for the observed change-of-mind behaviour. Our neural circuit model

readily accounts for the observed experimental findings (Fig 8, cf. Fig 3). In particular, the

model reproduces the positive relationship between choice accuracy and coherence, which is

weakened in change-of-mind trials (Fig 8a). The probability of error/correct changes-of-mind,

as well as total proportion of changes-of-mind as a function of coherence are also captured in

the model (Fig 8b). Similarly, the model accounts for the relationship between response time

Fig 6. Neural activity generated by the model. Activity is averaged over 3168 and 5346 non-change-of-mind trials for

0.032 and 0.256 coherence levels, respectively (left panels), and 120 change-of-mind trials for 0.032 coherence level (right

panels). Blue (orange) colours: left (right) neuronal population. In trials without a change-of-mind, the sensorimotor and

hand neuronal populations representing the correct (rightward) choice ramp up faster and reach higher activations in the

case of high (0.256) coherence level compared to trials with a low (0.032) coherence level. The activity level of the

uncertainty-monitoring neuronal population however is greater in trials with low (0.032) coherence. In change-of-mind

trials, high uncertainty levels lead to high competition between the left and right sensorimotor neuronal population

(through equal feedback excitation). Right panel: Left neuronal population is initially “winning”, with a reversal

occurring late in the trial. In downstream neuronal populations (for motor output), the left neuronal population reaches

choice target, but is eventually suppressed by the rising activity of the right neuronal population. Bottom panel: Model-

generated trajectories in the x positional space (see Materials and methods).

https://doi.org/10.1371/journal.pcbi.1007149.g006
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and coherence in both non-change-of-mind and change-of-mind trials. Specifically, the mod-

el’s response times for change-of-mind trials were prolonged (compared to non-change-of-

mind trials), and did not vary between correct and error trials (Fig 8c).

Importantly, our neural circuit model accounts for the observed positive relationship

between response time and changes-of-mind (Fig 8d, cf. Fig 3d). The model suggests that

changes-of-mind occur exclusively in trials with long response times. In the experimental data,

changes-of-mind could occur even in the trials with fast initial response, but were most proba-

ble when response times were longest. The qualitative match between the model and the data

suggests that, first, the mechanism underlying changes-of-mind in our experiment and model

could be similar, and, second, that these mechanisms are different from other mechanisms

that rely solely on post-decision evidence accumulation [7, 9] (see S1 Appendix for analysis

of a post-decision evidence accumulation model in the context of the present paradigm).

Model’s high uncertainty is associated with changes-of-mind. To clarify the link

between uncertainty and changes-of-mind in our model, we investigate the pairwise relation-

ships among decision uncertainty, changes-of-mind, and response times (Fig 9).

First, we analysed the mean decision uncertainty level (see Methods) as a function of task

difficulty (i.e. coherence level) separately for change-of-mind and non-change-of-mind trials

(Fig 9a). As previously mentioned, on average, uncertainty levels are higher in the case of

change-of-mind trials compared to non-change-of-mind trials (Fig 6, middle panel), regard-

less of the outcome of the trial (i.e. correct or error). During such trials, we observed longer

initial response times (Fig 8d), which allowed the uncertainty-monitoring population more

time to integrate the summed input from the sensorimotor populations, leading to increased

greater neural activity (uncertainty levels), and larger total excitatory feedback to the sensori-

motor populations.

Interestingly, when sorting the simulated trials based on tertiles of decision uncertainty lev-

els; the probability of a change-of-mind was shown to be highly dependent on the decision

uncertainty level (Fig 9b). Hence, our model suggests that changes-of-mind are strongly asso-

ciated with high decision uncertainty.

To further explain the effect of uncertainty on the dynamics of change-of-mind behaviour

in our model, we performed a systematic stability analysis of the value of the population-

Fig 7. Simplified model accounts for signatures of decision uncertainty. (a) Uncertainty as a function of coherence

level. ‘<’ pattern: Uncertainty increases (decreases) with coherence level for error (correct) choices. Error bars indicate

binomial proportion standard error of mean. (b) Response time as a function of uncertainty. Data points are collected

from 36,000 trials. Uncertainty and response time correlate strongly (Pearson’s r = 0.95). Trials with zero uncertainty

have been discarded.

https://doi.org/10.1371/journal.pcbi.1007149.g007

Changes-of-mind in the absence of new post-decision evidence

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007149 February 3, 2020 9 / 21

https://doi.org/10.1371/journal.pcbi.1007149.g007
https://doi.org/10.1371/journal.pcbi.1007149


averaged synaptic gating variable SL (corresponding to the left-selective sensorimotor popula-

tion, from Eq 5) with respect to magnitude of uncertainty feedback (Fig 10)—for simplicity,

we set the coherence to be zero for this analysis (see [30]).

During the time-course of a change-of-mind trial, the activity of the uncertainty monitoring

population gradually increases from zero (Fig 6, red traces). Early in the trial, uncertainty level

is close to zero. This leads to low uncertainty excitatory feedback (Fig 10, blue dashed line),

and therefore, the network maintains a “winner-take-all” regime with two stable steady states

corresponding to two decision states (i.e. Left or Right). As the uncertainty excitatory feedback

increases later in the trial, a single stable steady state appears, which corresponds to indecision

(Fig 10, region around the red dashed line). However, since the uncertainty feedback is only

transient (Fig 6), the network eventually returns to the initial configuration with two stable

steady states (Fig 10, blue dashed line). It should be noted that recurrent network reverberation

[30] allows neural integration even in the absence of a stimulus. Additionally, due to the sto-

chastic nature of the sensory integration, in cases where the choice ends up being different

Fig 8. Model simulation results. (a) Psychometric function showing choice accuracy as a function of coherence level

in the presence (grey) and absence (black) of a change-of-mind. Similarly to the experimental data (Fig 3a), accuracy

increases as a function of coherence level, but is lower in change-of-mind trials (grey) compared to non-change-of-

mind trials (black). (b) Probability of a change-of-mind in all/correct/error trials as a function of coherence. Similar to

Fig 3b, probability of a change-of-mind is the highest at low-to-intermediate coherence levels, and decreases sharply at

high coherence levels. (c) Response times (z-scored) for correct and error change-of-mind and non-change-of-mind

trials. The data for correct and error change-of-mind trials overlap, whereas response times for non-change-of-mind

trials follow the experimentally observed ‘<’ pattern (Fig 3c). (d) Probability of a change-of-mind as a function of

coherence level grouped by the tertile of the initial response time. All change-of-mind trials occurred when response

times were longest. In all panels, error bars indicate standard error of mean (in panel (c) the error bars overlap with

markers).

https://doi.org/10.1371/journal.pcbi.1007149.g008
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Fig 10. Bifurcation diagram of the value of the synaptic gating variable SL (corresponding to the left-selective

sensorimotor population) with respect to the magnitude of uncertainty excitatory feedback (at zero coherence

level). No or low uncertainty feedback yields two stable steady states (black solid lines) and one unstable steady state

(black dotted lines). This forms a “winner-take-all” regime (blue dashed line). In contrast, high uncertainty feedback

(around 0.03) yields only one stable steady state (red dashed line).

https://doi.org/10.1371/journal.pcbi.1007149.g010

Fig 9. Model uncertainty is strongly associated with changes-of-mind. (a) Uncertainty as a function of coherence

level split by the type of trial (i.e. change-of-mind vs. non-change-of-mind). Change-of-mind trials are associated with

higher uncertainty levels compared to non-change-of-mind trials regardless of the coherence level (see Fig 8c, where

response times are predicted to be the same for change-of-mind trials regardless of the coherence level). (b) Probability

of a change-of-mind as a function of coherence level split by the magnitude of uncertainty level (three tertiles).

Changes-of-mind occur only in the highest uncertainty tertile. See Materials and methods for uncertainty level

quantification. In both panels, error bars indicate standard error of mean (in panel (a) the error bars overlap with

markers).

https://doi.org/10.1371/journal.pcbi.1007149.g009
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from the initial choice (i.e. an initially “losing” neural population “wins” later in the trial), a

change-of-mind occurs (see [28] for detailed discussion).

Overall, our model simulations were consistent with our experimental findings; the model

predicts that the observed relationship between changes-of-mind and long initial response

times is due to high levels of decision uncertainty. Taken together, these results suggest a tight

relationship between decision uncertainty and changes-of-mind.

Discussion

Even well-prepared and thoughtful decisions are occasionally accompanied by a change-of-

mind that reverses the initial choice. While considered a hallmark of cognitive flexibility, the

mechanism underlying change-of-mind behaviour remains elusive. Here we demonstrate that

changes-of-mind can occur even in the absence of additional evidence after the initial decision.

These changes-of-mind are associated with slow initial decisions. This is in contrast to previ-

ous theories suggesting that changes-of-mind result primarily from post-decision sensory evi-

dence accumulation. The neural circuit model we proposed captures these properties of

changes-of-mind, and provides insights into the dynamics of this behaviour, predicting that

changes-of-mind in the absence of new post-decision evidence are associated with high levels

of decision uncertainty.

Early modelling and experimental work on error correction [4, 5, 13, 14] suggested that

error correction can be characterised by an evidence accumulation process in which initial

error responses are reversed (or corrected) by new incoming evidence that negates the initial

erroneous judgement. Recent experimental investigations of changes-of-mind build on the

same framework, reinforcing the link between error correction and changes-of-mind. These

studies focus on changes-of-mind that are primarily driven by the noisy accumulation of addi-

tional sensory evidence, which either arrives late due to processing delays [7, 9, 12], or is pro-

vided separately after the initial decision [6, 10]. In contrast, majority of changes-of-mind in

our study occurred later than 450ms after the stimulus offset, which is outside the hypothesised

delayed information processing window [26]. This supports the notion that the changes-of-

mind we observed are not associated with post-decision accumulation of delayed evidence or

explicitly provided new information, as opposed to previous studies [4, 7, 9, 10, 12, 14].

Despite the absence of new post-decision evidence, changes-of-mind in our experiment

improved the initial decisions in the trials with intermediate-to-high stimulus coherence (Fig

3a), which was also the case in previous studies [7, 9, 27]. However, in sharp contrast to these

studies, we found a positive relationship between initial response times and subsequent

changes-of-mind: changes-of-mind were most likely to occur in trials with prolonged response

times (Fig 3d). Hypothetically, this relationship can arise when initial response times and the

frequency of changes-of-mind are both associated with high decision uncertainty. Future

experimental work can directly test this hypothesis by requiring participants to report their

confidence retrospectively [10] or in parallel with their choice [9, 31] using the fixed stimulus

viewing duration paradigm employed in this study. In the absence of such confidence reports

in our paradigm, here we take a complementary approach—we demonstrate that our mecha-

nistic model of decision uncertainty and changes-of-mind could account for our experimental

findings.

In our mechanistic model, decision uncertainty is continuously monitored by a top-down

uncertainty-monitoring neuronal population. Importantly, through an excitatory feedback

loop, decision uncertainty continuously affects the neuronal integration dynamics, which

occasionally triggers a change-of-mind in trials with high uncertainty. Our model provides

insights into the mechanism of changes-of-mind observed in our experiment. Unlike
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extensions of the drift-diffusion model [7, 15, 16, 25] and previous attractor network models

[32], our model does not rely solely on post-decisional sensory evidence accumulation to

induce changes-of-mind. Importantly, the mentioned models were not designed to account

for the situations where no additional post-decision evidence is available after the initial deci-

sion. In contrast, in our model, the final outcome of a trial is dynamically affected by decision

uncertainty monitored during the stimulus presentation. In trials with high levels of uncer-

tainty, strong excitatory feedback from the uncertainty-monitoring neuronal population leads

to a delayed initial response, due to the high competition between sensorimotor populations

(Fig 6, [28]). At the same time, this increased uncertainty could lead to a change-of-mind (Fig

9, [28]). Through this mechanism, our neural circuit model accounted for the observed posi-

tive relationship between initial response time and changes-of-mind (Fig 8c and 8d). This find-

ing was further supported by the analysis of the probability of a change-of-mind as a function

of uncertainty level (Fig 9b). More specifically, our model predicted that in situations where

no new stimulus-related evidence could be sampled after the initial decision, changes-of-mind

are most likely to occur during trials with high levels of uncertainty. Future work could test

this by providing neural recordings of brain regions that encode decision uncertainty [19, 22]

during changes-of-mind in a fixed-duration perceptual discrimination task.

The model proposed here is a variant of the previously developed model [28], which was

inspired by neurophysiological recordings from brain regions encoding decision confidence

or, reciprocally, decision uncertainty [19, 22]. In this work, we have reduced the uncertainty-

monitoring module of the original model to lay bare its essential functions. In addition to the

similarity of the neural profile of our model’s uncertainty-encoding population (Fig 6) to exist-

ing recordings [19, 22], this reduced model accounts for some of the main characteristics of

decision uncertainty [22, 29, 31] (Fig 7). It should be noted that this reduced implementation

of decision uncertainty could arguably be less neurobiologically plausible compared to the pre-

vious model, as the latter involves a canonical cortical column structure—inhibitory-excitatory

pair of neural populations [33, 34]. Importantly, we have not changed how the other (i.e. sen-

sorimotor and motor) modules are described, which can serve as further validation of previous

modelling work [28]. In particular, the sensorimotor module is based on a previously devel-

oped mean-field model with biologically derived variables [30]. Therefore, the model can be

tested in future studies using neurophysiological recordings within similar experimental task

paradigms to allow the distinguishing between different models [35]. It should also be noted

that such reductions of biophysical realisations of accumulate-to-bound models [36] can be

linked back to simpler models of decision making [15, 30, 37–39].

Decision uncertainty or confidence is closely related to (decision) conflict monitoring. Com-

putational models of cognitive control have used conflict monitoring to account for various

behavioural aspects of decision uncertainty [40]. For instance, such models have been shown to

account for post-error slowing, attentional bias, error-related negativity, error-prediction, and

neuromodulatory processing [41–45]. In conflict monitoring models, conflict is usually mod-

elled by a dedicated conflict monitoring unit that takes as an input the instantaneous activities

of the competing (e.g. decision) units, with the output being the multiplication of these activa-

tion rates. This representation accounts for various signatures of conflict. Specifically, conflict

typically increases with increasing activities of the competing units, and conflict level is highest

when competing units reach their maximal activities. Unlike these conflict-monitoring models,

which are mainly based on abstract sigmoidal- or logistic-like activation (input-output) func-

tions, the original decision uncertainty module [28] is inspired by a canonical cortical microcir-

cuit model [33, 34], which the current model is reduced from. Further, its input-output function

is represented by a simple threshold-linear model, i.e. neural activity saturation is unnecessary.

Importantly, the quantification of decision uncertainty involves the more biologically plausible
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mechanism of summation of inputs from presynaptic neurons [46], as compared to the multipli-

cation of inputs in conflict-monitoring models. Moreover, our model mechanistically relates the

decision uncertainty to continuous motor output dynamics.

Overall, our work provides a computational framework that explains changes-of-mind in

the absence of new post-decision evidence, from sensory integration to uncertainty monitor-

ing and motor output, by mechanistically linking decision uncertainty and changes-of-mind.

Taken together, our findings highlight the role of top-down metacognitive processes in

changes-of-mind.

Methods and materials

Ethics statement

The study protocol was approved by NUI Galway Research Ethics Committee, REF: 15/DEC/

02. Written consent was obtained.

Participants

Thirteen healthy adults (four male, nine female, 20 to 44 years old) were recruited to partici-

pate in the experiment in exchange for a €30 gift voucher. The data were collected in two

locations: four participants performed the task in Galway (Ireland); three years later, nine par-

ticipants performed the same task in Dresden (Germany). We tested all results for robustness

by analyzing the data from these two groups separately. Since all the results hold for both

datasets, we analyze the two datasets together in this paper. Data from two participants were

excluded due to atypical proportion of changes-of-mind (9% and 13%), resulting in N = 11

participants whose data were analyzed further. Ten participants were right-handed, one was

left-handed; all participants had normal or corrected-to-normal vision.

Apparatus

Participants performed the task in a sitting position in front of a desktop computer equipped

with a 24 inch monitor (1920 by 1080 pixels). Mouse cursor coordinates were sampled at 60

Hz during stimulus presentation and at 100 Hz on the response screen. The mouse cursor

speed was set to 50% in the Windows 7 mouse properties settings; the “Enhance pointer preci-

sion” option was disabled. In four participants, eye movements were recorded using an eye-

tracker, but were not analyzed. The stimulus presentation software was programmed in

Python using PsychoPy [47] and PyGaze [48].

Task

Participants performed a perceptual decision-making task (Fig 1). Each trial started when a

participant clicked the start button located at the bottom of the screen. After a random delay

(uniformly distributed over 700–1000ms), the RDK was presented for fixed duration of 800

ms, followed by a screen with two response options. A participant then moved the mouse cur-

sor from the bottom of the screen to one of the top corners and then clicked on a response

area to indicate their choice. Immediately after that, the feedback (green circle for correct

responses, red for incorrect) was presented for 300 ms, followed by a fixation cross for another

300 ms. Participants were instructed to respond as fast and accurately as possible.

Stimuli and procedure

The random dot kinematogram (RDK) algorithm [23, 24] was used for stimulus presentation.

The dots were presented in a 5˚ square aperture (distance between the monitor and the
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participant’s eyes was approximately 80cm). During each frame, 3 dots were displayed. The

monitor used for stimulus presentation has a refresh rate of 60 Hz. This entails that the result-

ing dot density is 16.7 dots per deg2 per sec. The dot velocity was set to 5˚/sec. On each trial,

the direction of the stimulus (left or right) was determined randomly. The probability for each

dot to move coherently on a given frame was determined by the coherence parameter.

The experiment consisted of four sessions held on four different days over the span of 4 to

18 days. Each session included 600 trials, grouped into ten blocks of 60 trials. Each block con-

tained 10 trials for each of the six coherence levels (0, 0.032, 0.064, 0.128, 0.256, 0.512), ran-

domly shuffled. In total, each participant completed 2400 trials, 400 for each coherence level.

Data analysis

A trial was labelled as a change-of-mind if a response trajectory deviated from the (implicit)

vertical centre line towards the unchosen option by more than 100 pixels (in the x-direction).

However, deviations which could have resulted from erratic movements in the early stages of

response were ignored: if the threshold of 100 pixels in the horizontal direction was crossed in

the bottom 10% of the response area, the trial was not labelled a change-of-mind. After 120 tri-

als with more than one changes-of-mind were excluded from all analyses, this resulted in 775

change-of-mind trials in total.

Response time was measured as the time between the stimulus offset and the response

onset. Response onset was determined as the onset of the first hand movement resulting in a

mouse cursor displacement greater than 100 pixels; therefore, small movements resulting, e.g.,

from hand tremor did not affect RT measurement. In trials where participants initiated the

response before the stimulus offset, the response time was considered to be negative. Overall,

30% of all trials had negative response time, with 52% of all negative response times observed

at two highest coherence levels.

For mixed-effects statistical models (Tables 2 and 3), R package lme4 was used. In all mod-

els, random effects of participant were included to account for individual differences, with the

maximum random effects structure permitting model convergence. For testing the hypothesis

that changes-of-mind improve accuracy, the R implementation of the exact binomial test

(binom.test) was used.

A reduced neural circuit model of uncertainty

We used a simplified version of our previous neural circuit model of decision uncertainty and

change-of-mind [28], in which the dynamics of uncertainty-encoding is described using one

neural population (i.e. dynamical variable). The modelling of the sensorimotor and motor (i.e.

hand) populations was unchanged (see below). The dynamics of the uncertainty-encoding

neural population:

tmc
dyHU

dt
¼ ½JVHUðHL þHRÞ � g�

þ
� yHU ð1Þ

where [ ]+ denotes a threshold-linear input-output function. Synaptic coupling constant

between the uncertainty-encoding population and the sensorimotor neural populations is

denoted by JVHU. HL and HR denote the neuronal population firing rates of the sensorimotor

populations. At the beginning of a trial, some top-down inhibition is activated (g = 1000 nA)

and 600 ms after stimulus onset from. Further, g is reactivated (with a value of 3000 nA)

when the activity of one of the sensorimotor neural populations reaches a threshold (42.5 Hz).

The result is a phasic activity response of the high uncertainty-encoding population that is
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reminiscent of recent neural recordings from the prefrontal cortex and medial frontal cortex

during error correction post-decisional accumulation [10, 19, 22].

Uncertainty level quantification

Similar to our previous work [28], we used the maximum firing rate value of the uncertainty-

encoding neuronal population as a decision uncertainty measurement. In the case of trial-

averaged measurements, we calculated the trial-averaged and SEM of these maximal values for

each coherence level. We then normalised these values using min-max normalisation. This

normalisation can be described by:

X0 ¼
X � Xmin

Xmax � Xmin
ð2Þ

Classifying model outputs and changes-of-mind

Response time is recorded in the model as the moment the activity of one the sensorimotor

populations reaches 42.5 Hz. In the simulation of the hand neuronal population, the target is

fixed at 42.5 Hz. A simulated trial is classified as a change-of-mind if a reversal of dominance

in firing rates between the two hand neuronal population occurs. A threshold of 2 Hz was used

for the absolute difference in magnitude.

Mapping the activity of the hand neuronal populations onto the X

positional space

To reproduce the typical trial dynamics observed in our experiment, we used a simple linear

function to approximate the hand X position as a function of the neuronal firing rate [28].

This approximation can be described as follows:

x ¼ qðyLH � yRHÞ ð3Þ

where q is some scaling factor. This scaling factor is determined as follows:

q ¼ jCposj=Hth ð4Þ

where Cpos denotes the X position of the choice target (760px). Hth is the hand target threshold

(17.4Hz).

Modelling the sensorimotor populations

We used a reduced spiking neural network model [49] described by two NMDA-mediated

synaptic gating variables (i.e. dynamical variables) [30]. These two variables can be described

by:

dSL

dt
¼ �

SL

ts
þ 1 � SLð ÞgHL xL ; xRð Þ ð5Þ

dSR

dt
¼ �

SR

ts
þ 1 � SRð ÞgHR xR ; xLð Þ ð6Þ

where:

γ: A constant

τS: The synaptic gating time constant.

H: A nonlinear input-output function (see below).
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The firing rates of sensorimotor neuronal populations can be described by:

Hi ¼ GSð
axi � b

1 � e� dðaxi � bÞ
Þ ð7Þ

xi ¼ JN;iiSi � JN;ijSj þ I0 þ Ii þ Jmc0yHU ð8Þ

Ii ¼ JA;ext m0 1 �
ε

100%

� �

ð9Þ

where: a, b, d: Parameters for the input-output function fitted to a leaky integrate-and-fire neu-

ronal model [49].

I0: A constant denoting effective input bias.

c: Coherence level for a given trial.

JN, ii and JN, ij: Synaptic connections strength.

Ii: Effective stimulus input to population i.
μ0: The stimulus strength constant.

JA, ext: External synaptic coupling strength.

Jmc0: The strength of the excitatory feedback from the uncertainty-encoding population.

GS: Input-output function gain.

Modelling the hand populations

We used a threshold linear function to model the action outputs via hand. We achieved persis-

tent neural activity for the hand populations via mutual inhibition to create a line attractor

model [50]. The dynamics of the two hand neuronal populations can be described by:

th
dyL

dt
¼ ½HL � JN;LR yHR � g�

þ
� yHL ð10Þ

th
dyR

dt
¼ ½HR � JN;LR yHL � g�

þ
� yHR ð11Þ

where:

[ ]+: Threshold-linear input-output function.

HL and HR: Firing rates of the sensorimotor populations (see above).

JN, LR: Synaptic coupling strength between left and right neuronal populations (i.e. effectively

inhibitory connection).

g: Top-down inhibition that is deactivated when the neural activity of a sensorimotor popula-

tion reaches the response threshold.

Model simulation and analysis

The code to simulate the model (and analyse its outputs) was written in MATLAB. The code

was tested against one version of MATLAB (2018a, on a Mac OS X workstation). The model

parameters are summarised in Table 4. The model was simulated for 6000 trials per condition,

using the same task specifications outlines above (i.e. 800ms fixed-duration stimulus). 3.4% of

the trials were non-decision trials (i.e. target threshold was not reached) and were discarded.

We used XPPAUT [51] for phase-plane analysis and parameter search. For within trial dynam-

ics, we used a forward Euler-Maruyama numerical integration scheme. Integration time step

set to 0.5ms. Smaller time steps did not affect our results.
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Code and data availability

All code and data needed to evaluate or reproduce the figures and analysis described in the

paper are available online at: https://osf.io/y385t/. This includes the collected data, and the

code for stimulus presentation, model simulation, and data analysis.
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Parameter Description Value

τS Sensorimotor time constant 100ms

τh Motor time constant 50ms

tmc Uncertainty population time constant 150 ms

a Input-output function parameter 270 (V nC)-1

b Input-output function parameter 108 Hz

d Input-output function parameter 0.154 s

I0 External tonic input 0.3255 nA

JN, ii Self-excitation strength 0.248 nA

JN, ij Inhibition strength (sensorimotor) 0.0497 nA

μ0 Baseline stimulus input 30 Hz

JA, ext External input synaptic strength 0.00052 nA Hz-1

Jmc0 Uncertainty feedback strength 0.002

JVHU External input strength (uncertainty) 10 nA

JN, LR Inhibition strength (motor) 1 nA

JN, RL Inhibition strength (motor) 1 nA

Sth Sensorimotor module threshold 42.5 Hz

Hth Hand module threshold 17.4 Hz

GS Sensorimotor input-output gain 1.12 Hz
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50. Gonçalves PJ, Arrenberg AB, Hablitzel B, Baier H, Machens CK. Optogenetic perturbations reveal the

dynamics of an oculomotor integrator. Frontiers in Neural Circuits. 2014; 8(February):1–22.

51. Ermentrout B. Phase plane: the dynamical systems tool. Pacific Grove, CA: Brooks/Cole. 1990.

Changes-of-mind in the absence of new post-decision evidence

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007149 February 3, 2020 21 / 21

https://doi.org/10.1016/j.neuron.2004.09.027
http://www.ncbi.nlm.nih.gov/pubmed/15473975
https://doi.org/10.1037/0033-295x.111.4.939
https://doi.org/10.1037/0033-295x.111.4.939
http://www.ncbi.nlm.nih.gov/pubmed/15482068
https://doi.org/10.1126/science.1089910
https://doi.org/10.1126/science.1089910
http://www.ncbi.nlm.nih.gov/pubmed/14963333
https://doi.org/10.1162/neco.2009.09-08-866
http://www.ncbi.nlm.nih.gov/pubmed/19548803
https://doi.org/10.1038/nn.2921
http://www.ncbi.nlm.nih.gov/pubmed/21926982
https://doi.org/10.1016/j.jneumeth.2006.11.017
http://www.ncbi.nlm.nih.gov/pubmed/17254636
https://doi.org/10.3758/s13428-013-0422-2
http://www.ncbi.nlm.nih.gov/pubmed/24258321
https://doi.org/10.1016/s0896-6273(02)01092-9
http://www.ncbi.nlm.nih.gov/pubmed/12467598
https://doi.org/10.1371/journal.pcbi.1007149

