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ARTICLE INFO ABSTRACT
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This work demonstrates how computational and physical modelling of the positron emission tomography (PET)
image acquisition process for a state-of-the-art integrated PET and magnetic resonance imaging (PET-MR)
STIR system can produce images comparable to the manufacturer. The GE SIGNA PET/MR scanner is manufactured by
PET/MR General Electric and has time-of-flight (TOF) capabilities of about 390 ps. All software development took place in
;F;Z?eg::s:zstmmon the Software for Tomographic Image Reconstruction (STIR: http://stir.sf.net) library, which is a widely used

open source software to reconstruct data as exported from emission tomography scanners. The new software
developments will be integrated into STIR, providing the opportunity for researchers worldwide to establish and
expand their image reconstruction methods. Furthermore, this work is of particular significance as it provides
the first validation of TOF PET image reconstruction for real scanner datasets using the STIR library. This paper
presents the methodology, analysis, and critical issues encountered in implementing an independent re-
construction software package.

Acquired PET data were processed via several appropriate algorithms which are necessary to produce an
accurate and precise quantitative image. This included mathematical, physical and anatomical modelling of the
patient and simulation of various aspects of the acquisition. These included modelling of random coincidences
using ‘singles’ rates per crystals, detector efficiencies and geometric effects. Attenuation effects were calculated
by using the STIR’s attenuation correction model. Modelling all these effects within the system matrix allowed
the reconstruction of PET images which demonstrates the metabolic uptake of the administered radio-
pharmaceutical. These implementations were validated using measured phantom and clinical datasets. The
developments are tested using the ordered subset expectation maximisation (OSEM) and the more recently
proposed kernelised expectation maximisation (KEM) algorithm which incorporates anatomical information
from MR images into PET reconstruction.

1. Introduction

Positron emission tomography (PET) is an important tomographic
imaging modality with particular deployment in cardiology [1], neu-
rology [2] and oncology. The successful utility of PET in these branches
of medicine can be seen by its increasing use for various clinical in-
dications. PET scans are non-invasive and helpful in early diagnosis and
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management of conditions such as in Parkinson’s disease [3], dementia
[4,5], coronary artery disease [6] and oncology [7] by quantitatively
assessing metabolic and functional alterations [8]. PET scans are also
clinically useful in monitoring the progression of diseases and the pa-
tient’s response to therapy [9].

Being of interest in both the clinical and research communities, a
platform that can readily provide an open framework to reconstruct
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data is of high significance. The reconstruction software used in this
work is an open source library based on object-oriented programming
called ‘Software for Tomographic Image Reconstruction’ (STIR: http://
stir.sf.net) [10]. STIR is a widely used C+ + library providing tools to
reconstruct emission tomography images with all data corrections such
as normalisation, attenuation, randoms and scatter estimation. STIR
also allows manipulation of projection data and images, image analysis
and analytical simulations. It is designed to be modular and has an
inheritance between classes. This allows class extension and thus can
incorporate novel algorithms and scanner geometries conveniently
without the need to re-implement existing attributes and functions. This
structure provides a platform to the PET research community where the
library is expandable to “fit the needs” of new users as the field pro-
gresses by deriving new classes from basic building blocks. For instance,
to implement novel iterative reconstruction algorithms, an existing
reconstruction base class such as Ordered Subset Maximum A Posteriori
One Step Late can be extended and other STIR functionalities can be
reused [11]. Recent collaborative efforts within the STIR developer’s
community have led to the extension of the library to novel iterative
reconstruction algorithms such as the kernel expectation maximization
(KEM) [12] or modelling timing information for time-of-flight (TOF)
PET [13].

PET scanners measure data which are difficult to reconstruct,
especially with sufficient accuracy without knowing all necessary in-
formation provided by the manufacturer. Despite the wide range of
novel iterative reconstruction algorithms available within STIR, it can
be challenging for users to accurately reconstruct data measured from
clinical or preclinical PET scanners. One needs to carefully implement
proprietary scanner data formats accurately within STIR as it currently
supports only CTI ECAT6, ECAT7 and Siemens Biograph mMR file
formats.

1.1. Objectives

The aims of this work are:

—

. Modelling of the GE SIGNA PET/MR scanner’s acquisition process.

. Expand STIR library to GE formats.

3. Validation of the images reconstructed by STIR and the vendor’s
software.

4. Demonstration of reconstruction using KEM.

5. Demonstration of TOF reconstruction using STIR library for mea-

sured data.

N

2. Methods and materials
2.1. GE SIGNA PET/MR scanner in STIR

GE SIGNA TOF PET/MR scanner installed at Invicro, Imperial
College London, Hammersmith Hospital, London, UK, was used in this
study. It is a 3T MR scanner that has an integrated MR-compatible PET
scanner [14]. The PET scanner has a field of view of 60 cm and 25 cm in
transaxial and axial directions, respectively. It is composed of lutetium-
yttrium oxyorthosilicate (LYSO) crystals, silicon photomultipliers
(SiPM) and other processing electronics [15]. The SiPM together with
the LYSO crystals allow for TOF imaging [16]. The PET component of
GE SIGNA comprises of 28 detector modules and each detector module
has 5 detector units (each detector units are separated from the next
unit by a crystal-free gap of size 2.8 mm). Further, there are 4 blocks per
unit and each block has 4 X 9 crystals. Each block further has a 3 X 6
array of SiPMs. The scanner is configured by detector modules placed
next to each other forming a cylindrical bore with detector units along
the axial direction. Thus, the scanner has 45 detector crystals along the
axial direction and 448 detectors around the scanner making a total of
20,160 detectors. The modules are placed with module O centered
above the isocenter of the scanner which implies that crystal 0 is not

Methods xxx (xxXxX) XXX—XXX

vertically above the center of the scanner. Crystal O is located at an
offset of — 5.23° from the vertical center when viewing from the back of
the scanner. The LYSO crystals are 5.3 mm along the axial direction,
3.95 mm along the transaxial direction and 25 mm deep. With the fast
detection electronics of the scanner, its timing resolution is 390 ps. The
scanner has a coincidence timing window of 4.57 ns and timing least
significant bit of 13.02 ps duration which leads to 351 timing bins. The
scanner saves these as signed timing bins (i.e. numbered from —175 to
+ 175 bins) which the software combines in groups of 13 timing bins,
producing 27 sinogram timing bins. The coincidence events are stored
in a sinogram of dimensions 224 x 1981 x 27 x 357, where 224 corre-
sponds to the total number of views, 1981 corresponds to the total
number of axial positions, 27 corresponds to the number of “mashed”
timing bins and 357 corresponds to the number of tangential positions.
The number of views refers to half of the total number of detectors
along the ring by convention.

The scanner parameters are included in the scanner template class
“Scanner.cxx” [17]. This class stores the relevant geometric information
for PET scanners.

2.2. Scanner model

The radioactive distribution of the object placed within the scanner
is mathematically modelled as follows:

y:Ax+b, (1)

where y represents the acquired sinogram measurement, A represents
the system matrix where A = [apn]| , x represents the image of the
radioactivity distribution of the object and b represents the background
coincidences (e.g. randoms and scatter). The system matrix models the
sensitivity at each voxel m of the scanner by modelling the probability
of positron annihilated in voxel m and being detected as a photon-pair
coincidence by the detector pair p. The sensitivity of each voxel m
combines the detector efficiency, geometric and attenuation effects.

Specifically, the TOF information for the measured sinogram data is
modelled within the forward model as:

yPt = Z:mapt;mxm + bpza 2

where y,, represents the time of flight projection data measured by the
scanner and the system matrix a,;, models the probability of event
emitted in voxel m to be detected by detector pair p within the signed
timing bin number, t. by, corresponds to the background counts of the
corresponding timing bin ¢ and detector pair p.

In this paper, the well known ordered subset expectation max-
imisation (OSEM) [18] iterative image reconstruction algorithm is ex-
tended to include timing information (i.e. TOF-OSEM) and MR in-
formation (i.e. TOF-KEM). These algorithms are used to reconstruct the
measured sinogram y,, as measured by the scanner. Currently only si-
nogram-based reconstructions are demonstrated.

2.2.1. TOF-OSEM algorithm

The TOF-OSEM algorithm was described in [13]. Although the TOF
expansion of the STIR library was recently implemented and validated
on simulated datasets [13], this is the first time that the implementation
is tested on acquired datasets.

The TOF-OSEM algorithm is described as follows:

J
J+1 Xin Yot
X = = Ast;m NI
Z Asm SES; Z Ak X + bsl
ses k ®3)

where x;, represents the intensity of m,, voxel in image updated over
the sub-iteration j, ), represents the subset s of TOF projection data for
TOF bin ¢, ag.., represents the probability of an event occurring in voxel
m being detected by detector pair s within the timing bin ¢, by re-
presents the correction term to account for the sum of randoms and
scatter events (or as will be referred to background term) for subset s
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and timing bin t and S; represents the subset of detector pairs. Note that
one full iteration, or simply mentioned as iteration, corresponds to a full
cycle of sub-iterations across all subsets (i.e. iterations = sub-itera-
tions/subsets).

2.2.2. TOF-KEM algorithm

The KEM algorithm was first proposed by Wang et al. [19] and was
developed in STIR library by Deidda et al. [12,20]. This has been now
extended further to accommodate TOF data as well. The algorithm
assumes that an image is described by the sum of a number of weighted
kernels, and it tries to reconstruct the weight of each kernel by as-
suming it knows the kernel from another source of information (e.g.
MRI):

Nm
Xm = Z lf kfm;
f=1 @

where value at voxel m of image x,, represents the linear combination
of the kernel matrix (kg represents its fim,, elements), N,, represents the
number of feature vectors and kernel weights 1. The kernel weights are
reconstructed as follows:

. Al %
MmN g Qypom S ,
" Kim Z Astm Z sezsj Z Astil Z kﬂ/lll + by
1 sES; 1 f 5)

where kj,, represents the MR kernel image.

The final 1 image which contains the information of interest (i.e. the
radioactivity distribution) is obtained by applying Eq. (4) after the last
iteration of Eq. (5).

2.3. GE SIGNA PET/MR scanner acquisition data in STIR

Image reconstruction of data acquired with the GE scanner using
STIR library requires the incorporation of input and output information
that convert the data into an accessible data format. Specifically, the
output files saved by the scanner console at the end of a PET scan in-
clude:

1. Listmode (LM) and sinogram raw data files (RDF) compressed with
the GE proprietary compression algorithm

2. Raw data calibration files including normalisation, geometric and
well counter calibration factors

3. PET Images For Attenuation (PIFA) files (i.e. processed PET at-
tenuation correction (AC) images obtained by converting MR images
acquired using MR sequences including zero echo time and Dixon)

4. Reconstructed PET images with reconstruction settings selected at
the time of scan

All the output raw data files are in GE proprietary data format and
can be processed offline solely with the GE’s proprietary reconstruction
software. GE stores data and header information in Hierarchical Data
Format 5 (HDF5) file format.

HDF5 files include:

1. Sinogram RDF generally called ‘rdf.1.1’

2. LM file generally called ‘LIST0000.BLF’

3. Normalisation data file, ‘norm3d’, and geometric correction data
file, ‘geo3d’

These files are used as input to validate the implementation of the
acquisition model for this scanner in STIR.

However, STIR has its own native sinogram data format, used as
input for the iterative and analytical reconstruction algorithms. Thus,
all the HDFS files need to be converted into STIR native interfile format
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[17]. A wrapper class was created to import the HDFS5 files during this
work. HDF5wrapper class has functions implemented to access and read
the required information which is further modelled within the system
matrix as discussed in Section 2.4.

2.4. Implementation of the acquisition model in STIR

2.4.1. TOF Acquisition Data in STIR
TOF information is implemented in STIR within the system matrix
as:

Apt;m = Apm Tp[m~ 6)

This equation models the TOF information as a time spread function,
Tpim for each time bin t and separates it from the sensitivity information,
app. The implementation has been recently presented and validated in
simulated data [13], but not yet for acquired data.

The scanner saves the detector pair and timing information in LM
and sinogram RDFs. The data saved in the LM HDFS5 file is accessible by
navigating to the field called ‘/ListData/ListData’ [21,17]. LM files store
each event of an acquisition as 6 byte structure. This includes in-
formation such as the crystal identifiers (IDs) which registered the co-
incident photons and the timing bin. The detector pair positions are
handled as axial and transaxial coordinates within the “CListModeDa-
taGESIGNA” class of STIR. The signed TOF bin is handled within the
“CListRecordGESIGNA” class. This is done by reading the TOF in-
formation along with the TOF “mashing” information and use TOF
projection data, ), within the reconstruction framework. In the current
implementation, TOF bins can be mashed together to get non-TOF data.
The data is rearranged to be accurately read in STIR by applying
transformations from scanner space to STIR space.

The next step to reconstruct PET images with STIR requires the
calculation of the sensitivity image. This includes modelling of detector
efficiency, geometric and attenuation factors. The sensitivity images
demonstrate the spatial variation of expected coincidences per unit
activity concentration.

2.4.2. Implementing normalisation correction for GE SIGNA in STIR

The geometric and detector efficiency factors are multiplied to get
the normalisation correction factors per detector bin as below [22,23]:
Nxy = ﬁ,

Exy )]
where nyy represents the normalisation correction factor for the de-
tector pair, j which is comprised of detector IDs X and Y, ex and ey
represents the crystal efficiency factors, and g, represents the geo-
metric correction factors.

The scanner exports HDF5 files, which are then used as inputs for
calculating the normalisation factors [17]. Crystal efficiency factors are
stored in ‘norm3d’ and geometric factors are stored in ‘geo3d’. The
norm3d HDFS5 file stores crystal efficiency factors which are read as an
array of 448 x 45 in STIR. The 3D geometric correction factors are
stored as a part of the projection data and only 16 views are stored i.e.
for one module. These view datasets are of dimensions 1981 x 357. The
exported geometric factors are repeated 14 times within STIR to get full
geometric correction projection data. Dead-time correction has not
been implemented in this study.

2.4.3. PIFA-based attenuation correction
Attenuation correction was carried out using scanner extracted PIFA
images. This was achieved by creating custom scripts that imported the
PIFA images within the STIR reconstruction framework [17].
Furthermore, a background term needs to be calculated to correct
for scatter and random events.
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2.4.4. Implementation of Randoms Correction Using Singles
Randoms are estimated from singles per crystal for the GE SIGNA
[24,25]:

Ryy = 2tSxSy/T, ®

where Ryy is the number of random events (or counts) detected by the
detector pair X and Y, 7 represents the coincidence time window (4.57
ns for this scanner), T represents the total acquisition time, Sx and Sy
represent the single events detected by crystal X and Y, respectively.
Single rates for each crystal are exported from the LM HDF5 file and
converted into random rates using the STIR utility ‘con-
struct_randoms_from_GEsingles’ implemented during this work.

Singles per second are detected for every crystal and then stored as a
dataset with dimensions 45 X 448 in LM HDFS5 file. Each cell of the
dataset corresponds to the number of singles detected by the crystal
number (X, Y) where X corresponds to the ring number and Y corre-
sponds to the transaxial crystal number. For an acquisition of time of N
seconds, there is a list of N + 1 samples. There are N + 1 samples as the
periodic data are asynchronous with the start of PET scan which needs
to be taken into account during data calculation by weighting the first
and last samples of the periodic data appropriately. Eq. (8) calculates
the randoms correction sinogram, which is later used for every TOF bin
after dividing it with the total number of timing bins. In the current
STIR implementation, dead-time and isotope decay modelling are not
considered within randoms correction.

2.4.5. Scatter correction

Non-TOF scatter correction sinogram was extracted from the ven-
dor’s reconstruction toolbox for scatter correction.

TOF-scatter is currently not implemented, whereas non-TOF scatter
correction sinograms were approximated to TOF projection data with
appropriate scaling factors for each TOF bins. The scaling factors were
extracted using the emission projection data by calculating the fraction
of counts in each TOF bin with respect to total number of counts.

The randoms and scatter correction TOF projection data were added
to calculate the background term, b,.
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2.5. Data acquisition, image reconstruction and analysis

2.5.1. Phantom acquisition
The following two phantoms were scanned:

1. Volumetric Quality Control (VQC) Phantom: Comprised of five 0.7
MBq °8Ge spheres of 19 mm in diameter with 14 mm active dia-
meter (with half mm tolerance) encased within MR-visible tubes
made of NiCl,. The entire configuration is encased within a foam
cube. The phantom was scanned for 10 min amd 5 X 10® prompts
were registered.

2. Hoffman Phantom: Scanned for 20 min and 1.5 X 10® prompts were
registered [26].

2.5.2. Clinical acquisition

A patient with radiotherapy induced pulmonary fibrosis [27,28],
injected with 40.62 MBq of '®F experimental radiotracer was scanned.
The radiotracer was injected 90 min prior to the scan, which had a
duration of 13 min. 3.8 x 10’ prompts were registered.

MRAC images, PIFA images, uncompressed PET LM and RDF files
were exported from the scanner for all above phantom and clinical
acquisitions.

2.5.3. Image reconstruction

The scanner acquired uncompressed LM data which were histo-
grammed into TOF STIR sinograms using the existing

‘Im_to_projdata’ utility. This is possible due to the implementation
described in 2.4.1.

Data correction sinograms were calculated using custom utilities
and parameter classes with STIR for this scanner. Normalisation cor-
rections were calculated using the ‘correct_projdata’ utility with para-
meters set to read data from ‘norm3d’ file exported from the scanner.
Attenuation correction was carried out using the exported PIFA images
as demonstrated in Fig. 1. Randoms correction sinogram was calculated
using ‘construct_randoms_from_GEsingles’ utility. Scatter correction
was done using the sinogram extracted from the vendor’s reconstruc-
tion toolbox. For TOF image reconstructions, the TOF projection data

Fig. 1. Patient Dataset: Transverse and coronal slices of the exported resampled PIFA image (bottom row) from MRAC (top row) using custom scripts as STIR
interfile. MRAC image used as an anatomical prior for kernel matrix estimation for TOF-KEM image reconstructions. PIFA image used for AC.
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were histogrammed using the LM file. Randoms and scatter correction
sinograms were translated into TOF projection data by developing
custom utilities and appropriate scaling of data as described above in
sections 2.4.4 and 2.4.5. Attenuation and normalisation sinograms were
uniform in timing bins and were multiplied with the background term
to create additive sinograms for STIR implementations. Image re-
constructions were carried out using OSEM and TOF-OSEM algorithms
with and without point spread function (PSF) modelling. TOF-KEM
reconstructions were also carried out for the patient dataset. The MR
image shown in Fig. 1 was used to derive the kernels. All reconstruc-
tions were carried out with 28 subsets.

2.5.4. Image reconstruction with vendor’s reconstruction toolbox

GE proprietary reconstruction algorithms including VUE Point HD
(or fully 3D iterative reconstruction which is further referred to OSEM-
GE), VUE Point FX (or fully 3D TOF iterative reconstruction which is
further referred to TOF-OSEM-GE), VUE point HD SharpIR (or PSF-
OSEM-GE) and VUE point FX SharpIR (or PSF-TOF-OSEM-GE) were
used to reconstruct VQC, Hoffman and patient datasets with 28 subsets
[29,30].

2.5.5. Image analysis

Emission and data correction sinograms exported from the scanner
are calculated using the implementations made in the STIR and then
compared using voxelwise subtraction. TOF-OSEM reconstructions with
STIR and the vendor’s reconstruction toolbox (or ‘GE’ as will be now
referred to in this document) for the VQC phantom were used to
compare the full-width-half-maximum (FWHM) [31]. FWHM was cal-
culated using a STIR utility called ‘find_fwhm_in_image’, for all five
spheres for vendor’s reconstruction toolbox and STIR based re-
construction. The FWHM for all spheres in all three dimensions were
averaged and standard error was calculated as the tolerance window.
TOF-OSEM reconstructions with STIR and vendor’s reconstruction
toolbox for the Hoffman phantom and the patient dataset were com-
pared using standardized uptake value ratio (SUVR) and coefficient of
variation (CoV). SUVR is calculated as the ratio of the SUV of target and
reference regions. In this study, a region of interest (ROI) drawn within
the liver and spleen were used as the target and another ROI of same
volume within the lung was used as the reference. CoV is calculated as
the % of standard deviation over the mean. STIR reconstructions were
also compared with the vendor’s reconstructions using structural si-
milarity index (SSIM) as described in [32]. The global SSIM values are
reported as the similarity measure between STIR and GE reconstructed
images and are calculated as:

SSIM (x, y) = [1(x, Y)1[e (x, »)1[s (x, Y], 9

where [(x, y) is the luminance term, c(x, y) is the contrast term and
s(x, y) is the structural term. In the above equation, x and y are the
reference and distorted images. The similarity measure evaluates the
image quality of the distorted image with respect to the reference
image. The global SSIM values are calculated for TOF-OSEM-STIR
versus TOF-OSEM-GE, TOF-KEM-STIR versus TOF-OSEM-GE, PSF-TOF-
OSEM-STIR versus PSF-TOF-OSEM-GE and PSF-TOF-KEM-STIR versus
PSF-TOF-OSEM-GE, where STIR images are considered as distorted
images and GE images are considered as reference images. The com-
parisons are carried out for reconstructed images over first 6 iterations.

3. Results

Table 1 demonstrates the average of FWHM for all five ®®Ge spheres
in all dimensions for the VQC phantom. The comparisons are demon-
strated for images reconstructed with OSEM, PSF-OSEM, TOF-OSEM
and PSF-TOF-OSEM algorithms with vendor’s reconstruction toolbox
and STIR over 28 subsets and 3 subsequent iterations.

Tables 2 and 3 demonstrate the SUVR comparisons for liver and
spleen ROIs respectively, compared with lung ROI. The comparisons are
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Table 1
FWHM Comparisons: VQC Phantom.
Algorithm Iteration GE STIR
OSEM 1 141 + 0.4 135 = 0.4
2 14.4 = 0.3 13.6 = 0.4
3 14.3 + 0.3 13.4 =+ 0.4
PSF-OSEM 1 13.1 £ 0.5 13.6 £+ 0.4
13.1 + 0.4 13.1 + 0.4
3 14.3 + 0.3 12.3 = 0.5
TOF-OSEM 1 14.7 = 0.2 139 £ 04
2 145 + 0.2 139 + 0.4
3 14.4 + 0.2 13.6 = 0.3
PSF-TOF-OSEM 1 13.0 £ 0.5 13.6 + 0.4
2 13.1 + 0.4 13.7 = 0.4
3 12.7 £ 0.5 139 £ 04
Table 2
SUVR(liver/lung) Comparisons: Patient Dataset.
Algorithm GE STIR
OSEM 21.8 21.8
PSF-OSEM 22.6 20.5
TOF-OSEM 25.5 18.5
PSF-TOF-OSEM 25.7 17.1
TOF-KEM-STIR - 18.8
PSF-TOF-KEM-STIR - 17.3
Table 3
SUVR (spleen/lung) Comparisons: Patient Dataset.
Algorithm GE STIR
OSEM 28.0 34.0
PSF-OSEM 28.9 28.9
TOF-OSEM 34.0 29.3
PSF-TOF-OSEM 35.0 25.5
TOF-KEM-STIR - 29.4
PSF-TOF-KEM-STIR - 25.4

made for image reconstructed with patient dataset. Iterative algorithms
compared are OSEM, PSF-OSEM, TOF-OSEM, PSF-TOF-OSEM, TOF-
KEM and PSF-TOF-KEM.

Fig. 2 compares the direct ring sinograms from STIR and vendor’s
reconstruction toolbox for segment 0. The comparison is made using the
uncompressed listmode file for all the various phantom and clinical
datasets but only demonstrated for VQC phantom here. The unlisted
sinogram using STIR utility and vendor’s reconstruction toolbox is de-
monstrated here for TOF bin 0 and 2, segment 0 and axial position 18.

Fig. 3 compares the non-TOF sinograms from STIR and vendor’s
reconstruction toolbox. The comparisons were made for emission,
normalisation and randoms sinograms. The relative difference has been
demonstrated by performing voxelwise subtractions.

Fig. 4 and 5 demonstrates the non-TOF reconstruction with OSEM
and PSF-OSEM respectively, for 28 subsets and 3 iterations for Hoffman
phantom. Fig. 6 and 7 demonstrates the non-TOF reconstruction with
OSEM and PSF-OSEM respectively, for 28 subsets and 3 iterations for
clinical dataset. The demonstration compares the reconstructions be-
tween STIR and vendor’s reconstruction software visually.

Fig. 8 demonstrates TOF-OSEM-GE (post-filtered with Gaussian of
4 mm FWHM), TOF-OSEM-STIR (post-filtered with Gaussian of 4 mm
FWHM) and TOF-KEM-STIR reconstructions. The comparisons are made
for images reconstructed with 28 subset and for 2™ iteration. The re-
constructed images with clinical datasets are demonstrated for com-
parison.
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VENDOR'S STIR
RECONSTRUCTION TOOLBOX

5 =
4 4
3 3
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2.5 ’ 25
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Fig. 2. The figure shows the TOF sinograms for TOF bin 0 (top row) and 5 (bottom row) exported from vendor’s reconstruction toolbox (or ’GE’ as will be described in

all the figure captions and tables hereafter) and STIR for the VQC phantom dataset. All the demonstrated sinograms are for segment 0 and axial position 18.

VENDOR'S RECONSTRUCTION TOOLBOX STIR DIFFERENCE SINOGRAM =
VENDOR'S RECONSTRUCTION

TOOLBOX - STIR

12 5 12

10 10

8 8 EMISSION
6 6

2x107

NORMALISATION

2x107

4x107
35
RANDOMS
25
2
Ly

1x107

Fig. 3. The figure shows the non-TOF emission, normalisation and randoms sinograms for VQC phantom datasets exported from vendor’s reconstruction toolbox and

STIR. The difference sinogram is also depicted in this figure.
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(a)

(b)

Fig. 4. Hoffman Phantom: Transverse and coronal slice comparisons for (a)
OSEM-STIR and (b) OSEM-GE. Comparisons are made for images reconstructed
with 28 subsets and 3 iterations.

®
&

(b)

Fig. 5. Hoffman Phantom: Transverse and coronal slice comparisons for (a)
PSF-OSEM-STIR and (b) PSF-OSEM-GE. Comparisons are made for images re-
constructed with 28 subsets and 3 iterations.

Fig. 9 demonstrates PSF-TOF-OSEM-GE (post-filtered with Gaussian
of 4 mm FWHM), PSF-TOF-OSEM-STIR (post-filtered with Gaussian of
4 mm FWHM) and PSF-TOF-KEM-STIR reconstructions. The compar-
isons are made for images reconstructed with 28 subset and for 2"
iteration. Only sinogram-based reconstructions were carried out and
are demonstrated in this paper.

Fig. 10 shows CoV comparisons for a ROI placed within the spleen
and liver of the patient dataset. Graphs (a) and (b) compare the CoV in
ROI placed within spleen and liver respectively, for TOF-OSEM-STIR,
TOF-KEM-STIR and TOF-OSEM-GE algorithms. Graphs (c) and (d)
compare the CoV in ROI placed within spleen and liver respectively, for
PSF-TOF-OSEM-STIR, PSF-TOF-KEM-STIR and PSF-TOF-OSEM-GE al-
gorithms.
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(a)

(b)

Fig. 6. Patient Dataset: Transverse and coronal slice comparisons for (a) OSEM-
STIR and (b) OSEM-GE. Comparisons are made for images reconstructed with
28 subsets and 3 iterations.

(a)

(b) .".‘ Ei-!!a.l

Fig. 7. Patient Dataset: Transverse and coronal slice comparisons for (a) PSF-
OSEM-STIR and (b) PSF-OSEM-GE. Comparisons are made for images re-
constructed with 28 subsets and 3 iterations.
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(b)
L\ g
3 A
(c)

Fig. 8. Patient Dataset: Transverse and coronal slice comparisons for (a) TOF-
OSEM-GE, (b) TOF-OSEM-STIR and (c) TOF-KEM-STIR. Comparisons are made
for images reconstructed with 28 subsets and 2 iterations. Gaussian post-fil-
tering with FWHM of 4 mm were applied to TOF-OSEM images.
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(a)
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Fig. 9. Patient Dataset: Transverse and coronal slice comparisons for (a) PSF-
TOF-OSEM-GE, (b) PSF-TOF-OSEM-STIR and (c) PSF-TOF-KEM-STIR.
Comparisons are made for images reconstructed with 28 subsets and 2 itera-
tions. Gaussian post-filtering with FWHM of 4 mm were applied to PSF-TOF-
OSEM images.
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4. Discussion

The TOF emission projection data extracted with STIR for all
phantom and clinical datasets in the described implementations is
identical to the acquired emission data. The non-TOF emission sino-
grams extracted from STIR and vendor’s reconstruction toolbox for the
VQC phantom dataset, as can be seen in Fig. 3, are identical, whereas
there are small differences for the normalisation and randoms sino-
grams of STIR implementation and compared with the vendor’s re-
construction toolbox. The relative difference in the normalisation cor-
rection sinogram is + 1.6 X 1077. The relative difference for the
randoms sinogram is 0.6% to 1.1%. The differences between the randoms
and normalisation sinograms are due to the fact that no dead-time
modelling has been implemented in the current STIR version. All the
data acquisitions that are used in this study have relatively low activ-
ities as compared to clinical situations. This implies that the dead-time
correction is very small. Also, the randoms correction implemented in
STIR is not identical to that in the vendor’s reconstruction toolbox
calculation [24,33].

FWHM comparisons for the VQC phantom dataset, as demonstrated
in Table 1, shows that the STIR reconstructions have similar resolution
with the vendor’s reconstruction toolbox. There is a relative difference
of 5% to 13% in the measurements with STIR as compared to vendor’s
reconstruction software.

Hoffman and patient datasets reconstructed with the OSEM algo-
rithm with STIR and the vendor’s reconstruction software, as shown in
Fig. 4 and 6, shows visual differences which are a consequence of ab-
sent detector gap modelling within the system matrix in STIR and a lack

” F:oV: L|ve|:
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Fig. 10. Patient Dataset: TOF-OSEM-STIR, TOF-OSEM-GE and TOF-KEM-STIR comparisons for (a) CoV: Spleen; (b) CoV: Liver; PSF-TOF-OSEM-STIR, PSF-TOF-

OSEM-GE and PSF-TOF-KEM-STIR comparisons for (c) CoV: Spleen; (d) CoV: Liver.
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of deadtime modelling in randoms. The detector gaps are not taken into
account as STIR currently supports only the cylindrical scanner geo-
metries and without any gaps. There are also minor differences that
arise from the offsets between the PET and MR gantry. GE converts the
PET reconstructions in MR space which is not currently automated
within STIR. Although, these offsets are manually taken into account
during this work. SUVR comparisons for OSEM-STIR and PSF-OSEM-
STIR for patient datasets are in good agreement with the vendor’s re-
construction software counterparts for liver/lung comparisons, as can
be seen in Table 2. For the liver/lung, there is a maximum of 3% re-
lative difference in the SUVR values. For spleen/lung comparisons there
is a greater relative difference of 21% for OSEM due to differences in
projectors and random modelling. Similar patterns are observed in the
Hoffman phantom dataset.

The patient images reconstructed with the two software packages
with TOF-OSEM algorithms appear to have differences due to the rea-
sons aforementioned. TOF images had differences in noise which is due
to the lack of implementation of TOF scatter simulation in the current
version of the STIR library. SUVR comparisons for TOF reconstructions
further shows the effect of lack of TOF scatter implementation as there
are greater differences between STIR and vendor’s reconstruction soft-
ware quantifications. TOF-KEM SUVR comparisons display a very slight
improvement in terms of the quantification.

It can be seen in Fig. 10 that PSF-TOF-KEM has the best uniformity
for spleen and TOF-KEM has the best uniformity for liver. This shows
the effect of the MR anatomical information in PET reconstructions.
TOF-KEM CoV values improves as the number of iterations increments.

The global SSIM value is between 0.84-0.85 for all comparisons
performed on reconstructed images over 6 iterations. This shows a high
structural similarity between STIR and GE reconstructed images. The
difference between two images is majorly due to intensity difference
between the two images. This study does not take into account TOF
scatter correction which gives rise to differences in noise properties
between STIR and GE reconstructions. The randoms correction mod-
elling implemented in STIR is not identical to that in GE toolbox. GE
reconstructions are scaled by a global and a calibration factor that is not
currently taken into account within the STIR reconstructions.

5. Conclusion

In this study, the acquisition process for GE SIGNA PET/MR scanner
is modelled within the open source library, STIR. All validations were
made by comparing images reconstructed with iterative reconstruction
algorithms available in the library for acquired phantom and clinical
datasets. Reconstructed images appear to be at a comparable level with
the ones provided by the manufacturer. Dead-time correction, absence
of detector gap modelling and TOF scatter correction have not been
modelled in this work, and may account for the observed discrepancies.
The main advantage of modelling the acquisition processes of this
scanner in the STIR library is that the scientific community can perform
their research in image reconstruction with complete control of how the
data is manipulated. This will help to pave the way for harmonisation of
methodology across various PET scanners used in the clinic. Future
work will also include calculating scatter correction with STIR using
single Compton scatter simulation [34] and to integrate it with the next
release of SIRF (Synergistic Image Reconstruction Framework) [35].

Acknowledgements

P. Wadhwa is funded by a Medical Research Council Industrial
CASE PhD Scholarship (MR/M01746X/1). Dr. Tsoumpas is sponsored
by a Royal Society Industry Fellowship (IF170011). The project has
been partially supported by the EPSRC Collaborative Computational
Project (EP/M022587/1) and its flagship research grant (EP/P022200/
1). We would like to thank Prof. Stefaan Vandenberghe, Prof. Michel
Koole and Ms. Ester D’Hoe for their initial support and data for this

Methods xxx (xxXxX) XXX—XXX

work. We would also like to thank Prof. David Buckley for his sub-
stantial support for the entire course of this work. Ethics number 17/
WM/0084 with permission from a clinical study performed at Invicro.

References

[1] P.M. Robson, D. Dey, D.E. Newby, D. Berman, D. Li, Z.A. Fayad, M.R. Dweck, MR/
PET Imaging of the Cardiovascular System, JACC, Cardiovascular Imaging 10 (10
Part A) (2017) 1165-1179, https://doi.org/10.1016/j.jcmg.2017.07.008.

[2] R.N. Gunn, M. Slifstein, G.E. Searle, J.C. Price, Quantitative imaging of protein
targets in the human brain with PET, Phys. Med. Biol. 60 (22) (2015) R363.

[3] Z. Walker, F. Gandolfo, S. Orini, V. Garibotto, F. Agosta, J. Arbizu, F. Bouwman,
A. Drzezga, P. Nestor, M. Boccardi, D. Altomare, C. Festari, F. Nobili, Clinical utility
of FDG PET in Parkinson’s disease and atypical parkinsonism associated with de-
mentia, Eur. J. Nucl. Med. Mol. Imaging 45 (9) (2018) 1534-1545.

[4] H. Motara, T. Olusoga, G. Russell, S. Jamieson, S. Ahmed, N. Brindle, A. Pillai,
A.F. Scarsbrook, C.N. Patel, F.U. Chowdhury, Clinical impact and diagnostic accu-
racy of 2-[18F]-fluoro-2-deoxy-d-glucose positron-emission tomography/computed
tomography (PET/CT) brain imaging in patients with cognitive impairment: a ter-
tiary centre experience in the UK, Clin. Radiol. 72 (1) (2017) 63-73, https://doi.
org/10.1016/j.crad.2016.08.003.

[5] X.Y. Zhang, Z.L. Yang, G.M. Lu, G.F. Yang, L.J. Zhang, PET/MR imaging: new
frontier in alzheimer’s disease and other dementias, Front. Mol. Neurosci. 10 (2017)
343, https://doi.org/10.3389/fnmol.2017.00343.

[6] N. Alie, M. Eldib, Z.A. Fayad, V. Mani, Atherosclerosis Inflammation, Inflammation,
atherosclerosis, and coronary artery disease: PET/CT for the evaluation of athero-
sclerosis and inflammation, Clin. Med. Insights: Cardiol. 8 (2014), https://doi.org/
10.4137/CMC.S17063 CMC-S17063.

[7] P.M. Price, M.M. Green, Positron emission tomography imaging approaches for
external beam radiation therapies: current status and future developments, Br. J.
Radiol. 84 (special_issue_1) (2011) S19-S34, https://doi.org/10.1259/bjr/
21263014.

[8] S. Vaidyanathan, C. Patel, A. Scarsbrook, F. Chowdhury, FDG PET/CT in infection
and inflammation-current and emerging clinical applications, Clin. Radiol. 70 (7)
(2015) 787-800, https://doi.org/10.1016/j.crad.2015.03.010.

[9] J. Grueneisen, B.M. Schaarschmidt, A. Demircioglu, M. Chodyla, O. Martin,

S. Bertram, A. Wetter, S. Bauer, W.P. Fendler, L. Podleska, M. Forsting,

K. Herrmann, L. Umutlu, 18F-FDG PET/MRI for therapy response assessment of
isolated limb perfusion in patients with soft-tissue sarcomas, J. Nucl. Med. 60
(2019) 1537-1542.

[10] K. Thielemans, C. Tsoumpas, S. Mustafovic, T. Beisel, P. Aguiar, N. Dikaios,

M.W. Jacobson, STIR: software for tomographic image reconstruction release 2,
Phys. Med. Biol. 57 (2012) 867-883.

[11] V. Bettinardi, E. Pagani, M. Gilardi, S. Alenius, K. Thielemans, M. Teras, F. Fazio,
Implementation and evaluation of a 3D one-step late reconstruction algorithm for
3D positron emission tomography brain studies using median root prior, Eur. J.
Nucl. Med. Mol. Imaging 29 (1) (2002) 7-18, https://doi.org/10.1007/
s002590100651.

[12] D. Deidda, N.A. Karakatsanis, P.M. Robson, Y.-J. Tsai, N. Efthimiou, K. Thielemans,
Z.A. Fayad, R.G. Aykroyd, C. Tsoumpas, Hybrid PET-MR list-mode kernelized ex-
pectation maximization reconstruction, Inverse Prob. 35 (4) (2019) 044001,
https://doi.org/10.1088/1361-6420/ab013f.

[13] N. Efthimiou, E. Emond, P. Wadhwa, C. Cawthorne, C. Tsoumpas, K. Thielemans,
Implementation and validation of time-of-flight PET image reconstruction module
for listmode and sinogram projection data in the STIR library, Phys. Med. Biol. 64
(2018) 035004, , https://doi.org/10.1088/1361-6560/aaf9b9.

[14] A.M. Grant, T.W. Deller, M.M. Khalighi, S.H. Maramraju, G. Delso, C.S. Levin,
NEMA NU 2-2012 performance studies for the SiPM-based ToF-PET component of
the GE SIGNA PET/MR system, Med. Phys. 43 (5) (2016) 2334-2343, https://doi.
org/10.1118/1.4945416.

[15] S. Vandenberghe, E. Mikhaylova, E. D’'Hoe, P. Mollet, J.S. Karp, Recent develop-
ments in time-of-flight PET, Eur. J. Nucl. Med. Mol. Imaging Phys. 3 (1) (2016) 3,
https://doi.org/10.1186/s40658-016-0138-3.

[16] D.F.C. Hsu, E. Ilan, W.T. Peterson, J. Uribe, M. Lubberink, C.S. Levin, Studies of a
next-generation silicon-photomultiplier-based time-of-flight PET/CT system, J.
Nucl. Med. 58 (9) (2017) 1511-1518.

[17] P. Wadhwa, K. Thielemans, N. Efthimiou, O. Bertolli, E. Emond, B.A. Thomas,

M. Tohme, K. Wangerin, G. Delso, W. Hallett, R. Gunn, D. Buckley, C. Tsoumpas,
Implementation of image reconstruction for GE SIGNA PET/MR PET data in the
STIR library, IEEE Nuclear Science Symposium and Medical Imaging Conference,
(NSS/MIC) (2018), https://doi.org/10.1109/NSSMIC.2018.8824341.

[18] H.M. Hudson, R.S. Larkin, Accelerated image reconstruction using ordered subsets
of projection data, IEEE Trans. Med. Imaging 13 (4) (1994) 601-609, https://doi.
org/10.1109/42.363108.

[19] G. Wang, J. Qi, PET image reconstruction using kernel method, IEEE Trans. Med.
Imaging 34 (2015) 61-71.

[20] D. Deidda, N. Karakatsanis, P.M. Robson, N. Efthimiou, Z.A. Fayad, R.G. Aykroyd,
C. Tsoumpas, Effect of PET-MR inconsistency in the kernel image reconstruction
method, IEEE Trans. Radiat. Plasma. Med. Sci. (2019) 400-409.

[21] O. Bertolli, S. Arridge, C.W. Stearns, S.D. Wollenweber, B.F. Hutton, K. Thielemans,
Data driven respiratory signal detection in PET taking advantage of time-of-flight
data, IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-
Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD), IEEE, 2016, pp.
1-3, https://doi.org/10.1109/nssmic.2016.8069426.


https://doi.org/10.1016/j.jcmg.2017.07.008
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0010
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0010
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0015
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0015
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0015
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0015
https://doi.org/10.1016/j.crad.2016.08.003
https://doi.org/10.1016/j.crad.2016.08.003
https://doi.org/10.3389/fnmol.2017.00343
https://doi.org/10.4137/CMC.S17063
https://doi.org/10.4137/CMC.S17063
https://doi.org/10.1259/bjr/21263014
https://doi.org/10.1259/bjr/21263014
https://doi.org/10.1016/j.crad.2015.03.010
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0045
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0045
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0045
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0045
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0045
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0050
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0050
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0050
https://doi.org/10.1007/s002590100651
https://doi.org/10.1007/s002590100651
https://doi.org/10.1088/1361-6420/ab013f
https://doi.org/10.1088/1361-6560/aaf9b9
https://doi.org/10.1118/1.4945416
https://doi.org/10.1118/1.4945416
https://doi.org/10.1186/s40658-016-0138-3
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0080
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0080
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0080
https://doi.org/10.1109/NSSMIC.2018.8824341
https://doi.org/10.1109/42.363108
https://doi.org/10.1109/42.363108
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0095
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0095
http://refhub.elsevier.com/S1046-2023(19)30193-8/h9000
http://refhub.elsevier.com/S1046-2023(19)30193-8/h9000
http://refhub.elsevier.com/S1046-2023(19)30193-8/h9000
https://doi.org/10.1109/nssmic.2016.8069426

P. Wadhwa, et al.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

M. Defrise, D.E. Townsend, D. Bailey, A. Geissbuhler, C. Michel, T. Jones, A nor-
malization technique for 3D PET data, Phys. Med. Biol. 36 (1991) 939-952.

D.L. Bailey, D.W. Townsend, P.E. Kinahan, S. Grootoonk, T. Jones, An investigation
of factors affecting detector and geometric correction in normalization of 3-D PET
data, IEEE Trans. Nucl. Sci. 43 (1996) 3300-3307.

C.W. Stearns, D.L. McDaniel, S.G. Kohlmyer, P.R. Arul, B.P. Geiser, V. Shanmugam,
Random coincidence estimation from single event rates on the discovery ST PET/CT
scanner, IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/
MIC) 5 (2003) 3067-3069.

J. Oliver, M. Rafecas, Modelling random coincidences in positron emission tomo-
graphy by using singles and prompts: a comparison study, PloS One 11 (2016)
e0162096.

E.J. Hoffman, P.D. Cutler, W.M. Digby, J.C. Mazziotta, 3-D phantom to simulate
cerebral blood flow and metabolic images for PET, IEEE Trans. Nucl. Sci. 37 (1990)
616-620.

A. Saleem, Y. Helo, G. Searle, F. Dekaj, J. Cook, Z. Win, R. Gunn, P. Wells, Imaging
radiotherapy induced pulmonary fibrogenic changes with integrin-PET, AACR
Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA, https://doi.org/10.
1158/1538-7445.AM2019-1144.

A. Saleem, Y. Helo, G. Searle, Z. Win, J. Cook, R. Gunn, P. Wells, Integrin-PET
uptake evaluation in patients receiving pulmonary radiotherapy, J. Nucl. Med. 60

10

[29]
[30]

[31]

[32]

[33]

[34]

[35]

Methods xxx (xxXxX) XXX—XXX

(suppl. 1) (2019) 295-295.

S. Ross, C. Stearns, SharpIR, GE Healthcare, White papers, 2010, pp. 1-8.

D. Vandendriessche, J. Uribe, H. Bertin, F. De Geeter, Performance characteristics of
silicon photomultiplier based 15-cm AFOV TOF PET/CT, Eur. J. Nucl. Med. Mol.
Imaging Phys. 6 (1) (2019) 8.

G. Delso, S. Fiirst, B. Jakoby, R. Ladebeck, C. Ganter, S.G. Nekolla, M. Schwaiger,
S.I. Ziegler, Performance measurements of the Siemens mMR integrated whole-
body PET/MR scanner, J. Nucl. Med. 52 (2011) 1914-1922.

Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, et al., Image quality assessment:
from error visibility to structural similarity, IEEE Trans. Image Process. 13 (4)
(2004) 600-612.

C.W. Stearns, A.H. Lonn, Randoms from singles estimation for long PET scans, 2011
IEEE Nuclear Science Symposium Conference Record (2011) 3739-3741.

C. Tsoumpas, P. Aguiar, K. Nikita, D. Ros, K. Thielemans, Evaluation of the single
scatter simulation algorithm implemented in the STIR library, 2004 IEEE
Symposium Conference Record Nuclear Science 6 (2004) 3361-3365.

E. Ovtchinnikov, R. Brown, C. Kolbitsch, E. Pasca, C. da Costa-Luis, A.G. Gillman,
B.A. Thomas, N. Efthimiou, J. Mayer, P. Wadhwa, M. Ehrhardt, S. Ellis, J. Jrgensen,
J. Matthews, C. Prieto, A.J. Reader, C. Tsoumpas, M. Turner, D. Atkinson,

K. Thielemans, SIRF: synergistic Image Reconstruction Framework, Comput. Phys.
Commun. (2019) 107087.


http://refhub.elsevier.com/S1046-2023(19)30193-8/h0110
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0110
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0115
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0115
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0115
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0120
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0120
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0120
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0120
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0125
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0125
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0125
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0130
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0130
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0130
https://doi.org/10.1158/1538-7445.AM2019-1144
https://doi.org/10.1158/1538-7445.AM2019-1144
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0140
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0140
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0140
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0145
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0150
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0150
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0150
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0155
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0155
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0155
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0160
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0160
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0160
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0170
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0170
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0170
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0175
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0175
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0175
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0175
http://refhub.elsevier.com/S1046-2023(19)30193-8/h0175

	PET image reconstruction using physical and mathematical modelling for time of flight PET-MR scanners in the STIR library
	Introduction
	Objectives

	Methods and materials
	GE SIGNA PET/MR scanner in STIR
	Scanner model
	TOF-OSEM algorithm
	TOF-KEM algorithm

	GE SIGNA PET/MR scanner acquisition data in STIR
	Implementation of the acquisition model in STIR
	TOF Acquisition Data in STIR
	Implementing normalisation correction for GE SIGNA in STIR
	PIFA-based attenuation correction
	Implementation of Randoms Correction Using Singles
	Scatter correction

	Data acquisition, image reconstruction and analysis
	Phantom acquisition
	Clinical acquisition
	Image reconstruction
	Image reconstruction with vendor&#x02019;s reconstruction toolbox
	Image analysis


	Results
	Discussion
	Conclusion
	Acknowledgements
	References




