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Abstract

Background: Despite accumulated evidence for adult brain plasticity, the
temporal relationships between large-scale functional and structural
connectivity changes in human brain networks remain unclear.

Methods: By analysing a unique richly detailed 19-week longitudinal
neuroimaging dataset, we tested whether macroscopic functional
connectivity changes lead to the corresponding structural alterations in the
adult human brain, and examined whether such time lags between
functional and structural connectivity changes are affected by functional
differences between different large-scale brain networks.

Results: In this single-case study, we report that, compared to
attention-related networks, functional connectivity changes in default-mode,
fronto-parietal, and sensory-related networks occurred in advance of
modulations of the corresponding structural connectivity with significantly
longer time lags. In particular, the longest time lags were observed in
sensory-related networks. In contrast, such significant temporal differences
in connectivity change were not seen in comparisons between anatomically
categorised different brain areas, such as frontal and occipital lobes. These
observations survived even after multiple validation analyses using different
connectivity definitions or using parts of the datasets.

Conclusions: Although the current findings should be examined in
independent datasets with different demographic background and by
experimental manipulation, this single-case study indicates the possibility
that plasticity of macroscopic brain networks could be affected by cognitive
and perceptual functions implemented in the networks, and implies a
hierarchy in the plasticity of functionally different brain systems.
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Introduction

Many neuroimaging studies have demonstrated substantial
plasticity of functional and structural connectivity in adult
human brains'~. White matter microarchitecture is changed
by a variety of training methods*'', macroscopic functional
connectivity (FC) is affected by learning®'>""°, and the location
and strength of structural and functional connectivity changes are
correlated'*'>'°.

However, the temporal relationship between changes in these two
fundamental types of brain connectivity — specifically, the lag
between functional and structural changes for a particular set of
brain regions — is not yet fully understood. Unlike microscopic
neural plasticity'”'*, even whether macroscopic FC changes lead
to the corresponding structural connectivity (SC) changes for the
same brain network remains unconfirmed. Moreover, even if such
FC changes precede modulation of SC, it is still unclear whether
the time lags between the occurrence of FC and SC changes
are constant across functionally heterogeneous human brain
networks.

Here, we hypothesised that, like Hebbian neural plasticity at a
cellular level”'"®, changes in large-scale intrinsic FC occur in
advance of the corresponding SC alterations. We further
hypothesised that the time lags between FC and SC changes vary
between different brain networks with difference cognitive and
perceptual functions. Specifically, in brain networks related to
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primary perception, SC changes may take more time to catch up to
FC changes in order to keep its perceptual functions robust
against fluctuating external inputs; in contrast, brain networks
for attention control may have more flexible SC changes to
adapt themselves to varying tasks and situations, and the time
lags between FC and SC changes could be shorter than other
networks.

To test these hypotheses, we examined a unique open
longitudinal neuroimaging dataset recorded from a single
healthy adult male over 19 weeks of community living'**. The
density of the data collection (42 and 16 time points for FC
and SC datasets, respectively) allowed us to characterise the
temporal relationships between any FC and SC changes occur-
ring in the time period. In addition, the data were effectively
unaffected by neural plasticity induced by intensive experi-
ence of specific cognitive/motor/perceptual learning because no
explicit training was conducted in the 19 weeks, and thus we
were expected to be able to compare the temporal properties of
spontaneous or environmentally induced neural plasticity
between functionally different brain networks.

Results

Identification of connectivity showing significant increases
Using these data, we first built nine FC and SC matrices for
nine representative brain cortical networks with different
functions®'** for each recording day (Figure 1a). SC was defined

Functional connectivity (FC) matrices

Vis

Aud Vis

C Commonly increased connections d

Structural

~2.5% of all ClL
( ’ ) > connectivity (SC)
Top 15% decrease \Top 15% increase & 100%(SC) -
— — F 100%(FC) g = =t
@ unctiona
» Top 15% ¢ connectivity (FC)
7 Average connectivity matrix [} Increase 5 )
in the first 3 weeks 2f O 50%(SC) 4
S B 50%(FC) 1 AT - diff ’
L 5 @ o0 difference in time
c(:f::teng-lt%i?shta:;‘vgf [¢] [ to reach 50% change
i }Top 15% % 10%(SC) Joveeedlc
decrease 10%(FC) -
jAverage connectivity matrix SC oh = 6(FC) Days
in the last 3 weeks changes
Commonly decreased connections \_ATW difference in time

to reach 10% change

Figure 1. Analysis procedure. a. For each data-collection day, we constructed matrices of functional connectivity (FC) and structural
connectivity (SC) for the nine networks whose nodes consisted of randomly-segmented similar-size cortical grey matter areas. DMN, default-
mode network; FPN, fronto-parietal network; SAN, salience network; CON, cingulo-opercular network; DAN, dorsal-attention network; VAN,
ventral attention network; SMN, sensory-motor network; Aud, auditory network; Vis, visual network. b and c¢. We calculated connectivity
differences between the first and last three weeks (b), and selected brain connections both of whose FC and SC showed significant changes
(c). There was no significant difference in average Euclidian lengths of the selected connections between the nine cortical networks
(Supplementary File 1). d. After fitting logistic functions to mean connectivity of the selected brain connections, we compared temporal

properties between FC and SC changes.
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by the number of streamlines traced in diffusion-tensor imaging
(DTI) data, and FC was calculated based on partial correlation of
resting-state functional MRI (rsfMRI) signals, which represents
SC more accurately than FC based on Pearson correlation”**.

We then selected brain connections for which both FC and SC
showed significant increases in the period for each network
(Figures 1b and 1lc). In fact, the selected connections were
included in top 2.5% significant increases in each network
(Supplementary Table 1; Supplementary File 1), and their lengths
did not significantly differ between the nine networks (Fy, ..

= 0.84, P = 0.57 in one-way analysis of variance (ANOVA);
Supplementary Figure 1; Supplementary File 1).

Comparison of temporal patterns of connectivity changes
By fitting logistic functions to the mean connectivity changes of
the selected connections, we calculated two time-lag indices to
compare FC and SC changes within and between brain
networks (Figure 1d): AT, shows how earlier FC reached the
half of the total connectivity increases in the 19 weeks than SC
(Tsp, s¢ = Tspq ve)» Whereas AT, indicates how much later the
T

SC changes started after FC changes had begun (7' 109 FC)-

10%_SC

We confirmed significant goodness of fit of the logistic
functions (adjusted R*> > 0.62, Pomeeed £0.004, P, < 0.05;
Figure 2a), and identified significant differences in the two
time-lag indices across the nine networks (stm > 853, P < 10*
in one-way ANOVA; Figure 2b). Apart from three attention-
related networks (i.e., cingulate—opercular network (CON), dorsal
attention networks (DAN), ventral attention network (VAN)),
FC changes in the other six networks preceded SC ones with
significant time lags (z,, > 10.8 for AT, t,, > 11.3 for AT

Py inon < 0.05 in two-tailed Welch’s tessOtZ). 2In addition, defalllol?-
mode (DMN), fronto-parietal (FPN), and salience networks
(SAN) had significantly longer time lags than the three atten-
tion-related networks (¢,, > 6.2 for AT, r,, > 5.3 for AT,
P < 0.05), but showed significantly shorter lags than remain-

Bonferroni

ing three sensory-related networks (SMN, Auditory, and Visual
networks; 7, > 3.6 for AT, 1> 4.2 for AT, P < 0.05).

50%° 10%” © Bonferroni

These observations about time lags between FC and SC
changes were confirmed by directly comparing FC values at cer-
tain time points with SC values at the same/different time points
(Supplementary Figure 2; Supplementary File 1). Linear regres-
sion analyses found that FC values in DMN/FPN/SAN could
predict SC values that were observed one week after the FC
values were recorded (adjusted R> = 0.79; Py < 0.05;
Supplementary Figure 2a; Supplementary File 1), whereas FC val-
ues in SMN/Auditory/Visual could predict SC values that would
be seen two weeks later (adjusted R* = 0.91; P, = < (.05;
Supplementary Figure 2c; Supplementary File 1). In con-
trast, FC values in CON/DAN/VAN could predict SC values
recorded on the same day (adjusted R’ = 0.91; Pyioron < 0.05;
Supplementary Figure 2b; Supplementary File 1). Moreover,
these time-lagged FC-SC relationships were robustly observed
even after we removed outliers (adjusted R? > 0.40; three
small boxes in Supplementary Figure 2, Supplementary File 1).
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Validation analysis
We then examined the robustness of these observations by conduct-
ing three validation analyses.

First, we confirmed that these temporal differences between FC
and SC increases were qualitatively reproduced when comparing
FC decreases with SC decreases over the 19 weeks (Figures 2c
and 2d, Supplementary Table 1, Supplementary Figure 3,
Supplementary File 1)

Second, we also compared timings of connectivity changes after
we matched the time points of FC data collections to those of SC
data collections. Technically, we used sets of rsfMRI and DTI
data only when both were recorded in the same day. Although
this procedure reduced the number of FC time points from
42 to 16 and slightly mitigated fitting of the logistic functions,
we could still observe qualitatively the same difference in the
FC-SC time lags between different brain networks (Figures 3a
and 3b, Supplementary Figure 4; Supplementary File 1).

Third, we repeated the entire analysis after re-defining SC
by the mean fractional anisotropy (FA) value of the traced
streamlines, and confirmed that the pattern of the FC-SC time
lags was preserved (Figures 3¢ and 3d, Supplementary Figure 5,
Supplementary Table 2; Supplementary File 1).

Comparison of the FC-SC time lags between anatomically
different brain lobes

Finally, we examined whether such differences in FC-SC time
lags were observed between anatomically categorised brain areas
(here, frontal, parietal, temporal, and occipital lobes). Although
logistic functions were well fitted to connectivity changes in
each lobe (adjusted R* > 0.60, P, <0.005, P, ...<0.05,
Figures 4a and 4c), we did not find significant difference in
either time index between different brain lobes (F g6 S 1.4,
P >0.21 in one-way factorial ANOVA; Figures 4b and 4d).

Discussion

This single-case study shows that compared to attention-
related networks, FC in DMN, FPN, and SAN is followed by
SC changes at a longer latency, while SC in sensory-related
networks has an even longer latency following FC changes. Such
temporal differences seen between functionally distinct brain
networks were not detected in comparisons between anatomi-
cally categorised brain areas. Although the current study is
based on a dataset collected from a single participant and thus its
generalisation power is limited, these observations were robust
against multiple within-participant validation tests, and were
preserved even after we used part of the data and adopted a
different definition of connectivity.

We speculate that such differences in the temporal lag of
functional and structural neural plasticity may be relevant to
the cognitive function of each brain network. Shorter FC-SC
time lags seen in the attention-related networks could reflect
quick tuning of attention to the task mix required in the local
environment; longer time lags seen in DMN and FPN may be
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Figure 2. Comparison between functional connectivity (FC) and structural connectivity (SC) increases (a, b) and decreases (c, d).
a. Blue dotted line and blue cross marks represents normalised FC changes, whereas red line and red circles shows SC changes. Each

cross/circle corresponds to each FC/SC recording day. b. * indicates that AT, and AT, , were significantly deviated from zero (P < 0.05

Bonferroni-corrected across the nine networks). 1 denotes significant differences in the time indices between the networks (P < 0.05 Bonferroni-
corrected across 36 possible pairs of the nine networks). Error bars denote s.e.m. ¢ and d. Panels ¢ and d correspond to panels a and b,
respectively. Logistic functions were fitted to connectivity decreases with significant accuracy (adjusted /2 >0.70, P <0.0013, P,

uncorrected — Bonferroni

< 0.05; panel ¢). The two indices to compare FC and SC decreases showed qualitatively the same patterns as those for the connectivity
increases.

consistent with the central role of these networks during rest and ~ the current observations could be interpreted in a context of
tasks, respectively’>, and might be important for keeping our  activity-dependent myelination''**.
behavioural and cognitive consistency. The longest lag of the
sensory-related networks may make sensory processing systems Investigating such temporal gaps between FC and SC changes
more robust to changing and often noisy perceptual stimuli. for inter-network connections will be another interesting research
Such speculation based on this exquisitely detailed observation theme. Proper coordination between different brain networks
dataset can now potentially be tested by directed experimental is critical for human brains to efficiently process a wide range
manipulations of different brain networks. of information and to complete various cognitive tasks?>*,
which implies that different inter-network connections may
Biologically, the SC changes we identified may be related to be associated with different cognitive/perceptual functions.
myelination'”>. The SC changes were accompanied by sig- Considering this implication with the current observations, such
nificant opposite changes in radial diffusivity (F . > 13.6, functional differences could affect plasticity of inter-network
P < 0.0004 in two-way factorial ANOVA; Figure 4e) without connections as well, which can be tested in future studies.
substantial changes in axial diffusivity (F,,,, < 2.8, P > 0.09),
which may indicate myelination changes”’. Although we should It should be noted that the aim of the current study was to
be careful in inferring cellular mechanisms based on MRI data, investigate time lags between FC and SC changes, but not to
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Figure 3. Results of validation analyses. The upper panels (a, b) show results of comparison between functional connectivity (FC) and
structural connectivity (SC) changes (panel a, increases; panel b, decreases) when the dates of the data collection were matched between
FC and SC (see also Supplementary Figure 4, Supplementary File 1). The lower panels (¢, d) show results of the FC-SC comparisons when
SC was defined by a mean fractional anisotropy (FA) value of the traced streamlines (panel ¢, increases; panel d, decreases; see also
Supplementary Figure 5). Both of these two validation analyses yield qualitatively the same results as those seen in Figure 2. *and 1 represent

the same statistical results as in Figure 2. Error bars denote s.e.m.

identify general characteristics of spontaneous connectivity
changes. In fact, the current observations reflect approximately
2.5% of the entire brain connections estimated from the data
(Supplementary Table 1; Supplementary File 1). Therefore,
the current results do not necessarily suggest that such con-
nectivity changes frequently occur even without any specific
cognitive/perceptual training.

Our findings suggest that time lags between functional changes
in brain networks and corresponding anatomical changes can
be observed and reliably characterised; but that such lags
are quite different between brain networks with different
cognitive and perceptual functions. Although the generalisa-
tion power of this study is limited and further investigations
employing independent datasets and experimental manipula-
tions are necessary for validating the findings, this single-case
report implies that plasticity of neural systems could be biased
by functions implemented in the systems.

Methods

Data

The current study analysed open MRI data that were recorded
from a healthy 45-year-old Caucasian male and shared in
OpenfMRI". In particular, we used resting-state fMRI (rsfMRI)
datasets and diffusion-tensor image (DTI) datasets, which
were obtained between 23 October 2012 and 5 March 2013 by
Siemens 3T MRI scanner with a 32-channel head coil in the
University of Texas. The rsfMRI data were acquired on 42

different days in the 19 weeks, whereas the DTI data were
collected on 16 different days in the same period.

According to previous studies using the same dataset'””’, the
Office of Research Support of the scanning site decided that
this data collection did not meet their requirements for human
subject researches and thus approval of the institutional review
board was not necessary.

The rsfMRI data were recorded using multi-band echo-planar
imaging (EPI) sequence (Repetition Time, 1.16ms; Echo time,
30ms; Flip angle, 63°; voxel size, 2.4x2.4x2mm; 68 slices in
the first 14 datasets and 64 in the others; scan time, 10min). The
alteration of the slice number was due to an update of multiband
sequence'®.

For each DTI dataset, two diffusion-weighted imaging (DWI)
scans corresponding to two opposite gradient readout directions
(LR/RL) were obtained with multi-band Stejskal-Tanner EPI
sequence. In each scan, two shells with 30 directions were
recorded (b = 1000 and 2000s/mm?) with four low-b acquisitions
interspersed every 15 frames (1.74x1.74x1.7mm; 72 axial slices;
Repetition time, 5000ms; Echo time, 108ms).

For locational registration of MRI data and anatomical
segmentation of grey matter (GM) regions, we also used a
T1-weighted image obtained with a magnetization-prepared rapid
gradient-echo (MP-RAGE) sequence (0.8x0.8x0.8mm; Echo
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every case (adjusted R2>0.60, P <0.005, Py ... <0.05 panelsaand c). Although the FC-SC time lags significantly deviated from
zero in both temporal indices in all the lobes (t,,=4.5, P =0.003, P, .. . <0.05intwo-tailed Welch’s tests), there was no significant
difference between the lobes (F, ;< 1.4, P> 0.21 for panel b, Fy116 £ 0.76, P 2 0.55 for panel d in one-way factorial analysis of variance
(ANOVA)). * represents P, . < 0.05 in two-tailed Welch’s tests. Error bars indicate standard errors. e. Comparison of radial diffusivity
between the first and last three weeks of the data collection. Radial diffusivity (RD) for each SC was calculated as a mean RD value per the
traced streamlines. RD values were defined by the mean of the second and third largest diffusivity (i.e., (A, + 1,)/2)*’. We then normalised the
RD values by that seen in the first recording day. For SC showing significant increases in the 19 weeks, the normalised RD values significantly
decreased over the period (F, ,,, = 13.6, P = 0.0004 in two-way factorial ANOVA, t > 4.9, P . <0.002, P, . . <0.05in post-hoc two-
sample t-tests in the left). For SC showing significant decreases, the RD values significantly increased (F, ,, = 33.5, P < 10 in two-way
factorial ANOVA, t > 4.4, P <0004, P, . <0.05in post-hoc two-sample t-tests in the right panel). Such significant changes were

not observed in axial diffusivity, which was defined by the largest diffusivity (A,).

time, 2.14ms; Flip angle, 8°) on the first T1-scanning day in the
current time period.

Cortical grey matter parcellation

As preparation for the following constructions of FC and SC
matrices, using a random parcellation algorithm®-", we first
divided cortical GM areas into 991 similar-size contiguous seg-
ments with respecting anatomical landmarks. Such relatively
fine parcellation was adopted, because coarse segmentation is
supposed to be insufficient for reducing self-loop anatomical
connections” and representing detailed functional differences
between brain regions.

Briefly, we first randomly divided a conventional GM parcellation
map (here, automated anatomical labelling (AAL) parcellation)®!

to 1024 segments with similar numbers of continuous voxels.
Using this segmented map as a template, we parcellated the
participant’s  whole-brain GM image, which was constructed
from the T1-weighted image using New Segment Toolbox** and
DARTEL Toolbox* in SPM12. Finally, we excluded subcorti-
cal regions based on the AAL map®, and obtained a cortical
GM parcellation map consisting of 991 similar-size contiguous
areas.

fMRI data preprocessing

The rsfMRI data were preprocessed in line with previous
studies*** using SPM12. After excluding the first five images to
reduce effects of transient processes before the equilibrium of
longitudinal magnetization, the data underwent realignment,
slice-timing correction, and nonlinear normalisation to the
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standard template image (ICBM 152). After regressing out
effects of head motions and signals measured in white matter
and ventricles, we then performed temporal band-pass filtering
(0.01-0.1Hz) with in-house MATLAB scripts, and spatial
smoothing in SPM 12 (Full width at half maximum, 8mm).
Finally, for each of the 991 GM segmentations, we extracted
time series of mean fMRI signals. These procedures were
repeated for all the rsfMRI datasets, three of which were
excluded for the following analyses because of their poor
locational registration (identified by visual inspection) and/or
large head movements (= Smm).

DTI data processing

The DTI datasets were preprocessed using FSL Diffusion Tool-
box (Release 5.0) and MRtrix3 (Version 3.0). First, we applied
topup tool in FSL to the pairs of DWI images with opposite
phase encoding, and corrected susceptibility-induced distor-
tions by combining the pairs of images into a single one®.
Then, eddy currents and movements in the DWI images were
corrected by FSL’s eddy tool**. Next, for the following prob-
abilistic tractography based on 2" order integration over
Fibre Orientation Distributions (iIFOD2) algorithm”, a fibre
Orientation Distribution Function (ODF) was reconstructed
using non-negativity constrained spherical ~deconvolution
technique implemented in dwi2response and dwi2fod tools in
MRtrix3%. Based on the calculated ODF, we performed the
iFOD2-based probabilistic tractography and built a whole-
brain structural connectivity matrix using MRtrix3’s tckgen and
tck2connectome tools. In this tractography, we anatomically
constrained the tracks to begin and terminate within the GM by
specifying GM segments in the above-mentioned brain parcel-
lation mask as seeds. We calculated 107 streamlines between all
the 991 cortical GM segments. These procedures were repeated
for every DTI scanning day.

Network-wise time series analysis

We classified the 991 cortical GM segments into nine large-
scale cortical brain networks (Figure la)***. Technically, each
GM area was given one network label when >50% of the seg-
ment overlaps a specific network area. The network area was
defined as a collection of multiple 6mm-radius spheres around
the network-specific coordinates used in previous studies”*.
GM segments showing no sufficient overlap with any network
were labelled as undefined, and were excluded in the following
analyses.

For each brain network, we repeated the following analysis.

First, for each recording day, we built an FC matrix by
calculating partial correlations between fMRI signals of the GM
segments in the network®*. Partial correlation was adopted as
a measure to estimate FC because connectivity based on the
method is more comparable to anatomical connections than that
based on Pearson correlation”’. We also built an SC matrix by
extracting SC between the target network regions from the
whole-brain SC matrix constructed above. This procedure was
repeated for all the time points.

Wellcome Open Research 2018, 3:50 Last updated: 07 JAN 2020

Second, we searched for region pairs both of whose FC and SC
showed significantly large increases in the 19-week period.
For this purpose, we first normalised the connectivity values
across the scanning period, and set the average at 0.5 and the
standard deviation at 0.5 for all the brain connections. That
is, almost all the connectivity values were included in a range
between 0 and 1. We then calculated connectivity changes as
differences between the mean connectivity in the first three
weeks and that in the last three weeks (Figure 1b). To select top
2.5% connectivity increases, we identified connectivity whose
FC and SC changes were simultaneously included in top
15% increases in each domain. This threshold was set because
15% is approximately a square root of 2.5%.

Mainly due to this normalisation process, connectivity
values of the selected brain connections were highly likely to
show monotonic increases: given that almost all the connectivity
values ranged between O and 1, the first-three-week average of
the selected connections should be around O and the last-three-
week average should be around 1; moreover, considering the
standard deviation was also constrained to be at 0.5, the con-
nectivity values of the rest of the period (4"-16" week) were
unlikely to under/overshoot the O-1 range. Consequently, the
connectivity values of the selected connections tend to show a
roughly monotonic increase and asymptote trend at the end,
which enables us to fit the following logistic functions and
compare temporal changes between functional and anatomical
connections.

Finally, for each connectivity type, we calculated the mean
connectivity across the selected connections, and fitted the
following logistic function to it:

1—c
Connectivity =a/ (1 +e ? j

where ¢ denotes the day passed since the first data collection.
After examining the goodness of fit by calculating adjusted R,
we estimated when the connectivity change reached 10%

(T, = ¢ = 2x(In 3)xb) and 50% (T, = c) of the increases,
and evaluated their differences between FC and SC (AT, =
Tlo%,sc - T]O%,Fc; ATSO% = Tso%,sc - Tso%,Fc)'

The same analysis was performed for brain connections showing
top 2.5% connectivity decreases.

Statistics

Whether the AT indices were deviated from zero across the nine
networks was tested in one-way factorial analysis of variance
(ANOVA) and subsequent two-tailed Welch’s tests. Results of
the Welch’s tests were corrected for multiple comparisons in
Bonferroni manner (o0 = 0.05/[9 network] = 0.0056). Com-
parisons of the two AT indices between the nine networks were
based on Welch’s tests, whose statistical values were also
corrected in Bonferroni manner (o0 = 0.05/[36 possible pairs of
the nine networks] = 0.0014). These statistical analyses were
conducted on MATLAB r2015a (Mathworks, Inc).
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Validation analyses using fractional anisotropy values

To examine the robustness of the current results, the entire
analyses were repeated using fractional anisotropy (FA) values
as SC rather than streamlines. For this purpose, we first obtained
whole-brain FA value map from the preprocessed DTI datasets
using FSL’s dtifit tool. By applying MRtirx3’s tck2connecome
tool to the map, we estimated mean FA values of the traced
streamlines between each pair of the GM segments, and built SC
matrices consisting of the mean FA values. We performed the
same time series analyses comparing these FA-based SC with FC.

Comparison of the FC-SC time lags between different
brain lobes

We examined FC-SC time lags between different brain lobes.
The randomly-segmented 991 cortical grey-matter areas were
classified into one of four brain lobes (frontal, parietal, temporal
and occipital lobes) based on AAL labels originally assigned
to them. Except this difference in segmentation, the analysis
was the same as that performed for the main analysis based on
the nine brain networks. The SC was defined by the number of
streamlines.
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The authors compared functional connectivity (FC) changes with structural connectivity (SC) changes in
nine different networks to test whether FC changes lead to SC changes and whether such time lags
between SC and FC changes are different among different functional networks.

The idea to assume that changes in FC occur in advance of SC and that the time lags between SC and
FC changes vary between different brain networks is interesting but there are some major points
concerning measuring these time lags.

1. Logical link between FC and SC changes. The authors reason that a change in FC will, after
some time lag, lead to a change in SC. However, Figure 1C shows that there is no correlation
between the magnitude of SC change and FC change overall. Even within the 2.5% of chosen
connections (very weak or very strong change in Figure 1C), the correlation seems low. It is
possible that small SC changes lead to large FC changes. Therefore, differences in the normalised
connectivity change between FC and SC might be due to delay but could also be due to a more
complex relationship between FC and SC. This should be considered in the discussion section.

2. Quantifying the number of nodes and connections that are studied. The authors mention
that nodes that had no significant overlap with any of the nine networks were removed: how many
of the 991 nodes were excluded? Also, for supplementary tables 1 and 2, how many connections
were observed in each of the nine networks? This is crucial to assess how many measurements
form the basis for the average values and the standard error of the mean in Figure 2.
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3.

Comparing SC and FC curves to detect time lags. Observing the scatter plot in Fig.2, for all
nine networks, SC changes and FC changes reach their maximum/minimum nearly at the same
time points. The time lags delta T therefore critically depend on the fitting function that is used for
the early change in values. First, it is currently unclear whether the logistic function provides the
best fit compared to alternative functions and this should be tested looking, for example, at the
cumulative log-normal function or others. Especially for SC, the logistic function fits often only relies
on 3 or 4 data points at the early stages. The authors may consider other statistical approaches to
test for time lags. Second, it seems that the time lags are largely due to differences between the
FC and SC values at day 0. If the normalisation procedure would be updated so that the initial
values or set to zero for both FC and SC, would time lags still occur? Third, the shown curves are
average values based on maybe 10-50 connections (see the previous point). How consistent are
the changes over time for the individual connections? That means, do changes correspond to the
average changes that are shown or are the average driven by few outlier connections that show a
much faster or slower increase/decrease than the other connections within a network? For this, it
would be helpful to provide plots in the supplementary material to assess the consistency of
changes for the connections.

. Quantifying change. The authors only show the percentage of SC and FC changes in all figures.

What is the magnitude of SC changes? In general, for a mature adult, the changes of SC would be
expected to be relatively small without explicit training. How do the changes compare to the
magnitude of changes observed in test-retest measurements of SC and FC?

Prediction of SC from previous FC (Supplementary Figures 2 and 3). To prove the existence of
time lag and the efficiency of time lag, it is necessary to compare with the experiments without time
lag (zero weeks difference) for these six networks as a baseline. In addition, it is currently unclear
whether different time lags (3, 4, or 5 weeks) would not give the same or even better prediction
performance. In short, it is currently unclear whether the prediction with a time lag that corresponds
to the lag found through curve fitting gives a better prediction than alternative longer or shorter time
lags.

Besides, some other points need clarification:

1.

The first paragraph in Results states:”... which represents SC more accurately than FC based on
Pearson Correlation”. Does this mean, “... which represents FC more accurately than FC based on
Pearson Correlation™?

The second paragraph in Results states that ”In fact, the selected connections were included in top
2.5% significant increases in each network...”. However, the supplementary tables 1 and 2 show
that the percentage varies between the nine networks with a minimum of 1.6%.

In the third paragraph in Results, authors need to explain more about testing values and the
meaning of subscripts, such as,, ,.

The results of axial diffusivity seem to be lacking in Figure 4e.
The authors firstly normalised the connectivity values and then selected connections. The authors
should state the process of normalisation. Normalised by z-score or by Gaussian distribution? How

many values were below 0 and above 1?

Supplementary Figure 1: What was the average length of un-selected connections? Are selected
connections longer than un-selected ones?
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Thank you for the invitation to comment on this article titled "Comparing the temporal relationship of
structural and functional connectivity changes in different adult human brain networks: a single-case
study".

This is a well considered and insightful case-study into the plasticity of the typical adult human brain
during the absence of any explicit training. The authors show an impressive creativity with the data
analyses applied here. By combining MRI measures of how the brains functional and structural
architectures change over modest timescales (~5 months), the authors were able to provide evidence of
several interesting phenomena within a single subject. First, most connections within the typical adult
human brain are dynamic over short timescales, even in the absence of explicit training (fig1c). Second,
by focusing on those connections whose functional and structural weights both change in the same
direction (both increase or decrease), the authors show that changes in functional connectivity (FC) are
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highly predictive of changes in structural connectivity (SC). Third, changes in FC consistently preceded
changes in SC. Fourth, the lag between changes in the FC being reflected in the SC showed an
interesting non-uniform pattern across the brain that was interpretable. Critically, this pattern was
consistent across both analyses of the increasing or decreasing connectivity weights. Specifically, it
seems that the anatomy of the sensory networks is relatively resilient to modulation in response to
changes in the FC. This was in contrast to the higher order networks that appear to be readily available to
modulate their SC in response to changes in FC.

The article is scientifically sound, however, it may benefit from some minor changes that are described
below. It would be very exciting to replicate the findings from this case-study in future work involving
multiple subjects.

Tractogram Filtering:

At this stage, the only methodological concern | have relates to the extracted measures of structural
connectivity. While the use of metrics that go beyond simplistic tensor-based models is appropriate, raw
streamline counts are known to be susceptible to systematic biases introduced by tractography
algorithms. To get closer to the desired biologically meaningful metric, a final step of tractogram filtering
could be added to your structural connectome pipeline. The developers at mrtrix have provided some
very useful tools (tcksift & tcksfit2 - see attached citations'-?) that filter whole-brain tractograms by
iteratively removing streamlines in order to minimise the difference between a voxels streamline density
and the integrals of its Fibre Orientation Distribution (FOD) function. While the algorithm's cost function
does relate to the global fit, the developers have demonstrated that several of the biases that occur during
streamline propagation are significantly mitigated when filtering is applied. Finally, this approach is
particularly desirable as the filtered streamline counts provide a measure of Apparent Fibre Density
(AFD), a "biologically meaningful" metric that has a strong relationship to the underlying DWI data.

Minor Comments:

- Effect Size

It would be interesting to get a handle on the magnitude/effect size of the changes in the connectivities
focused on. For example, could it be that the sensory networks seem more resilient (exhibit longer time
lags) because larger scale anatomical changes are occurring than in the higher-order networks?

- Interpretation

| am wondering if others would agree with the interpretation that, if the experiment was continued or
repeated then you wouldn't necessarily see those same connections in the top-right and bottom left
segments of fig1c? Presumably, those connections focused on here would not keep increasing or
decreasing as there must be floors and ceilings that determine the possible range of connection
strengths. Instead, the positions of those functional and structural connectivities in figic may be in a
constant degree of flux. If this is the case, it would be very interesting to quantify the probability that
certain connectivities end up in certain segments of fig1c. This could be addressed across subjects in
future work. It would be nice to see the possibility of non-stationarity in this feature set being described in
the discussion.

- Terminology
It may be a good idea to replace the term 'Diffusion Tensor Imaging (DTI)' with 'Diffusion Weighted
Imaging (DWI)' throughout, except for the section of the validation analysis that explicitly uses tensor

Page 14 of 16



Wellcome Open Research Wellcome Open Research 2018, 3:50 Last updated: 07 JAN 2020

metrics. DWI refers to the MR modality, while DTI refers to a model that is often applied to DWI data.

- Spelling / Grammar

The 3rd paragraph of the introduction a sentence reads: "We further hypothesised that the time lags
between FC and SC changes vary between different brain networks with difference cognitive and
perceptual functions.” It may read better like this: "We further hypothesised that the time lags between FC
and SC changes vary between different brain networks with different cognitive and perceptual functions."

- Spelling / Grammar

The 1st paragraph of the results (page 4/10) read: "SC was defined by the number of streamlines traced
in diffusion-tensor imaging (DTI) data...". It may be more accurate to replace the term 'DTI' with either 'the
DWI' or 'the FOD space' as the tensor does not seem to have been used for streamline propagation.

- Structure

It may be sensible to move the analyses of radial and diffusivity out of the discussion and into the
Validation section. These results support your main findings from a different perspective. There you could
unpack your findings by describing the direction of the effects reported in the ANOVA. Critically, you could
then return to this in the discussion and provide some context about the difference between the radial and
axial diffusivity metrics, i.e., Axial=E1, Radial=mean([E2 E3]), and how these are specifically thought to
describe different aspects of myelination. This may be helpful for future readers to contextualise the
results, particularly if they are not familiar with DTI.

- Data availability
Are the DWI data publically available alongside the fMRI data?
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