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a b s t r a c t

Between 2009 and 2017 the share of wind and solar energy sources in the GB electricity generation mix
increased from 2.5% to 17%. Due to the variable nature of these renewable sources, large thermal power
stations designed for constant base-load operation have been required to operate more flexibly to
compensate for fluctuations in renewable generation. This flexible operation results in increased thermal
stress and reduced efficiency causing increased operation, maintenance and fuel costs for these assets. In
this paper we present the results of what is, to the best of our knowledge, the first empirical study on the
impact of renewables generation on startups, ramping and part-loading (collectively, ‘cycling’) of base-
load generators. We develop regression models using half-hourly generation data from 2009 to 2017
that capture the impact of increased renewable penetration while taking into account confounding
factors including seasonality and demand. We find that with 2009-levels of renewable generation,
cycling in 2017 would have been less severe, with 20% fewer startups. We also present estimates for
cycling under National Grid Future Energy Scenarios to 2030 with implications for investment in gen-
eration assets. Additionally, the dataset derived in this research is made available and comprises the first
open-access dataset on cycling.

© 2020 Published by Elsevier Ltd.
1. Introduction

Falling capital costs of renewable generation technologies, as
well as greater acceptance of the threat of climate change, are
leading to an increase in the penetration of variable renewable
energy (VRE) in power systems globally [1]. However, power sys-
tems are comprised of complex interdependencies and VRE has
consequences for existing conventional power plants within the
system. VRE operates at very low marginal cost, displacing con-
ventional power stations in the generation mix when available.
Except by curtailment, VRE cannot be easily controlled, and there is
a requirement for the conventional generation mix to provide the
flexibility required to compensate for the added uncertainty and
variability, ensuring the balance of supply and demand [2].

There is a large body of energy systems modelling research
investigating power systems under high levels of VRE penetration:
for a thorough review, see [3]. However, there is a shortage of data-
driven research into the impacts of VRE on power systems. Top-
Mars).
down empirical research of this kind benefits in that it does not
rely on high-resolution simulation of power systems. In contrast,
bottom-up simulation studies require accurate consideration of
factors such as transmission and generator constraints and complex
power markets to accurately simulate cycling [4,5], which is often
challenging due to computational expense or data unavailability. As
we will show in Section 2, the study of the GB power system (En-
gland, Scotland and Wales) from 2012 to 2020 [6] did not predict
the increases in cycling we observe in the historical data by 2017.
This provides motivation for adopting an empirical approach to
studying the impact of increased VRE penetration on cycling.

In this paper, we present analysis of a novel dataset containing 9
years of half-hourly operational data from the GB power system,
examining the relationship between increased VRE penetration,
which increased from 2.5 to 17% during the period (Fig. 1), and
operational behaviour of conventional generation. In particular we
focus on cycling, which we investigate by considering the number
of startups, severe ramping events and average load factor
(measuring the extent of part-loading). In addition, we calculate
annual capacity factors for each generator.

Estimating the extent of cycling is important for estimating
operating costs of power plants due to the increased O&M costs
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Fig. 1. Annual VRE penetration 2009e2017, rising from 2.5% to 17%. VRE penetration is
calculated using total VRE generation including estimations for unmetered sources.
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[7e9]. Startups frequently cost of the order £10,000 for CCGTs1

while part-loading and ramping also incur increased fuel costs
(due to reduced efficiency) and increased long-term O&M costs
(due to thermal stress), respectively.

The behaviour of power systems at a weekly resolution is highly
variable due to seasonal changes, developments in demand and
changes in the generation mix. In order to understand the rela-
tionship between cycling and VRE penetration at this resolution,
we need to take into account these additional factors. This requires
the development of models which we present in this paper that
capture and quantify the impact of VRE on the power system. We
use regression analysis for better interpretability as opposed to
methods which might provide stronger predictive power. These
models can be incorporated into existing scenario modelling tools
for the GB energy system to more accurately capture the impact of
VRE on cycling. While several studies have investigated VRE and
cycling in simulation [4,5,9e11], to the best of our knowledge this is
the first to use empirical methods.

The main contributions of this work are as follows. First, we
present regression models which describe the impact of variables
in the power system on cycling and which can be used as module
for scenario modelling. We also estimate that the number of
startups per week would have been 20% lower, load factor 10%
higher and severe ramping events per week 6% lower in 2017 had
VRE generation remained at 2009 levels. Second, we use our
models to estimate cycling in National Grid Future Energy Sce-
narios up to 2030, beyond the most recent estimates to 2020 [6].
Our predictions suggest that cycling would become considerably
more severe under all scenarios, with startups per generator
increasing by up to 150%, ramping events per generator by up to
190%, and average load factor decreasing by up to 8%. As a final
contribution, the dataset developed in this research is made
available to the wider research community and is the first of its
kind.

The paper is organised as follows. In the next section, we review
current research into the impact of VRE on power systems. We then
present some exploratory analysis of the data which motivates the
following section outlining our methodology. The fitted regression
models capturing the relationship between the cycling variables
and VRE generation are presented in Section 5.1 and applied to
Future Energy Scenarios in Section 5.2. We discuss our findings in
Section 6 before making some concluding remarks.
1 Estimates from [8]. Median lower bound warm start costs for CCGT plants are
reported as $55 per MW capacity.
2. Literature review

In this section we provide an overview of simulation studies
which have investigated cycling in high-VRE systems. We also
present literature regarding the cycling costs resulting from
increased thermal stress on power stations.

The impact of VRE penetration on power systems has been
assessed from several perspectives including frequency control
[12e15], increased reserve requirements [16e18], transmission
network reinforcement [19,20] and voltage stability [21,22]. Most
relevant to our research are those studies which investigate the
operation of conventional power stations under VRE penetration,
which has generally been assessed by grid simulation using
dispatch models [2,4,5,9e11,23e29]. Simulation studies on cycling
have been conducted on a range of power systems including the
U.S. Western Interconnection [27], European interconnections
[4,28], ERCOT [11], Ireland [10,11,23], GB [2], the Netherlands [24],
Germany [5,9,25], Finland [11,30], Spain [29] and California [26].
The GB power system has been studied in simulation in [6], which
makes predictions for ramping, part-loading and startups to 2020
under four scenarios. To the best of our knowledge, no empirical
studies of base-load cycling under VRE penetration exist in the
literature.

The study of the GB power system between 2012 and 2020, with
VRE penetration rising from 5.6% to between 17 and 21% is
particularly relevant to this research [6]. Startups per generator are
predicted to change by between ±10% under different scenarios
between 2012 and 2020. Changes of approximately ±20% are pre-
dicted for ramping (measured by rate of change in production) and
the proportion of time spent at minimum stable levels (repre-
senting part-loading) for gas power stations is predicted to remain
roughly stable. Direct comparisonwith our analysis of the historical
data in Section 3.2 is difficult due to the different metrics used.
However, we will show that cycling increased on a per-generator
level between 2012 and 2017: startups increased by 17%, ramping
events by 39% and load factor decreased by around 1%.

Cycling operation of power stations is often quantified by the
frequency of startups (when a power station begins generating),
average load factor (the instantaneous output of a power station
divided by its capacity during online hours; thus measuring part-
loading) and ramping requirements (load adjustments required to
meet fluctuations in demand) [10]. Several simulation studies have
considered penetrations up to 40% VRE penetration on different
power systems (Germany [9], Ireland [10], Finland, Ireland and
Texas [11]). They find the total number of startups increases by 3e6
times compared with a scenario with no VRE. For load factor, [10]
reports a decrease of 6% for coal power stations while [11] finds a
decrease of 10e15% over all base-load generators. Ramping,
measured by rate of change in production, is found to increase by
around 50% in [9], while in [10] the number of hours of severe
ramping (defined as a change in load of over 50% in under 1 h) per
year increases sharply from <10 to approximately 30 per CCGT
between 30% and 40% VRE penetration. Other simulation studies at
different penetrations predict total startups to increase: by roughly
double from 10% to 40% penetration for a test system based on the
Spanish grid [29] and by approximately 6 times from 0% to 27% for
Ireland [23].

Transmission constraints have a substantial impact on cycling
operation [4] but may be difficult to include in dispatch models due
to computational budget constraints. More conservative increases
are predicted by those studies which include network constraints
at high resolution as well as developments in the generation mix in
response to rising VRE penetration [4,5]. Startups increase by
4e23% between 2013 and 2020 in simulations of the Central and
Western European interconnection in [4], and by 81% between
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2013 and 2030 in Germany [5]. Few simulations studies have
modelled the transmission network at high resolution due to the
data and computational budget requirements. In addition, other
factors such as multiple complex power markets are not typically
included in simulation studies, but may impact dispatch decisions
and levels of base-load cycling. There is therefore a demand for
greater empirical evidence on the impacts of VRE on power systems
without these reliances.

Costs from cycling derive from thermal stresses causing
increased operation andmaintenance (O&M) costs and higher rates
of forced outage [8,9,31]. Starting up a power station, which can
cause severe stress on physical components, reduces the lifetime of
the plant and results in increased O&M costs over the power sta-
tion’s lifetime. In addition, rated efficiency decreases with load
factor (by around 10e15% from 100 to 40% load for CCGTs [9,32])
and frequent startups causing increased fuel costs. Overall, the in-
direct costs of a CCGT startup outweigh the direct costs of fuel,
emissions and auxiliary services by 8 times [9]. Accounting for in-
direct costs, the cost for starting up a CCGT power station are
estimated between $32e93 per MW capacity in [8]. Due to the
large time delays between cycling and incurred costs resulting from
O&M and forced outages, cycling costs are difficult to measure and
often underestimated [33].

The large number of simulation studies show broad consensus
that VRE penetration causes increased cycling of base-load power
stations. It is also known that increased cycling results in significant
increases in total operating costs of power stations. However, there
is considerable uncertainty regarding the magnitude of the impact
of VRE on cycling, which is dependent on the power system under
consideration. This motivates our study which aims to quantify the
impact of VRE generation on cycling in the GB power system using
an empirical approach. In addition, developing a model for cycling
under VRE penetration would provide a novel alternative to
simulation approaches for estimating cycling in future GB power
systems. While cycling in the GB power system has been forecast to
2020 using a simulation method in [6], the literature lacks up-to-
date estimates for the next decade under different scenarios. The
following section outlines the cycling data derived for this research
and some exploratory analysis.

3. Data & exploratory analysis

Here we describe the primary data used in this research and
definitions of the derived cycling variables. We briefly present
analysis of the cycling data from 2009 to 2017.

3.1. Data

Cycling data was derived for the period 2009e2017 using data
from the Elexon P114 dataset [34] and the National Grid demand
data [35]. The derived dataset has been made available under an
open data license.2 The Elexon data gives half-hourly metered
generation data for all generators connected at the transmission
level as well as some embedded generators such as wind farms and
open-cycle gas turbine (OCGT) plants. 91 wind farms, 70 gas-fired
and 17 coal-fired power stations are recorded in the data. For po-
wer stations with several generating modules, the data records
readings from as many meters: 132 meters from wind farms are
recorded in the data, 122 from gas-fired power stations, and 63
from coal-fired stations. In this research, meter readings were not
aggregated by power station, and henceforth references to gener-
ators and power stations correspond to individual meters.
2 Cycling data is available at: https://doi.org/10.5281/zenodo.3474820.
Fuel type was determined primarily using Elexon’s BM Reports
[36]. There was a small number of unmatched cases which we
determined on an individual basis using a range of online sources.
Due to the considerable developments in the UK electricity gener-
ation mix, several power stations were either commissioned or
decommissioned during the period and are not active throughout
the data. When they are active, these power stations were included
in the calculation of cycling variables.

Base-load power stations were defined as all gas- and coal-fired
power stations with capacities of at least 100 MW. Capacity was
inferred from the highest observed output in a single settlement
period, as this could not be obtained from existing data sources for
all generators. Verifying with known capacities, this was found to
be an accurate estimate for nameplate capacity.

Using the Elexon data, we calculated total startups, total severe
ramping events and average load factor at the daily resolution.
Startups were calculated by counting generator production
changing from < 1 MWh to � 1 MWh (to protect against metering
artefacts) in consecutive settlement periods. We defined severe
ramping events as a change in production of � 25% of a generator’s
maximum output between consecutive settlement periods. Load
factor was defined as the average instantaneous output of a
generator divided by its production during online periods only.
Daily average load factor over the entire base-load generation mix
was then calculated by taking the mean over all generators. Lastly,
we calculated weekly aggregations of these variables to smooth
variation caused by weather, major events and other random ef-
fects. All results presented in this paper are for the weekly aggre-
gations. The variables at the daily resolution are shared in the open
dataset.

We also calculated annual capacity factor for each generator.
Capacity factor was defined as in [10]: the ratio of observed gen-
eration to maximum possible generation over a given period,
assuming complete plant availability with no scheduled mainte-
nance. While load factor represents the extent of part-loading, ca-
pacity factor represents overall generator utilisation.

The number of active base-load generators each year was
calculated as the count of base-load generators (gas and coal-fired
power stations with capacity � 100 MW) with at least one startup.

Total VRE generation was calculated as the sum of unmetered
wind generation, solar generation (estimates from National Grid
demand data) and metered wind generation (from the Elexon
data). Total generation was calculated as the sum of all metered
generation (from the Elexon data) with interconnection imports,
unmetered wind generation and solar generation. VRE penetration
is the ratio of VRE generation to total generation.

3.2. Historical cycling trends

Total weekly startups rose from 160 to 201 between 2009 and
2012, then remained stable until 2015, before decreasing to 173 in
2017. The distribution of cold, warm and hot starts (based on the
length of inactivity prior to startup) remained roughly stable apart
from a small relative increase in cold and hot starts during
2012e2015. The number of weekly startups is highly seasonal,
peaking in winter and dropping considerably in summer.

The average number of severe ramping events per week fluc-
tuated between a minimum of 451 in 2009 and a maximum of 532
in 2016. Like startups, severe ramping events show strong seasonal
trends, being highest inwinter and lowest in summer. Average load
factor of base-load generators decreased steadily over the period,
from 77% in 2009 to 71% in 2017. VRE penetration is weakly
correlated with startups (0.011) and severe ramping events (0.10).
This suggests that links between VRE penetration and startups and
ramping are likely to be masked by other exogenous factors such as
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Fig. 2. Observed average weekly load factor of base-load generators against VRE
penetration. Load factor is negatively correlated (�0.66) with VRE penetration.
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demand. VRE penetration is more strongly correlated with load
factor (�0.66), as shown in Fig. 2.

The number of active base-load generators was highest in
2012 at 115, then decreased steadily to 85 in 2017. This has resulted
in increasing numbers of startups and ramping events per gener-
ator, which were respectively 31% and 38% higher in 2017 than in
2009.
3.3. Distribution of cycling variables

The distributions of annual aggregations of the cycling variables
at the generator level in 2009 and 2017 are shown in Fig. 3. In all
four cases, the distributions show shifts towards stronger cycling of
base-load generators: in general, generators operated at lower ca-
pacity and load factors and experienced more frequent ramping
events and startups.

We used hypothesis tests to determine whether the apparent
increase in cycling severity was statistically significant.
Kolmogorov-Smirnov hypothesis tests on these distributions show
statistically significant differences (with a 5% significance
threshold) in the distributions for all four variables between 2009
and 2017. By comparison, running the same tests for 2009 and 2010,
we could not reject null hypotheses for any of the cycling variables.
We therefore conclude that the data shows a statistically significant
worsening of cycling between 2009 and 2017.
4. Methodology

Having presented some initial observations of the cycling data,
we now describe our methodology for developing the cycling
regression models. As shown in Section 3, weak correlation be-
tween variables did not immediately reveal links between VRE
penetration and cycling, suggesting that other factors such as de-
mand, changes to the generation mix and seasonality effects
needed to be accounted for using a multivariate model. As the aims
of this research were both to quantify the impact of VRE on cycling
and to provide a model for predicting startups in future power
systems, we chose to use multivariate regression as opposed to
alternative methods which may have produced better predictive
power but would lack interpretive value (such as neural networks).
We used combined VRE generation (wind plus solar generation) in
the models as annual solar penetration was <1% until 2014. 459
complete weeks were used to fit the models. We compared models
partly using mean absolute percentage error (MAPE) and root-
mean-square error (RMSE) of predictions for 2017 when trained
on data from 2009 to 2016. The models reported in Section 5 are
trained on the entire period 2009e2017 inclusive. As count data,
startups and severe ramping events were Poisson-distributed and
we used Poisson regression for these models. For load factor, we
used ordinary least squares.

The regression model for the number of weekly startups s was
defined as follows:

lns¼ b0 þ b1xþ b2gþ b3g
2 þ b4nþb5sinð2pqÞ þ b6cosð2pqÞ

where x is total VRE generation (GWh), g is the total generation
from all fuel types (GWh), n is the number of base-load generators,
and q is the year fraction (week index as proportion of the number
of complete weeks in the year). bi are regression coefficients. The
sine and cosine transformations aim to capture the annual cycle
observed in startups. A quadratic relationship was observed be-
tween startups and total generation, so a second-order term was
included for this variable.

For load factor l, the regression model was defined as:

l¼ b0 þ b1xþ b2g þ b3n

For load factor, seasonality trends were found to be well-
described by annual variation in total generation, so we did not
include the year fraction variables. In addition, it was more
appropriate to model a linear relationship between load factor and
total generation.

The model for the number of severe ramping events r was
defined as:

lnr¼ b0 þ b1xþ b2gþ b3g
2 þb4nþb5sinð2pqÞ þ b6cosð2pqÞ

Like for startups, a quadratic relationship was observed between
ramping events and total generation, and seasonality effects were
not captured by variations in demand alone.

5. Results

In this sectionwe present the results of our model estimates and
forecast cycling under Future Energy Scenarios.

5.1. Regression models

Having found significant developments in the cycling variables
and described our methodology, we now present the results of
model estimation using maximum likelihood for startups, load
factor and severe ramping events and discuss model performance.
The models are validated by training on data up to and inclusive of
2016 and testing on 2017 data. The full models are then reported
and we provide two practical interpretations of the coefficients.
First, we report the change in the response variable resulting from
an increase of 50.4 GWh in total weekly VRE generation (chosen as
the total output of a 1 GW generator operating at 30% capacity
factor). Second, we report estimates for the response variables in
2017, had VRE generation remained at 2009 levels, with all other
variables set to 2017 levels (annual averages).

5.1.1. Startups
Observed weekly base-load startups for 2017 and those pre-

dicted using the regression model trained on data from 2009 to
2016. Our predictions closely follow the seasonal cycle and match
the data with a MAPE of 9.7%.

Observed weekly base-load severe ramping events for 2017 and
those predicted using the regression model trained on data from
2009 to 2016. The model achieves a MAPE of 10.2%.

The regression model for weekly startups trained on all data
(2009e2017) is presented in Table 1. When trained on data from



Fig. 3. Probability density functions for capacity factor, average load factor, total severe ramping events and startups for base-load generators comparing 2009 and 2017. The
distributions show shifts towards more severe cycling for all 4 variables.

Table 1
Poisson regression model for weekly startups of base-load generators.

Term Estimate Confidence: 5% Confidence: 95% p-value

Intercept �2.53 �3.31 �1.75 z0
Total VRE generation (GWh) 2.80e-04 2.44e-04 3.16e-04 z0
Total generation (GWh) 1.99e-03 1.76e-03 2.23e-03 z0
Total generation (GWh)2 �1.47e-07 �1.65-07 �1.29e-07 z0
No. base-load generators 9.23e-03 8.19e-03 10.3e-03 z0
sin(year fraction) �11.0e-02 �12.3e-02 �9.71e-02 z0
cos(year fraction) 7.80e-02 5.53e-02 10.1e-02 z0
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2009 to 2016, the model achieves a RMSE of 19.6 startups and a
MAPE of 9.7% when predicting startups in 2017. The predicted and
actual weekly startups are plotted in Fig. 4. With 50.4 GWh of VRE
generation the model predicts a resulting increase in total startups
of 1.4%. If VRE generation had not increased between 2009 and
2017, startups would have fallen to 138 per week in 2017, compared
with 173 observed in the data. The number of startups is lowest in
May and highest in November.
5.1.2. Load factor
We regress load factor against VRE generation, total generation

and number of generators. Though there is a clear seasonal cycle in
load factor (highest in Winter, lowest in Summer), this can be
captured by similar variation in total generation and the seasonal
variables do not improve the model. The full regression model is
presented in Table 2 and has an adjusted R-squared of 0.69. Trained
Fig. 4. Observed weekly base-load startups for 2017 and those predicted using the
regression model trained on data from 2009{2016. Our predictions closely follow the
seasonal cycle and match the data with a MAPE of 9.7%.
on data from 2009 to 2016 and testing on 2017, the model achieves
a RMSE of 0.038 and MAPE of 4.3%. Load factor increases with total
generation, although the magnitude of this effect is around a third
that of VRE generation. Load factor also decreases by 0.13% for each
additional active base-load generator. An additional 50.4 GWh of
VRE generation results in a decrease of 0.46% in average load factor.
With 2009 levels of VRE generation, load factor would have
remained stable at 78% in 2017, compared with the observed
decrease to 71%.
5.1.3. Severe ramping events
The regression model for severe ramping events is presented in

Table 3. Trained on data from 2009 to 2016 and testing on 2017, this
model achieves a RMSE of 55.9 with a MAPE of 10.2% (Fig. 5). Our
model predicts severe ramping events to increase by 0.36% with an
additional 50.4 GWh VRE generation per week. At 2009 levels of
VRE generation, the number of weekly severe ramping events
would have been 484, compared with 516 observed in the data. The
number of severe ramping events is lowest in June and highest in
December.
5.2. Future Energy Scenarios

We used the fitted regression models to predict average load
factor, total weekly startups and severe ramping events from 2018
to 2030 under National Grid’s 2017 Future Energy Scenarios (FES)
[37], which give projections for generation by fuel type. We use the
regressionmodels to estimate cycling under each scenario, all other
factors being equal. Increases in factors including storage, demand-
side response and interconnection are likely to impact the actual
development of cycling but cannot be considered using the
regression models.

VRE penetration and weekly generation in 2030 are highest in
the Two Degrees scenario at 40% and 6.6 TWh. Steady State has the
lowest VRE penetration and total generation (30% and 5.9 TWh).



Table 2
Linear regression model for average weekly load factor of base-load generators.

Term Estimate Confidence: 5% Confidence: 95% p-value

Intercept 0.699 0.664 0.735 z0
Total VRE generation (GWh) �9.15e-05 �10.1e-05 �8.21e-05 z0
Total generation (GWh) 3.39e-05 3.09e-05 3.69e-05 z0
No. base-load generators �1.25e-03 �1.54e-03 0.955e-05 z0

Table 3
Poisson regression model for weekly severe ramping events of base-load generators.

Term Estimate Confidence: 5% Confidence: 95% p-value

Intercept 1.47 1.00 1.93 z0
Total VRE generation (GWh) 7.14e-05 4.99e-05 9.28e-05 z0
Total generation (GWh) 1.42e-03 1.28e-03 1.56e-03 z0
Total generation (GWh)2 �1.02e-07 �1.12e-07 �0.915e-07 z0
No. base-load generators �1.55e-03 �2.17e-03 �0.917e-03 z0
sin(year fraction) �6.21e-02 �6.99e-02 �5.44e-02 z0
cos(year fraction) 0.145 0.131 0.158 z0

Fig. 5. Observed weekly base-load severe ramping events for 2017 and those predicted
using the regres-sion model trained on data from 2009{2016. The model achieves a
MAPE of 10.2%.
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The number of base-load generators in operation was determined
using predicted base-load capacity from the FES, using an average
base-load generator capacity of 455 MW (matching FES capacities
with the number of active generators in the Elexon data for 2016).
The number of baseload generators in 2030 range from 39 (Slow
Progress) to 80 (Steady State). Since the FES data predicts actual
generation before losses, we scaled down the FES predictions by 7%
(based on a comparison with the Elexon data for 2016).

The predictions for all cycling variables including 95% confi-
dence intervals are presented in Fig. 6. The largest increases in
startups are under the Steady State (low prosperity, low green
ambition) and Two Degrees (high prosperity, high green ambition)
scenarios, where startups are predicted to rise to up to 209 and 206
per week, respectively. All scenarios also see a decrease in startups
until around 2022 as demand and base-load capacity decrease,
continuing the trend seen between 2015 and 2017. The lowest in-
crease in startups is for Slow Progress (low prosperity, high green
ambition), where we predict 176 startups per week in 2030.
Compared with a baseline of 173 startups per week (mean for
2017), this represents increases of 1.6e21%. Average load factor
remains stable until 2022, before decreasing at a similar rate in all
scenarios to 63e65%. The number of severe ramping events rises
consistently in all scenarios, by between 6.9% (Steady State) and
35% (Two Degrees).
Fig. 7 shows the development in per-generator startups and
severe ramping events, where the number of active generators is
determined using projected base-load capacities from the FES.
While total startups increase by up to 21%, there is a much larger
increase in startups per generator of between 28 (Steady State) to
150% (Two Degrees) due to declining numbers of base load gener-
ators. Similarly, severe ramping events per generator increase by
between 14 and 190%.

Predicted average load factor, total severe ramping events and
total startups per week under Future Energy Scenarios with 95%
confidence bands. Load factor decreases similarly under all sce-
narios. The number of severe ramping events increases most
severely under the Two Degrees scenario of high VRE penetration
and high demand. Startups decrease in all scenarios before
increasing above 2017 levels. Startups are high in Steady State in
2030 due to a large base-load mix, and in Two Degrees due to high
demand and VRE penetration.

Predicted severe ramping events and startups per generator per
week under Future Energy Scenarios with 95% confidence bands.
Two Degrees and Slow Progress are the highest cycling scenarios
for both per-generator ramping and per-generator startups, as
these scenarios have the smallest base-load mix. Per-generator
increases under the Steady State scenario are comparatively slow,
due to large predicted increases in CCGT capacity.
6. Discussion

Our initial analysis of the data showed that effects of VRE
penetration on cycling were often obscured by other factors. Sec-
tion 3.2 showed that total startups remained largely stable between
2009 and 2017, despite rising VRE penetration. The regression
model in Table 1 explains that total startups were prevented from
increasing due to decreasing demand and fewer base-load gener-
ators in operation (17% fewer in 2017 than 2009) over the period,
which effectively cancelled out the impact of increased renewables.
In addition, heavy cycling of new-build OCGTs after 2015 is likely to
have helped prevent rises in base-load startups. While total cycling
requirements did not change considerably, weekly startups and
severe ramping events per active generator were found to have
increased by 31% and 38% respectively between 2009 and 2017,
exceeding predictions in [6] and indicating the displacement of
individual generators into cycling operation. Combined with the
observed decrease in load factor as well as an increased proportion
of the base-load mix operating at low capacity factors (Fig. 3) these



Fig. 6. Predicted average load factor, total severe ramping events and total startups per week under Future Energy Scenarios with 95% confidence bands. Load factor decreases
similarly under all scenarios. The number of severe ramping events increases most severely under the Two Degrees scenario of high VRE penetration and high demand. Startups
decrease in all scenarios before increasing above 2017 levels. Startups are high in Steady State in 2030 due to a large base-load mix, and in Two Degrees due to high demand and VRE
penetration.

Fig. 7. Predicted severe ramping events and startups per generator per week under Future Energy Scenarios with 95% confidence bands. Two Degrees and Slow Progress are the
highest cycling scenarios for both per-generator ramping and per-generator startups, as these scenarios have the smallest base-load mix. Per-generator increases under the Steady
State scenario are comparatively slow, due to large predicted increases in CCGT capacity.
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findings suggest that generating companies experienced increased
operating costs during this period. At a start cost of 55 $2012 per
MW capacity,3 the observed increase in per-generator startups
between 2009 and 2017 represent an increase in operating costs of
8,300 £2012

4 per week for a typical 500 MW CCGT power station.
Inevitably, a significant proportion of the variance in the cycling

variables could not be captured using the regression models. Fuel
prices, carbon prices, scheduled and forced outages, demand and
VRE forecast deviations and intra-day variations in demand are all
likely to contribute to cycling. For short-term forecasting, these
factors would be necessary for increasing model accuracy and
capturing short-term variation. Our study focuses mainly on long-
term scenario modelling and system-wide cycling at the annual
resolution where variance is lower. Inclusion of variables such as
thosementioned abovewould also limit applications of themodels,
as they are difficult to forecast several years into the future.

Using the regression models, we predicted reference-case
cycling in the GB power system under Future Energy Scenarios. In
comparisonwith the GB predictions for 2020 in [6], our predictions
for the same year are much higher on a per generator level with
increases of between 30e47% and 63e106% for startups and severe
ramping events, respectively. VRE penetration in our Future Energy
Scenarios are slightly higher, at 20e22% compared with 17e21% in
3 Median warm CCGT start costs from [8].
4 Based on a yearly average spot rate of $1 ¼ £0:63 for the year to 31 December

2012 [38].
[6]. Compared with simulation studies considering higher renew-
ables penetrations, we generally predicted less severe cycling. In
[10], the number of severe ramping events and startups per
generator are predicted to increase by 500% and 150% respectively
for penetrations of 20e40%, compared with ranges of 14e190% and
28e150% respectively among scenarios in our study. Total startups
are predicted to roughly double between 2020 and 2030 in Ger-
many in [5], while we predict increases of between 3.6 and 21%
between 2018 and 2030. For load factor, the decreases were similar
to those predicted in simulation studies [10,11].

The empirical, top-down approach adopted in this research does
not allow us to account for the impact of technologies that may
reduce cycling such as storage, demand-side response and inter-
connection, whose prevalence is projected to increase under the
scenarios. As a result, our forecasts can only be seen as reference-
case predictions for each scenario, with all other factors being
equal. Nevertheless, the results do not apparently exhibit a bias
towards strong cycling as compared with the simulation studies.
This may be because our training data includes the period of large
uptake open-cycle gas turbines after 2015, which were observed to
cycle heavily and mitigate base-load cycling.

The projected worsening of cycling would be significant for
generating companies, representing further increases in long term
O&M costs and affecting the investment incentives for conven-
tional generation [39]. The decrease in average load factor trans-
lates to reduced efficiency of base-load power stations that would
impact their operating costs: for CCGTs, a reduction from 70% to
60% load factor results in an efficiency decrease of approximately
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4% [9]. In addition, increased frequencies of startups and severe
ramping events would result in higher operating costs for gener-
ating companies, although the extent of these increases differ
considerably between scenarios. At a start cost of 55 $2012 per MW
capacity our predictions suggest that a typical 500MWCCGT power
station would incur increased operating costs of between 10,000
£2012 (Steady State) and 54,000 £2012 (Two Degrees) per week in
2030 compared with 2017 levels due to increased startups alone.
Base-load generators are likely to rely increasingly on revenue
opportunities from flexibility markets such as the Balancing
Mechanism to supplement lost revenue from lower capacity factors
and higher O&M costs [39]. However, an important limitation of
our research is that we do not capture the large variance in cycling
among individuals in the generation mix. While some base-load
generators are likely to experience very severe cycling behaviour
(such as ‘double two-shifting’ regimes), others will not see such
significant operational changes.

To the best of our knowledge, the models developed in this
research are the first of their kind. As we demonstrated in Section
5.2, they can be applied in scenario modelling to predict cycling
rates without the need for high resolution dispatch models. They
can be used as lightweight extensions to existing energy systems
models to improve estimates for power station operating costs.

In addition, there are many applications of the open-access
dataset which we do not address in this paper but we hope will
be explored by the wider research community. For instance, a
short-term forecasting model at the daily resolution could include
more system variables such as fuel prices, carbon prices and intra-
day variations in demand and could be used to aid system opera-
tion and scheduling. We also see the dataset as having applications
for benchmarking GB dispatch models.

7. Conclusion

This research aimed to investigate empirically the impact of VRE
on the cycling of base-load generation in the GB power system.
Using historical operational data, we developed a novel open-
access dataset on base-load cycling. Analysis of this data found
that total startups remained roughly stable from 2009 to 2017,
although startups per generator increased by 60%. Load factor fell
from 77% to 71%, while severe ramping events fluctuated between
451 and 532 per week.

Our trained regression models demonstrated statistically sig-
nificant links between VRE generation and the cycling variables.
Using these models, we estimated that there would have been 35
fewer base-load startups per week in 2017, had VRE generation
remained at 2009 levels. Likewise, load factor would not have
decreased between 2009 and 2017, and severe ramping events
would have been slightly lower.

The regression models can be applied in scenario modelling
studies which was demonstrated through application to Future
Energy Scenarios up to 2030. We found the number of startups and
severe ramping events to increase by between 1.6e21% and
6.9e35% respectively, while load factor was projected to decrease
from 71% to between 63 and 65%. On a per generator level, the
effects were more severe, with increases of up to 150% and 190% in
the Two Degrees scenario for startups and severe ramping events
respectively, due to fewer active base-load generators in the power
system. For generating companies, this translates to considerable
increases in operating costs during the 2020s.
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