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Abstract

Particle suspensions are present in a wide variety of practical settings. Mod-

elling these numerically is a challenging task that often requires the combina-

tion of multiple methodologies. This paper examines particle transport within

a temperature-dependent viscosity fluid utilising a coupled approach of the lat-

tice Boltzmann method and the discrete element method. This technique takes

advantage of the locality of the lattice Boltzmann method to allow both the

individual particle behaviour to be fully resolved and to permit fine-scale vari-

ation of fluid viscosity throughout the tested domains. It is firstly shown that

a total energy conserving form of the lattice Boltzmann method is needed to

accurately reconstruct the non-linear temperature profiles observed on Couette

flows of fluids with changing viscosity. This model is then coupled to the dis-

crete element method to demonstrate the quantitative and qualitative changes

to particle motion that arise in channel-based geometries in the presence of a

temperature-dependent viscosity fluid exposed to a constant temperature gra-

dient. In particular, it is demonstrated that the particles settled faster in such

and appear less likely to deviate into side channels in the presence of such fluids.

These results demonstrate that temperature-dependent viscosity requires spe-

cial consideration to be simulated correctly and does have quantitative impact
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on particle transport. This impact should be considered in models of fluids of

changing temperature.

Keywords: Particle suspensions, Thermal lattice Boltzmann method, Discrete

element method, Temperature-dependent viscosity

1. Introduction

In many scientific, engineering and industrial settings a working fluid is

subjected to a thermal gradient. Such a gradient can be localised or distributed

over a significant distance and may be the result of intentional heat transfer to

the fluid or a consequence of the operation of other components in the system.5

While all material properties of a fluid exhibit some degree of variation due

to changing temperature, changing viscosity often presents the most obvious

macroscopic examples of this. It is of interest then that in many studies this

temperature-dependent variation is neglected in favour of a constant viscosity

(e.g. [1–3]). While there may be some situations where this is an appropriate10

assumption to make, this is often not the case.

One situation where the influence of fluid viscosity is significant is in particle

suspensions. When used in a practical setting, the motion and transport of

the particles through the system is often the major focus of the application.

Changing viscosity of the fluid phase in these situations consequently alters the15

hydrodynamic forces acting on the particles and, as such, the rate at which

particles settle under gravity or are carried by the flow.

Given the change in material properties can be highly localised, the mod-

elling technique used to capture such behaviour needs to be formulated in a

manner that can accommodate this. The implementation approach of the lat-20

tice Boltzmann method (LBM) provides a local framework for performing such

calculations in an efficient and robust manner. A number of existing studies

use LBM to capture local changes in viscosity associated with non-Newtonian

fluids[4–6]. This indicates that similar strategies could be implemented in situ-

ations where viscosity changes are thermal in origin. The study of temperature-25
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dependent viscosity within an LBM framework has previously been conducted

or discussed in a relatively small number of prior works [7–10]. The current work

seeks to firstly provide a more robust analysis of the performance of LBM models

for calculating problems with temperature-dependent viscosity. Secondly, this

will be extended to the modelling of particle suspensions to further examine30

how such changes impact on the individual and collective motion of particles

within a fluid.

The remainder of this paper is structured as follows. Section 2 describes the

numerical methods used for modelling in this research whilst Section 3 presents

the verification of the model and the investigations conducted with it. The work35

is summarised in Section 4.

2. Details of numerical modelling

To capture the behaviour of particle suspensions with thermal interactions,

this study has developed a coupled approach between the LBM and the dis-

crete element method (DEM). In this approach, a two-population LBM model40

captures the fluid behaviour and the thermal interactions of the entire coupled

system. The DEM is used to compute the physical motion of the solids and

their interactions with the surrounds. When the temperature of a particle is

required, the average temperature of the LBM nodes covered by the particle

can be used to compute this quantity.45

2.1. Fluid model - lattice Boltzmann method

Within the LBM, a discretised distribution function, fi(x, t), is used to rep-

resent the probability of an amount of the considered quantity at a particular

location, x, moving in direction i at a given point in time, t. Evolution of

this population through time occurs through the discrete version of the lattice50

Boltzmann equation,

fi(x + ci∆t, t+ ∆t)− fi(x, t) = Ωi(fi(x, t)), (1)
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where ci represents the velocity vector in direction i and Ωi(fi(x, t)) is the

function representing collision and redistribution of the quantity. The most

common choices of Ωi in the lattice Boltzmann literature are based on the re-

laxation of the fi(x, t) populations towards an equilibrium state, feqi (x, t), using55

single, two or multiple relaxation times [11–15]. The single relaxation time ver-

sion (SRT) is used in this paper due to its straightforward implementation and

minimised number of tunable parameters. In this setting the collision function,

Ωi(fi(x, t)) = −∆t

τf
(fi(x, t)− feqi (x, t)), (2)

is controlled by the relaxation parameter, τf . Under the Chapmann-Enskog

expansion process, τf can be related to the transport coefficient of the quantity

being studied. For hydrodynamics this enables the definition of the fluid kine-

matic viscosity, ν, to be related to the lattice spacing, ∆x, and time step, ∆t,

through,

ν =
1

3

(
τf −

1

2

)
(∆x)2

∆t
. (3)

When solving in lattice units, ∆x and ∆t are respectively set to unity. When

representing a physical quantity, the equilibrium function is often built upon a

velocity-based Taylor expansion of the well known Maxwell distribution. This

form,

feqi (x, t) = wiρ(x, t)

(
1 +

ci · u
C2
s

+
(ci · u)2

C4
s

− |u|
2

C2
s

)
, (4)

contains a weighting constant, wi, that is dependent on the velocity set chosen.

In this work, the conventional D2Q9 and D3Q27 lattices have been used for60

all populations in 2D and 3D studies, respectively. Both of theses cases use

i = 0 to represent the location of interest. The remaining velocity directions

are numbered according to the increasing distance to neighbour nodes on the

conventional, evenly spaced, Cartesian grid of nodes used to represent the simu-

lation domain. Values for wi are also found as a result of the Chapmann-Enskog65

expansion. Using the common D2Q9 LBM lattice, these are 4/9 for i = 0, 1/9

for i = 1, 2, 3, 4 and 1/36 for i = 5, 6, 7, 8 [16]. In a D3Q27 setting, the groups

of lattice directions from the current node use weights of 8/27, 2/27, 1/54 and
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1/216 for each increasingly distant neighbour direction [17]. The lattice speed of

sound, C2
s , is also found to be a value of 1/3 from this process. The u term rep-70

resents the velocity vector at the nodal location of interest. The zeroth moment

of the population, ρ(x, t) =
∑
i fi(x, t), is taken to represent the density of the

distribution functions at x. Higher moments of a population can also represent

physically meaningful macroscopic properties. A typical example of this is when

the LBM is used to solve the Navier-Stokes equations for low Mach number fluid75

flow. Here fi(x, t) is related to mass, the first moment, ρ(x, t)u =
∑
i fi(x, t)ci,

corresponds to momentum and the second moment is related to the viscous

stress tensor Sγδ(x, t) = − (1− 1/(2τf ))
∑
i ciγciδ(fi(x, t)− f

eq
i (x, t)).

2.1.1. Thermal lattice Boltzmann methods

As the energy of a fluid system can be described with a convection-diffusion80

equation, the LBM can again be used to solve this behaviour within a suspen-

sion. The most common approach for doing this is for temperature, T (x, t),

to be the subject of a convection-diffusion equation and the quantity conserved

by the zeroth moment of the LBM population. This is referred to as the pas-

sive scalar approach. The formulation of this model in LBM is very similar to85

that presented for the fluid case. For distinction, the second population will be

referred to as gi(x, t). An SRT scheme is again used for the evolution of the

population,

gi(x + ci∆t, t+ ∆t)− gi(x, t) = −∆t

τg
(gi(x, t)− geqi (x, t)), (5)

with τg being the associated relaxation parameter and
∑
i gi(x, t) = T (x, t).

The equilibrium function is calculated by,90

geqi (x, t) = wiT (x, t)

(
1 +

ci · u
C2
s

+
(ci · u)2

C4
s

− |u|
2

C2
s

)
, (6)

using the velocity calculated from the fluid population. The thermal equilibrium

function uses the same weights as feqi (x, t). The thermal diffusivity of the fluid,
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α, is again related to the lattice spacing and time step through,

α =
1

3

(
τg −

1

2

)
(∆x)2

∆t
. (7)

As acknowledged by He et al. [2], this passive scalar approach is unable to

capture thermally related processes of viscous heating and compression work.

To overcome this, they proposed a model conserving internal energy instead of

temperature. Non-local data requirements in the calculation procedure meant

that this model was not suited to modelling more general flow problems [1]. A95

total energy conserving model was proposed by Guo et al. [8] that was able to

overcome this obstacle.

In this model the quantity conserved by the gi population is total energy,

E(x, t) = cT (x, t) + 0.5|u|2, such that∑
i

gi(x, t) = ρ(x, t)E(x, t)− ∆t

2
u · a. (8)

where c is the heat capacity of the fluid and a is the acceleration vector for any

external forces acting on the system. The only variation to the fi population is

for it to be relaxed by,

fi(x + ci∆t, t+ ∆t)− fi(x, t) = −ωf (fi(x, t)− feqi (x, t)) +
2− ωf

2
∆tFi, (9)

where ωf =
2∆t

2τf + ∆t
and Fi is an external mechanical forcing term computed

by,

Fi(x, t) = wiρ(x, t)

(
ci · a
C2
s

+
(ci · a)(ci · u)

C4
s

− a · u
C2
s

)
. (10)

For the gi(x, t) population, ωg =
2∆t

2τg + ∆t
and the SRT relaxation function

becomes,

gi(x+ci∆t, t+∆t)−gi(x, t) = −ωg(gi(x, t)−geqi (x, t))+
2− ωg

2
∆tqi(x, t)+(ωg−ωf )Zi(x, t)Φi(x, t).

(11)

in which:

Zi(x, t) = ci · u−
|u|2

2
, (12)
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Φi(x, t) = fi(x, t)− feqi (x, t) +
∆tFi(x, t)

2
, (13)

and

qi(x, t) = wi
ρ(x, t)E(x, t)

C2
s

+ fi(x, t)ci · a. (14)

The thermal equilibrium function in the total energy model is expressed as,100

geqi (x, t) = wiρ(x, t)C2
s

[
ci · u
C2
s

+
(ci · u)

2

C4
s

− u2

2C2
s

+
1

2

(
c2
i

C2
s

−N
)]

+E(x, t)feqi (x, t),

(15)

where N is the dimensionality of the lattice being studied.

2.2. Solid model - discrete element method

The discrete element method is an approach for computing the motion of

solids that treats individual components of material as point particles. By com-

bining knowledge of the physical properties of a particle and the forces acting105

upon it, numerical integration of Newton’s second law allows the kinematic

state of the particle to be explicitly updated through time. Due to their geo-

metric simplicity in 3D, spheres (circles in 2D) are the most widely-used particle

representation for individual elements [18]. More complicated bodies can be de-

scribed by bonding a collection of individual particles together. The nature of110

this bond can allow the DEM to model both rigid and deformable bodies [19]. If

a more rigorous implementation of non-spherical particles is desired then similar

principles can be employed with an appropriate contact model [20].

In terms of algorithmic implementation, the DEM can be broken into four

basic steps [18, 21]:115

1. Contact search - Identification of particle pairs that may be in contact.

2. Contact resolution - Computation of the small overlap between particle

pairs identified in the search step.

3. Force resolution - Computation of the forces acting on individual parti-

cles. These may arise from sources including physical contact, electro-120

static/magnetic effects, lubrication and gravitational effects.
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4. Kinematic integration - Numerical integration of Newton’s second law

using the calculated forces and associated torques (defined by particle

geometry) to update the kinematic state of the particle.

In this work, each suspended particle is represented by a single circular or spher-125

ical DEM particle. The forces acting on the particles arise from physical contact,

gravity and hydrodynamics only.

2.2.1. Fluid-Particle Coupling

Coupling the behaviours of the fluid and solid models require two actions

to be undertaken. The position of the particles needs to be transmitted to the130

fluid model such that the relaxation can be appropriately modified as needed.

Additionally, the hydrodynamic forces acting on the particles, as calculated from

the fluid model, needs to be communicated to the solids. Within an LBM-DEM

framework, a number of approaches have been proposed, including models by

Ladd [22, 23], Suzuki and Inamuro [24], and Noble and Torczynksi [25]. Similar135

work has been applied to elliptical particles by Xu et al. [26] and Walayat et al.

[20].

In this work, the partially saturated method (PSM) of Noble and Torczynski

has been used to couple the LBM and DEM components. In this approach, the

relaxation of the fluid LBM population is modified according to,140

fi(x + ci∆t, t+ ∆t)− fi(x, t) = −∆t

τf
[1−B] (fi(x, t)− feqi (x, t)) +BΩsi . (16)

Here B represents the fraction of the unit cell surrounding an LBM node that

is covered by a solid particle, as highlighted in Figure 1, and Ωsi represents a

collision function for interactions between the LBM population and the solid

particles. This work uses the non-equilibrium bounceback approach proposed

by Noble and Torczynksi [25] that utilises the particle velocity, up,145

Ωsi = f−i(x, t)− fi(x, t) + fi
eq(ρ,up)− f−ieq(ρ,u). (17)
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B = ASOLID/∆x
2 = /∆x2

Figure 1: Strategy for calculating the nodal coverage fraction B for use in the PSM method.

Interface nodes for particle boundaries are identified as B ∈ [0, 1]. Note that the solid and

dotted lines in this figure are offset from the lattice grid linking nodes by ∆x/2.

The hydrodynamic force and torque acting on a particle centred at xp can

be, respectively, found by [21],

Ff =
∆x2

∆t

∑
r

Br

(∑
i

Ωsici

)
, (18)

and,

Tf =
∆x2

∆t

∑
r

(x− xp)×Br

(∑
i

Ωsici

)
. (19)

In these expressions, r counts the nodes that map an obstacle to the lattice.

This explicit resolution of forces acting on a particle classifies the current model

as a particle-resolved method under the classification scheme outlined by Xu et

al. [27].150

2.2.2. Calculation of particle coverage

Central to the PSM is computing the quantity, B (see Figure 1). In station-

ary geometries, this is often straightforward and only needs to be performed

during the initialisation of a simulation. For example, it can be achieved through

application of an analytic description of a domain. Transient problems such as155

particle suspensions require this term to be recomputed regularly throughout

a simulation. In 3D, this is most tractable for rigid spheres but can still be a
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time-consuming task. Such approaches for computing this factor include Monte

Carlo approximations, sub-division of lattice cells, edge intersection averaging

or calculation of convex hulls [28]. Recently, Jones and Williams [28] proposed160

a linear approximation technique that significantly outperforms these methods

both in terms of computation time for equivalent accuracy and accuracy for

given computation time. They recognise that when mapping a sphere that is

larger than an LBM cell, the coverage of a majority of cells varies linearly with

the distance to the centre of the sphere. In their method, the coverage of a165

node-centred cell by a sphere, with radius r, is found through,

B = −D̂ + Va −R+ 0.5, (20)

where D̂ is the distance between the node and the surface of the sphere and

R = r/∆x is the sphere radius normalised by the grid spacing. The Va term

is the volume of the sphere contained within the cell. The authors present the

solution to the associated integral as,170

Va =

(
1

12
−R2

)
arctan

(
A

1− 2R2

)
+
A

3
+

(
R2 − 1

12

)
arctan

(
1

2A

)
−4R3

3
arctan

(
1

4RA

)
,

(21)

where A =
√
R2 − 0.5. The value of A is constant for a given particle size and

may be pre-computed prior to a simulation. The authors also give an equivalent

expression for calculating the coverage of circles in 2D simulations. In practice,

suspensions may be studied where multiple particle sizes are present. As such,

when performing a calculation on a particle, Va is not known a priori. From175

analysis of the function for Va over a wide range of R, it was recognised that

Equation 21 could be sufficiently approximated as,

Va ≈ R−K/R. (22)

Here, K is a constant that was taken as 0.084 for 3D and noted to be 0.042 for

the 2D case. In particular, this result is valid for R > 2. This is an acceptable

outcome as larger values for R are needed for correct hydrodynamic behaviour180
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to be computed. This means that the coverage of a cell by a sphere can be

computed solely based on its distance from the centre of any given particle in

the simulation as,

B = −D̂ −K/r + 0.5. (23)

As in the work by Jones and Williams, this value is capped such that B ∈ [0, 1] is

maintained. For the results in the following section, only LBM nodes that were185

centred within a particle had their coverage mapped. This was found to yield

superior results in the tests conducted for the particle resolution of interest.

2.3. Terminal velocity of a single particle between parallel plates

To demonstrate that the hydrodynamics of a particle within a fluid is cor-

rectly captured by a 3D model, the test case of a particle settling between two190

parallel plates was used. In this scenario, a particle was placed in a stationary

fluid between two plates and accelerated from rest by a body force with the ter-

minal velocity of the particle used as an evaluative measure. In the low Reynolds

number regime of Stokes flow (i.e. Re� 1), the velocity of the particle is given

by Wang et al. [29] as,195

Usphere =
F
(
1− 0.625(r/l) + 0.1475(r/l)3 − 0.131(r/l)4 − 0.0644(r/l)5

)
6πρνr

.

(24)

Here, r is the radius of the sphere and l its distance from the nearest wall. F is

the magnitude of the force applied to the particle.

For the test case presented here (see Figure 2), the density of the particle

was taken as ρ = 2,000 kg/m3, and the particle was sized and placed such that

r/l = 0.5. The fluid possessed a kinematic viscosity of ν = 10−6m2/s. A con-200

stant acceleration of a = 0.01 m/s2 was applied to the particle as the driving

force parallel to the plates. This leads to a predicted terminal particle velocity

of approximately Usphere = 3.1 × 10−5m/s and a particle Reynolds number of

about 0.01. Figure 3 shows the absolute relative error of the measured terminal

11



U = 0

U = 0

P
E

R
IO

D
IC

P
E

R
IO

D
IC

x

y

a

r

l

H

L = 4H

Figure 2: Mid-plane view of terminal velocity test used to verify the model’s hydrodynamics.

The model is periodic in the out-of-page direction which also had a total depth of 4H. The

particle of radius r = 0.0001m was placed such that r/l = 0.5, while l = H/4 was used in

testing.

particle velocity. The results converge to this value at approximately order 2.8205

with increasing radial resolution. The convergence of the model being greater

than second order is consistent with previous data presented for this test case

[29, 30]. These authors suggest the approximations inherent in the analytical

solution as a possible cause for this. In the remainder of this work, a resolu-

tion of r/∆x = 6.4 for free moving particles has been chosen as a compromise210

between resolving the hydrodynamics and computational speed. From Figure

3, the absolute relative error of the particle velocity of this case is approxi-

mately 1%. In particular, this highlights that the PSM requires a minimum

resolution of particle radius compared to grid spacing to accurately capture the

hydrodynamics of a sphere moving through a viscous fluid.215

3. Numerical investigation of temperature-dependent flows

The numerical investigations undertaken with this model have been broken

into two parts. The first section verifies the performance of D2Q9 thermal LBM

models against analytical results for temperature-dependent flows. The second

section examines the transport of single and multiple particles through a fluid220

with varying viscosity.
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Figure 3: Convergence of the terminal velocity of a particle moving between parallel plates due

to a constant acceleration. Slopes of first and second order convergence have been included

for reference. The observed convergence order of approximately 2.8 is consistent with that

observed in previous studies [29, 30].

3.1. Model verification

The work of Myers et al. [31] developed analytical expressions for the velocity

and temperature profiles generated for a temperature-dependent viscosity fluid

within a Couette flow experiencing an applied temperature gradient. The layout

of the channel used to compare the model performance against these results is

presented in Figure 4. In these tests, the dynamic viscosity of the fluid is

assumed to vary in an exponential fashion with respect to temperature,

µ = µ0e
−βT , (25)

where µ0 is a reference viscosity and β is a coefficient indicating the degree

of temperature-dependence. This form is chosen as it allows for an analytic

solution. In practice though, this dependence could be implemented with any225

suitable function of temperature. The velocity profile is given in a normalised

13



form by,

U(y) =

√
2eβTm

βBr

{
tanh

[
y

√
A2βBr

2e−βTm
− tanh−1

√
1− e−βTm

]
+
√

1− e−βTm

}
,

(26)

and the normalised (or dimensionless) temperature profile by,

T (y) = Tm +
1

β
ln

{
1− tanh2

[
tanh−1(

√
1− e−βTm)− y

√
A2βBr

2e−βTm

]}
. (27)

The terms Tm and A are found through application of the boundary conditions

at the upper wall (normalised value of y = 1). Typically this requires these230

equations to be solved numerically. Here, the normalised temperature can be

calculated from a physical temperature through,

T =
T physical − T physicalC

T physicalH − T physicalC

, (28)

where T physicalH and T physicalC are, respectively, the reference hot and cold tem-

perature of the system. For physically sensible results, these should be suitable

to the system being considered (e.g. such that the Boussinesq approximation of235

small temperature differences still applies). In the following sections these may

be considered to be T physicalH = 350K and T physicalC = 300K. Additionally, the

non-dimensional Brinkman number of the flow can be defined as,

Br =
µ0U

2
max

k(TH − TC)
, (29)

using k as the thermal conductivity of the fluid, Umax the velocity of the shearing

wall and TH and TC the respective dimensionless temperatures of the moving240

(hot) and stationary (cold) walls. This term relates to the amount of viscous

heat heating generated (e.g. by shearing flow) in the system to that transported

by conduction.

To evaluate the performance of the LBM models a number of test cases

with different values of Br and β, as presented in Table 1, were conducted. The245
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Figure 4: The Couette flow with temperature gradient used to test the numerical model of

temperature-dependent viscosity. The flow is driven by an applied velocity of Umax at the

upper wall whilst the lower wall is held stationary. The upper and lower wall temperatures

are set to TH and TC respectively. The domain is periodic in the x-direction for both hy-

drodynamics and thermodynamics. Bulk fluid begins at rest at TH . Analytical expressions

for the velocity and temperature profiles across the height of the channel were developed by

Myers et al. [31].
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Parameter Br β

Case 1 0.7 1

Case 2 0.7 1.25

Case 3 2 1

Case 4 0.275 1

Case 5 0.7 0.1

Table 1: Parameter values used for the assessing the performance of the LBM models at

capturing temperature-dependent viscosity flow behaviour by comparison to analytic results.

reference lattice viscosity was set at a value of 1/6, with this being set at the cold

(lower) wall. Note that lattice values are calculated by setting ∆x and ∆t = 1.

From a numerical point of view, the local viscosity of the LBM population was

varied using the exponential relationship based on the local LBM temperature

as in Equation 25. This is represented by modifying the local value of τf while250

holding ∆t constant. As an incompressible fluid is being studied, the conversion

between dynamic and kinematic viscosities is valid.

The height of the channels was set to 10∆x for the coarsest grid spacing test.

This was then increased to achieve a medium (20∆x) and fine (40∆x) grid spac-

ing. The fixed temperature and velocity boundary conditions were implemented255

using the non-equilibrium extrapolation method similar to those described in

Guo et al. [8] and Frapolli et al. [32]. Model accuracy was assessed by calculat-

ing an L2 norm of the difference between the LBM and the analytic results. The

results in Table 2 summarise the L2 norm observed at the coarsest grid spacing

and the average order of convergence as the grid spacing was refined. A positive260

value for convergence indicates that the L2 norm decreased with a reduction

in grid spacing. As can be observed in these results, and in Figure 5 for Case

1, the passive scalar model struggled to capture the temperature-dependence

within the Couette flow. The total energy model, however, captured the com-

plex temperature-dependent interactions accurately for a range of parameter265

values. The cause of this is due to the passive scalar model only being able
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Passive Scalar Total Energy

Fluid Temperature Fluid Temperature

Case L2 Order L2 Order L2 Order L2 Order

1 3.1e-3 -0.2 5.5e-2 0.0 2.4e-3 2.0 3.9e-5 1.8

2 3.4e-3 -0.2 4.7e-2 0.0 3.9e-3 2.0 9.0e-5 1.6

3 9.6e-3 -0.1 1.4e-1 0.0 1.5e-3 2.1 2.0e-4 2.2

4 2.1e-3 0.2 2.3e-2 0.0 2.7e-3 2.0 1.4e-5 1.6

5 6.1e-4 0.0 9.1e-2 0.0 1.8e-5 2.0 1.4e-5 2.0

Table 2: L2 norm results for the coarsest grid spacing and the approximate order of conver-

gence for the tested LBM models with temperature-dependent viscosity when compared to

the analytic results. A positive value for convergence indicates that the L2 decreased with a

reduction in grid spacing.

to generate a linear temperature field between points of different temperature.

The consequence is that features that are generated by more complex heating

modes, shear heating for example, are not resolved in this model. This is re-

flected by the convergence data where the temperature population is unchanged270

with decreasing grid spacing. These results indicate that a total energy LBM

model is required to accurately model systems where temperature-dependent

viscosity is being considered. This model was used in the remainder of this

paper when thermal models are discussed.

3.2. Model application - 2D channel flows275

After verifying the ability of the total energy LBM to capture the temperature-

dependent behaviour of the fluid, it was then used to examine particle trans-

port within a channel. This comprised cases containing single and multiple

particles with the same thermal properties as the fluid. This meant that only

the temperature-dependent effects of the fluid from the boundary temperatures280

were impacting the flow.
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Figure 5: An example comparison of the passive scalar (squares) and total energy (circles)

LBM models with the analytic results of Myers et al. [31] for the normalised velocity and

temperature profiles generated within a temperature-dependent Couette flow and applied

temperature gradient.
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Figure 6: To investigate particle motion in a Couette flow with temperature-dependent vis-

cosity, the verification test layout had a single particle placed in the centre of the channel. It

was allowed to move freely with the flow. These tests were conducted with H = 40. Fluid

conditions were initialised as per Figure 4.

3.2.1. Single particle transport

The first test consisted of a single particle located within the centre of chan-

nel experiencing Couette flow. It was constructed in a non-dimensional frame

of reference. As per the verification test, the lower (stationary) wall was main-285

tained at TC = 0 and the upper (moving) wall was held at TH = 1. This particle

was prescribed a diameter of D = H/4, where H is the channel height, and an

initial temperature of 0.5. It started at rest and was allowed to move freely

with the flow. Fluid conditions were initialised as per Figure 4. These tests

were conducted with a channel height of H = 40 and thus a particle diameter290

of 10 lattice spacings. This layout is presented in Figure 6. This simulation

was run for two cases, the first with the LBM viscosity varying exponentially

with local fluid temperature as per the verification tests and the second with

it being held constant at the lower wall value. This compared the impact of

variable and constant viscosity on particle motion. This pair of simulations was295

also repeated with the temperature of the upper and lower boundaries swapped.

This was used to determine whether the temperature effects on viscosity or the

hydrodynamics of the Couette flow field was the primary contributor to particle

motion.
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Over the duration of each of the simulations (tmax = 20,000 steps) the ve-300

locity and vertical displacement of the particle was tracked. The normalised

results of these are presented in Figure 7. Here it can be observed that after

the initial state of rest had been overcome, the particle in the variable viscos-

ity case migrated at a constant rate towards the upper boundary. By the end

of the simulation the particle had moved a distance of 0.17D (approximately305

0.0425H). In comparison, when the viscosity is held constant the particle ef-

fectively remains in the same position in the centre of the channel. On initial

inspection this can be attributed to the thinner (lower viscosity) fluid closer to

the hot wall reducing the stress experienced by the particle on its upper surface

compared to the lower surface. This imbalance causes the observed migration310

of the particle. It can also be noted that due to the relatively minor vertical

motion of the particle in the constant viscosity case that, for the parameters in

use in this study, hydrodynamic effects on particle motion are limited.

A similar argument can be made for the reduced magnitude of particle ve-

locity in the variable viscosity case. In the centre of the channel, the viscosity of315

the fluid surrounding the particle in the variable viscosity case is less than that

experienced with the constant viscosity case (which is taken at the cold lower

wall value). This thinner fluid is unable to accelerate the particle as effectively

and as such it takes longer to achieve a steady-state velocity matching that of

the local flow.320

In the simulations with the temperature conditions swapped (Figure 7), it

can be seen from the vertical motion that the particle has again migrated to-

wards the region of lower viscosity. It can also be noted here that in Figure 7

the constant viscosity results are identical and can be used as a reference. In

the swapped layout, particle migration has occurred at a slower rate than in the325

previous case. The magnitude of particle velocity is also significantly greater

with the temperature boundary conditions swapped.

Both of these observations can be associated with the change in tempera-

ture and velocity profiles that occur due to the temperature boundary conditions

changing in the original Couette flow. This is illustrated in Figure 8. In partic-330
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Figure 7: Comparison of the vertical displacement (normalised by particle diameter) and

velocity magnitude (normalised by wall velocity) of a single particle within a Couette flow

influenced by a temperature gradient. The constant viscosity results (squares) represent a

fluid with no temperature dependence. A temperature-dependent fluid is represented for the

original temperature gradient as depicted in Figure 6 (circles) and when the temperature

boundaries are swapped (diamonds).
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ular, the fluid velocity in the second case is significantly faster over the entire

height of the channel. This observation is due to the higher viscosity fluid being

located at the moving plane of the upper wall. In the first case, the hot and thin

fluid was less capable of transferring shear stress as a result it did not effectively

accelerate the fluid below it. In the second case, the motion of the thick fluid335

by the wall is more readily able to accelerate the adjacent fluid layers and this

continues over the height of the channel. The result is that the particle in the

second case is driven by a higher local fluid velocity than when the viscosity is

held constant, allowing it to achieve a greater overall velocity. The greater mo-

mentum of the particle along the length of the channel may also hinder vertical340

motion contributing to the reduced rate of migration observed in the second

case.

3.3. Model application - 3D channel flows

A 3D version of this model was implemented using the open-source frame-

works of TCLB (LBM, [33]) and ESyS-Particle (DEM, [34]). This framework345

was used to study the transport of particle suspensions of various solid volume

fractions within a fluid with temperature-dependent viscosity.

Channel flows with a number of geometric variations were selected as the

test cases for the developed model as they can be representative of multiple en-

gineering and scientific problems. These can be simplifications of pipe networks350

in industrial processing, hydraulic fractures within oil and gas extraction or

blood vessels in biology. The three cases considered here are a straight channel,

a straight channel with a side channel where fluid and particles can leak from,

and finally a stepped channel. In all three cases, the channel is periodic in the

vertical direction with gravity applied parallel to the periodic axis. Particles355

are continuously injected along the full height of the channel at the inlet of the

domain with a horizontal velocity of Uinject = 0.1m/s and the same initial solid

volume fraction (SVF). Particles are added to the domain when the leading w is

vacant of particles. When dimensionless temperature is applied to wall bound-

aries, it increases linearly between T latticeC = 0 at the inlet to T latticeH = 1 at the360
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Figure 8: Normalised velocity and temperature profiles observed within a Couette flow when

the temperature boundary conditions are swapped (Case 2) from their original configuration

(Case 1).
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outlet along the main channel direction. From a physical perspective, these can

be interpreted based on T physicalH = 350K and T physicalC = 300K. Bulk fluid is

generally initialised at Uinject in the x-direction and at a temperature of T lattice

= 0.5. Uinject/2 was used in the leaking channel as due to there being two exits

for fluid from the domain. Uinject was maintained at the boundary in this case.365

Fluid on the inlet face were always injected at Uinject. In all cases tested here,

the LBM spacing has been set at ∆x = 3.125 × 10−5m with a time step of ∆t =

40 µs, this corresponds to a kinematic viscosity of ν = 4.07 × 10−5m2/s when a

numerical viscosity of 1/6 is used. Unless noted otherwise, the particles used in

these studies have a radius of r = 6.4∆x = 0.0002m (diameter D = 0.0004m).370

The particle injection zone is taken as w = 64∆x = 0.002m. Initial particles

began with a velocity of Uinject in the x-direction and a temperature of T lattice

= 0.5. Particles in the ‘Step’ section of the stepped channel began moving in

the z-direction.

3.3.1. Straight channel375

The model domain to investigate the effects of temperature-dependent vis-

cosity on the settling behaviour of particles within a straight channel is presented

in Figure 9. The fluid entered with fixed velocity and exited with a constant

pressure boundary condition implemented using the well known Zou-He method

[35]. This model was run for a total of 250,000 steps.380

To compare the settling behaviour of the two cases, the particle velocities

averaged along the length of the channel were computed. These results af-

ter 125,000 and 250,000 steps are presented in Figure 10. Firstly, it can be

noted that the velocity along the length of the channel (x-direction) is essen-

tially unchanged by the introduction of temperature-dependent viscosity. The385

magnitude of this is tending around the injection viscosity as expected from

mass conservation. An equilibrium state for this appears to have been reached

after 250,000 steps. The variation between the data points is dependent on

how many particles were located around that position at the time of interest.

The most interesting measure, though, is the vertical (y-direction) velocity. In390
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Figure 9: Layout of settling within a straight channel geometry. The entire model has a

thickness of w. The model is initially filled with particles of diameter D = 0.2w, these are

continuously injected with the inlet velocity into the leading w of the domain. The upper and

lower boundaries in the y direction are periodic.

the absence of changing viscosity, this slowly increases along the length of the

channel due to the action of gravity. When a temperature-dependent viscosity

is introduced, the magnitude of the settling velocity increases by a factor of

approximately three. Similar trends were observed throughout the simulation,

rather than just the example times given here. The distribution of particles395

and their velocities after 250,000 steps is presented in Figure 11. In particular,

the increase in settling velocity can be noted in this figure. Similar trends of

behaviour can be observed when a higher initial SVF (33% compared to 8%)

of particles was inserted into the channel geometry (Figure 12). In this case,

the magnitude of increase in vertical velocity is about a factor of two by the400

end of the channel. However, the increased number of collisions between parti-

cles around the entrance to the channel would be suggested as the reason why

particles have not reached an equilibrium velocity at the entrance after 250,000

steps. The distribution of particles and their velocities after 250,000 steps is il-

lustrated more graphically in Figure 13. Again, the increase in settling velocity405

can be noted here.
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Figure 10: Velocity of the particles in the x- and y-directions averaged along the length of

the straight channel (8% initial SVF) recorded at 125,000 and 250,000 steps. The isothermal

plots have constant viscosity whilst the thermal results have temperature-dependent viscosity.

The line represents a least-squares fit to the data points.
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Figure 11: Comparison of the particle position and velocity vectors of the particles in a straight

channel under both temperature conditions (8% initial SVF) recorded at 250,000 steps.

The isothermal plots have constant viscosity whilst the thermal results have temperature-

dependent viscosity. The increase in settling velocity can be noted in the Thermal case.
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Figure 12: Velocity of the particles in the x- and y-directions averaged along the length of

the straight channel filled with a 33% initial SVF of particles. Data here is recorded after

125,000 and 250,000 steps. The isothermal plots have constant viscosity whilst the thermal

results have temperature-dependent viscosity. The line represents a least-squares fit to the

data points.
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Figure 13: Comparison of the particle position and velocity vectors of the particles under

both temperature conditions (33% initial SVF) recorded at 250,000 steps. The isothermal

plots have constant viscosity whilst the thermal results have temperature-dependent viscosity.

The increase in settling velocity can be noted in the Thermal case.
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Figure 14: Layout for flow through a leaking channel geometry. Each flow channel has a

thickness of w. The model is initially filled with particles of diameter D = 0.2w, these are

continuously injected with the inlet velocity into the leading w of the domain. The upper and

lower boundaries in the y-direction (out-of-page) are periodic. The width and flow rates of

the leak and main channel are adapted to investigate their impact on flow. The blue section

represents the ‘Entering’ section, green the ‘Leaking’ and red the ‘Continuing’ sections used

for counting particles.

3.3.2. Leaking channel

The study of a leaking channel, as described in Figure 14, involved narrowing

the leaking pathway such that its width was reduced to 2.5D and 1.25D with

pressure boundaries at the exits. All tests were performed for 100,000 time410

steps. The initial SVF of these cases was approximately 26%.

As part of the analysis of both these cases, three key regions of the channel

domain were identified. The ‘Entering’ section is the region of length w imme-

diately prior to the beginning of the leak channel, the ‘Leaking’ section is the

entire volume of the side channel and the ‘Continuing’ section is the region of415

length w immediately after the leak channel. The cumulative total of particles

moving through the domain was recorded to infer the passage of particles in a

simulation.

When a changing channel width was implemented to regulate flow through

the leaking channel, variation was observed between the isothermal and thermal420

results. These can be observed in Figures 15, 16, 17 and 18. In Figure 15, it

can be readily observed that the restriction of flow caused by the narrowed leak
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channel has made the main channel the strongly preferred path for the flow of

particles. In the case of the width being 1.25D, the ‘Continuing’ region has

slightly more particles than the ‘Entering’ region due to the simulation being425

initialised fully packed with particles. A number of these will begin between

these to regions and contribute to the ‘Continuing’ count and not the ‘Entering’

one. The greater rate of leaking in the case of the wider channel overcame this

in that case. Halving the channel width led to a proportionally greater drop

in particles being extracted on the leaking pathway. In the wider channel the430

simulation concluded with over 200 particles travelling through this region, this

reduced to less than 50 particles in the narrower channel. In Figure 16, the

effect of the thermal model can be seen on the difference in leaking rate be-

tween the two channels. In both cases, the presence of temperature-dependent

viscosity corresponds to a significant reduction in the number of particles trav-435

elling along the leaking channel. In the wider channel, the observed reduction

is approximately 10% by the end of the simulation, whereas a 22% reduction is

noted in the narrow channel. A possible explanation for this is that the reduced

viscosity of the fluid, and corresponding reduced drag on the particle, makes

it more difficult for a particle to change direction and travel along a narrow440

leaking pathway. The velocity vector plots in Figures 17 and 18 highlight that

only the particles very close to the leak channel are fed into the channel. It also

appears that those particles in the leaking channel during the thermal case may

have a reduced velocity compared to their isothermal counterparts. This would

further reduce the flow rate of particles moving through the channel in this case.445

The case of the narrow leaking channel was repeated with the radius of parti-

cles halved, as a result the particles are of the same proportion compared to the

wider leaking channel. This change caused the initial SVF to increase slightly to

approximately 31%. The lattice spacing again remained the same as in the orig-

inal case. It can be observed that the smaller particles have a reduced tendency450

to be extracted away from the main channel through examination of Figures 19

and 20. As for the larger particles, the presence of temperature-dependent vis-

cosity reduces the number of particles travelling along the ‘Leaking’ path. The
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reduction is about 10%, similar to that seen in the wider channel for the larger

particles. In Figure 21, it can be noted that the Poiseuille profile formed by455

the fluid dominates the distribution of particles through the channel. Particles

become distributed along the walls in both temperature cases and this serves to

delay injection of further particles.

None of the leaking channel cases presented here indicated the likelihood of

forming a blockage due to a bridge forming across the mouth of the channel.460

This may be due to the flow rate through the main channel being too large

or quantity of particles injected being too low for this to occur in a stable

fashion. A second possibility is that the larger 3D height of the domains tested

here meant that any such blockages were not able to fully seal off the leaking

pathway. In 2D, or very low thickness 3D simulations, such behaviour may465

occur more readily.

3.3.3. Stepped channel

The final case study presented here examines the flow of particles with

distributed size flowing through the domain outlined in Figure 22. Cases of

low (26%) and high (46%) initial SVF of particles with a range of diameters470

(D ∈ [0.2w, 0.4w] = [0.0004m, 0.0008m]) were examined to investigate the

changes in flow produced by this change. A pressure exit condition was used

at the outlet of the domain. As for the leaking channel test, three regions can

be identified: ‘Entering’ section is the region prior to the beginning of direc-

tion change, ‘Step’ section is the entire width of the domain where the direction475

change occurs and the ‘Continuing’ section is the region beyond the step change.

Again, these were run for 100,000 steps. The significant direction change ex-

perienced by particles in this domain was observed to lead to increased overlap

between particles and walls that was not observed in the previous test cases.

To alleviate this overlap, the contact stiffness between both particles and walls480

was increased by a factor of 10, which still allowed stable DEM contact.

During these simulations, it was observed that the number of particles in

the ‘Entering’ region of the stepped channel was less smooth in its evolution
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(b) Leak channel width = 1.25D

Figure 15: Cumulative totals of particles moving through the three characteristic sections of

the channel over the duration of simulations with differing leak widths.
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(b) Leak channel width = 1.25D

Figure 16: Comparison of cumulative totals of particles in each of the three flow cases over

the duration of simulations with differing leak channel widths. For each temperature case the

differing behaviour in each of the characteristic regions can be observed.

34



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

·10−2

0

1

2

3

4

5
·10−3

x (m)

z
(m

)

Isothermal-location
Isothermal-velocity

(a) Isothermal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

·10−2

0

1

2

3

4

5
·10−3

x (m)

z
(m

)

Thermal-location
Thermal-velocity

(b) Thermal

Figure 17: Comparison of the particle position and velocity vectors after the 100,000 time

steps for each temperature case and leak channel width of 2.5D.
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Figure 18: Comparison of the particle position and velocity vectors after the 100,000 time

steps for each temperature case and leak channel width of 1.25D.
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Figure 19: Cumulative totals of particles moving through the three characteristic sections

of the channel over the duration of simulations for the narrow leaking channel with smaller

particles.
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Figure 20: Comparison of cumulative totals of particles in each of the three flow cases over

the duration of simulations for the narrow leaking channel with smaller particles. For each

temperature case the differing behaviour in each of the characteristic regions can be observed.
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Figure 21: Comparison of the particle position and velocity vectors after the 100,000 time

steps for each temperature case for the narrow leaking channel with smaller particles. Only

isothermal results are shown here. The dominating Poiseuille profile causes particles to remain

trapped on the edges of the domain, this serves to delay further injection of particles.
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Figure 22: Layout for flow through a stepped channel geometry. The flow channel has a

thickness of w. The model is initially filled with particles with diameters distributed in the

range D ∈ [0.2w, 0.4w], these are continuously injected with the inlet velocity into the leading

w of the domain. The upper and lower boundaries in the y direction are periodic. The blue,

green and red regions represent the ‘Entering’, ‘Step’ and ‘Continuing’ regions respectively

for counting particles.
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than compared to the other two regions. This is a consequence of the injection

of particles not happening consistently through the simulation. Instead, the485

algorithm waits until the injection area is clear of previous particles before a

new batch is inserted into the flow. Due to the nature of Poiseuille flow, it

was observed that smaller particles would occasionally be caught in an area of

low-speed flow near the walls, delaying further injection of particles. The more

consistent gradient of the plots in the high SVF case suggests that the greater490

bulk of particles in this case is better able to overcome any potential blockages

or entrainment of particles caused by the change in direction within the domain.

This behaviour is made clear in the velocity vector plots in Figure 23. In the

low SVF case, the transition of particle direction through the direction change

is much smoother than seen in the high SVF case. This allows for pockets of495

the channel (e.g. near (x, y) = (0.006m, 0.000m) and (0.004m, 0.004m)) to be

empty of particles as they follow the natural fluid flow path through the domain.

In the high SVF case, particles in these regions can be observed to collide with

and follow the wall as they move through the ‘Step’ region. In both cases, a

much greater velocity magnitude can be observed in particles moving through500

the constriction provided by the neck of the step change.

4. Summary

This paper has focussed on the modelling of particle suspension flows within

a fluid with temperature-dependent viscosity using a coupled LBM-DEM frame-

work. It was firstly demonstrated that, in order to correctly capture the fun-505

damental behaviour of such fluids, a total energy formulation of the thermal

LBM is required. The commonly used passive scalar approach is unable to re-

solve non-linear temperature profiles generated due to temperature-dependent

viscosity. The developed model is extended to 3D and applied to numerous ex-

amples of channel flow. The case studies presented illustrate how a temperature-510

dependent viscosity fluid can generate quantitative differences in the transport

of particles through a domain. In many practical applications, the efficient
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Figure 23: Comparison of the particle position and velocity vectors after the 100,000 time

steps for each temperature case and each initial SVF in the stepped domain.

40



transport of particles by the fluid is key to system performance. If the phenom-

ena highlighted in these studies (e.g. increased settling velocity and reduced

leak-off behaviour) are not properly considered by operators than inefficient or515

indeed ineffective operation may result.

The model presented in this paper still contains a number of areas where it

can be improved as part of continued work. In particular, to allow for the study

of larger sets of particles the coupling of the TCLB and ESyS-Particle codes can

be made more computationally efficient. The introduction of lubrication force520

interactions between particles would also provide a more physically realistic

representation of particle transport both within confined channels and in dense

flows. Similarly, the expansion of this work to non-spherical particles would

allow the model to be applied in a wider variety of scientific and industrial

scenarios. This study has been entirely numerical, experimental study of some525

of the cases presented in Section 3.3 would provide additional strength to the

results presented in this work.

All fluids possess temperature-dependent viscosity. This study has demon-

strated that neglecting the effect of this can lead to quantitative changes in the

behaviour of the fluid and particles transported within in. We have also demon-530

strated that modelling this behaviour accurately requires specific considerations

to be made. Overlooking this behaviour can generate inefficiencies in practical

applications in a number of engineering and scientific fields such as oil and gas

production, chemical processing and cooling systems.

Acknowledgements535

Support of this work through the Australian Government Research Training

Program Scholarship, the UQ School of Mechanical and Mining Engineering, the

UQ Graduate School International Travel Award and the Australian Petroleum

Production and Exploration Association (K.A. Richards Scholarship) are all

gratefully acknowledged by the authors. The iRMB group at Technische Uni-540

versität Braunschweig are also sincerely thanked for hosting JM in the process

41



of completing this research. This work was supported by resources provided

by The Pawsey Supercomputing Centre with funding from the Australian Gov-

ernment and the Government of Western Australia. We thank the anonymous

reviewers for their comments and suggestions for improving this manuscript.545

References

[1] I. V. Karlin, D. Sichau, S. S. Chikatamarla, Consistent two-population

lattice Boltzmann model for thermal flows, Physical Review E 88 (2013)

063310. doi:10.1103/PhysRevE.88.063310.

URL http://link.aps.org/doi/10.1103/PhysRevE.88.063310550

[2] X. He, S. Chen, G. D. Doolen, A novel thermal model for the

lattice Boltzmann method in incompressible limit, Journal of

Computational Physics 146 (1) (1998) 282 – 300. doi:http:

//dx.doi.org/10.1006/jcph.1998.6057.

URL http://www.sciencedirect.com/science/article/pii/555

S0021999198960570

[3] P. Lallemand, L.-S. Luo, Hybrid finite-difference thermal lattice Boltz-

mann equation, International Journal of Modern Physics B 17 (1-2) (2003)

41–47. arXiv:http://www.worldscientific.com/doi/pdf/10.1142/

S0217979203017060, doi:10.1142/S0217979203017060.560

URL http://www.worldscientific.com/doi/abs/10.1142/

S0217979203017060

[4] A. Vikhansky, Construction of lattice-Boltzmann schemes for non-

Newtonian and two-phase flows, The Canadian Journal of Chemical Engi-

neering 90 (5) (2012) 1081–1091. doi:10.1002/cjce.21664.565

URL http://dx.doi.org/10.1002/cjce.21664

[5] C. Leonardi, D. Owen, Y. Feng, Numerical rheometry of bulk ma-

terials using a power law fluid and the lattice Boltzmann method,

Journal of Non-Newtonian Fluid Mechanics 166 (12) (2011) 628 – 638.

42

http://link.aps.org/doi/10.1103/PhysRevE.88.063310
http://link.aps.org/doi/10.1103/PhysRevE.88.063310
http://link.aps.org/doi/10.1103/PhysRevE.88.063310
https://doi.org/10.1103/PhysRevE.88.063310
http://link.aps.org/doi/10.1103/PhysRevE.88.063310
http://www.sciencedirect.com/science/article/pii/S0021999198960570
http://www.sciencedirect.com/science/article/pii/S0021999198960570
http://www.sciencedirect.com/science/article/pii/S0021999198960570
https://doi.org/http://dx.doi.org/10.1006/jcph.1998.6057
https://doi.org/http://dx.doi.org/10.1006/jcph.1998.6057
https://doi.org/http://dx.doi.org/10.1006/jcph.1998.6057
http://www.sciencedirect.com/science/article/pii/S0021999198960570
http://www.sciencedirect.com/science/article/pii/S0021999198960570
http://www.sciencedirect.com/science/article/pii/S0021999198960570
http://www.worldscientific.com/doi/abs/10.1142/S0217979203017060
http://www.worldscientific.com/doi/abs/10.1142/S0217979203017060
http://www.worldscientific.com/doi/abs/10.1142/S0217979203017060
http://arxiv.org/abs/http://www.worldscientific.com/doi/pdf/10.1142/S0217979203017060
http://arxiv.org/abs/http://www.worldscientific.com/doi/pdf/10.1142/S0217979203017060
http://arxiv.org/abs/http://www.worldscientific.com/doi/pdf/10.1142/S0217979203017060
https://doi.org/10.1142/S0217979203017060
http://www.worldscientific.com/doi/abs/10.1142/S0217979203017060
http://www.worldscientific.com/doi/abs/10.1142/S0217979203017060
http://www.worldscientific.com/doi/abs/10.1142/S0217979203017060
http://dx.doi.org/10.1002/cjce.21664
http://dx.doi.org/10.1002/cjce.21664
http://dx.doi.org/10.1002/cjce.21664
https://doi.org/10.1002/cjce.21664
http://dx.doi.org/10.1002/cjce.21664
http://www.sciencedirect.com/science/article/pii/S0377025711000772
http://www.sciencedirect.com/science/article/pii/S0377025711000772
http://www.sciencedirect.com/science/article/pii/S0377025711000772


doi:https://doi.org/10.1016/j.jnnfm.2011.02.011.570

URL http://www.sciencedirect.com/science/article/pii/

S0377025711000772

[6] S. Gabbanelli, G. Drazer, J. Koplik, Lattice Boltzmann method for non-

newtonian (power-law) fluids, Physical Review E 72 (2005) 046312. doi:

10.1103/PhysRevE.72.046312.575

URL https://link.aps.org/doi/10.1103/PhysRevE.72.046312

[7] Z. Guo, T. Zhao, Lattice Boltzmann simulation of natural convection with

temperature-dependent viscosity in a porous cavity, Progress in Computa-

tional Fluid Dynamics 5 (1/2) (2005).

[8] Z. Guo, C. Zheng, B. Shi, T. S. Zhao, Thermal lattice Boltzmann equa-580

tion for low Mach number flows: Decoupling model, Physical Review E 75

(2007) 036704. doi:10.1103/PhysRevE.75.036704.

URL http://link.aps.org/doi/10.1103/PhysRevE.75.036704

[9] X.-R. Zhang, Y. Cao, A lattice Boltzmann model for natural con-

vection with a large temperature difference, Progress in Computa-585

tional Fluid Dynamics, an International Journal 11 (5) (2011) 269–

278. arXiv:https://www.inderscienceonline.com/doi/pdf/10.1504/

PCFD.2011.042179, doi:10.1504/PCFD.2011.042179.

URL https://www.inderscienceonline.com/doi/abs/10.1504/PCFD.

2011.042179590

[10] Y. Cao, Variable property-based lattice Boltzmann flux solver

for thermal flows in the low Mach number limit, International

Journal of Heat and Mass Transfer 103 (2016) 254 – 264.

doi:https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.052.

URL http://www.sciencedirect.com/science/article/pii/595

S0017931016312078

[11] P. L. Bhatnagar, E. P. Gross, M. Krook, A model for collision processes in

gases. I. Small amplitude processes in charged and neutral one-component

43

https://doi.org/https://doi.org/10.1016/j.jnnfm.2011.02.011
http://www.sciencedirect.com/science/article/pii/S0377025711000772
http://www.sciencedirect.com/science/article/pii/S0377025711000772
http://www.sciencedirect.com/science/article/pii/S0377025711000772
https://link.aps.org/doi/10.1103/PhysRevE.72.046312
https://link.aps.org/doi/10.1103/PhysRevE.72.046312
https://link.aps.org/doi/10.1103/PhysRevE.72.046312
https://doi.org/10.1103/PhysRevE.72.046312
https://doi.org/10.1103/PhysRevE.72.046312
https://doi.org/10.1103/PhysRevE.72.046312
https://link.aps.org/doi/10.1103/PhysRevE.72.046312
http://link.aps.org/doi/10.1103/PhysRevE.75.036704
http://link.aps.org/doi/10.1103/PhysRevE.75.036704
http://link.aps.org/doi/10.1103/PhysRevE.75.036704
https://doi.org/10.1103/PhysRevE.75.036704
http://link.aps.org/doi/10.1103/PhysRevE.75.036704
https://www.inderscienceonline.com/doi/abs/10.1504/PCFD.2011.042179
https://www.inderscienceonline.com/doi/abs/10.1504/PCFD.2011.042179
https://www.inderscienceonline.com/doi/abs/10.1504/PCFD.2011.042179
http://arxiv.org/abs/https://www.inderscienceonline.com/doi/pdf/10.1504/PCFD.2011.042179
http://arxiv.org/abs/https://www.inderscienceonline.com/doi/pdf/10.1504/PCFD.2011.042179
http://arxiv.org/abs/https://www.inderscienceonline.com/doi/pdf/10.1504/PCFD.2011.042179
https://doi.org/10.1504/PCFD.2011.042179
https://www.inderscienceonline.com/doi/abs/10.1504/PCFD.2011.042179
https://www.inderscienceonline.com/doi/abs/10.1504/PCFD.2011.042179
https://www.inderscienceonline.com/doi/abs/10.1504/PCFD.2011.042179
http://www.sciencedirect.com/science/article/pii/S0017931016312078
http://www.sciencedirect.com/science/article/pii/S0017931016312078
http://www.sciencedirect.com/science/article/pii/S0017931016312078
https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.052
http://www.sciencedirect.com/science/article/pii/S0017931016312078
http://www.sciencedirect.com/science/article/pii/S0017931016312078
http://www.sciencedirect.com/science/article/pii/S0017931016312078
http://link.aps.org/doi/10.1103/PhysRev.94.511
http://link.aps.org/doi/10.1103/PhysRev.94.511
http://link.aps.org/doi/10.1103/PhysRev.94.511
http://link.aps.org/doi/10.1103/PhysRev.94.511
http://link.aps.org/doi/10.1103/PhysRev.94.511


systems, Physical Review 94 (1954) 511–525. doi:10.1103/PhysRev.94.

511.600

URL http://link.aps.org/doi/10.1103/PhysRev.94.511

[12] G. McNamara, A. Garcia, B. Alder, Stabilization of thermal lattice Boltz-

mann models, Journal of Statistical Physics 81 (1-2) (1995) 395–408.

doi:10.1007/BF02179986.

URL http://dx.doi.org/10.1007/BF02179986605

[13] C. Levermore, Moment closure hierarchies for kinetic theories, Journal of

Statistical Physics 83 (5-6) (1996) 1021–1065. doi:10.1007/BF02179552.

URL http://dx.doi.org/10.1007/BF02179552

[14] D. d’Humieres, Generalized lattice Boltzmann equations, in: B. Shizgal,

D. Weaver (Eds.), Rarefied gas dynamics: theory and simulations, Vol. 159610

of Progress in Astronautics and Aeronautics, AIAA, 1992, pp. 450–458.

[15] D. d’Humieres, I. Ginzburg, M. Krafczyk, P. Lallemand, L. Luo, Multiple-

relaxation-time lattice Boltzmann models in three dimensions, Philosophi-

cal Transactions of the Royal Society of London A: Mathematical, Physical

and Engineering Sciences 360 (1792) (2002) 437–451. doi:10.1098/rsta.615

2001.0955.

[16] Y. H. Qian, D. D’Humieres, P. Lallemand, Lattice BGK models for Navier-

Stokes equation, Europhysics Letters 17 (6) (1992) 479.

URL http://stacks.iop.org/0295-5075/17/i=6/a=001

[17] T. Kruger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, E. Viggen,620

The Lattice Boltzmann Method: Principles and Practice, Springer, 2017.

doi:10.1007/978-3-319-44649-3.

[18] J. Williams, R. O’Connor, Discrete element simulation and the contact

problem, Archives of Computational Methods in Engineering 6 (4) (1999)

279–304. doi:10.1007/BF02818917.625

URL http://dx.doi.org/10.1007/BF02818917

44

http://link.aps.org/doi/10.1103/PhysRev.94.511
http://link.aps.org/doi/10.1103/PhysRev.94.511
https://doi.org/10.1103/PhysRev.94.511
https://doi.org/10.1103/PhysRev.94.511
https://doi.org/10.1103/PhysRev.94.511
http://link.aps.org/doi/10.1103/PhysRev.94.511
http://dx.doi.org/10.1007/BF02179986
http://dx.doi.org/10.1007/BF02179986
http://dx.doi.org/10.1007/BF02179986
https://doi.org/10.1007/BF02179986
http://dx.doi.org/10.1007/BF02179986
http://dx.doi.org/10.1007/BF02179552
https://doi.org/10.1007/BF02179552
http://dx.doi.org/10.1007/BF02179552
https://doi.org/10.1098/rsta.2001.0955
https://doi.org/10.1098/rsta.2001.0955
https://doi.org/10.1098/rsta.2001.0955
http://stacks.iop.org/0295-5075/17/i=6/a=001
http://stacks.iop.org/0295-5075/17/i=6/a=001
http://stacks.iop.org/0295-5075/17/i=6/a=001
http://stacks.iop.org/0295-5075/17/i=6/a=001
https://doi.org/10.1007/978-3-319-44649-3
http://dx.doi.org/10.1007/BF02818917
http://dx.doi.org/10.1007/BF02818917
http://dx.doi.org/10.1007/BF02818917
https://doi.org/10.1007/BF02818917
http://dx.doi.org/10.1007/BF02818917


[19] E. Onate, J. Rojek, Combination of diescrete element and finite element

methods for dynamic analysis of geomechanics problems, Computer Meth-

ods in Applied Mechanics and Engineering 193 (2004) 3087–3128.

[20] K. Walayat, Z. Zhang, K. Usman, J. Chang, M. Liu, Fully resolved simu-630

lations of thermal convective suspensions of elliptic particles using a multi-

grid fictitious boundary method, International Journal of Heat and Mass

Transfer 139 (2019) 802–821.

[21] B. K. Cook, D. R. Noble, J. R. Williams, A direct simulation method for

particle-fluid systems, Engineering Computations 21 (2/3/4) (2004) 151–635

168.

[22] A. J. C. Ladd, Numerical simulations of particulate suspensions via a dis-

cretized Boltzmann equation. Part 1. Theoretical foundation, Journal of

Fluid Mechanics 271 (1994) 285–309. doi:10.1017/S0022112094001771.

URL http://journals.cambridge.org/article_S0022112094001771640

[23] A. J. C. Ladd, Numerical simulations of particulate suspensions via a dis-

cretized Boltzmann equation. Part 2. Numerical results, Journal of Fluid

Mechanics 271 (1994) 311–339. doi:10.1017/S0022112094001783.

URL http://journals.cambridge.org/article_S0022112094001783

[24] K. Suzuki, T. Inamuro, Effect of internal mass in the simulation of a moving645

body by the immersed boundary method, Computers & Fluids 49 (1) (2011)

173 – 187. doi:https://doi.org/10.1016/j.compfluid.2011.05.011.

URL http://www.sciencedirect.com/science/article/pii/

S0045793011001708

[25] D. R. Noble, J. R. Torczynski, A lattice-Boltzmann method for partially650

saturated computational cells, International Journal of Modern Physics C

9 (8) (1998) 1189–1201.

[26] A. Xu, L. Shi, T. Zhao, Thermal effects on the sedimentation behavior of

45

http://journals.cambridge.org/article_S0022112094001771
http://journals.cambridge.org/article_S0022112094001771
http://journals.cambridge.org/article_S0022112094001771
https://doi.org/10.1017/S0022112094001771
http://journals.cambridge.org/article_S0022112094001771
http://journals.cambridge.org/article_S0022112094001783
http://journals.cambridge.org/article_S0022112094001783
http://journals.cambridge.org/article_S0022112094001783
https://doi.org/10.1017/S0022112094001783
http://journals.cambridge.org/article_S0022112094001783
http://www.sciencedirect.com/science/article/pii/S0045793011001708
http://www.sciencedirect.com/science/article/pii/S0045793011001708
http://www.sciencedirect.com/science/article/pii/S0045793011001708
https://doi.org/https://doi.org/10.1016/j.compfluid.2011.05.011
http://www.sciencedirect.com/science/article/pii/S0045793011001708
http://www.sciencedirect.com/science/article/pii/S0045793011001708
http://www.sciencedirect.com/science/article/pii/S0045793011001708


elliptical particles, International Journal of Heat and Mass Transfer 126

(2018) 753–764.655

[27] A. Xu, W. Shyy, T. Zhao, Lattice Boltzmann modeling of transport phe-

nomena in fuel cells and flow batteries, Acta Mech. Sin. 33 (3) (2017)

555–574. doi:10.1007/s10409-017-0667-6.

[28] B. D. Jones, J. R. Williams, Fast computation of accurate sphere-

cube intersection volume, Engineering Computations 34 (4) (2017) 1204–660

1216. arXiv:https://doi.org/10.1108/EC-02-2016-0052, doi:10.

1108/EC-02-2016-0052.

URL https://doi.org/10.1108/EC-02-2016-0052

[29] D. Wang, C. R. Leonardi, S. M. Aminossadati, Improved coupling of

time integration and hydrodynamic interaction in particle suspensions665

using the lattice Boltzmann and discrete element methods, Comput-

ers & Mathematics with Applications 75 (7) (2018) 2593 – 2606.

doi:https://doi.org/10.1016/j.camwa.2018.01.002.

URL http://www.sciencedirect.com/science/article/pii/

S0898122118300063670

[30] O. E. Strack, B. K. Cook, Three-dimensional immersed boundary con-

ditions for moving solids in the lattice-Boltzmann method, International

Journal for Numerical Methods in Fluids 55 (2) (2007) 103–125.

URL http://dx.doi.org/10.1002/fld.1437

[31] T. Myers, J. Charpin, M. Tshehla, The flow of a variable vis-675

cosity fluid between parallel plates with shear heating, Applied

Mathematical Modelling 30 (9) (2006) 799 – 815. doi:https:

//doi.org/10.1016/j.apm.2005.05.013.

URL http://www.sciencedirect.com/science/article/pii/

S0307904X05001125680

[32] N. Frapolli, S. S. Chikatamarla, I. V. Karlin, Multispeed entropic lattice

Boltzmann model for thermal flows, Physical Review E 90 (2014) 043306.

46

https://doi.org/10.1007/s10409-017-0667-6
https://doi.org/10.1108/EC-02-2016-0052
https://doi.org/10.1108/EC-02-2016-0052
https://doi.org/10.1108/EC-02-2016-0052
http://arxiv.org/abs/https://doi.org/10.1108/EC-02-2016-0052
https://doi.org/10.1108/EC-02-2016-0052
https://doi.org/10.1108/EC-02-2016-0052
https://doi.org/10.1108/EC-02-2016-0052
https://doi.org/10.1108/EC-02-2016-0052
http://www.sciencedirect.com/science/article/pii/S0898122118300063
http://www.sciencedirect.com/science/article/pii/S0898122118300063
http://www.sciencedirect.com/science/article/pii/S0898122118300063
http://www.sciencedirect.com/science/article/pii/S0898122118300063
http://www.sciencedirect.com/science/article/pii/S0898122118300063
https://doi.org/https://doi.org/10.1016/j.camwa.2018.01.002
http://www.sciencedirect.com/science/article/pii/S0898122118300063
http://www.sciencedirect.com/science/article/pii/S0898122118300063
http://www.sciencedirect.com/science/article/pii/S0898122118300063
http://dx.doi.org/10.1002/fld.1437
http://dx.doi.org/10.1002/fld.1437
http://dx.doi.org/10.1002/fld.1437
http://dx.doi.org/10.1002/fld.1437
http://www.sciencedirect.com/science/article/pii/S0307904X05001125
http://www.sciencedirect.com/science/article/pii/S0307904X05001125
http://www.sciencedirect.com/science/article/pii/S0307904X05001125
https://doi.org/https://doi.org/10.1016/j.apm.2005.05.013
https://doi.org/https://doi.org/10.1016/j.apm.2005.05.013
https://doi.org/https://doi.org/10.1016/j.apm.2005.05.013
http://www.sciencedirect.com/science/article/pii/S0307904X05001125
http://www.sciencedirect.com/science/article/pii/S0307904X05001125
http://www.sciencedirect.com/science/article/pii/S0307904X05001125
http://link.aps.org/doi/10.1103/PhysRevE.90.043306
http://link.aps.org/doi/10.1103/PhysRevE.90.043306
http://link.aps.org/doi/10.1103/PhysRevE.90.043306


doi:10.1103/PhysRevE.90.043306.

URL http://link.aps.org/doi/10.1103/PhysRevE.90.043306

[33] TCLB Reference Manual (2019).685

URL https://docs.tclb.io/

[34] ESyS-Particle Community Wiki (2019).

URL http://www.esys-particle.org/wiki/

[35] Q. Zou, X. He, On pressure and velocity boundary conditions for the lattice

Boltzmann BGK model, Physics of Fluids 9 (6) (1997) 1591–1598. doi:690

http://dx.doi.org/10.1063/1.869307.

URL http://scitation.aip.org/content/aip/journal/pof2/9/6/10.

1063/1.869307

47

https://doi.org/10.1103/PhysRevE.90.043306
http://link.aps.org/doi/10.1103/PhysRevE.90.043306
https://docs.tclb.io/
https://docs.tclb.io/
http://www.esys-particle.org/wiki/
http://www.esys-particle.org/wiki/
http://scitation.aip.org/content/aip/journal/pof2/9/6/10.1063/1.869307
http://scitation.aip.org/content/aip/journal/pof2/9/6/10.1063/1.869307
http://scitation.aip.org/content/aip/journal/pof2/9/6/10.1063/1.869307
https://doi.org/http://dx.doi.org/10.1063/1.869307
https://doi.org/http://dx.doi.org/10.1063/1.869307
https://doi.org/http://dx.doi.org/10.1063/1.869307
http://scitation.aip.org/content/aip/journal/pof2/9/6/10.1063/1.869307
http://scitation.aip.org/content/aip/journal/pof2/9/6/10.1063/1.869307
http://scitation.aip.org/content/aip/journal/pof2/9/6/10.1063/1.869307

	Introduction
	Details of numerical modelling
	Fluid model - lattice Boltzmann method
	Thermal lattice Boltzmann methods

	Solid model - discrete element method
	Fluid-Particle Coupling
	Calculation of particle coverage

	Terminal velocity of a single particle between parallel plates

	Numerical investigation of temperature-dependent flows
	Model verification
	Model application - 2D channel flows
	Single particle transport

	Model application - 3D channel flows
	Straight channel
	Leaking channel
	Stepped channel


	Summary

