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Abstract
We study the effects of delivering a shock to a complex system comprising components (‘agents’) that interact in a pairwise
fashion, independent of other parts of the system and with no central control. There are three aspects to the contribution of this
paper. First, shock propagation in a network is developed purely from fundamental principles of complex systems. Second,
systemic risk is shown to arise naturally in such a complex system. If a shock is delivered either to one agent or to many
agents simultaneously, that shock may be transmitted further, thereby resulting in systemic risk. Third, the monetary loss to
the entire system as a result of systemic shock is quantified. Simulations are used to study two particular characteristics of the
interactions. The first is the resistance or susceptibility of individual agents to a shock. The second is the time it takes for the
shock to affect the entire system. The results show that if a shock is applied to all agents in a network, the systemic effect of
that shock is transmitted very quickly. Applying a shock to very few agents results only in an idiosyncratic effect. If an agent
can transmit the shock further, a systemic effect will result. The recovery period for agents affected by a systemic shock can
be orders of magnitude greater than the time taken for the shock to take effect. The overall effect of the shock on the system
is quantified by formulating a ‘contagion index’, which measures the ratio of the total capital lost due to the systemic effect
to the total capital before the shock was delivered. The result (approximately 7%) is consistent with other studies, but is more
widely applicable because it is not based on one empirical data set.

Keywords Complexity · Complex system · Systemic risk · Shock · Simulation · Mathematica · Recovery · Contagion ·
Contagion index

1 Introduction

The purpose of this research is to study financial systemic
risk within the context of a complex system. It is important
to distinguish the term complex, used as a technical term in
the sphere of complexity science, from its colloquial use as a
term that means not easy. In our context, we mean the former
and will link it to financial systemic risk and contagion. The
question �What is complexity?� is best answered in a
comment from Alain Barrat (Centre de Physique Théorique
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de Marseilles) in an article Pajot (2018). It is quoted below
in full.

C’est un système composé d’un grand nombre d’éléments
interagissant sans coordination centrale, son plan établi par
un architecte, et menant spontanément à l’émergence de
�structures complexes�, c’est-à-dire des structures stables
avec des motifs présantant plusieurs échelles spatiales et tem-
porelles.

The terms ‘systemic’ and ‘systemic risk’ will be used in
this paper to describe a particular type of emergent behaviour.
A good description of systemic risk may be found in the
following definition from the Systemic Risk Centre (http://
www.systemicrisk.ac.uk/systemic-risk):

Systemic risk refers to the risk of a breakdown of an entire
system rather than simply the failure of individual parts. In
a financial context, it captures the risk of a cascading failure
in the financial sector, caused by interlinkages within the
financial system, resulting in a severe economic downturn.

The above text goes on to distinguish a ‘systemic’ effect
from an ‘idiosyncratic’ effect. The former is an effect that
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is common within an entire system, whereas the latter is
limited to a single or a few parts of the system. The essen-
tial idea of a complex system is that interaction leads to
emergent behaviour which is not determinable in advance.
Emergent behaviour in the form of a systemic effect follows
naturally from those interactions. The premise is that interac-
tions between two agents within a system, which could easily
manifest initially as an idiosyncratic effect, can result in a
systemic effect in certain circumstances. With that premise,
systemic risk leads naturally from complexity. Simulations
in Sect. 4 of this paper will demonstrate the systemic effect
of introducing a shock into a complex system. This point will
be amplified in Sect. 1.2. The shock is propagated through-
out the system (i.e. it is a contagion). Then, the emergent
behaviour of the system is, in a sense, predictable. Neverthe-
less, the behaviour of individual agents within the system is
not.

1.1 Structure of this paper

Immediately following this section are further notes on how
interactions within a complex systems can result in systemic
behaviour (Sect. 1.2). The previous work on modelling com-
plex systems and systemic risk is summarised in Sect. 2. The
main subject of this paper is a mathematical model of com-
plexity. When a system is given a shock, a systemic effect
can result under certain circumstances. The model is intro-
duced and developed in Sect. 3. Simulation results from this
model are reported in Sect. 4, and financial examples are also
given.

1.2 The link between complex systems and systemic
risk

In the introduction, we indicated how the concepts of com-
plexity and systemic are linked: they have a common ancestor.
That link is usually not explicit. Discussions of complex-
ity tend not to explore systemic effects, and discussions
on systemic risk do not propose complexity as a trans-
mission mechanism for that risk. Therefore, the conceptual
contributionproposed in this paper is tomake the complexity–
systemic link explicit.

1.2.1 Agent interaction: definition and notation

In the model described in Sect. 3.2, the mechanism for inter-
action between two agents is summarised. We denote such
an interaction by

A1 = 〈A, B〉

Fig. 1 Interaction A1 = 〈A, B〉,
in which B influences A to
produce A1

Fig. 2 Multiple interactions producing a systemic effect

meaning that agent B tries to influence agent A, and the result
of that interaction is A1, who is an influenced agent A. Agent
B remains unchanged. This interaction is showndiagrammat-
ically in Fig. 1. Sequences of pairwise interactions are shown
in Fig. 2. Figure 2 illustrates how a systemic effect can be
produced as the result of introducing a shock to a system.
The shock is represented by an external agent E, and other
agents are represented by Axy, where x and y are major and
minor sequence numbers indicating an order for interactions.
The labelling is such that at each interaction, the minor label
for the influenced agent is incremented by 1. For example,
the interaction 〈A1.0, A2.0〉 produces agent A1.1. Figure 2
shows that the shock is not introduced immediately, but is
first transmitted to agent A3.2 (i.e. agent A3 has already had
two interactions). The effect of the shock is transmitted fur-
ther by agent A3.2 such that after very few interactions, all
but one agent (A6) has been affected. There are two infection
chains, both the same initially: E → A3.2 → A4.2.Thepath
then diverges: A4.2 → A1.3 → A2.3 and A4.2 → A5.4.
The dark blue nodes indicate instances where an agent first
experiences the shock generated by the external agent E. A
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different sequence, A6.0 → A6.1 → A6.2, illustrates the
‘non-infection’ path by which agent A6 has avoided influ-
ence from E.

Summarising the general principles:

1. Pairwise interactions produce...
2. ...a chain of interactions, which results in...
3. ...emergent behaviour (with no central control) in the

form of...
4. ...systemic effects (infection/contagion).

More precise details of interactions and the transmission
mechanism will be discussed in Sect. 3. The general char-
acteristics of complexity are discussed in detail in chapters
1 and 2 of Rzevski and Skobelev (2014). It should be noted
that a further complex system characteristic, adaptivity, does
not formally form part of the model proposed in this paper,
although it is discussed in Rzevski and Skobelev (2014). The
adaptivity property is partly addressed in Sect. 3.6 and will
be the subject of a separate paper. The relationship of the
agents to a network will also be discussed. See Sect. 3.

2 Previous work on complex systems and
systemic risk

The underlying concepts of complex systems (namely agent–
agent interaction and self-determination), and of systemic
effects (principally one event being the cause of another)
have only been linked previously in passing. The thesis of
this paper is that they are naturally linked, almost to the
extent that they are indistinguishable. Developing this idea
further, systemic effects are caused by agent–agent interac-
tions in a complex system. All of the simulations presented in
this paper are a direct result of systemic effects arising from
agent–agent interactions. However, the link between the two
concepts ‘systemic’ and ‘complexity’ has been mentioned
briefly by other authors. In this section, we summarise some
of those comments and also discuss other approaches to the
quantification of systemic risk.

2.1 The link between systemic risk and complexity

The link between systemic risk and complexity has been
developing for at least five years. Yellin (2013) mentioned
it when she was Vice Chair of the Board of Governors of
the U.S. Federal Reserve System. She began by drawing a
parallel with the banking panic of 1907, which resulted in the
founding of the Federal Reserve. The 1907 banking crisis is
not as familiar as the one in 2008, but the characteristics of
both are the same. Losses arose from leveraged investments,
and a few important financial institutions failed. Intercon-
nections among traditional banks became apparent, as recent

advances in network analysis demonstrate. Yellin went on to
discuss how two features, networks and complexity, are key
in determining how systemic risk develops. However, she
was not specific enough when discussing ‘complexity’. She
considers that the meaning of the term ‘complexity’ refers,
in the context of lending, to the number of links required to
connect savers to borrowers. She is more precise when deal-
ing with networks, citing research (in particular Prasanna
et al. (2010) and Franklin and Gale (2000)) to show that sys-
temic effects (i.e. contagion) occur less frequently and are
less severe for low degrees of network connectivity. The rea-
son given is incomplete information or a lack of coordination
amongmarket participants.Oneway tomitigate systemic risk
in this context, she suggested, is to establish the use of central
counterparties for OTC financial transactions. They reduce
network connectivity considerably and therefore reduce con-
tagion.

Use of central counterparties can introduce additional risk
due to concentration. The point is emphasised by Freixas
et al. (2015). They argue that financial regulation has been
focused on the risk for individual financial institutions, not on
the financial system as a whole. As a result, banks have only
their own interest inmind, so they behave inways that benefit
themselves only, but undermine the system as a whole. For
example, banks hit by a negative shock can deleverage to
relieve capital pressure, thereby causing a credit crunch and
exacerbating the initial negative shock.

The European Central Bank De Bandt and Hartmann
(2000) considers that the notion of contagion, often a strong
external effect, is an essential component of systemic risk,
and that such contagion works from institution to institution,
and also from markets or similar systems to those institu-
tions. They distinguish between idiosyncratic shocks, which
are due to only one institution, and systematic shocks, which
affectmany institutions simultaneously. Eitherway, they then
envisage the idea of continued transmissionof an initial shock
throughout a network. That constitutes the systemic effect,
although the mode of transmission is not explicit. De Bandt
and Hartmann concentrate on contagion models in which
rational decisions are made, based on individual knowledge.
Chen (1999) is an example of such a model. It is based on
local observations within a network with Bayesian decision
making. Those factors do not matter immediately, but they
do have a bearing on further ideas in this paper, namely
that such transmission also encompasses the ideas of irra-
tional decision making, influence and resistance. De Bandt
and Hartmann cite evidence that many banking crises are
related to macroeconomic fluctuations and other aggregate
or regional shocks. Therefore, the use of an External Agent
proposed in this paper is justified.
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2.2 Measurement and detection of systemic effects

It appears that it is not always straightforward to detect and
measure systemic effects. In the paper byDe Bandt andHart-
mann (2000), the authors cite studies indicating that systemic
effects may be studied via extreme co-movements in stock
market returns, deposits (the two most reliable indicators),
exchange rate returns, interest rates and sovereign spreads.
Care must be taken to look at the right time and for the right
type of effect. Some movements represent investor prefer-
ences, which were not treated as systemic. The arrival of bad
news is a particular trigger event which may precipitate a
systemic effect, even if unwarranted.

Laeven and Valencia (2008) identify 124 systemic bank-
ing crises over the period 1970 to 2007. They provide only a
loose definition for the term systemic and do not give details
on extent or transmission. Nevertheless, the overall figure,
124, gives some idea of the extent of systemic effects. Kan-
nan et al. (2009) implicitly embed systemic effects within
wider business cycles. Such business cycles typically have a
recession period of about one year, followed by a recovery
period of about five years. The authors are explicit in stating
a criterion for measuring a systemic effect: a move of an eco-
nomic indicator of more than 1.75 standard deviations from
the mean indicator value prior to the start of a shock.

Smaga (2014)mentions the idea of ‘systemic importance’:
some institutions are more prevalent in transmitting systemic
effects than others. He also makes the point that even if an
institution has little systemic importance during a boom, it
may be very important during a recession. The reason is
asymmetric information and lack of informational efficiency
within financial markets. Consequently, systemic risk is not
always reflected in financial market variables. He also cites
transmission of shocks between interconnected elements of
the system as key in spreading systemic risk. He suggests
that systemic risk should be measured as the degree to which
a single institution ‘pollutes’ financial stability. The state
parameter in the analysis presented in this study does exactly
that.

2.3 Mechanisms for transmitting systemic effects

In this section, we describe briefly the principal classes of
model that incorporate the elements of systemic risk, com-
plexity and measurement. Caccioli et al. (2018) review a
selection of such models and include extensions of some of
them.

2.3.1 Markov models for credit default

The essential element of Markov models for credit default is
a classification of a counterparty in terms of a credit rating,
with a probability of transition from one rating to another.

If there are J credit ratings, denote the probability that a
counterparty X (or ’agent’ in complexity terminology) has a
credit rating j (0 ≤ j ≤ J ) at time t by P(Xt = j). Let the
conditional probability of a transition from a rating j at time t
to a rating k at time t be p jk = P(Xt = k|Xt = j). Then, the
probabilities p jk(0 ≤ j, k ≤ J ) define a transition matrix
P. When all possible states at time t for the Markov process
are organised in a vector St , the probabilistic evolution of the
Markov process can be represented by the equation St+1 =
PSt .

A detailed example with extensions is given in Kiefer and
Larson (2004). Also, a neat numerical examplemay be found
at https://www.vosesoftware.com/riskwiki/CreditratingsandM
arkovChainmodels.php.
At any given time, the total loss to the system can be cal-
culated by noting which counterparties are in the default
state at time t, their probabilities of default (such as P(Xt =
de f aulted)) and multiplying by the amount of capital lost.

Markovmodels are particularly appealing because of their
simplicity, but they are rather restrictive. They are limited to
the credit risk context and require the imposition of a credit
rating. The idea of systemic risk is essentially a secondary
consideration, and the concepts of complexity only enter in
more advancedmodels. In practice, it can be difficult to deter-
mine the transition probabilities. The literature abounds with
extensions of the basic model described.

2.3.2 Systemic risk and contagion models

This category explicitly models systemic risk from the out-
set, rather than noting that a systemic effect is a consequence
of the model. The method of Cont et al. (2013)—hereinafter
the Cont model—is a prime example, as it also references a
specific network topology, with a transmission mechanism
for contagion over that network. However, the topology is
still static and deterministic. Cont et al. (2013) also define a
metric for the systemic importance of institutions: the Con-
tagion Index. This is defined as the expected loss to the
network triggered by the default of one financial institution
in a macroeconomic stress scenario. The Contagion Index
takes into account both market shocks to portfolios and con-
tagion through counterparty exposures. The premise is that
most financial institutions present only a negligible risk of
contagion, but a few are capable of generating a significant
risk of contagion through their failure. We note this model in
some detail because it has a bearing on the complexity model
which is the subject of this paper. Many of the expressions
used in our complexity model have equivalents in the Cont
model. The notation has been amended to correspond more
closely to our complexity model. Equations (1), (2) and (3)
below all have parallels in Sect. 3 with corresponding results
in Sect. 4.
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Systemic shock propagation in a complex system

With reference to a network in which the nodes represent
financial institutions, let Ei j represent the exposure of node
i to node j, let the initial capital for node i be Ci (0), and
let the recovery rate for node i be Ri . The capital for node i
after time t +1 is given as a function of the capital after time
t and the sum of exposures to nodes with zero capital (the
defaulted ones) by:

Ci (t + 1) = max(Ci (t) −
∑

j,C j (t)=0

(1 − R j )Ei j , 0). (1)

The extent of contagion due to node i at time t is measured
by the default impact Δi (t): the capital lost by node i plus
the contagion capital lost by other nodes.

Δi (t) =
∑

τ≤t

Ci (τ ) +
∑

j �=i

∑

τ≤t

C j (τ ). (2)

Then, to measure the total systemic impact of an institu-
tion, the Contagion Index, Δ̂i (t, z), is defined as its expected
default impact when the network is subject to a macroe-
conomic stress z, applied to the institution. The value z is
determined from a random variable Z which has a prede-
fined expected value that represents a large shock.

Δ̂i (t, z) = E(Δi (t)|Ci (t) ≤ Ci (0) − z). (3)

2.3.3 Systemic effect models: variations

The Cont model contains the elements that many similar
models rely on: a network, an interaction mechanism and a
contagion propagation mechanism. In this section, we sum-
marise some of the variations on the Cont theme.

Gai and Kapadia (2010) describe a base model in which
the focus is on the ‘terms and conditions’ of the interaction
between a pair of banks. Their model starts with a predefined
network in which each bank is represented by a node on a
directed and weighted graph, where the weights represent
exposure size. For bank i, those exposures comprise (simpli-
fying the notation): interbank assets, Ai , interbank liabilities,
Li , illiquid external assets such as mortgages, Mi and exter-
nal liabilities such as deposits, Di . A solvency condition is
expressed in terms of two parameters φ and q, where φ is
the fraction of banks with obligations to bank i that have
defaulted, and q is the resale price of the illiquid asset. The
solvency condition is

(1 − φ)Ai + q Mi − Li − Di > 0. (4)

Equation 4 can be rewritten in terms of the capital buffer
(assets–liabilities), Ki , for bank i,

Ki = Ai + Mi − Li − Di

φ <
Ki − (1 − q)Mi

Ai
. (5)

Contagion then spreads in the following way. If bank i is
linked to j others, it will lose a fraction 1/ j of its interbank
assets when a single counterparty defaults. Therefore, Eq. (5)
implies that the only way default can spread is if there is a
neighbouring bank for which

Ki − (1 − q)Mi

Ai
<

1

j
. (6)

The probability that Eq. (6) applies for all j > 1 gives a
measure of the vulnerability of bank i to default. The task
is then to estimate that probability using any data available.
Equation 6 is a more specific form of Eq. (1), which does not
give any details of how a default might occur. Equation 6 is
also the equivalent of our default condition in Sect. 3.

May and Arinaminpathy (2010) concentrate on how
failure-causing shocks can arise in a network, and how they
can be propagated by interbank lending–borrowing or by liq-
uidity effects. In a similar way to Gai and Kapadia (2010),
they use a simpler solvency condition (with the same notation
as above, with γ meaning ‘net worth’):

γ = Ai + Mi − Li − Di > 0. (7)

If the probability that any one of j banks is linked to any
other is p, the mean number of connections is z = p( j − 1).
Now let θ be the ratio of outgoing loans to assets.

θ = Mi

Mi + Ai
. (8)

With this definition, the failure point is the condition (1−
θ) f > γ , in which f is the fraction of assets wiped out
by the shock. The loss is then distributed equally among the
defaulting bank’s creditors. Therefore, each of the z creditors
experiences on average a shock of magnitude (1−θ) f −γ

z . This
provides a mechanism for contagion propagation.

The failure condition implies an assumption that once a
bank fails, all its external assets are lost. May and Arinam-
inpathy (2010) justified this as an extreme liquidity effect.
If some recovery is possible, not all of the difference is lost.
They argue that a necessary and sufficient condition for not
all the difference to be lost is θ

z > γ .
Nier et al. (2007) present a hierarchical picture of the

immediate consequence of default. There is an assumed
priority of (insured) customer deposits over bank deposits
which, in turn, take priority over net assets. Let si be the size
of an initial shock applied to bank i. That loss is first absorbed
by bank i’s net assets (capital buffers) Ki , then its interbank
liabilities Li and lastly its deposits Di . The bank defaults if
si > Ki leaving a residual loss si − Ki . If si − Ki > Li , a
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further residual loss si − Ki − Li is transmitted to deposi-
tors. Then with the assumption that all of the j creditor banks
receive an equal amount of the initial residual loss, each cred-
itor bank J absorbs a loss sJ = si −Ki

j . If the amount sJ ≤ K J ,
bank J can absorb the loss. Otherwise bank J’s residual loss
sJ − K J is transmitted to bank J’s depositors and the conta-
gion spreads further. Simulations show that contagion does
not decrease linearly with bank capitalisation. For high lev-
els of capitalisation only the first bank defaults. When the
capitalisation decreases to between 1 and 4% of a benchmark
level, second-round defaults occur. Third-round defaults only
occur if capital decreases below 1% of the benchmark level.

2.3.4 Which banks are systemically important?

Little has been said so far about which banks pose systemic
risk and which do not. Battiston (see Battiston et al. (2012)
and Battiston et al. (2013)) attempts to do this using a met-
ric DebtRank (DR). DR is intended to measure the systemic
importance of a bank even when default cascade models pre-
dict no impact at all on amounts lost. It is defined as the
fraction of the total economic value of a network due to a
shock that hits a bank. Specifically, take a chain of unse-
cured loans granted by bank k to bank j and then by bank j to
bank i. The amounts of these loans are xk j and x ji , respec-
tively. Let Ei , E j and Ek be the equity of the three banks.
Then, their total equity is E = Ei + E j + Ek . Then, the Deb-
tRank for bank i is the following weighted sum, with weights
Wi, j = x j,i

E j
and W j,k = Wi, j

xk, j
Ek

:

DRi = Wi, j
E j

E − Ei
+ W j,k

Ek

E − Ei
. (9)

The result of applying theDRmetric to Italian banks is that
the DR predicts sizable contagion effects. Measures which
only account for a single transfer of default between two
banks typically show no impact at all.

In cases discussed so far, the criterion for determining sus-
ceptibility to systemic risk has been taken as ‘zero capital’ or
similar. That type of criterion only works by looking back at
what has happened. It is not forward-looking. As an alterna-
tive, Huang et al. (2009) suggest an indicator of systemic risk
that attempts to be more predictive, although it is much more
complicated to calculate. This is their distress insurance pre-
mium—the theoretical price of insurance against financial
distress. This indicator is calculated by constructing a hypo-
thetical portfolio that consists of debt instruments (mainly
bonds) issued by banks. The indicator of systemic risk is
defined as the theoretical insurance premium that protects
against distressed (credit) losses of this hypothetical port-
folio in the coming three months. The components of the
distress insurance premium are risk-neutral probabilities of

default (PDs) and equity returns (as a proxy for asset returns).
The steps in the calculation are:

1. For each bond i that defaulted at time t, calculate the
risk neutral probability of default (PDi,t ) using published
credit default swap spreads (Si,t ) and assumed recovery
rates Ri,t : PDi,t = −t Si,t

1−Ri,t
. PD implied from the CDS

market is a forward-looking measure.
2. Form a vector Xt of bond prices and economic measures

Ei,t such as the S&P500 and VIX indices
3. Formulate 12-week future projections ofXt+12 using cor-

relations based on the Xt and the Ei,t

4. Formulate 12-week future projections of PDI ,t+12 using
correlations based on the Xt+12 and the PDI ,t

5. Define Monte Carlo bond pricing scenarios, each linked
to a particular bond.Definedistress as a situation inwhich
at least 15%of total liabilities of those bonds are defaulted

6. Run the scenarios defined by PDI ,t+12 and Xt+12, and
determine which have defaulted at time t + 12. For each
defaulted bond bi , calculate the loss given default (LGDi )
as bond value at time t + 12 less its value at time t

The required insurance premium for each bond is then the
indicator of systemic risk. The trend in insurance premium
was found to follow the average PD series and correlations in
the banking systemvery closely. This result is consistentwith
the conventional view that higher default rates and higher
exposures to common factors are both symptoms of higher
systemic risk.

2.3.5 Models of population dynamics

Models of population dynamics aremore appropriate for very
large populations. Examples are cases of runs on banks, or
bond transactions, or even the spread of rumours that a bank
is in trouble.

The discussion byHatchett andKuhn (2006) is an example
of a discrete timemodel. Theirmodel is rooted in the idea of a
population of size n, although they do not explicitly mention
a numerical size. However, their model deviates immediately
from a traditional population-based treatment because they
use a principal random variable to denote whether or not a
bank has defaulted. Thus, let ni,t be an indicator variable that
bank i has defaulted at time t (it takes two values: 1 means
‘defaulted’ and 0 means ‘not defaulted’). Then, equation 10
governs default. In that equation, Wi,t is a ‘wealth’ variable,
such that default is assumed if the wealth drops below zero,
and H is the Heaviside function.

ni,t+1 = ni,t + (1 − ni,t )H(−Wi,t ). (10)

The wealth variable is a composite that comprises an ini-
tial wealth, stochastic components that represent changes in
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wealth (including defaults) and a Gaussian random compo-
nent. Development of this model indicates that the effect of
interactions is relatively weak in typical economic scenarios,
but is pronounced in times of large economic stress. Thus,
contagion is restricted to economic shock scenarios.

Contagionmodels basedoncontinuous timehave focussed
on the spread of disease. Such models have been known for
some time.Here,we summarise the basemodel, known as the
SIR (susceptible-infected-recovered)model, details ofwhich
may be found in, for example, Hethcote (2000). Following a
brief statement of the SIR model, we discuss an augmented
version of it, which incorporates a time delay. Equation (11)
shows the base SIR differential equations. All three compo-
nentswith their totalN denote numbers of individuals, and all
are functions of time, t. Initial conditions and other constant
parameters are shown in greek typeface.

dS

dt
= −β I S

N
; S(0) = S0 ≥ 0

dI

dt
= β I S

N
− γ I ; I (0) = I0 ≥ 0.

dR

dt
= γ I ; R(0) = R0 ≥ 0.

S(t) + I (t) + R(t) = N (11)

In order to apply them to the context of financial contagion,
we associate:

• Susceptible ∼ Susceptible to credit default
• Infected ∼ In default
• Recovered ∼ Recovered from default.

Wang et al. (2018) propose an updated version of the base
continuous timemodel (Eq. 11) inwhich the same three states
S, I and R are present. The original purpose of the model was
to study the spread of a rumour in a social media context.
With some adaptions, it can be used to model the spread of
interbank financial contagion. In the context of social media,
a person may be affected by his/her neighbours such that
having been ‘stimulated’ several times by those neighbours,
he/she will acquire the opinion of those neighbours. This is
effectively a voter model with a time delay. In the context of
financial contagion, the ‘stimulus’ is the default of a coun-
terparty. A bank may be forced into default only if fewer
than a critical threshold of its counterparties have already
defaulted. In general, thresholds are likely to be lower in the
context of banking than they are in the social context. Other-
wise, the situations are very similar. The same three distinct
states are recognised at each time step, although in Wang
et al. (2018) the infected state is called affected and is des-
ignated the A-state. A bank in the S-state has not yet been
affected by a systemic shock because the stimulus received
from its neighbours is below its adoption threshold. A bank

in the A-state has been affected by such a shock, as the stim-
ulus received exceeded its adoption threshold. A bank in the
R-state has recovered from any stimulus applied to it. For
simplicity, set all banks at the same adoption threshold T. If
p(Xi ) is the probability that a bank i is in state X (where X
is one of S, A or R), then, since there are only three states,

p(Si ) + p(Ai ) + p(Ri ) = 1. (12)

Suppose that a bankhas to receive up tom stimulae from its
counterparties before it is affected (i.e. it has been shocked).
The probability of having received k out of m stimulae by
time t is

φ(t, m, k) = (1 − ρ) mCk (1 − θ(t))m θ(t)m−k (13)

where θ(t) is the probability that a randomly chosen coun-
terparty bank has not transmitted a systemic effect to bank i
by time t, and 1 − ρ is the probability that bank i is initially
susceptible.

If there is a time-delay τ in transmitting a contagion, the
equivalent ‘time-delay’ probability is obtained by replacing
t by t − τ to get the following equation.

ψ(t, τ, m, k) = (1 − ρ) (1 − θ(t − τ))m θ(t − τ)m−k (14)

Then, if u is the probability that bank i can survive for a
time-delay τ , the probability that bank i receives the shock
by time t is

χ(t, τ, m, k) = uφ(t, m, k) + (1 − u)ψ(t, τ, m, k) (15)

In that case the proportion of banks in the S-state at time
t is, where pk is the probability that k stimulae have been
received:

ŝ(t) =
m∑

k=0

T −1∑

m=0

pk χ(t, τ, m, k). (16)

Given this expression for the proportion of banks in the
S-state at time t, the proportion of banks in the A-state at time
t is governed by the differential equation

dâ(t)

dt
= −dŝ(t)

dt
− γ â(t). (17)

Lastly, the proportion of banks in the R-state at time t is
governed by the differential equation

dr̂(t)

dt
= γ â(t). (18)

Solving Eqs. (17) and (18) for â and r̂ then gives, together
with the expression in Eq. (16) for ŝ, the complete time-
delayed dynamic of the system. The results indicate that with
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no time delays, R(t) is monotonic increasing with t. With
time delays, both S(t) and A(t) show jumps in the direction
of the R-state at the values of the time delay τ . Typically,
there are three major jumps of this kind, followed by more
smaller jumps, before all banks have recovered over the time
horizon considered. It is not immediately clear how long that
time horizon is, but given the 2008 banking crisis, the time
horizon should be in the order of at least ten years.

2.4 Agent-based optimisation algorithms

In this section, we highlight some optimisation algorithms
that are based on agent–agent interactions. As their principal
aim is optimisation, they could be appropriate for modelling
recovery after a shock is delivered, but not for shock initiation
or propagation. Each has its own terminology,which has been
cast in the terminology of complex systems.

2.4.1 Ant colony optimisation (ACO)

ACO is a probabilistic technique in which a search for an
optimal solution proceeds on a predefined directed network.
The ACO method originates from Dorigo (1992), and many
subsequent summaries exist. See, for example, Dorigo et al.
(1996). A transition matrix is associated with the network,
and agents search for an optimal ‘next move’ along an arc
leading from the agent’s current node. That selection is based
on arc ‘intensity’,which is increased every time another agent
uses the arc. Those intensities define the transition probabil-
ity for each available arc connected to a node. The probability
that agent k moves from arc i to arc j is given by the first line
of Eq. (19). In that equation, τi j is the intensity on edge ij, ηi j

measures the desirability of edge ij, and α and β are influ-
ence parameters. The second line gives a common updated
‘intensity’ on arc ij. It incorporates a rate, ρ, and L [k]

i j is the
cost of agent k’s move, typically measured by the length of
arc ij.

p[k]
i j = τα

i jη
β
i j

∑
(τα

i jη
β
i j )

τ ′
i j = (1 − ρ) τi j + 1

L [k]
i j

. (19)

After the agent has moved, it strengthens the arc by
increasing its intensity. This is an adaptive system, as each
agent is able to ‘read’ what other agents have done, but there
is no central control. ACO has been used extensively in opti-
misation problems since its inception. Two recent advances
on the method may be found in, for example, Deng et al.
(2017b, 2019).

2.4.2 Particle swarm optimisation (PSO)

The PSO method originates from Kennedy and Eberhart
(1995) and has many similarities with ACO. There is no for-
mal network, but agents are sensitive to their near neighbours,
so it can be argued that a dynamic network exists. An agent
i is characterised by its ‘position’, Xi and its ‘velocity’, Vi .
The agent records its ‘local best position so far, X [L]

i , and

also has access to a ‘global best position so far’, X [G]
i , deter-

mined by all agents in the system. These ‘local’ and ‘global’
views are used to calculate the next move, using the update
equations below. In those equations, cL and cG are learning
rates, and r is a random number in (0,1).

Vi+1 = Vi + r cL (X [L]
i − Xi ) + r cG (X [G]

i − Xi )

Xi+1 = Xi + Vi . (20)

The result is that all agents appear to proceed as a group.
There are clear parallels between PSO, ACO and the mecha-
nismdescribed in this paper. There arewell-defined transition
rules governing agent–agent interactions, and there is no cen-
tral control. The group behaviour arises because every agent
is able to monitor a summary of the entire system. An exam-
ple of a recent improvement on PSO may be found in, for
example, Deng et al. (2017a).

3 Complexity and systemic risk:
methodology

Now,we discuss the subject of this paper: a simulationmodel
that links complexity with systemic risk. The original model
was developed in 2017 and is documented in Mitic (2018).
The model sticks to the principles of complexity described
in Rzevski and Skobelev (2014) and summarised in the
quote from Barrat in the introduction to this paper (see Pajot
(2018)). The framework described in Mitic (2018) has been
extended to incorporate a shock mechanism for the purposes
of this study. That mechanism will be described in Sect. 3.5.

This model differs from previous models of systemic risk
because it is based purely on the principles of agent-pair
interactions, which lead to complexity. The only assumptions
are those relevant to what happens when two agents interact.
Thus, the base concepts of complexity and systemic are almost
synonymous, the latter being an emergent behaviour due to
the introduction of a shock.

3.1 Network considerations

The models in Sect. 2 are defined with respect to a well-
defined network.Our analysis is different in that the existence
of a network is implied, but is not necessary for simulations
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to progress. An agent-pair interaction implies that the two
agents can be represented as two nodes in a network, an
arc between the two representing the interaction. But that is
merely a convenient visualisation since no formal network is
defined.

There is one way in which it would be beneficial to con-
sider that a network does exist. Consider a fully connected
network in which each node represents an agent, and the arcs
represent lines of influence. In other words, the arcs define
the capability of one agent to influence another. Since the net-
work is fully connected, any agent can influence any other.
Not all such lines of influence need be used. Rather, they are
available for use. This capability allows for a very fluid net-
work. Arcs can emerge and disappear spontaneously. The
simulations used depend on random interactions between
agents, which implies that network paths are set dynamically,
and are transient.

3.2 Amathematical framework for complexity

In this framework, an agent is modelled using a Beta function
β(x, a, b) defined on the interval x ∈ (0, 1), where a and b
are the Beta parameters in the range (1999). The parame-
ters a and b are sufficient to define the agent’s resistance to
change and its state (see below) in the range (0,1). Formally,
an agent X is a triple, defined in Eq. (21). In addition to the
Beta function, Eq. (21) contains a parameter I ∈ (0, 1) that
specifies the influence of an agent on another agent, and a
string parameter Name that holds a designated name of the
agent.

X = {β(a, b), I , Name}. (21)

The definitions in Mitic (2018) referred to parameter x as
the agent’s view on some particular issue. For this analysis,
we call that view the agent’s state. The expected value of
β(x, a, b) formally defines the current state of an agent X,
and we denote it as in Eq. (22).

ŜX = E(β(x, a, b)) = a

a + b
. (22)

The resistance of an agent to a change of state, ρ ∈ (0, 1),
is defined in terms of the standard deviation, σ , of the Beta
distribution: Eq. (23). The form of the exponential in Eq. (23)
ensures that the resistance is neither too fierce nor ineffective.

σ 2 = ab

(a + b)2(a + b + 1)

ρ = 2

1 + exp(− 1
25σ )

− 1. (23)

The interpretation of state in this context is the degree of
debt default. An agent that has not defaulted has a state equal

Fig. 3 Initial configuration for a group of 10 non-defaulted agents on
the left, plus one agent Y in a state of near default on the right: before
interaction

to 0. An agent that has fully defaulted (i.e. is bankrupt) has
a state equal to 1. Intermediate values for the state represent
the amount of financial distress suffered by the agent. For
example, it may have had one or more profits warnings, or it
may have defaulted to aminor extent on a clause in a contract.
The Beta function formulation is particularly useful for visu-
alisation. The graphs of Beta functions that are tall and thin
represent agents that are very resistant to default (because
those agents have protections such as sufficient reserves in
place), whereas graphs that have a wide flat profile repre-
sent agents that are more susceptible to default (those agents
might have insufficient reserves). Figure 3 shows a (randomly
generated) set of 10 agents (X1, X2, . . . , X10) who are in
a state of minimal debt default (x is nearer to 0 than to 1),
with a further agent, Y, whose state is much nearer to full
default. These agents have not yet interacted. The influences
(parameter I) are indicated by their opacities. A strong solid
colour means very influential, and a light pastel colour means
not influential.

3.3 Agent interaction

Within the framework, the interaction mechanism between a
pair of such agents iswell defined (see Table 1) in terms of the
influence of the agents concerned and also of their resistance
to that influence. No assumptions are made about the ways
in which the system can develop following a sequence of
pairwise interactions. Indeed, a fundamental proposition in
complexity science is that the system should exhibit self-
determination. The implication is that it is not possible to tell
in advance how a systemwill develop given its starting point.
Systemic risk arises purely from the way in which pairs of
agents interact.

The precise mechanism for pairwise agent interaction was
described in detail inMitic (2018). In any interaction between
two agents X and Y, one agent, Y, influences the other, X, and
remains unchanged after the interaction. Agent X emerges
withmodifiedBeta and Influenceparameters. The convention
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Table 1 Steps in the interaction X1 = 〈X , Y 〉
Step Action Output

1 Calculate a linear
combination of the
Beta parameters of X
and Y using their
influences

Initial Beta parameters
of the resultant X1

2 Modify the Beta
parameters in Step 1
based on resistances
ρX and ρY of X and Y,
respectively

Modified Beta
parameters of the
resultant X1

3 Modify the Beta
parameters in Step 2
by stochastic
perturbations to ensure
non-determinability

Further modified Beta
parameters of the
resultant X1

4 Use a similar stochastic
perturbation on the
Influence of X

Modified Influence of
X1

5 Apply limiters to the
Beta and Influence
parameters from steps
3 and 4

Final Beta parameters in
(1,999) and final
Influence in (0,1)

Fig. 4 Group of 10 agents (on the middle and left) and defaulted agent
Y on the right: after interaction

used to denote such an interaction is given in Eq. (24), in
which X1 is the modified version of X after interaction.

X1 = 〈X , Y 〉. (24)

The sequence in the following table (Table 1) is a summary
of the interaction mechanism.

Figure 4 shows the same agents as in Fig. 3 following a
sequence of 10 interactions in which Y interacts with each
of the 10 other agents separately.

Comparing Figs. 3 and 4, the effect of the agent most in
default (agentY -the rightmost one in both cases, with its peak
at approximately 0.75) is apparent. That agent has forced the
others further into the defaulted state. This is the start of a
contagion effect, although it is not yet systemic because there
is no chain of interactions.

3.4 State of a group of agents

An indication of the ‘state’ of a system can be gained by
considering, indirectly, the states of all the agents within the
system. Note that the definition of Group State in this sec-
tion replaces the one given inMitic (2018). The latter defines
Group State as the mean state of agents in the system. How-
ever, that is an approximation. The strict definition is given
here.

In a system with a large number of agents, it may be ben-
eficial to partition the system and consider subsets of agents.
For our purposes, where the number of agents in the sim-
ulations is small, it is sufficient to form only one group of
agents. Formally, we define a Group of n agents X as a set:
X = {X1, X2, ...Xn}. Let the state of each Xi ∈ X be ŜXi .

Then, the Group State, ŜX ,n is defined by a Beta func-
tion β(a′, b′) in which the parameters a′ and b′ are weighted
means of the Beta parameters a′

i and b′
i of each agent in the

group (Eq. 25). The normalised weights (wi ) in Eq. (25) are
calculated using the influences Ii and resistances ρi of each
agent in the group.

Wi = Ii

ρi

wi = Wi∑n
j=1 W j

a′ = wi a
′
i

b′ = wi b
′
i

ŜX ,n = a′

a′ + b′ . (25)

Informally, we can think of the group state as the mean
of the states of each member of the group, although Eq. (25)
shows that the situation is actually more complicated than
that.

3.5 Shockmechanism

We now extend the class of agents to incorporate a shock
delivery feature, modelled as an External agent. An External
agent is designatedby an additional parameter,which triggers
a different type of interaction behaviour. Similar to Eq. (21),
an External agent E is defined as shown in Eq. (26), in which
a fourth parameter is set to the value True.

E = {β(a, b), I , Name, T rue}. (26)

An External agent is designed to deliver a shock to one or
more agents in the system. The delivery is modelled by the
interaction of the external agent with any non-external agent.
The effect of the shock is to amend the Beta parameter ratio
of the target non-external agent to reflect a bias determined
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by the external agent, but it is mitigated by the resistance of
the target agent. In the External Agent–Agent interaction, a
‘strength’ parameter α ∈ (0, 1) determines the extent of the
interaction. The use of the min function in ALGO SHOCK,
below, ensures that the extenal agent does not completely
dominate in the interaction. The algorithm used to calculate
the amended Beta parameters a′ and b′ is:

ALGO SHOCK : Shock mechanism

1. Calculate the absolute difference, d, of the states
of X and E:
d = α min(|ŜE − ŜX |, 1 − |ŜE − ŜX |)

2. Calculate a′ = aX d + aE (1 − d)

3. Calculate b′ = bX d + bE (1 − d)

4. Define X ′ = {β(a′, b′), I , Name}

Output: agent X1 = 〈X , E〉 where agent E is (External)
with Beta parameters aE and bE , and
X = {β(aX , bX ), I , Name}.

Algorithm ALGO SHOCK allows a well-protected agent
to be shocked to a limited extent but an agent with little
protection to be shocked much more.

The effect of delivering a shock to any one agent is
twofold:

• to instantaneously change the state of the target agent.
• to convert the target agent’s behaviour to that of an Exter-

nal agent.

The second bullet point produces the systemic effect. In
terms of disease, anExternal agent acts as a contagion vector.

As an example, a shock may force an agent into full or
partial default immediately. A second example is economic
shock, whichmay affect a business so severely that it is either
forced to cease trading or to take very drasticmeasures to sur-
vive. There have been several examples of this type of shock
recently. In 2008, theworld banking crisis resulted in a severe
systemic effect, resulting from profligate lending practices.
Its effect is still being felt eleven years later. It is described,
with others, in Laeven and Valencia (2008). Leman Broth-
ers ceased trading worldwide. In the UK, Royal Bank of
Scotland (RBS) was effectively nationalised, and Northern
Rock Bank was declared insolvent following rapid and con-
certed withdrawal of funds by its customers. All banks were
affected to a greater or lesser extent. The degree of regula-
tion increased for all of them worldwide, and all had to put

Fig. 5 Group of 10 agents (left hand most) influenced by an external
agent (on the right)

measures in place in an attempt to ensure resilience against
similar shocks in the future.

To illustrate the effect of a shock, Fig. 5 shows the same
group of 10 agents as in Fig. 3. after an external shock is
delivered. The External agent is the one most to the right.
The shock is delivered to each agent separately. The effect
of the shock is to ‘pull’ each agent much further towards the
defaulted state.

3.6 Recovery post shock

Given a response to a shock, it may be possible to recover
a pre-shock state. In the context of credit default, it is more
likely that an organisation would re-emerge as a new cor-
porate entity or entities. In an economic context, sovereign
states can recover economically, and there are clear exam-
ples. The 1930s depression in the USA is one. Measuring
the variable state by GDP, the 1930 annual GDP (not season-
ally adjusted) was $98.4bn. It fell to a low point of $58.3bn
in 1933, and did not recover until 1940, when GDP reached
$98.2bn. (see St Louis Federal Reserve Bank (2017)). It took
the demands ofWW2 to stimulate recoveryCrafts andFearon
(2010).

Two recovery models are proposed: Soft and Hard.

3.6.1 Soft recovery

In this recoverymode, agents attempt to adapt their behaviour
in order to move towards a pre-shock state. This might be
done, perhaps, by building up sufficient reserves or by cost-
cutting. Agents interact ‘as normal’, but there is a pressure
to move away from the shocked state. The model specifies
that in any interaction, if the result is that the agent affected
moves towards the pre-shock state, a move in that direction
proceedswith an r ∈ (0, 1) relaxation augmentation. That is,
there is an additional move of 100r% towards the pre-shock
state. The change in the Beta parameters is limited to a frac-
tion r of the calculated change. If the move is away from the
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pre-shock state, the result of the interaction is cancelled. This
models the situation where an ‘adverse’ outcome is immedi-
ately rejected, and efforts are made to remedy the situation.
Informally, we call this recovery mode ‘lazy’, since in any
interaction, there is no initial intent to move towards the pre-
shock state. The soft recovery model is then as follows.

Given an interaction X1 = 〈X , Y 〉, let the state of agent
X before and after the interaction with Y be ŜX and S̄X1,
respectively, where the bar indicates an intermediate state.
The value of the intermediate state is then amended according
to Eq. (27) to produce an amended post-interaction state for
X, ŜX1.

ŜX1 =
{

S̄X , if S̄X ≥ ŜX

(1 + r)S̄X − ŜX , otherwise
(27)

The context of this paper is financial contagion and debt
default. If we depart temporarily from this context, we can
imagine a shock which works in the opposite direction. That
is, the effect of the shock is to move the state of an agent from
a value near to 1 to a value near to 0. In that case, provision
must be made for the relaxation augmentation to be applied
in the correct direction. This is a simple matter of accounting
for the sign of the difference SX − SX1. An example of such a
context is ‘volume of complaints data’. ‘State = 0’ indicates
no complaints, whereas ‘State = 1’ indicates a high volume
of complaints. A shock that has the effect of eliminating the
majority of complaints would be highly beneficial!

3.6.2 Hard recovery

In the Hard Recovery approach, a target state is set, and an
agent tries to work actively towards the target. In principle,
the target can be any state, but we take it to be the pre-shock
state in the simulation in Sect. 4.Given the target, a relaxation
augmentation factor r ∈ (0, 1) is used, but in a different way
to the way it was used in Sect. 3.6.1. Denote the target state
with a tilde: S̃X . Using the same notation as in Sect. 3.6.1,
for an interaction X1 = 〈X , Y 〉, the parameters of the Beta
function for the resultant X1 are set such that the state of X1
moves towards the target by 100r%. See Eq. (28). The result
is an extended (in time) geometric relaxation of the shocked
state.

ŜX1 = ŜX − r(ŜX − S̃X ) (28)

As with Sect. 3.6.1, in another context the shock can work
in the opposite direction. In that case, Eq. (28) has to be
amended by a sign change to account for the direction of
travel to the target. The recovery period is very sensitive to
the value of the relaxation augmentation parameter.

3.7 Systemic risk measures

Two systemic risk measures are considered. The first is the
equivalent of Cont’s Contagion Index, Eq. (3) in Sect. 2.3.2.
The second measures volatility before and after a shock is
delivered.

3.7.1 Systemic contagion index

We first describe a method to measure the total systemic
effect within a system, if the shock is delivered to one mem-
ber of the system. This is a parallel to the analysis of Cont
in Sect. 2.3.2. However, Cont’s systemic risk measure dif-
fers in one important respect from ours: it has to use a single
empirical data set. We can go further because we can gen-
erate multiple simulated data sets. Therefore, we propose an
equivalent but differentContagion Index measure, which cal-
culates the ratio of capital lost due to the systemic effect, to
the capital before the shock was delivered. With respect to a
predefined list of n agents X = {X1, X2, ...Xn}, the inputs
for our Contagion Index calculation are:

• A vector of initial capitals C, in which the component Ci

is the initial capital for agent Xi . A capital Ci = 0 means
that the agent is in default.

• An exposure matrix, E, in which each entry Ei j gives the
exposure of agent i to agent j. The major diagonal entries
in E are the exposures of each agent to itself, and these
entries are set to zero (Eii = 0, i = 1..n).

The algorithms below show details of the interaction pro-
cess used to derive the Contagion Index, K̂ and a count ĉ
of the number of interactions for a contagion to spread to
all agents. A quick summary of that algorithm is that in a
sequence of interactions, there is a probability that a coun-
terparty will default on its debt. In that case, the other party
to the transaction will suffer an expected loss of capital equal
to the product of the probability of default and the exposure
to the defaulter. Furthermore, the total capital within the sys-
tem will be reduced by the same amount. Once one agent has
defaulted, we assume that its capital is wiped out and it takes
no further part in the process. The Contagion Index is the
ratio of the total capital reduction due to those exposures to
the total initial capital. The detail of our proposed calculation
can be summarised in two algorithms.

3.7.2 Algorithm index 1

ALGO INDEX 1 is a process in which the index is calcu-
lated once, using a single simulated data set. The start is an
initialisation stage. Following that, pairs of agents, selected
at random, interact to simulate the way they could influence
each other in reality. Those interactions comprise a calcula-
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tion of exposures, probabilities of default and expected losses
at default.

ALGO INDEX 1: Single instance, m, of a systemic capital
loss calculation: Initialisation

1. Initialise:

(a) Induce a shock by setting one element in C to zero
(b) Calculate the initial capital Cini = ∑n

i=1 Ci

(c) Initialise a total loss due to systemic risk for this
instance, Λm , to zero

(d) Zero a counter, ĉm , for the number of interactions

2. Initiate a sequence of interactions 〈Xi , X j 〉 in which i
and j are chosen at random from the range 1..n. If Xi has
defaulted ignore this interaction. If not, continue.

3. Calculate the net exposure E j
i = E ji − Ei j . If E j

i < 0
omit the next three steps as X j is not then exposed to Xi :
the exposure is the other way round.

4. Calculate the probability that Xi defaults, PXi by drawing
from an exponential distribution (common to all agents),
Exp(2). Default Xi if PXi < 0.1 by settingCi = 0.With
this distribution, default occurs in approximately 10% of
interactions.

5. Calculate the expected loss at default for agent X j , L j =
PXi E j

i
6. Reduce the total capital and X j ’s capital by the amount

of the loss:

(a) Λm := Λm − L j

(b) C j := C j − L j . Note that if C j ≤ 0, X j is automat-
ically marked as defaulted

(c) Increment the interaction count: ĉm := ĉm + 1

7. When all agents have defaulted, calculate the Contagion
Index K̂m = Λm

Cini
, and the interaction count, ĉm .

(Outputs: K̂m and ĉm)

The outputs of ALGO INDEX 1 are used as inputs to
ALGO INDEX 2. Those outputs are based on one simulated
data set each, so each one in isolation is the equivalent of
Eq. (3) from Sect. 2.3.2 (Cont’s Contagion Index).

3.7.3 Algorithm index 2

ALGO INDEX 2 is a Monte Carlo procedure which calls
ALGO INDEX 1 many times and calculates a mean value for
the all the calculated values of the index.

ALGO INDEX 2: Monte Carlo with M iterations of the
systemic capital loss calculation

1. Calculate M instances of Contagion Index: K̂m , and the
Interaction Count, ĉm using ALGO INDEX 1.

2. Calculate the mean values of the K̂m and the ĉm :

K̂ =
∑M

m=1 K̂m

M
(29)

and

ĉ =
∑M

m=1 ĉm

M
(30)

(Outputs: K̂ and ĉ)

The output K̂ represents the mean values of many data set
instances. Therefore, it is a more general result than that of
(Cont’s Contagion Index) in Eq. (3).

3.8 Volatility measure

In order to assess the volatility effect of the shock on the state
before and after the shock is delivered, the standard deviation
of the simulated state for a given period before and after the
shock was calculated.

Suppose the shock is applied at iteration T to a group of n
agents X, and the state volatility is measured for a period τ

before and after the shock.Denote the values for the state of X
for those periods by {ŜX ,n}T

T −τ and {ŜX ,n}T +τ
T , respectively.

Then, the expression VX ,T ,τ in Eq. (31), below, provides
the required volatility ratio measure.

VX ,T ,τ = sd({ŜX ,n}T
T −τ )

sd({ŜX ,n}T +τ
T )

. (31)

4 Simulation results

In this section, we report simulation results for a randomly
generated group of 10 agents. General points that emerge
are reported after specific simulation scenarios, in Sect. 4.8.
The simulations trace the path of the Group State, defined
in Sect. 3.4, over time. Agents interact ‘normally’ up to a
certain time. After that time the shock is introduced. It should
be noted that time is measured in number of interactions,
not as a fixed-length duration. The actual duration between
interactions can vary. Specific scenarios, with their results,
are discussed below.
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4.1 Parameter values

Prior to reporting simulation results, we give a general indi-
cation of the parameter values used, with an explanation of
the reasons for choosing those parameter values. In each sim-
ulation, a single shock affects 10 agents. The number 10 is
sufficient to model the effect of multiple interactions and is
designed to model a typical small system of banks that trade
in particular financial products (bonds, options, commodi-
ties, etc.). Ranges for the agent Beta parameters are chosen
to model moderate extremes of protection against financial
shock. Referring to Fig. 3, the well-protected agents on the
left have Beta parameters in the ranges (10, 30) and (100,
200). The poorly-protected agent on the right has ’reversed’
Beta parameters 150 and 50. Agent influence parameters are
generated at random from a U(0,1) distribution.

The strength parameter in Algorithm ALGO SHOCK that
governs the extent of the shock varies in the range (0,1], and
its value depends on whether the shock is mild (0.1), medium
(0.4) or severe (1.0). Its effect is to change an agent’s state (i.e.
its Beta parameter values) to close to the those of the external
agent that originates the shock if the shock is severe, and to
change an agent’s state by only a small amount for a mild
shock. The shockingmechanism has been chosen to simulate
an effect that happens quickly but not immediately. We have
assumed that shock transmission fromagent to agent is 100%.
That assumption could be relaxed in further investigations.

In recovery, the relaxation augmentation parameters on
Sects. 3.6.1 and 3.6.2 can be changed to reflect the speed of
recovery. For soft recovery, the value r = 10% models an
active attempt by the agent to retrieve a pre-shock state. That
value represents a slow but gentle effort. For hard recovery,
r is set to 0.2 in Eq. (28). That value is intended to simulate a
determined effort to return to the pre-shock state, but is also
open to discussion.

In order to calculate a value for the Contagion Index
(defined in Sect. 3.7.1, with numerical results in Sect. 4.9.1),
bank capitals and exposures have been selected at random,
and in arbitrary monetary units, to reflect a reasonable range
of operational characteristics. The capitals are such that
the ratio of smallest to largest is 1:10. The exposures vary
between 1 and 100%, reflecting a very diversified portfolio
and a totally concentrated portfolio, respectively.

4.2 Shock delivered to a single agent

The first simulation is very basic: a shock is delivered to
a single agent. Figure 6 shows this result for the three dis-
tinct agents. The shock is felt by the agent who has good
shock protection (Red), but this agent is not severely affected.
The shock has a severe effect for the agent with poor shock
protection (Blue). The (Green) trace shows an agent with
medium shock protection. In each case, the state continues

Fig. 6 3 Agents each subject to a shock

Fig. 7 The Shock is delivered to only one agent in a group: no systemic
effect

at its ‘shocked’ level and does not recover, since no recovery
mechanism is in place.

4.3 Shock delivered to a single agent in a group

Each trace in Fig. 7 shows theGroup Statebefore and after the
shock is delivered toonly one agent in the group.The affected
agent is chosen at random, and there is only one instance
of a shock delivery. The three cases represent single agents
who start with good (Red), medium (Green) and poor (Blue)
shock protection. Pre-shock, there is a relatively stable period
for all three. Post-shock, the External agent takes no further
part. The effect of the shock is clearly visible (at interaction
100), but is not felt immediately. The shock is characterised
by a period of greater instability immediately following it,
but the depth of the shock is almost imperceptible. The single
shock remains limited to one agent, and there is a no systemic
effect. It appears that the opposite occurs: other members of
the group can reduce the impact of the shock.

4.4 Shock delivered to all agents in a group: limited
systemic effect

This is similar to the previous case, except that the shock is
delivered to all agents in the group. After that, the External
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Fig. 8 The Shock is delivered to all agents in a group

Fig. 9 Systemic Shock passed from agent to agent

agent takes no further part. Figure 8 shows that in each case
the state is shifted further towards the default state. Instability
post-shock is again present. There is a therefore a limited
systemic effect because the effect is not transmitted beyond
the initial targets. However, this case does illustrate that there
is much more damage if a shock hits all agents rather than
only one.

4.5 Systemic external shock

Figure 9 illustrates the effect of a true systemic shock. A
shock delivered to only one agent is transmitted to other
agents in interactions. The effect is marked even for the
well-protected agents (in Red). No agent can hide from the
systemic effect, even with apparently adequate protection.
The state of default increases with the number of interac-
tions, independent of the degree of protection of the agent.

4.6 Soft recovery

Figure 10 illustrates an instance of recovery from a shock
if the Soft Recovery mode is used. The mechanism for this
recoverymodewas discussed in Sect. 3.6.1. The figure shows
the shock, followed by a short period near the fully defaulted
level in which preparations for recovery may be initiated.

Fig. 10 Soft Shock recovery

Following that, recovery is extremely volatile (i.e. difficult!).
Most notably, recovery is extremely slow. In this case the
relaxation augmentation is 20%. The scale on the Interaction
axis extends to 4000 interactions, showing that the recovery
period (about 3000) is very large compared to the period
needed for the shock to take effect (about 30).

This recovery mode is very dependent on the relaxation
augmentation parameter. If no augmentation applies, any
change of state in the ‘wrong’ direction is ignored and all
changes of state in the ‘right’ direction are applied with no
further amendment. The result is an extremely slow recovery
time. In practice, the value of the relaxation augmentation
parameter would have to be determined by fitting data.

4.7 Hard recovery

The Hard Recovery model represents a concerted effort to
move towards a target state. Agents are forced to take action
so as tomove in the ‘right’ direction. Section 3.6.2 has imple-
mentation details. The Red case in Fig. 11 is for a shock
experienced by an agent with good shock protection, the
Blue case is for poor shock protection and the Green case
is for medium shock protection. The target state in all cases
is the initial ’low risk’ state. All show some similarity with
the result of the Soft mode in Fig. 10, but there are clear
differences. Recovery is faster and much less volatile. This
is not surprising, as moving in the ‘wrong’ direction only
occurs as a stochastic effect. However, the simulations show
that recovery is not to the intended ’low risk’ state. It is only
part way there. This is an illustration of emergent behaviour.

4.8 Simulation results: general findings

The simulations show that:

1. If a single agent is hit by a shock there is always an
effect, and its depth depends on the strength of the shock.
Agents can protect themselves against such shocks, but
such protection is only effective to a limited extent.
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Fig. 11 Hard shock recovery

2. If a shock is delivered to only one member of a group
of agents, the state of the group is largely unchanged.
The difference between before and after the shock is an
increase in volatility of the group position. That volatil-
ity usually diminishes with time. Effectively, a single
agent is ‘infected’, and every time that agent interacts
with another agent, the infection spreads a small amount.
The spread is diluted because the affected agent does not
behave like the deliverer of the shock, which has a much
more significant effect.

3. As the number of agents affected by the initial shock
increases, a change in state of the group (towards a
defaulted state) is increasingly apparent.

4. In the case of systemic external shock (Sect. 4.5), in
which agents pass on the full effect of a shock to other
agents, contagion spreadsmuchmore rapidly. In that case
it is only necessary to influence one agent initially. It
takes about 15–20 interactions to change the state of all
10 agents if they are poorly protected. If they are well
protected it takes 50–60 interactions before the state is
changed for all agents. Evenwell protected agents cannot
escape the systemic effect.

4.8.1 Examples of shock delivery: financial data

Volkswagen Emissions Scandal
A recent example of an external shock delivered to a system
is that of the Volkswagen Emissions Scandal in September
2015. US regulators found that software designed for diesel
cars with Type EA 189 engines gave false emissions data.
There was outrage when this was first widely reported in the
press.Major coveragewas on 21st September 2015, although
there had been hints of the problem in the preceding year. The
full storymay be found in Bachmann et al. (2017), and also in
numerous news reports by googling Volkswagen Emissions
Scandal. The VW share price suffered greatly, as shown in
Fig. 12. The share price shock is marked by the rapid fall
in share price: trace BC, which took about 2 weeks. The
recovery period is the trace CD. It took more than 2 years to

Fig. 12 Volkswagen share price before and after the emissions shock .
(source: https://uk.finance.yahoo.com)

Fig. 13 GBPEUR fx rate pre-and post-the Brexit referendum . (source:
https://uk.finance.yahoo.com)

recover the September 2015 price. The traceAB is pre-shock,
and marks a period of falling share price in the ‘system’ -
competitormotormanufacturers. Interestingly, theEmissions
shock was not systemic: other motor manufacturers were not
affected by this shock. During the shock period, their share
prices fell much less than Volkswagen’s as part of a general
trend.

Brexit
An example of an economic shockwithout recovery is that of
the Brexit referendum on 23rd June 2017. Figure 13 shows
the GBPEUR fx rate from September 2015 to June 2018.
The reaction to the referendum result was an instantaneous
fall in the exchange rate, shown by trace BC on the graph.
This followed a gentle decline (traceAB), probably reflecting
general unease pre-referendum. Post-referendum there has
been no recovery (trace CD). Again, this shock affected the
GBP fx rates, and is not systemic.

The Dot-Com Bubble
A stock price example where systemic risk is present—the
Dot-Com bubble—is given by Quartz.com in Fig. 14. An
account of theDot-Com bubblemay be found in DeLong and
Magin (2006). Technology-based companies had been grow-
ing throughout the 1990s. With the growth of the internet
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Fig. 14 Nasdaq composite index pre-and post- the Dot-Com bubble.
. (Source: https://qz.com/348954/the-nasdaq-is-back-to-its-dot-com-
bubble-peak/)

Fig. 15 Distribution of systemic loss

towards the end of that period, many internet-based compa-
nies, known as ‘dot-coms’, were launched, but a significant
number of them were highly overvalued. Consequent failure
left investors with significant losses. The Nasdaq Compos-
ite Index peaked on 10th March 2000, before crashing when
funding ceased. Figure 14 shows this peak and the shock that
followed, which lasted for an extended period of about 2.5
years. The recovery period took about 8 years. An interpre-
tation of the systemic effect is that contagion, in the form
of funding withdrawal, spread as investors saw the value of
their investments diminishing.

4.9 Systemic risk measures

Two sets of results are reported here: one for volatility before
and after a shock, and one for the Contagion Index, defined
in Sect. 3.7.1.

4.9.1 Contagion index results

Algorithms ALGO INDEX 1 and ALGO INDEX 2, described
in Sect. 3.7.1, concentrate on deriving an expected value for
the Contagion Index. Because those algorithms incorporate
a Monte Carlo procedure, it is easy to derive an empirical

Fig. 16 Distribution of interaction count

Table 2 Contagion index distributions: systemic loss and interaction
count

Measure Mean Standard deviation

Loss distribution, K̂m 387.3 205.3

Count distribution, ĉm ĉ = 154 65

K̂ 0.069 (6.9%) 0.0023 (0.23%)

Fig. 17 Contagion index distribution: 100 samples

distribution for the Contagion Index. The required expected
value is the mean of the empirical Contagion Index distribu-
tion. The distribution histograms show the expected values
obtained for 1000 Monte Carlo iterations. Distribution 15
shows the index itself, and distribution 16 shows the count
of agent–agent interactions in order for contagion to have
spread to all agents. The two distributions shown are clearly
skewed, and resembleGamma distributions. The Loss Distri-
bution is approximately Γ (α = 2, β = 120), and the Count
Distribution is approximately Γ (α = 3, β = 60).

Table 2 gives summary statistics for those distributions.
The statistics for K̂ (equation 29) and ĉ (Eq. 30) are based on
100 independent calculations of both. A histogram of those
results (Fig. 17) shows an approximately Normal profile. The
calculation of K̂ in table 2 is based on a total initial capital
of 5771 (the sum of the representative capitals used in the
simulation) and a sample size of 1000. The Contagion Index
is the mean of the systemic losses divided by the total initial
capital (from ALGO INDEX 1). The Interaction Count is the
mean value of the counts.
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The ratio of mean exposure to mean capital used in the
calculation for the results in Table 2 was approximately 0.13.
The ratio of mean exposure to mean capital loss is important
because there is a significant dependence of the value of the
contagion index, K̂ , on that ratio. If the ratio is very small,
very little capital is lost at each adverse interaction (where the
net exposure is positive), so the total capital lost at any given
Monte Carlo iteration is also small, and this produces a small
Contagion Index. Larger exposures for given capital result in
much higher losses at each adverse interaction. If the main
exposure is approximately the same as the main capital, the
contagion index is between 40 and 50%. Cont (in Cont et al.
(2013)) does not emphasise this pointS. Also, note that the
calculation of K̂ does not include capitals that are wiped out
completely due to default. It only measures capital reduction
up to the point of complete default.

4.9.2 Comparison with results from the Cont analysis

We now compare our results with those of the Cont model
(Sect. 2.3.2). Cont used data for Brazilian financial insti-
tutions for the period June 2007 to November 2008. Sig-
nificantly, Cont’s Contagion Index shows that systemically
important financial institutions can be responsible for up
to fifteen times the loss of capital, because of contagion,
compared to other financial institutions. These systemically
important financial institutions tend to be clustered within
the network, and the larger the cluster, the larger the sys-
temic effect. Altogether they account for 7–10% of the total
number of interactions. However, whether or not a financial
institution is systematically important or not does not depend
directly on balance sheet size (surprisingly!). The determin-
ing factors appear to be interbank liability, local network
frailty and counterparty susceptibility.

Our Volatility index value (about 6.9%) is comparable to
the lower end of the 7–10% range reported by Cont.

4.9.3 Contagion volatility results

Equation (31) gives an expression for the Volatility Ratio
measure of systemic risk, VX ,T ,τ , for a shock at iteration T
to a group of agentsX,measuring volatility over a period τ . In
a series of simulations, the calculationwas done for groups of
agents that have good, medium and poor protection against
contagion. The designations ‘good’, ‘medium’ and ‘poor’
correspond to the Red, Green and Blue categories of Sect. 4.
The mean volatilities in those cases are summarised in table
3. For the results in that table,with 500 interactions, the shock
was delivered at the half-way stage, T = 250, with τ = 50.

It is clear that theVolatility Ratio increaseswith decreasing
protection against debt default. Good protectionmitigates the
uncertainty post-shock, but only to a limited extent.

Table 3 Contagion volatility pre- and post-shock

Protection level Volatility pre-
shock

Volatility
post-shock

Volatility
ratio VX ,T ,τ

Good 0.023 0.267 0.09

Medium 0.055 0.110 0.50

Poor 0.024 0.015 1.64

4.9.4 Recovery statistics

A comparison of the time taken for contagion to spread to
all n agents with the time taken to recover provides a metric
for the relative length of the recovery phase. The recovery
criterion is the first time after shock for which 25 consecutive
observations of the Group State are less than the pre-shock
state. The following results refer to a typical shock period of
length 40, tracking 1000 simulations for Soft Recovery and
1000 simulations for Hard Recovery.

For Soft Recovery the mean recovery period was 2036,
with standard deviation 667. The relative ’recovery-to-shock
ratio’ is therefore 2036

40 ∼ 51, with corresponding relative
standard deviation 667√

40
∼ 105. Rounding then gives the

approximate ratios mean∼ 50 and standard deviation∼ 100.
The large standard deviation in this case is to be expected,
given the volatility of the Soft Recovery process.

The equivalent results for Hard Recovery, were a mean
recovery period of 684, with standard deviation 121. The
relative ’recovery-to-shock ratio’ is therefore 684

40 ∼ 17, with
corresponding relative standard deviation 121√

40
∼ 19. Round-

ing to the nearest 10, we conclude that the relative time to
recover with Hard Recovery has approximate mean 20 and
standard deviation 20.

5 Conclusion

The aim of this study was to provide a formal link between
complexity and systemic risk by constructing amodel of sys-
temic risk based purely on key principles of complexity. The
key principles addressed are pairwise agent interaction and
undirected self-determination. The simulations presented
show that the spread of debt default contagion can be very
rapid, especially if there is an external influencewhich affects
all of the agents within the system. However, if that external
influence affects only one of the agents, the systemic affect
is absent: the effect is then idiosyncratic. A systemic effect is
limited if the external influence acts on most or all agents in
the system. The essence of a ‘true’ systemic effect is that one
agent is able to pass a contagion to another. In cases where
such a systemic affect applies, recovery can be very slow, if
it happens at all. The Contagion Index measures the over-
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all loss due to contagion, but we stress again that it is very
dependent on the actual data used. Simulations can only give
an indication of how the index may be calculated. In contrast
to other studies (see Sect. 2), a formal network is not neces-
sary. If a network structure is imposed, the effect would be
to prevent certain interactions from happening, which might
serve to mitigate a systemic effect.
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