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With the overarching goal of developing user-centric Virtual Reality (VR) systems, a new wave of studies
focused on understanding how users interact in VR environments has recently emerged. Despite the intense
efforts, however, current literature still does not provide the right framework to fully interpret and predict
users trajectories while navigating in VR scenes. This work advances the state-of-the-art on both the study of
users’ behaviour in VR and the user-centric system design. In more details, we complement current datasets
by presenting a public available dataset that provides navigation trajectories acquired for heterogeneous
omnidirectional videos and different viewing platforms, namely, head-mounted display, tablet and laptop. We
then present an exhaustive analysis on the collected data, to better understand navigation in VR across users,
content, and for the first time across viewing platforms. The novelty lies in the user-affinity metric, proposed
in this work to investigate users’ similarities when navigating within the content. The analysis reveals useful
insights on the effect of device and content on the navigation, which could be precious considerations from
the system design perspective. As a case study of the importance of studying users’ behaviour when designing
VR systems, we finally propose an user-centric server optimisation. We formulate an integer linear program
that seeks the best stored set of omnidirectional content that minimises encoding and storage cost while
maximises the user’s experience. This is posed while taking into account network dynamics, type of video
content, but also user population interactivity. Experimental results prove that our solution outperforms
commonly company recommendations in terms of experienced quality but also in terms of encoding and
storage, achieving a saving up to 70%. More importantly, we highlight a strong correlation between the storage
cost and the user-affinity metric, showing the impact of the latter in the system architecture design.
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1 INTRODUCTION

Since its conception 50 years ago, Virtual Reality (VR) technology has been increasingly developed,
with a disruptive impact envisioned across many sectors, such as gaming and entertainment,
but also healthcare, education, sport, journalism and automotive [48]. The revolutionary novelty
introduced by VR is the possibility to interact with the content provided to users, empowering
viewers with a feeling of engagement and presence in the virtual space, even if they are not
physically there [45, 48]. This immersion sensation is provided to users by a new multimedia
format, namely the omnidirectional video (ODV) or spherical video, defined as a visual signal
depicting the 360° surrounding scene on a virtual sphere. The viewer, virtually positioned at
the centre of the virtual space, dynamically interacts with the content and changes the rendered
portion of the spherical content (i.e., viewport) based on his/her viewing direction. Typically, users
enjoy this new multimedia format by head-mounted display (HMD) or tablet/smartphone. The
dynamic level of interactivity and the ability for viewers to display only a desired portion of the
content has pushed toward a technological paradigm shift, in which the user is at the center of
the content consumption (as opposed to more classical fully passive content consumption). This
ensures immersion, presence and interactivity, which are the three crucial factors to guarantee
high Quality of Experience (QoE) in a VR system [19]. However, this paradigm shift has introduced
few main challenges: VR systems are highly data intensive and require ultra-low latency. Both
requirements imply a very high amount of data to be transmitted in real time for the millions
of VR users envisioned in the near future, also pushing connectivity boundaries. To overcome
these limitations and challenges, VR systems need to evolve in a personalised manner, implying a
fundamental revolution of the media delivery chain, from coding to rendering. The interactive user
has to be put at the heart of the next generation of VR system rather than at the end of the chain.

It is therefore clear the urgent need for understanding and anticipating user’s movements to
develop user-centric solutions. This has been proven by an increasing interest on users’ behaviour
analysis and classification in VR [39, 43, 47]. Many public datasets have appeared presenting data
of head and/or eye movements collected while viewers were displaying VR images/videos by
HMD [7, 10, 17, 25, 26, 53], and computer [13]. Their focus has been mainly on the analysis and
prediction of the most salient areas within the content. At the same time, research interests have
expanded toward psychological and emotional aspects related with VR applications. Since ODVs
can be experienced by heterogeneous apparatus, such as smartphones, tablet and HMD, recent
psychological investigations on users’ experiences suggest that viewers prefer different devices
based on content category and his/her current location (i.e., travelling or at home) [52]. Moreover,
human perception is strongly dependent on the selected viewing platform [5]. From a technical
perspective, the investigation of users’ behaviour in relation with selected content and device could
be the key to optimise the system design of VR applications. However, currently, this is not possible
since the behaviour of interactive users across devices is highly overlooked in the literature.

To overcome this issue, this paper introduces a dataset of navigation trajectories of users watching
15 ODVs on different devices (HMD, tablet and laptop) and analyses the users’ behaviour across
content and across viewing device. As main novelty, we investigate different conditions of ODVs
exploration based on the viewing device: traditional VR-based navigation enabled with HMD, touch-
based navigation with tablet and mouse-based navigation with laptop. Based on this collected
dataset, we then present an extensive user data analysis. A first analysis is carried out with
conventional metrics such as angular velocity and viewport center distribution, and it highlights
the dependency of the users navigation from the displaying device. However, this first part of the
analysis fails in detecting how much users interact in harmony among themselves; key information
to understand users predictability. Therefore, we expand the dataset analysis including a novel
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metric aimed at evaluating the affinity among users — i.e., the similarity among them in terms of
viewport displayed overtime. Namely, we introduce the User Affinity Index metric, which is based
on a recent clique-based clustering tool [43]. This allows us to move a step forward in the direction
of better understanding how users interact with the VR technology, with a substantial impact on
the efficiency of VR systems. Our study is therefore vital for the community to design reliable
user-centric systems, as the recently proposed coding and streaming strategies for ODV [55].

To emphasise the importance of the proposed dataset and associated analysis, we propose a case
study on user-centric optimisation for coding and storing ODVs at the server. Due to the increasing
cost of storage and coding, optimising the storage space at the main server has become fundamental,
especially for VR content — highly data intensive. Works focused on server optimisation for classical
adaptive streaming platforms have been already proposed in literature [51], tuning the coding rate
and resolution depending on both the population features and the type of content. In the context of
ODV, only [37] introduces a content-aware encoding ladder estimation that achieves cost-optimal
and higher objective quality compared to recommended encoding ladders. However, information
about users’ navigation within the content is not considered. Hence, to carry out our case study
we also bring-in the novelty of formulating a user-centric server optimisation for ODV adaptive
streaming systems. In particular, we evaluate the optimal set of coding parameters to store ODVs at
the main server minimising the total cost and maximising user’s experience, taking into account the
users’ behaviour and network characteristics. Results show that our solution performs well in terms
of total cost (i.e., encoding and storage cost) and quality experienced by users. Most importantly,
results reveal also a correlation between the optimal set and the user affinity index. This insight
suggests that user affinity index could be a key metric in the design of the next generation systems.

In conclusion, our work contributes to the overall open problem of optimally designing a VR
system, with the following main contributions:

(i) A new public dataset of 15 ODVs with associate navigation trajectories collected in task-free
experiments using 3 different devices such as HMD, tablet and laptop.

(if) An exhaustive analysis of the aforementioned collected data, showing that users navigate
differently based on the device, and introducing a novel affinity metric able to quantify user
navigation similarities.

(iii) A case study of VR systems optimised from the server perspective, with a two-folds novelty:
i) the proposed problem formulation; ii) the translation of the users’ behaviour analysis into
gain for a system provider.

The remainder of this paper is organised as follows. Related works on users’ behaviour analysis
and streaming strategies in VR system are reported in Section 2. The data collection campaign
is described in Section 3 while the associated analysis is depicted in Section 4. The case study is
formulated in Section 5. Section 6 and Section 7 describe metrics and simulation settings, respectively.
In Section 8, the performance of the proposed optimisation algorithm is first compared with the set
of recommended representations and then, the results are further analysed to reveal the effect of
the user behaviour. Finally, conclusions are summarized in Section 9.

2 RELATED WORKS

Although streaming strategies have been widely investigated in recent decades, many open chal-
lenges are still unsolved in the context of user-centric immersive communications. We now describe
the latest contributions mostly related to our work, which are focused on: i) analysis of users’
behaviour within ODV; ii) user-depended streaming strategies for ODV. For a comprehensive litera-
ture review on ODV analysis and communication, we refer the reader to [55] and [14], respectively.
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2.1 Studies related to ODV dataset and user behaviour analysis

The main contributions in the area of users’ behaviour can be categorised in i) dataset collection;
ii) analysis of the acquired dataset. Ideally, the data collection should be as much exhaustive as
possible, while the data analysis should identify the hidden patterns of users while navigating. The
collected users’ head and eye movement data show the most salient regions of ODVs. In particular,
head movement determines field of view (FoV) as the pixel region of ODV to be seen by the HMD
over time. Eye movement datasets contain the regions of a given ODV that are salient within the
FoV. To understand how people observe and explore ODVs, David ef al. [10] established a dataset
of head and eye movements using an HMD across various content types of ODVs. In their study,
statistics related to ODV exploration behaviours are presented using the distribution of eye fixations.
Salient360! grand challenges at the ICME 2017 and 2018 fostered further research works in this
domain by providing benchmark platform for visual attention models [46]. For instance, Chao et
al. [6] demonstrated state-of-the-art saliency prediction accuracy using generative adversarial
networks. Furthermore, Zhang et al. [57] presented a large-scale HMD eye-tracking dataset using
only sport-related ODVs. In their work, the performance of spherical convolutional neural network
architecture is analysed with state-of-the-art image saliency detection methods. Similarly, the work
in Ozcinar et al. [39] analysed the performance of standard video saliency detection methods using
6 ODVs rendered by an HMD. Results reveal that the quantity of fixations depends on motion
complexity of ODV. A HMD-based Director’s Cut dataset has been proposed in Knorr et al. [24] to
evaluate the users’ attention in storyteller ODV. An interactive storytelling perspective was then
presented in [15, 16]. More recently, Nasrabadi et al. [31] investigated the impact of camera motion
on HMD navigation trajectories using the clique-based clustering presented in [44]. Another dataset
was established by Corbillon et al. [7] using 7 different ODVs viewed by an HMD. In their work,
statistical analysis was performed by using maximum and average angular speeds of navigation
trajectories under various video segment lengths. Similarly, Lo et al. [26] published a dataset
intending to optimise ODV streaming for an HMD. This work, however, excluded the analysis of
users’ behaviour for ODV viewing. Furthermore, Wu et al. [53] investigated what content users
remember after each viewing session on their proposed head orientation dataset. According to
their analysis, users share certain common patterns in ODV streaming, which are different from
those in conventional video streaming,.

The above works have set a solid background for understanding users’ behaviour in VR systems.
However, they do not completely provide the right framework to develop fully personalised VR
streaming solutions, which take into account both content and user device. Specifically, none of
the above works provide an open-data set where users’ trajectories are acquired with different
displaying devices. Moreover, in most of the data analysis studies the popular metrics show an
average behaviour of the users (for example, the mean angular velocity) but do not necessarily
reveal quantitative information of users’ similarity. Hence, the novelty of this paper is in tracking
users navigation across three different VR devices and in analysing the acquired dataset with new
users similarity metrics.

2.2 Studies related to viewport-oriented ODV streaming strategies

In recent years, user-centric systems have been developed, optimising every step of the ODV
video delivery chain: coding [30], streaming [36, 44], caching [28, 29], and rendering [40]. In
particular, tile-based coding systems [30, 34] were utilised using viewport adaptive streaming
algorithms [8, 33, 38] to provide smooth VR video experience [36, 44]. For instance, a navigation-
aware adaptation logic was developed in [44] to optimise the downloading rate for each tile of ODV
streaming. The results reveal that the final quality is strongly affected by the video content and
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users’ navigation trajectories. Furthermore, Nguyen et al. [33] presented an adaptation logic for
ODV streaming to decide an optimal version of each tile according to users’ head movements and
network bandwidth. Their analysis emphasised the need of accurately predicting future viewport
position for ODV streaming. In the aspect of the prediction of future viewport, Petrangeli et al. [41]
proposed a prediction algorithm for long-term prediction of user viewport. In their work, the
navigation trajectories of a given user are modeled over time such that future viewports can
be predicted based on the navigation patterns of users stored in the system. According to their
results, their proposed algorithm can increase prediction accuracy of the expected viewport area
by 13% on average compared to previous algorithms. By looking more at the server-side (i.e.,
coding optimisation), Ozcinar et al. [36] proposed a visual attention-based ODV streaming system
optimising the tile-based design taking into account users saliency maps. The work showed the
importance of being user-centric also at encoding side without focusing a design of cost-aware VR
system. In contrast, Xiao et al. [54] optimized the tile-based encoding design of ODVs seeking the
best trade-off between storage costs and overall quality of the panorama. However, the storage cost
was not formally optimized and the users trajectories were neglected in the problem formulation.
There are also some activities in the sense of standardization bodies, such as MPEG-I [50]. For
instance, a practical study by Graf et al. [18] examined several adaptive streaming strategies and
evaluated bitrate overhead with quality requirements in VR. To find the optimal set of quality-
variable video versions for ODV streaming, Corbillon et al. [8] presented an optimisation model
for the concept of quality regions of ODVs. Their main contribution is to consider the surface
bitrate and users’ head movement data within the proposed optimisation framework. However,
their study was restricted to using the concept of quality-emphasised regions, with the employed
constraints being the number of quality-variable video versions and the bandwidth. Also, Zue et
al. [58] proposed a server-side rate adaptation problem for the tile-based adaptive ODV streaming.
They aimed to maximise the QoE of multiple users who are competing for transmission resources at
the network bottleneck. Furthermore, Chakareski et al. [23] maximised the QoE for given network
resources at the server side. Their work consider user navigation trajectories and spatio-temporal
rate-distortion characteristics of a given video. However, the proposed formulation is based on
the traditional Mean Square Error (MSE), which does not take the spherical distortion of ODV
representation into account. In summary, from the literature it is clear the importance and the gain
in being user-, cost-, and geometry-aware when designing VR systems. However, such a complete
design at the server side is missing.

Our work goes beyond the state-of-the-art as we take into account our users’ behaviour analysis,
formulating a novel user-centric server optimisation system, which minimize the user-centric
spherical quality and the coding and storage costs. In particular, we developed an optimisation
algorithm to determine the optimal set of coding parameters to store OD Vs at the server minimising
the total cost and maximising users experience. Differently from the aforementioned works, the
main novelty of our algorithm is to take into consideration users’ behaviour beyond the spherical
geometry and content information, minimising the total cost and yet maximising the final quality
for ODV adaptive streaming systems. A further novelty is to link the optimal design with the
affinity of users navigation patterns.

3 COLLECTION OF USERS’ NAVIGATION TRAJECTORIES

In this work, we are primarily interested in understanding users’ navigation across space and time
when interacting with different ODVs and the impact that different devices might have on the actual
interaction. With this aim in mind, we collected a dataset with head-trajectories across different
viewing platforms. In particular, we conducted subjective experiments across two universities,
namely, Trinity College Dublin (TCD) and University College London (UCL). In this section, we
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Table 1. Description of the ODVs used for the subjective experiment. The dataset contains three content
categories (documentary, action, and movie). Each content category has a training ODV and five test ODVs.

Dataset ID Name Fps YouTube Id | Selected Segment

> Test WildDolphins 25 | BbT_e8IWWdo 00:44 - 01:04
E 01 BabyPandas 24 | 0XrH2WO1Mzs 02:05 - 02:25
g 02 Symphony 30 | LZINCAGWtwE 01:10 - 01:30
£ 03 Ocean Shark | 24 | aQd41nbQM-U 00:40 — 01:00
8 04 Dancing 24 raCda6VRrE8 00:00 - 00:20
A 05 Survivorman 30 | OLQzLOd7Xpk 00:30 — 00-50
Test LaRonde 25 r-qmDDi8S51 00:10 - 00:30

06 FighterJet 25 NdZ02-Qenso 00:00 — 00:20

07 HollywoodRockit | 25 Js_Jv5EzOv0 00:10 — 00:30

08 GetBarreled 30 7gjR60TSn8Q 01:22 - 01:42

09 KITZ 30 KS9S1Hgx2co 00:00 — 00:20

10 Knockout 30 0x16ngo8xfY 01:22 - 01:42

Test Starwars 25 | SeDOoLwQQGo 02:23 - 02:43

11 Back2theMoon 30 | BEePFpC9qG8 00:11 - 00:31

12 Help 30 | G-XZhKqQAHU |  01:20 - 01:40

13 Nick 24 Au5ro1NOnh 03:25 - 03:45

14 Invasion 25 QolJrTXr7PA 00:44 - 01:04

15 InvisibleMan 25 I_FUpUi2LBk 01:55 — 02:15

describe the technical details of the experiments. The collected navigation trajectories and the used
tools are shared in a public repository’ under the MIT open source license.

3.1 Material

To ensure diversity in terms of content, we selected 18 ODVs with diverse content characteristics
and representative of three video categories: Documentary, Action, and Movie. These categories are
diverse enough to maximise the number of subjective experiments to carry out, and yet they span
various content characteristics. Moreover, these categories are widely used in the classification of
ODV content types. Fig. 1 (a) depicts a snapshot of two randomly sampled ODV for each category.
Specifically, we selected videos to span a wide range of content characteristics, such as spatial and
temporal complexities. Fig 1 (b) visually reflects the diversity that each video exhibits in terms of
spatial and temporal information measures [22], SI and TI, respectively.

Each ODV was downloaded from YouTube in the Equirectangular Projection (ERP) format at the
maximum available bitrate and resolution, which is 2560x1440. These ODVs were selected by a
consideration of downloading ODVs with high quality. Then, a visual segment of 20 sec. duration
was extracted from each video, and the audio signal was discarded from each ODV. Our work
focuses only visual (texture) part of ODV by ignoring audio in every step of the delivery pipeline.
In particular, we are interested at studying the effect of visual content on the trajectories, which
has been the case in many other related works (e.g., [7, 10, 39]).

Each 20 sec. segment was selected in a pilot test with two experts. The experts selected the
20 sec., making sure that the selection exhibits its content category and contains at least one salient
object. This duration was chosen as it is the most commonly used in visual attention studies [10];
specifically, it is a meaningful duration for the visual attention experiments as it is long enough for
users to engage with the content, and yet short enough to maximise the number of experiments to
carry out. Finally, an ODV from each category (out of the 18 ODVs) was used as training content
for participants to familiarise with the setup of each device. Table 1 summarises characteristics of
ODVs used in this work, where Test denotes the training content, one for each category.

https://v-sense.scss.tcd.ie/research/3dof/vr_user_behaviour_system_design/
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Fig. 1. Sample frames and statistics for the used ODVs in this work.

3.2 Apparatus

We modified the JavaScript-based test-bed developed in [39] allowing users to display ODVs on
three different devices, namely, HMD, laptop, and tablet, while recording their navigation (viewport)
trajectories for the whole duration of the experiment. The developed test-bed records participants’
viewport positions with the current time-stamp and ODV name. Here, a given set of ODVs is first
loaded using the playlist file, and a given video is played while the recorded data is transmitted to
the server with the refresh rate of the device’s graphics card. At the server side, the HTTP server
was implemented using the Apache web server with the MySQL database, where the device-related
(e.g., HMD, laptop, and tablet), sensor-related (e.g., viewing direction), and user-related (e.g., user
ID, age, and gender) data are stored on the database.

We conducted ODV subjective experiments with VR-based navigation enabled with HMD, touch-
based navigation with tablet and mouse-based navigation with laptop. As HMD, we used the Oculus
Rift consumer version that allows rendering of scene with a nearly 110 FoV at 90 Hz refresh rate.
Each ODV is displayed in the HMD using the Firefox Nightly (ver. 67.0a1) Web browser. Finally,
Alienware 15 Gaming Laptop and Apple iPad Pro 10.5 tablet were used. In both devices, we utilised
Google Chrome (ver. 71.0.3578.98) as a web browser to play ODVs. We considered two different
web browsers due to hardware and video codec compatibility issues at the time of subjective
experiments.

3.3 Participants

In all, 94 participants (65 males and 29 females - about 30% women) took part in our subjective
experiments. Participants were aged between 21 to 54, with an average of 31 years. Nine of the
participants (about 10%) were familiar with ODV, and the others were naive viewers. Furthermore,
43 participants wore glasses during the experiment, and all of the viewers were screened and
reported normal or corrected-to-normal visual acuity. Each participant watched a total of 18 ODVs
(5 test ODVs plus 1 training ODV per device).

3.4 Viewing procedure

To ensure diversity in participants (e.g., ODV familiarity) and maximise the number of navigation
trajectories, we performed the data collection campaign using the same apparatus at TCD and
UCL. Each subjective test was performed as task-free viewing sessions in laboratory condition,
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where each participant was asked to naturally look at each ODV. The task-free viewing is the most
common procedure for analysing visual attention [11, 39]. Participants were seated in a swivel
chair and allowed to turn freely. During experiments, participants were alone in the environment
to avoid any influences given by the presence of instructor.

The subjective test was divided into three phases, where in each phase a viewing session with a
different device was conducted. The order of the devices was in a random order. To get familiar
with the new device, a training video was displayed at the beginning of each phase (one for each
device). Then, after the test session, 5 test ODVs were played in a random order while the individual
navigation trajectories were recorded using the implemented test-bed. To avoid motion sickness
and eye fatigue, we inserted a 5 sec. rest period with a grey screen between two successive ODVs.
Also, before playing each video, we reset the sensor to return to the centre of the ERP. In total, each
viewing session lasted 2 min. and 25 sec.. We also set a 3 min break between each viewing session.

To ensure both the balance among the collected dataset (i.e., balanced amount of viewport
trajectories per device per video) and that each user watches each video only once, a set of playlists
was prepared. Each playlist included a training and 5 test ODVs per device, and in total there were
three different playlists for the three different phases of the test (e.g., three different devices). The
total number of 15 test videos were thus divided into three playlists, and each user was shown three
playlists for three different devices. These playlists were randomly selected for each user at the
beginning of the subjective experiment. It is worth noting that the avoidance of repetition of the
same video within the same playlist avoids the memory bias effect, that could affect the navigation
trajectories [42]. Therefore, during one experiment, a user switches devices every 5 ODVs. In total,
she/he watches 15 different ODVs.

3.5 Post-processing

In order to analyse the collected navigation trajectories, all recorded data was re-sampled based on
the frame rate of the corresponding video. In this way, a fair comparison is allowed having a single
value per user in each frame. Since roll movements are permitted only with HMD, our following
investigations are based only on viewport’s movements in longitude and latitude coordinates.
Previous works [1] showed that most of the users’ movements happen mainly along with these
directions and the roll movements are at minimum. Therefore, this choice will not compromise the
validity of the analysis presented in the following.

4 USER BEHAVIOUR ANALYSIS

We now present an analysis of the collected navigation trajectories across video content and devices.
Specifically, we propose two lines of analysis: one more traditional aimed to show similar features of
navigation among users, and the second focused on quantifying similarity among users’ behaviour.
Over the entire section, we will also underline the key insights that we observe when users navigate
in different video categories and with different devices.

4.1 A Conventional Data Analysis

We take the liberty to denote this first analysis of the collected trajectories as “conventional" data
analysis since we adopt well know metrics such as angular velocity and spatial distribution of
viewport center. Here, the key novelty is to investigate the users’ behaviour across categories and
devices, leading to the following observations (supported in the remaining of the subsection)

e Observation 1: Users tend to be more dynamic with laptop compared to other devices.
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Fig. 2. Traditional analysis of users’ behaviour across devices and video categories. (a) Angular velocity per
video and device - Video ID refers to Table 1. (b) Viewport center distribution on the longitude direction per
video category and device.

e Observation 2: In contents characterised by a dominant focus of attention, the level of
interactivity is negligibly affected by the displaying device (highlighting the dominance of
the focus of attention).

e Observation 3: On the contrary, in contents with no focus of attention, users have highly
exploratory trajectories and, a strong dynamic with HMD.

In Fig. 2(a), we analyse the users’ behaviour via the mean angular velocity per user for different
devices and video categories. This analysis reveals the dynamicity of users navigation, measuring
how fast each participant moves his/her head inside a given ODV. It is worth noting that the
angular velocity is typically lower using HMD rather than other devices; on the contrary, users
experience the highest mean angular speed when displaying ODV on laptop. This can be motivated
by the physical constraints imposed by HMDs (i.e., limited head movements), but also by a deeper
feeling of immersion experienced with HMD compared to the laptop. Implicitly, a drop of attention
or immersion sensation leads to a more scattered navigation paths. Authors in [27] show how
film editing and style influence user gaze movements during the vision of standard 2D movies.
Therefore comparing different video categories in our analysis, we can observe a slower angular
velocity for users displaying Movie videos. This confirms that film maker manages to drive users’
visual attention toward the main subject of interest also in ODVs. On the contrary, Documentary
videos usually lack of a main focus of attention; hence, viewers tend to explore more the content.

Beyond the velocity of participants’ movements, we are also interested in detecting the areas
of saliency, i.e., the most interesting areas in which users look at. Fig. 2(b) shows the distribution
of viewport centers in the longitudinal direction for all video categories across devices. Each
slice, spanning a /10 angle, represents the popularity of each direction across the entire video.
The extension of each slice is proportional to the times in which - on average - users centred
their viewports in the longitude direction identified by the slice. In particular, a single triangle
predominant over others reflects that most of the users tend to center their displayed viewport in
the same region of the ODV, identifying a clear focus of attention. From the figure, it is evident
that the privileged area in terms of longitude is not really affected by video category and device.
Viewers indeed tend to spend most of the time in a restricted portion of the central area around
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Fig. 3. Boxplots per viewing device of Users’ Affinity Index (UAI) for each video in the dataset. The lower and
upper side of the rectangular represents 25% and 75% percentile, respectively. While diamond is the mean
value of User Affinity Index (UAI) per the entire video.

7 in all different settings and video of the test. As expected, this is evident in Action and Movie
categories, while less present in the Documentary contents, that usually have a less dominant focus
of attention. In this latter case, the interaction is device-dependant, with a more spread distribution
of viewport’s centers with HMD when compared to laptop and devices.

4.2 Looking for Users’ Similarities

The metrics studied in Section 4.1 reveal general and useful features of users’ behaviour, however
they do not necessary provide an answer to one simple and yet crucial question: “Can we predict users’
behaviour?". Without pretending to fully answer to this question with the following data analysis,
we truly believe that a key information to grasp is “Do users behave similarly?". This is the key as
users with poor similarity in the navigation are highly challenging to predict. This motivates the
following analysis, aimed at identifying behaviour similarities among users, across video content
and/or devices; hence, the importance of developing metrics able to capture this information.
Specifically, we analyse our dataset with the clique-based clustering algorithm presented in [44],
which is able to identify users clusters based on their consistency in the navigation. In practice,
the algorithm detects and puts together users that consistently display similar viewports over
time while consuming the ODV content. Also, this is done by taking into account the spherical
geometry of the ODVs. We therefore introduce a novel metric (based on the clique-based clustering
algorithm) to better reflect similarity among users’ navigation trajectories within the same given
ODV. We define this metric as the User Affinity Index (UAI), given as follows:

Ziczl Xi* Wi

(1)
iC:1 Wi

UAI =

where C is the number of clusters detected in a frame by the clique-clustering?, x; is the % of users
(i.e., out of the whole population/users sampled) in cluster i and w; is the number of users in cluster i.
In other words, the UAI represents the weighted average of cluster popularity (i.e., how many users

2The clique-based clustering is applied with a geodesic distance threshold equal to 7 /8.
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Fig. 4. User Affinity Index (UAI) over time for three different videos (one per category) and for all devices.
The mean value over time is reported on bracket in the legend for each analysed clustering condition.

per cluster). The UAI approaches 1 when a small number of clusters with a large number of users
per cluster are detected. This shows high affinity among users (i.e., users share strong similarity in
how they navigate the content). On the contrary, UAI tends towards 0 when participants experience
highly scattered navigation patterns, and they cannot be clustered together. In the Appendix A,
we compare our proposed metric for detecting similarities in users’ behaviour over time with a
well-known metric (i.e., entropy of saliency map [12]).

Fig. 3 shows the range and mean value (i.e., box and red diamond, respectively) of UAI distributions
obtained for each ODV of the entire database. Different behaviour can be identified based on the
device and the category of video. For instance, the affinity for Documentary videos is lower than the
one experienced with ODVs from the Movie category. We can also generalise that the navigation
affinity within Documentary videos is not really influenced by the viewing device. On the contrary,
HMD enable users to enjoy very similar experiences within ODVs, mainly for Movie and Action
sequences. For example, users that display Action video with HMD have an UAT higher than 0.5
(except for Video ID 06). These findings are strongly evident in Fig. 4 that shows the UAI over time
for three selected videos, one per category (i.e., ID 03, 08 and 13). After an initial phase where most
of the users are focused on the same area, people start exploring the scene and behave differently
based on the content (or video category). Specifically, in Documentary sequence (ID 03) users
have a very low affinity, while they navigate in a much more compact way in Movie video (ID
13) leading to higher UAI for all devices. Moreover, HMD leads to more similar navigation paths
compared to the laptop, see Fig. 4(b) and Fig. 4(c). Finally as a further comparison, we also apply
the clique-clustering to all the recorded data without distinguishing them based on viewing device.
We then evaluate the corresponding UAI (labelled as "All devices" in Fig. 4) and notice that the
affinity drops drastically, with respect to the case in which the clusters were formed per device.
The "All devices" curve seems to be a worst-case scenario, showing that the users navigation has a
strong affinity when looking at data from the same viewing device but this affinity drops when
analysing data for the same content but across devices.

In summary, from this second analysis we can conclude the following:

e Observation 4: In content with no main focus of attention, users experience a low affinity,
which is interestingly not perturbed by the viewing device.

e Observation 5: Users tend to explore content characterised by a dominant focus of attention
in a very similar way.

e Observation 6: In content with a main focus of attention, the user affinity is strongly related
to the selected viewing device. In particular, the HMD leads to quite similar navigation among
users.

These outcomes highlight the importance of studying navigation trajectories in VR systems per
viewing platform. Specifically, we argue that similar users’ behaviours (i.e., high value of affinity)
identify predictable patterns that can be used to properly optimise user-centric streaming systems.
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Content Provider Distribution Client

Fig. 5. Schematic of the adopted tile-based adaptive ODV streaming system.

In the following, we show the impact of this study when applied to adaptive streaming strategies
for VR, with a focus on a user-centric server optimisation design.

5 CASE STUDY: USER-CENTRIC SERVER OPTIMISATION

We now show the importance of considering users’ behaviour when designing an ODV streaming
system defining a user-centric server optimisation that considers multiple VR devices. In particular,
we focus on optimising the set of tile-representations to store at the server, considering spherical
geometry, content complexity of ODVs and network capacity beyond users’ navigation features.
First, we introduce the system model for the tile-based adaptive ODV streaming scenario adopted
in this work. Then, we formulate an Integer Linear Programming (ILP) used to evaluate the optimal
set of tile-representations that maximises the quality perceived by users while minimises the total
cost of encoding and storage. In Table 2, we summarise the main notations adopted in the following
problem formulation.

5.1 System model

Fig. 5 illustrates the adopted tile-based adaptive ODV streaming system. Namely, each video
sequence is spatially decomposed into tiles, which are encoded at different coding rates and
resolutions. The generated representations of each tile are then temporally segmented into chunks
of fixed duration (i.e., typically 2 sec.) and stored at the main server. Out of the many representations
stored at the server, only one per tile is actually distributed through edge servers to the final user.
The selection of the representation is usually performed at the client side. Specifically, any final
users, while navigating inside an ODV, will periodically requests to download the most suitable
set of tile-representations (i.e., such that to cover the entire panorama), based on the available
bandwidth and his/her current position inside the ODV — usually the best quality that meets
bandwidth constraints. In particular, we consider users downloading the entire panorama at each
downloading opportunity but at heterogeneity quality levels. Specifically, the more probable a tile
is the higher quality at which it is downloaded. In this contest, we are interested in investigating
how to design an optimal representations set at the server side able to satisfy the requests from a
potential VR population.

More formally, let V be the set of ODVs available at the main server. Each video v € V is
decomposed into N tiles. We denote by j € J,, = 1,2, .., N the set of tiles belonging to v. Then,
each tile is encoded independently into different representations characterised by bitrate levels,
r € R and, spatial resolutions s € S. Note that R and § are sets of admissible bitrates and spatial
resolution values. All variables v, j, r and s are integer values that represent the index in their
corresponding set. In particular, the nominal value (in kbps) of the encoding rate r is denote by b,
and B is the set of available bitrates. Each representation is temporally divided into chunks of a fixed
duration. Let LY = {(j,r,s)|j € Ju.7 € R, s € S} be the set of representations per chunk of a video
v € V; the triple (j, r, s) indicates the representation of tile j encoded at bitrate r and resolution s.
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Table 2. Notation adopted in the problem formulation.

Name Description
U,uecU setofall users’ type and the actual user served in the system, respectively
V,v* €V setof ODV and video content requested by user u, respectively
Jo.j € J»  setof all tiles of the video v and the selected j tile, respectively
R,r € R setof all possible coding rate and the actual coding rate at which a tile
can be encoded, respectively
B,b, € B set of all available values of encoding rate and the nominal value of r (kbps),
S,se€S  setof possible spatial resolution and actual spatial resolution s at which a tile j can
be encoded,
(J,r,s) representation of a tile j encoded at rate r and spatial resolution s,
LY set of all possible tile-representations for a video v,
7 c L  optimal set of representations stored at the main server,
D,d* € D set of available device and actual device selected by user u
S,s% €S set of available spatial resolution (i.e., screen size) and actual resolution of device
selected by user u
N,n* € N set of available networks and actual network selected by user u, respectively
Bw* available bandwidth throughput for user u,

P probability of tile j to be displayed by users of type-u,
o portion of users of type-u,
D}” (r,s) distortion value of tile j encoded at rate r and resolution s requested by user

of type-u
CTOT(r,s) total costs (encoding and storage costs) for a tile-representation encoded at rate r
and resolution s

Given the heterogeneity of users downloading ODV (i.e., different type of network and devices),
all the possible representations | J,, £, should be stored at the main server. This would ensure to
serve each users’ request at the best. In practice, coding and storage costs can be unbearable when
all representations are stored. Hence, the need to select a subset of representations £ € (J,, £,
to store at the main server. Our goal is then to seek the optimal subset 7 to be available at the
server in order to maximise the QoE given constraints from both the server and client perspectives.
We argue that in this system design optimisation, the knowledge of displaying device and video
category as well as the user navigation trajectories is the key for any efficient optimal set.

Let U be the set of all clients served in our ODV streaming system. We assume that all final users
can be categorised based on the selected video content, viewing device and the kind of network
connection (i.e., capacity of each user connection). Namely, a user of type u € U is defined by
the desired video v* € V displayed at the resolution of the selected device m* € M, downloaded
based on the kind of network n* € N. Without loss of generality, we make the assumption that
each device is associated with a single display resolution. The type of network n selected by user
u defines the range of available throughput value BW*. Finally, each type of users has an own
navigation path inside the ODV, that depends on the selected device d“ as well as the content and
the user itself. Therefore, we define p' as the probability of tile j to be displayed by user’s category
u. Finally, we denote by §“ the portion of users of type-u, with ,cq¢ 0% = 1.

5.2 Problem Formulation

Given the set L of all possible representations for all videos v € V, we seek the optimal subset of
representations 7 * C L, which maximises the perceived quality during the navigation and yet it
minimises the total price of storage and encoding for the selected tile-set. Our user-centric server
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optimisation problem can be defined as follows:

T : arg min Z DY(T)p" + ACTOT(‘T)
7 ueld (2)
s.t. Z b, < BW" Yu
U,r,s)eT

where D“(7") is the spherical distortion experienced by type-u user achieved when the 7~ repre-
sentation set is available at the main server and p“ is the probability to experience a type-u user.
Finally, A is the regularisation term and CT9T(7") is the total cost to store and code 7. In particular,
the distortion D*(7") is defined as follows:

DYT)= ) D'rs)= > D(rs)Spt (3)
(r,s)eT G,r.s)eT

where j is a generic tile on the planar encoded at type-u-th rate and s-th resolution. To take into
account the spherical geometry, the spherical distortion is weighted by $ ; that is the normalised
portion of the sphere covered by tile j. Finally, p}.‘ is the probability for the tile j to be displayed
by a type-u user. Storing the video on the main server provider has a cost ($), which depends on
both the content complexity (affecting the total file size) and the resolution of representations. We
estimate this total cost CT9T(7") in Eq. (2) as sum of the cost per each encoded (¥, C;(r, s)). Since no
prior assumption on distortion function (such as linear, quadratic, or convex function) is imposed,
we preserve a general solving method and we cast the optimisation problem presented in Eq. (2) as
ILP problem introducing the following binary decision variables:

u 1, if user u requests the representation (j, 7, s)
a: =
LA 0, otherwise
. . 4)
1, if any user request a representation (j, r, s)
Bjrs = .
0, otherwise.

Without loss of generality, we suppose that each user can request only tile-representation encoded
at resolution s corresponding to the display resolution (i.e., spatial resolution at which the content
will be displayed) of the selected device m". Therefore, we also define the following auxiliary
variable:

Vs = 5)

u 1, if user u requests representations at resolution s
0, otherwise.

This leads to the problem formulation shown in problem (6) equivalent to the problem showed in
Eq. (2). The constraints (6a)-(6¢) set up a consistent relation between the two decision variables.
The constraints (6d)-(6f) makes homogeneous the resolution constraint by auxiliary variable y.
The constraint (6g) imposes bandwidth constraints. Finally, constraints (6h)-(6j) limit the decision
variables to binary values.

The optimal solution of the ILP problem proposed in Eq. (6) is NP-hard and it can be evaluated
by a generic solver IBM ILOG CPLEX [20] using a branch-and-cut algorithm. The method of
branch-and-cut consists of a search tree technique, and the application of cuts at the nodes of the
tree. In particular, each node represents a LP subproblem to be solved, and the creation of two new
nodes from a parent node is a branch. It is worth mentioning that the branch-and-cut algorithm
generally requires exponential computational complexity O(2%) to achieve the optimal solution,
with E being the cardinality of decision variables. In our case with the binary decision variables
., and y, we obtain E~ |U|?| T, |?R|?|S|>.
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Integer Linear Programming 1

min 37 30 > 3 Dirskpfay, + 2 ) D Y frDytr.s)

a,B.y

ueU jeJ, reR seS je€J, reR seS

s.t. Z Z ajps <1 Yu,j  (6a)
reRseS
a}‘rs < Birs Yu,j,r,s (6b)
Birs < Z a}‘” Vj,r,s (6¢)

ueld
PR Vu  (6d)
seS
a]yrs <y Yu,j,r,s (6€)
v < Z Z ajfjr'; Yu, s (6f)
jeJ, reR

D0 DD ks <BW" Vu  (6g)

je€Jo reR seS

s € {0,1} Vu,j,r,s  (6h)
Birs € {0,1} Vj,r,s (61)
v €{0.1} Vs (6))

6 METRICS AND USER POPULATION

In the following, we describe the objective functions used in this work to validate the optimisation
problem proposed in Section 5.2. First, we present the distortion function and cost model that we
consider to minimise storage capacity utilisation, ensuring a high quality of experience. Then, we
define the different types of user population that reflect a wide set of clients in our simulated ODV
adaptive streaming scenario.

6.1 Distortion and cost models

We now evaluate the distortion D*(7") as the weighted MSE (WMSE) [49] that include coding
and spherical geometry (i.e., spherical shape) distortions in the traditional MSE metric. Because
of its pixel-based distortion estimation and low computational complexity, we adopt the WMSE
metric [49] as a distortion measure. A recent subjective study for ODV has shown a good correlation
between the WMSE metric values and subjective scores [9]. Given a frame with resolution W X H,
the WMSE is defined as following:

W-1H-1

WMSE(k, 1) = > > (x(k, ) = y(k, D)*w(k, I) (7)

k=0 1=0
where x(k, I) and y(k, ) are intensity values at the pixel position (k, [) for the reference and projected
image, respectively. Instead, w(k, ) represents the non-linear weights that takes into account the
spherical geometry to MSE. Namely, this constant reflects the stretching ratio for pixel in position
(k, 1) and depends on the planar-to-spherical projection. In this framework we consider ERP, hence
each pixel weight is defined as follows:

Wk, 1)
ot ik Wik, )

w(k,l) = (8)
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where W (k, I) is the area scaling factor from equirectangular to unit spherical surface and is given
by W(k,I) = cos[(l - % + %)%]

Beyond the distortion, another important aspect that the system designer should aim to minimise
is the storage and encoding costs. Storing video representations at server providers, such as Amazon,
Microsoft, etc., has a price that depends on the total size of the representations (in terms of kbps),
and while storage cost might seems negligible, it is not when scaled for the number of video
contents and representations that a content provider should have. Hence there is a need for the
proposed optimisation algorithm. Formally, the storage and coding costs is a function of the video
complexity, resolution and encoding rate and it is defined as (cost per tile-representation) [37]
CTOT(T7) = C*(T") + C5(T") where C¢ and C* are the encoding and storage costs, respectively. In
particular, C¢ is defined per each representation set (7) as:

fe, ifs < 720p
C(T) = {2He, if 720p < s < 1080p 9)
4pre, if1080p <'s < 4K

where p, ($) is a constant defined by the service provider and s is the resolution of each representa-
tion in 7. Instead, C® is modelled as a linear function of the representation bitrate:

CT)=ps Y, b (10)

Usr,s)eT

where yis ($/GB) is a constant defined by service provider and b, is the bitrate of the selected
representation set (7).

In our simulation settings, we follow the price-table of a real service provider [2, 3]. Therefore, we
set 1 = 0.1904 $/minute as the price to convert a video with an optimised quality in High Efficient
Video Coding (HEVC) with frame rate < 30 fps and ps = 0.024 $/GB. Both costs refer to the area of
Europe (London) in [2, 3].

6.2 Users population features

In a practical adaptive ODV systems, content providers serve a vast number of highly heterogeneous
users. For the optimisation purposes, we categorise them based on key features. As defined in
Section 5.2, a user u € U is characterised by three parameters: requested video, viewing device
and network type. Each of these parameters is modelled as follows.

e Requested video content, v*. We consider the dataset of 15 ODVs presented in Section 3.1
composed by 3 different categories (Documentary, Action and Movie) with 5 video per category.
We suppose that users can select each available video with the same probability (1 out of 15).

e Selected rendering device, m*. Each user can display the video content on 3 viewing platforms
(i.e., HMD, tablet and laptop). Without loss of generality, we assume that users select device
with equal probability (1 out of 3).

o Type of network and related available bandwidth, n* and BW". We consider 3 types of networks
(ie, , 4G, WiFi, and ADSL ) with their specific range of throughput and probability of
experiencing that connection. For each type of connection, 3 different kinds of users have
been considered, which means 3 values of bandwidth BW* is possible per connection. Further
details have been provided in Appendix B

In summary, we consider 27 types of users per video (3 types of devices X 3 types of possible networks
X 3 possible bandwidth values). This ensures that our proposed user-centric server optimisation
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algorithm is tested under realistic settings with a complete and exhaustive set of clients, while
preserving a limited complexity of the ILP problem.

7 SIMULATION SETTINGS

In this section, we provide the remaining details of the framework that we used to validate the
proposed user-centric server optimisation.

7.1 Tiling and encoding

Each ODV was partitioned into six self-decodable tiles to deliver and render ODV's efficiently.
Following the usual assumption of lower importance and low-motion characteristics of the poles
and the dominant viewing adjacency of the equator [11, 56]. Further details are provided in
Appendix B.

We used the HEVC standard [35] to encode each tile of a given omnidirectional video. For this
purpose, the libx265 codec in the FFmpeg software (ver. N-85291) [21] was used. As recommended
in [4], each tile was encoded using two-pass with 150 percent constrained variable bitrate configu-
rations to ensure smooth video quality frame by frame for a wide range of devices. Before encoding,
we scaled each video at different resolutions, S = {1280 x 720, 1920 X 1080, 2560 X 1440}. For the
former one, as the content is already in the 2560 X 1440 resolution, no scaling was applied, and the
two other resolutions were obtained by down sampling using the bi-cubic scaling technique. Here,
we ensured that there is a noticeable objective quality difference between each selection per ODV.
Each scaled version of ODV was tiled and encoded using a set of target bitrate parameters 8 =
{500, 760, 1005, 1529, 2326, 3537} (in terms of Kbps). Each bit-stream was then divided into 2 sec.
streaming chunks to perform adaptive streaming.

7.2 Comparative Methods

As last step of the simulation settings, we describe the benchmarking solutions for the optimi-
sation server design. In particular, we evaluate the optimal sets of tile-representation with our
user-centric algorithm (named "Optimal set" in the following plots) imposing different values
of the regularisation parameter A. In particular, we set A = [0.01,0.05,0.1,0.25,0.5, 1, 2]. Then,
we compare the performance of our optimisation with two sub-optimal solutions (i.e, "A = 0"
and "optimal set - no interactivity") and two traditional recommendations sets (i.e., "Netflix set"
and "Apple set") [4, 32], which were originally developed for traditional 2D videos. "A = 0"
indicates the solution of our problem but neglecting the optimisation of costs, while "optimal
set - no interactivity” omits also the probability p]l.‘ that defines where users most likely will
focus their attention. The recommended bitrate sets of Apple and Netflix are defined as follow-
ing: i) B = {400, 480, 560, 640, 750, 900, 970, 1170, 1350, 1670} Kbps for the Apple set with corre-
sponding encoded resolutions S = {720p, 720p, 720p, 720p, 1440p, 1440p, 1440p, 1440p, 1080p, 1080p}
and ii) for the Netflix set 8 = {390, 500, 720, 980, 1300, 1920} Kbps and encoding resolution S =
{720p, 720p, 1440p, 1440p, 1080p, 1080p}.

8 SIMULATION RESULTS

The key goals of the proposed optimisation problem are i) to ensure a good navigation experience
within an ODV, reducing the total cost of encoding and storage; ii) to show the advantage of taking
into account users’ behaviour in this optimisation.

Fig. 6 depict the averaged quality experienced by users (in terms of Weighted Spherical PSNR
(WS-PSNR) [49]) as a function of the total cost, for the proposed optimal set representations as well
as the benchmark ones introduced in Section 7.2. The experienced quality has been evaluated as
the average quality of each tile weighted by its probability of being displayed in a specific scenario
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Fig. 6. Average experienced quality versus total cost of storage. In the legend on bracket, utilisation rate for
non-optimal solutions.

(i.e., selected video and viewing device). We consider the performance averaged across all videos
of the database in Fig. 6 (a) and across content category in Fig. 6(b). As a result, the optimal set
evaluated by the proposed optimisation achieves a lower distortion with respect to benchmark
solutions (especially compared to the Apple set). Most importantly, the optimal set achieves a
substantial saving in terms of cost. While Netflix and Apple sets spend respectively around 5.4$
and 9% to store a short ODV of 20 seconds in length, we ensure the same performance in terms of
WS-PSNR while saving 50%-70% of their cost per sequence. This translates to a gain of 50$-100%$ to
store the entire dataset of 15 videos (i.e., 300 sec. of video content), which represents a significant
saving in terms of cost even for the relatively small database presented in this work. If we imagine
applying this optimisation to a bigger dataset and/or longer sequences, the financial saving could
be very significant. The experienced quality is also strongly related to the video content as evident
in Fig. 6(b). For instance, the Movie category is characterised by a reduced video complexity (see
Fig. 1) and achieves higher performance with respect to the other video categories. More in general,
for all video categories, the optimal set and the vendor recommendations achieve a comparable
quality of experience, but with a much higher cost for the vendor ones.

Finally, it is worth noting that when the representation set is optimised without taking into
account user navigation, see black dot in Fig. 6 (a), it performs almost as well as the optimal set with
A = 0.5 in terms of quality but it costs more than the double ($4.2 and $2, respectively). Overall, the
optimised set of representations to store at the main server outperforms the recommended sets in
terms of quality and, especially, total costs.

We are now interested in formalising the link between the data analysis provided in Section
4 and the user-centric server optimisation. For more in-depth study of the relationship between
users’ behaviour and the final quality, Fig. 7 depicts the total cost (per video) of the optimal tile-
representation set optimised with A = 0.5 as a function of the mean value UAI previously defined
in Eq. (1). With the exception of IDs 09 and 10, the total cost increases accordingly with the value
of UAI, especially when observing at the cost increase per video category. This shows that the
way in which users interact with the content influences the performance of the optimal set of
tile representations stored in an adaptive ODV streaming system. We investigate this intuition in
greater depth, providing an exhaustive analysis of the effect of users’ behaviour on the optimal set.
In particular, we select three ODVs (namely, IDs 03, 08 and 13), each one coming from one category.
These videos are selected as heterogeneous samples —in terms of UAI and cost value ($) — in Fig. 7.
In particular, ID 03 has the lowest UAI value (0.25, mean value from Fig. 3), ID 08 has a medium
value (0.58 from Fig. 3) and ID 13 has the highest value among the three (0.80 from Fig. 3). The
quality distribution over time and space of the optimal set evaluated with A = 0.5 is now further
analysed. As previously highlighted in Fig. 2 (b), users tend to display the central area (i.e., around
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Fig. 7. Total cost of storage and coding of optimal tile-representation set (A = 0.5) per each video and User
Affinity Index (UAI) averaged per devices.

7« value of latitude) of the equatorial zone in all ODVs of our database. This preference is reflected
in the optimal tile set. Specifically, Fig. 8 provides the stored coding rate level averaged over time
per each tile and viewing device (i.e., variable r in Table 2) computed by the proposed user-centric
optimisation algorithm. At first look, it can be noticed that tiles corresponding to the two poles
(i.e., tile indexes 1 and 6) are mainly stored with the lowest value of quality. This is extremely
evident for Movie sequences in Fig. 8 (c). In contrast, the central area, such as tiles of index 3 and
4, have the majority of stored representations at the highest quality (i.e., r = 06, where r is the
selected coding rate as defined in Table 2). It is also worth mentioning that tile 4 (i.e., one of the
two frontal tiles as showed in Fig. 11) is mainly selected either with the highest or lowest quality
in all three examples. This could be related with the user probability of displaying that area. The
algorithm allocates the highest quality to this tile since it is the most commonly selected one during
the navigation, but to ensure the streaming service in all conditions, it also picks the lowest quality,
which has the lowest cost. In the following, we further investigate this behaviour by observing the
quality levels stored over time. For the sake of brevity and motivated by the previous observations
in Fig. 8, we only consider an HMD, and we restrict the analysed area to the equatorial zone (i.e., tile
index 2, 3, 4 and 5). In Fig. 9 (a,b,c), the UAI over time is compared with the total stored bitrate
of the optimal tile set for Video IDs 03, 08 and 13, respectively. Interestingly, a strong correlation
between these two metrics can be observed. For example, Video ID 13 of the Movie category has a
high UAI and the total stored bitrate is almost constant over time. In the other two examples, the
amount of stored data is more sensitive to users’ behaviour. A similar correlation can be noticed
when comparing the UAI over time with the stored quality distribution in Fig. 9 (d,e,f). In Fig. 9 (d),
we can note that diversity in terms of quality for the tile-representations is high when the affinity
among users is low overall. In contrast, the Video ID 08 in Fig. 9 (e) has a medium level of affinity
but the variance of the stored quality levels is lower. Interestingly comparing Fig. 9 (b) and (e), we
can note that the UAI has a peak around 12-14 sec. leading to a drop in the stored bitrate (Fig. 9 (b)).
The behaviour may seem contradictory, but it is worth mentioning that a high affinity value means
a reduced uncertainty in the system. Therefore, the resources can be better allocated based on users’
preferences. Indeed, observing Fig. 9 (e), the quality distributions of tile-representations is almost
constant. Therefore, the lower value of stored bitrate around second 14 is due to a further reduction
of stored representations in the polar area. As it is unlikely they will be selected by users, their
quality level drops. The corresponding plots of Fig. 9 evaluated for the other devices (i.e., tablet and
laptop) are provided in the Appendix C and similar conclusions can be extracted from them.

In summary, from this user-centric server optimisation, we can deduce the following:

e Observation 7: A significant saving in terms of bitrate and encoding/storage cost is achieved
when the stored representations are optimised based on both content and users’ profiles.
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Fig. 8. Total number of stored tile-representations for all rendering devices per a single video of each category.
In particular, the three column represents the optimal set for each tile for all device corresponding to HMD,
tablet and laptop in order from left to right.

e Observation 8: The users’ behaviour during the navigation generally affects the resource
allocation of the optimal set (e.g., number of representations and quality levels).

e Observation 9: UAI provides a good representation of the existing correlation between users’
behaviour and optimal set, floating the idea that UAI could be a key metric in the design of
the next generation systems.

While Observation 7 has been already demonstrated in previous works examining conventional
video [51] and ODVs [37], the other outcomes are novel insights that prove the importance of
considering users’ behaviour in the design of a VR streaming system.

9 CONCLUSION

The overall goal of this work is to explore the way in which people navigate with omnidirectional
video (ODV), and its impact on the performance of VR adaptive streaming systems. To reach this
goal, we conduced a subjective test across two different European universities (i.e., UCL and TCD)
collecting navigation trajectories of 94 participants using three different VR devices (HMD, laptop
and tablet). This allowed us to build a dataset with navigation trajectories across different devices
that we make publicly available. The collected data have been exhaustively analysed, showing key
differences of users’ behaviour across device and content category. For instance, users watching
contents from the Movie category or displaying ODV with HMD will experience a more similar
interaction between each other with respect to the case of other devices or other contents. As
case study, we apply these findings to the open problem of optimising the storage at the server
provider for ODV adaptive streaming systems. A novel user-centric immersive algorithm has been
proposed to optimise the set of VR representations to be stored at the server, minimizing the
total cost and yet maximising the final quality. The key-novelty of our algorithm is to take into
consideration users’ behaviour beyond the spherical geometry and content information. As result,
our optimal representation set ensures the same quality experienced with vendor recommendations
but saving up to 70% of coding and storage cost. Moreover, we have shown how the different types
of user navigation (e.g., affinity) impact on the optimal set. This opens the gate to a possibility of
user-centric studies focused on making the users’ behaviour (and user affinity) the driver of VR
system designs.
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Fig. 10. Comparison of UAI with entropy of saliency maps per each video of the entire dataset.

To check the validity of our proposed metric, we evaluate also the entropy of the saliency map per
each video of the entire dataset. This metric is typically use to evaluate model of visual attention, and
gives a qualitative idea about the dispersion of users’ movements over time. In particular, low value
of entropy stands for users focused all on a restricted area (i.e., focused content - high correlation
among users); while high value means more exploratory movements (i.e., exploratory content - low
correlation among users). Moreover, authors in [12] have applied this metric to omnidirectional
images providing its validity also for this kind of content. Fig. 10 shows the correlation between
UAI and the entropy of saliency map per each video of the dataset averaged per devices. We can
therefore notice a strong correlation between this traditional metric and our UAIL As expected,
video characterized by low entropy have also high values of UAI meaning that users move similarly
within the content; on the contrary, videos where users navigate more randomly, present high
value of entropy.

B FURTHER SIMULATION SETTINGS
B.1 Type of network and available bandwidth

We now complete the information about the user population provided in Section 6.2. Specifically,
we clarify the types of networks and available bandwidth.

We consider 3 types of networks with their specific range of throughput, provided in Table 3
in Appendix . We assume that the probability of experiencing a given connectivity is linked to
the device, as reported in Table 4. For each connection type, 3 different kinds of users have been
considered: i) clients with bandwidth BW" set as the 25-th percentile of the available bandwidth
for the selected network, ii) users with bandwidth BW" set as the 75-th percentile of the available
bandwidth for the selected network, and iii) clients with bandwidth BW" set to the 50-th percentile
of the available bandwidth for the selected network. We assume a probability 1/4 for a user to
experience the first two cases and 1/2 to select the third downloading

Table 3. Networks Bandwidth ranges. Table 4. Probability associate with each network
and device in our simulations.

Minimum Maximum

Network i i Network
Type Ba{;f;; ls‘;th Ba(;([ll:; ls(;th Type HMD Tablet Laptop
4G 4 20 4G 0 0.6 0
WiFi 2 30 WiFi 0.8 0.4 0.45
ADSL 5 35 ADSL 0.2 0 0.55
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B.2 Tiling and Encoding

Each ODV was partitioned into six self-decodable tiles to deliver and render ODVs efficiently.
Following the usual assumption of lower importance and low-motion characteristics of the poles and
the dominant viewing adjacency of the equator [11, 56], we separate each ODV frame horizontally
into three parts: one equator and two poles. The equator represents the middle segment, and the
two poles stand for the top and the bottom sections of the frame. The size of equator is the double
size of each pole. As the poles occupy the largest regions of the redundant pixels, in those areas,
larger tile resolution size was used to compress them efficiently [56]. On the contrary, since the
equator region contains the most dominant viewing probability, it is further divided vertically into
4 tiles to efficiently utilised them at both the server and client sides. Fig. 11 illustrates the used
structure for partitioning into self-decodable tiles and the tile index order that will be considered
in the following.

C ADDITIONAL RESULTS

In this section we provide the temporal analysis of optimal tile-representation set for navigation
trajectories with tablet and laptop across video categories.
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Fig. 12. Total stored bitrate over time for each video: on the top line all plots are referred to tablet while on
the bottom one to laptop. In each plots, UAI over time is also reported.
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Fig. 13. Bitrate level distribution of the only equatorial area for each video: on the top line all plots are
referred to tablet while on the bottom one to laptop. In each plots, UAI over time is also reported.
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