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Abstract

Physics-based kinetic models are regarded as key tools for supporting the design and con-

trol of chemical processes and for understanding which degrees of freedom ultimately de-

termine the observed behaviour of chemical systems. These models are formulated as sets

of differential and algebraic equations where many state variables and parameters may be

involved. Nonetheless, the translation of the available experimental evidence into an appro-

priate set of model equations is a time and resource intensive task that significantly relies

on the presence of experienced scientists.

Automated reactor platforms are increasingly being applied in research laboratories to

generate large amounts of kinetic data with minimum human intervention. However, in most

cases, these platforms do not implement software for the online identification of physics-

based kinetic models. While automated reactor technologies have significantly improved

the efficiency in the data collection process, the analysis of the data for modelling purposes

still represents a tedious process that is mainly carried out a-posteriori by the scientist.

This project focuses on how to systematically solve some relevant problems in kinetic

modelling studies that would normally require the intervention of experienced modellers to

be addressed. Specifically, the following challenges are considered: i) the selection of a

robust model parametrisation to reduce the chance of numerical failures in the course of the

model identification process; ii) the experimental design and parameter estimation problems

in conditions of structural model uncertainty; iii) the improvement of approximated models

embracing the available experimental evidence.

The work presented in this Thesis paves the way towards fully automated kinetic mod-

elling platforms through the development of intelligent algorithms for experimental design

and model building under system uncertainty. The project aims at the definition of compre-

hensive and systematic modelling frameworks to make the modelling activity more efficient

and less sensitive to human error and bias.
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Impact statement

A number of novel techniques for the identification and improvement of physics-based ki-

netic models are proposed in this Thesis to reduce the time and resources required in kinetic

modelling studies. The ultimate aim of this research project is the development of intelli-

gent algorithms capable of identifying physics-based kinetic models without scientist super-

vision. This project was primarily motivated by the need for more systematic approaches to

address modelling challenges in the context of Process Systems Engineering. Nonetheless,

several impact areas are expected to benefit from this research, including areas outside the

chemical engineering field.

Process improvement. Modern process industry is required to satisfy increasingly stricter

constraints on environmental impact while ensuring profitability margins. To meet

these requirements, the Quality by Design (QbD) paradigm dictates the necessity

for detailed physics-based process models for an optimal design and operation of

industrial plants (Yu, 2008).

Catalyst design. Catalysts are recognised as fundamental materials for the transition to-

wards a green process industry. Nonetheless, the design and production of appropri-

ate catalytic materials is an extremely challenging task, which relies on an efficient

characterisation of process kinetics in the presence of a high number of different cat-

alyst formulations (Thybaut et al., 2011).

Drug discovery. Antimicrobial resistance is now recognised as a fundamental threat to hu-

manity (United Nations, 2016). Fast discovery of drugs and drug cocktails is an

aspect of paramount importance to outpace the rate at which bacteria are developing

drug resistance. This relies on a fast identification of PharmacoDynamic (PD) models

from time-kill data to assess the potency of a given treatment in neutralising a certain

bacterial species (Foerster et al., 2016).
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Clinical practice. Accurate PharmacoKinetic (PK) models represent invaluable tools for

the design of safe, non-invasive and effective clinical trials. Nevertheless, the iden-

tification of accurate PK models relies on an efficient extraction of information from

small datasets to minimise the distress caused to the subject (Abbiati et al., 2018).

Algorithms sprouting from this research are expected to promote a faster identification

of process models and a more rapid integration of QbD principles in existing and future

process plants. Intelligent algorithms for kinetic modelling will also be applied for the fast

characterisation of kinetics in the presence of novel formulations of catalytic materials. This

will enable a faster deployment of effective catalysts in industrial processes and promote a

faster transition towards an environment-friendly process industry. In pharmacology, smart

algorithms for kinetic modelling will enable the rapid identification of PD models for the

quick discovery of active pharmaceutical ingredients, drugs and drug cocktails. Ultimately,

the rapid identification of PK models enabled by smart computational tools for kinetic mod-

elling will contribute to increasing the understanding of human physiology. Particularly,

such PK models may advocate the design of effective and less invasive clinical trials to di-

agnose and treat aggressive diseases, whose complex interactions with the human body are

yet to be fully understood.
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Chapter 1

Introduction

1.1 Motivation of the project

The reduction in the cost of computational power over the last decades led to an expo-

nential increase in the employment of computational methods to address engineering chal-

lenges. In particular, the field of process systems engineering is thriving in the digital rev-

olution (Sargent, 2005). The sub-field of Computer-Aided Process Engineering (CAPE)

stemmed directly from the increasing access to cheap computational resources and it is

transforming dramatically the way industrial processes are developed, designed and opti-

mised. The CAPE approach involves the implementation of process models into computer

programs with the aim of increasing process understanding and identify optimal process

design and control solutions through simulations and numerical analyses of process data

(Sargent, 1967).

As a consequence of the successful marriage between Process Systems Engineering

(PSE) and computer science, the modelling of chemical and biochemical kinetics is becom-

ing an increasingly relevant research topic both in industry and academia (Bonvin et al.,

2016). This trend can be observed in Figure 1.1, which reports the number of scientific

contributions on kinetic modelling that were published in Engineering Journals in the last

80 years (Web of Science, 2019). In particular, phenomenological kinetic models are re-

garded as extremely valuable tools in CAPE. These models are typically formulated as

systems of differential and algebraic equations whose mathematical structure reflects the

causal mechanisms of the physical system. Accurate phenomenological models are recog-

nised as important means for understanding which degrees of freedom ultimately determine

the behaviour of chemical processes (Rosenblueth and Wiener, 1945). Nevertheless, simple

mathematical descriptions of dynamic phenomena represent invaluable tools for supporting
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non-empirical process design and optimisation (Biegler et al., 1997). In fact, models derived

from appropriate physics-based hypotheses can be used to predict the dynamic behaviour of

physical systems also at conditions that were not previously observed (Hancock and Comp-

ton, 1999). Accurate phenomenological models may be employed to identify non-trivial

design and control solutions to minimise the environmental impact of chemical processes

while respecting constraints on process profitability.

Despite the priceless contribution of many researchers in the fields of model building

and design of experiments, the phenomenological modelling of kinetic phenomena remains

a time and resource intensive task that significantly relies on the intuition of experienced

modellers and experimentalists. The kinetic model building process can be summarised in

three fundamental steps (Walter and Pronzato, 1997):

1. Model formulation. The prior knowledge and the experimental evidence available

on the system behaviour are distilled into an opportune set of modelling hypothe-

ses. These hypotheses are then translated mathematically into a set of kinetic model

equations.

2. Parameter estimation. The kinetic parameters involved in the model structure must

be precisely estimated by fitting experimental data.

3. Model validation. Statistical tools are employed to validate the modelling hypotheses

against experimental observations.

Experimental data are typically required in all the aforementioned stages, especially if there

is a significant lack of prior knowledge on the kinetic behaviour of the system. Hence

kinetic studies may require extensive amounts of time and resources both for performing

experiments and for analysing experimental data.

Significant effort has been devoted by the scientific community to the mitigation of

the experimental and analytical burden required to identify and validate kinetic models.

Important steps towards the reduction in the cost of kinetic studies are 1) the coupling of

automated, small-scale flow reactor technologies with online analysis equipment for the

quick collection of experimental data (Goodell et al., 2009) and 2) the employment of ad-

vanced statistical tools for planning informative experiments with the aim of minimising

the cost, time and amount of resources required for the experimentation (Asprey and Mac-

chietto, 2000). Specifically, a variety of Model-Based Design of Experiments (MBDoE)
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techniques have been proposed in the literature to plan optimally informative experiments

for achieving specific objectives, e.g. selecting the best model out of a set of candidates

(Hunter and Reiner, 1965; Buzzi-Ferraris et al., 1984) and/or improving parameter preci-

sion in an already selected model (Zullo, 1991; Prasad and Vlachos, 2008; Chakrabarty

et al., 2013; Galvanin et al., 2013; Stamati et al., 2016). Some recent works in the liter-

ature have also considered to couple automated flow reactor technologies with advanced

modelling algorithms with the aim of developing fully automated platforms for the identifi-

cation of phenomenological kinetic models (McMullen and Jensen, 2011; Bournazou et al.,

2016; Echtermeyer et al., 2017; Waldron et al., 2019b). In these platforms, the model is

identified by a numerical algorithm in the course of an unmanned experimental campaign.

As soon as new samples are collected from the system, these are analysed online by the

software to improve process understanding. Optimal experimental conditions for model

identification are then computed by an MBDoE routine and transmitted to the automated

reactor to collect additional samples and complete the model identification process.

Such platforms have the potential of dramatically speeding up the modelling of ki-

netic phenomena and, consequently, the discovery and the study of new chemical processes.

Nonetheless, there still remain a significant number of computational challenges that need

to be addressed to promote their diffusion in research laboratories. The computational lim-

its of state-of-the-art model identification platforms are associated primarily with aspects

of the modelling activity that are currently difficult to automate, e.g. i) the formulation of

an appropriate set of modelling hypotheses and their translation into a set of kinetic model

equations, ii) the estimation of parameters in the presence of approximated kinetic model

structures, iii) the design of optimal experiments to improve parameter precision in the pres-

ence of approximated models, iv) the refinement of the modelling assumptions embracing

the available experimental evidence and v) the solution of parameter estimation problems in

the presence of high parameter correlation and/or low parameter sensitivity.

The identification of systematic techniques to address the aforementioned challenges is

the objective of this research project. The work presented in this Thesis aims at developing

a robust framework for integrating modelling and experimental activities decoupling and

targeting the various sources of uncertainty involved in the study of kinetic phenomena.

The final aim of the project is the definition of a comprehensive and systematic approach

to the identification of kinetic models in the attempt of making the modelling activity more
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Figure 1.1: Number of publications per year on the topic of kinetic modelling in Engineering Jour-
nals (Web of Science, 2019).

efficient and less sensitive to human bias.

1.2 Open challenges in the automation of kinetic modelling

In this section, the main challenges associated with the building, identification and improve-

ment of kinetic models are introduced and discussed. It is shown that the the definition of

systematic approaches to address these challenges is key to increase the efficiency of kinetic

modelling studies and advance the state-of-the-art of automated kinetic model identification

platforms.

1.2.1 Online kinetic model identification

Advances in the fields of automation and the development of fast measurement devices en-

abled the coupling of automated reactors with fast-response sensors for online monitoring

(Goodell et al., 2009). The presence of online measurement systems in these devices allows

the generation of high frequency kinetic data during reactor operation with minimum hu-

man intervention. In particular, when small-scale flow reactor technologies are employed,

these automated platforms enable the automatic generation of substantial amount of kinetic

information consuming small amounts of materials and concomitantly reducing the cost and

the risks associated with the experimentation (Jeraal et al., 2018).

Automated flow reactors have been employed in a wide variety of situations from pro-

cess monitoring (Malig et al., 2017) to screening of operating conditions (Walsh et al.,
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2005; Gromski et al., 2019) and reaction discovery (Steiner et al., 2019). Automated flow

reactors were also successfully coupled to algorithms for online sequential design of exper-

iments (McMullen and Jensen, 2010; Moore and Jensen, 2012; Fabry et al., 2014; Holmes

et al., 2016). After every experiment is terminated and new data are collected by these

platforms, an algorithm constructs a black-box representation of the physical system, e.g.

a response surface (Box and Lucas, 1959) for designing the following experiment with the

aim of optimising the reaction performance (e.g. the conversion or the yield). These works

demonstrated that automated reactor platforms can be responsive and adapt their actions to

the behaviour of the system. However, these automated devices do not exploit the collected

data for the online development and identification of physics-based models. A major conse-

quence of this is that optimised reaction conditions identified through a black-box approach

in the lab-scale equipment are not necessarily transferable to the design, optimisation and

control of equipment at the industrial scale.

Only few works are available in the literature in which algorithms for the online iden-

tification of phenomenological models were coupled to automated reactor systems (Mc-

Mullen and Jensen, 2011; Bournazou et al., 2016; Echtermeyer et al., 2017; Waldron et al.,

2019b). In these works, numerical routines for parameter estimation and optimal Model-

Based Design of Experiments (MBDoE) were employed online to drive the experimental

campaigns with the aim of selecting the best model among a set of given phenomenologi-

cal models (i.e., model discrimination) (McMullen and Jensen, 2011) and/or improving the

statistical quality of the parameter estimates for a given model structure (McMullen and

Jensen, 2011; Bournazou et al., 2016; Echtermeyer et al., 2017; Waldron et al., 2019b). The

further diffusion of these promising systems in research laboratories is hampered by a num-

ber of limitations that are present in state-of-the-art model identification algorithms. These

limitations are associated primarily with aspects of the modelling activity that are currently

complex to automate. Some of these aspects are introduced in the following list and further

discussed in the following sections.

1. Selection of the modelling hypotheses. Practical rules for constructing kinetic models

have been proposed in the literature (Fogler, 2005). However, these rules are usually

complex to formalise and/or generalise. Automated approaches for the generation of

kinetic models are also available (Oliveira et al., 2016). Nonetheless, the application

of automated approaches for kinetic model construction typically results in the de-
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velopment of computationally intractable models that are impractical for engineering

purposes. Hence, in most cases, an appropriate set of simplifying modelling hypothe-

ses has to be manually selected by the scientist and provided as an input to model

identification algorithms in the form of kinetic model equations.

2. Parameter estimation in the presence of structural model uncertainty. The selection

of the modelling hypotheses is a process that relies almost entirely on the decisions

of thoughtful researchers. Thus, being sensitive to human bias, hypotheses selection

shall be treated as an additional source of uncertainty in phenomenological modelling

(Galvanin et al., 2012). If the proposed model structure is misspecified or excessively

approximated, it may not represent accurately the distribution of the data across the

entire range of explorable experimental conditions. Only data collected at conditions

where the modelling assumptions are valid should be considered for parameter fitting

(Tsay et al., 2017). Nevertheless, the range of conditions in which the modelling as-

sumptions can be considered accurate is normally not known a-priori and has to be

learnt through experimentation. Only few works have considered the possibility of

systematically quantifying the domain of reliability of approximated models (Kahrs

and Marquardt, 2007). Nonetheless, in most cases the domain of reliability of ki-

netic models is only qualitatively inferred by the researcher though the formulation

of conjectures on the actual behaviour of the system.

3. Refinement of the modelling hypotheses. If the postulated model structure is falsi-

fied by experimental observations, a reformulation of the modelling hypotheses may

be required. The modelling hypotheses should be improved embracing the avail-

able experimental evidence and the model structure should be changed accordingly.

Nevertheless, improving an approximated model structure maintaining its physical

significance is a task that relies almost entirely on human intuition and experience.

4. Solution of ill-conditioned parameter estimation problems. Parameter estimation and

MBDoE problems are normally recast as optimisation problems and solved numeri-

cally. Both optimisation problems may be ill-conditioned (Chiş et al., 2014; Wilson

et al., 2015; White et al., 2016). More specifically, parameter estimation problems

may not admit a unique solution and objective functions considered in MBDoE prob-

lems may be undefined (e.g. because of a division by zero). These identifiability
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problems may be the consequence of a poor choice of the model parametrisation

and/or the availability of a poorly informative dataset (Söderström and Stoica, 1989).

A number of strategies have been proposed in the literature to diagnose and address

model identifiability problems. However, these approaches are typically case depen-

dent and the intervention of a scientist is normally required to reformulate the model

identification problem.

5. Recognition of irrelevant data for kinetic modelling. The execution of kinetic ex-

periments requires the stimulation of a physical system in a controlled environment

through the manipulation of input variables and the detection of the system response

through the measurement of some system state. However, in any setup there are con-

trol limits and it may be impossible to completely eliminate external disturbances.

The fitting of data collected in the presence of significant system disturbances may

invalidate the model identification process (Hampel, 1985). These data should be

recognised and neglected for kinetic modelling purposes (Özyurt and Pike, 2004).

Several approaches were proposed to recognise the presence of disturbances in the

contexts of process monitoring and fault detection (Venkatasubramanian et al., 2003;

Yin et al., 2014). These approaches may be classified as model-based and data-based.

Nevertheless, the application of model-based approaches relies on a substantial con-

fidence on the assumptions underlying the model, while the application of data-based

approaches relies on the presence of a substantial amount of process data. None of

these requirements is typically satisfied in kinetic modelling studies, where the re-

sources available for experimentation are normally scarce and the behaviour of the

system in the absence of disturbances is highly uncertain.

The improvement of available modelling techniques and the development of novel

robust approaches for addressing the aforementioned challenges are important aspects for

the design of future automated platforms for online kinetic modelling.

1.2.2 Robustness of model identification algorithms

The structure of a state-of-the-art platform for model identification is given in Figure 1.2.

In the Figure, arrows represent flows of information, while lightning-shaped symbols rep-

resent sources of uncertainty. In state-of-the-art platforms for physics-based kinetic mod-

elling, a set of possible model structures is provided as an input by the researcher. The

model identification algorithm is then asked to select the best model structure among the
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proposed ones and provide estimates for its kinetic parameters. To achieve this task, the

model identification algorithm can perform experiments and collect samples from an auto-

mated experimental setup.

Being sensitive to human decisions, the proposed model structures may be inappro-

priate for system identification purposes. In fact, the model structures proposed by the

scientist may be affected by identifiability issues associated with limits in the observabil-

ity/controllability of the system. Furthermore, none of the proposed model structures may

appropriate to model the process. More specifically, all the proposed structures may have

been derived from inappropriate modelling hypotheses. In addition to these aspects, exper-

imental disturbances may occur in the course of the unmanned experimental campaign. A

failure of the model identification algorithm in handling these uncertainties may lead to the

invalidation of the model identification process and to a significant waste of experimental

resources.

The potential consequences on the modelling process that are associated with the afore-

mentioned uncertainties are further discussed in the following subsections. It is argued that

there is a significant need for robust computational tools capable of dealing autonomously

with these sources of uncertainty to encourage the transition towards the automation of ki-

netic modelling studies, but also to promote the diffusion of good modelling practice in

research laboratories.

1.2.2.1 Robustness towards model identifiability issues

Once a model structure is selected, its identification requires the estimation of its parame-

ters by fitting experimental data. Due to observability and controllability constraints in the

experimental setup, it may be impossible to perform an experiment to obtain the informa-

tion required to estimate the model parameters (Saccomani et al., 1997). Identifiability tests

may be conducted before any experiment is performed to check if it is possible to uniquely

estimate the model parameters given the observability and controllability limits of the setup

(Raue et al., 2014). Systematic approaches for conducting a priori identifiability analysis

were proposed in the literature (Audoly et al., 2001; Sedoglavic, 2002; Saccomani et al.,

2003), and computational tools for identifiability analysis are also available (Bellu et al.,

2007; Chiş et al., 2011; Anguelova et al., 2012). Nonetheless, even if the model structure

provided to the model identification algorithm satisfies the requirements for a priori iden-

tifiability, it may still be extremely challenging to retrieve its parameters using numerical
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Figure 1.2: Simplified diagrams showing the flows of information in an automated kinetic model
identification platform. Lightning-shaped symbols highlight sources of uncertainty in
the model identification problem.

routines (Transtrum et al., 2010).

Whenever a model structure is provided as input, the model identification algorithm is

required to solve sequentially 1) a parameter estimation problem given the available dataset

(Bard, 1974) and 2) an experimental design problem to design following samples with the

aim of minimising the uncertainty on the parameter estimates (Franceschini and Macchi-

etto, 2008b). The solution of both problems may require the employment of numerical

optimisation routines and their effectiveness requires their respective objective function to

be well-conditioned (Wilson et al., 2015; White et al., 2016). Ill-conditioned objective

functions derive from the attempt of identifying models whose parametrisation is sloppy

given the available dataset (Chiş et al., 2014; White et al., 2016). Sloppiness arises when

measured model responses are poorly sensitive to the change of some parameters and/or

measurements do not carry sufficient information to bring parameter correlation below a

critical threshold (typically considered as high as 95%). Whenever these circumstances oc-

cur, the eigenvalues of the covariance matrix of the parameter estimates span over a wide

range of orders of magnitude, i.e., the condition number of the covariance matrix is very

high (Higham, 1996).

Numerical failures may occur in the course of the model identification problem in the
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presence of a sloppy parametrisation. These may be classified as follows:

• False convergence. Ill-conditioned objective functions both in the parameter estima-

tion and in the optimal MBDoE problem may cause numerical optimisation routines

to fail in converging to the optimal solution (Higham, 1996).

• Inaccuracy in the computation of gradients. The calculation of the sensitivities (i.e.,

partial derivatives in the parameter space) using direct differential methods is fre-

quently impractical. As a consequence, numerical differentiation routines are reg-

ularly employed in model building practice (Saltelli et al., 2000). The numerical

computation of sensitivities requires a perturbation of the model parameter values.

The computed sensitivities are sensitive to the choice of the perturbation. In the pres-

ence of a sloppy parametrisation, the applied perturbation may not be appropriate to

accurately quantify the gradient in the parameter space (Higham, 1996). As a conse-

quence, the covariance matrix computed as a function of the parameter sensitivities

may be inaccurate, affecting the model validation process and the design of following

experiments (Pukelsheim, 2006).

• Inaccuracy in the inversion of matrices. In the presence of a sloppy parametrisa-

tion, the covariance matrix of the parameter estimates is ill-conditioned (White et al.,

2016). The solution of an optimal MBDoE problem requires the inversion of an

ill-conditioned covariance matrix if the parametrisation is sloppy (Franceschini and

Macchietto, 2008b).

The optimisation of ill-posed functions may lead to significant numerical failures in the

course of an unmanned experimental campaign with the concomitant waste of experimental

resources. Improving the robustness of automated model identification platforms towards

model sloppiness is key to further promote their employment in the discovery and study of

kinetic phenomena.

1.2.2.2 Robustness towards structural model uncertainty

Mathematical models are never perfect descriptions of the underlying physical phenomenon

(Box and Draper, 1987). This shall be regarded as a strength of mathematical modelling

rather than a weakness (White et al., 2016). In fact, models built from a thoughtful selec-

tion of simplifying hypotheses provide insights on which are the fundamental degrees of

freedom that are ultimately responsible for a certain system behaviour (Rosenblueth and
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Wiener, 1945). However, the selection of the modelling hypotheses is still a process that

relies almost entirely on the decisions of thoughtful researchers. Thus, being sensitive to

human errors, hypotheses selection shall be treated as an additional source of uncertainty in

mechanistic modelling.

Conventional parameter estimation and Model-Based Design of Experiments (MB-

DoE) techniques do not consider structural model uncertainty in the formulation of fitting

cost functions and experimental design metrics (Asprey and Macchietto, 2000). Model

identification approaches implemented in most modelling algorithms assume that the pa-

rameter estimates will converge to a true parameter value as the amount of fitted samples

increases (Bard, 1974). In the presence of misspecified or approximated model structures,

true parameter values may not exist and estimates typically do not converge. The estima-

tion of non-converging parameters may result in significant numerical failures and waste of

resources, especially if the model is nonlinear and its identification is performed online on

an unsupervised experimental platform.

A further aspect associated with the identification of an approximated model is that the

discrepancy between observations and model predictions is the consequence of both mea-

surement error and process-model mismatch. If the model is approximated, it may be possi-

ble to accurately fit only data collected within the model validity domain, namely the range

of conditions where the simplifying modelling hypotheses may be considered valid. The

inclusion in the parameter estimation problem of data collected outside the model validity

domain may result in the computation of estimates with questionable physical significance,

a degradation of the model fitting quality and a loss of model predictive capability.

The experimental design stage in the parameter estimation process is also affected by

the presence of structural model uncertainty. MBDoE methods for parameter precision

properly account for the uncertainty that is intrinsically present in the measurement system

(i.e., the measurement noise) and how this uncertainty propagates to the parameter estimates

(Bard, 1974; Walter and Pronzato, 1997). However, standard MBDoE tools do not account

for systematic errors nor for the uncertainty and approximation that may be present in the

candidate model equations, i.e., they assume that the structure of the model used to perform

experimental design is exact. As a consequence, the inconsiderate application of standard

MBDoE methodologies in the presence of an approximated model structure may lead to the

execution of experiments and collection of data outside the model validity domain. Only
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few works in the literature have considered the extension of available MBDoE methods

to account for structural model uncertainty and experimental disturbances (Galvanin et al.,

2011, 2012).

Data collected at conditions where the model is not valid shall be regarded as irrelevant

for the estimation of the model parameters. Nevertheless, the geometry of the domain of

model validity is normally unknown a priori and has to be inferred through experimentation

(Kahrs and Marquardt, 2007; Tsay et al., 2017). The development of robust estimators and

MBDoE criteria embracing structural model uncertainty is one of the aims in this research

project.

1.2.2.3 Robustness towards experimental disturbances

Kinetic experiments involve an interaction with the physical system through the control of

certain input variables and the observation of the dynamic response in some other output

variables. Nevertheless, the ability of the experimentalist or even an automated system to

control an experimental setup is never perfect. Disturbances may occur in the course of the

experimental campaign resulting in anomalies in the behaviour of the system. Examples

of disturbances in reactor-based setups may be the presence of contaminants in the reactor

feed, control offsets and leakages. Disturbances can never be completely eliminated and

shall be taken into account in the model identification process (Özyurt and Pike, 2004).

In fact, system disturbances can lead to the collection of outliers. Outliers are defined by

Rousseeuw and Leroy (1987) as data that deviate from the assumptions and their inclusion

in the dataset may have a dramatic impact on the modelling process (Huber, 1981).

The concept of breakdown point was developed to assess the sensitivity of a parameter

estimator towards the presence of outliers in the dataset (Huber, 1964). Hampel defines

the breakdown point as the smallest fraction of outlier contamination in the dataset that

can carry the parameter estimates beyond any finite bound (Hampel, 1985). For traditional

estimators based on maximum likelihood (e.g. the least squares method), the breakdown

point approaches 0 as the number of fitted samples increases, meaning that one outlier in

the dataset is sufficient to invalidate the parameter estimation. The acknowledgement of

this weakness led to the formulation of alternative estimators that are insensitive to outlier

contamination in the dataset and a whole subarea of statistics, namely the field of robust

regression (Huber, 1964; Rousseeuw and Leroy, 1987; Özyurt and Pike, 2004). Neverthe-

less, parameter estimation is performed using standard estimators in most kinetic modelling

32



studies and outlier detection is performed using heuristic rules. As an example, a popular

approach used to label bad samples is the method of the material balance, which consists

of quantifying the discrepancy in the atom balances between the inlet and the outlet of the

reactor (Galvanin et al., 2018; Waldron et al., 2019a). Kinetic experiments in which this

discrepancy is above a certain threshold (typically chosen between 5% and 10%) are con-

sidered too inconsistent to be used for kinetic modelling and are removed from the dataset.

A major drawback of the material balance method is that it is blind towards certain types

of disturbances. For instance, samples collected in the presence of a significant temper-

ature offset may not be detected as outliers because such disturbance may not affect the

input-output balance of the atomic species.

The employment of robust estimators derived from sound statistical foundations should

become common tools in kinetic modelling studies (Buzzi-Ferraris and Manenti, 2009).

Especially in online kinetic modelling, a failure in recognising outliers could lead to the

execution of a suboptimal experimental campaign and the ultimate failure of the modelling

algorithm in selecting an appropriate model structure and estimating its parameters.

1.2.3 Cognitive limits of available model identification algorithms

A broad variety of problems in the field of process systems engineering cannot be solved

effectively by human intuition only. The nature of these problems, from process design,

optimisation and control, is frequently multi-objective, highly nonlinear, constrained by

physics, manufacturing capabilities, legislation and costs. Information technology has al-

ready augmented human cognitive capabilities and helped improve chemical processes to a

point that would have not been reachable solely with human intuition. This cognitive leap in

process systems engineering was enabled primarily by the development of efficient numer-

ical equation solvers (Brenan et al., 1987) and optimisation algorithms (Floudas and Parda-

los, 2013). These algorithms have been extensively employed also in the field of kinetic

modelling and represent the foundation of state-of-the-art software for process modelling

and simulation, e.g. the general PROcess Modelling System gPROMS® (PSE gPROMS,

2017), MATLAB® Simulink (Mathworks MATLAB, 2015), the software EFCOSS (Envi-

ronment for Combining Optimization and Simulation Software) (Rasch and Bücker, 2010)

and the Engineering Equation Solver EES (F-Chart Software EES, 2017).

Once an opportune kinetic model structure is selected, parameter estimation and opti-

mal experimental design problems can be recast as optimisation problems and solved using
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numerical optimisation routines (Walter and Pronzato, 1997). However, the problem of

formulating an appropriate set of kinetic model equations is multi-objective and involves

substantially different challenges. The aim in physics-based kinetic modelling is to build a

set of model equations such that 1) the structure of the equations reflects the causal dynamic

mechanisms of the physical system 2) the parameters involved in the model can be uniquely

retrieved by fitting experimental data 3) the parameters can be precisely estimated given the

available experimental budget and 4) the structure is simple enough to be used for practical

engineering purposes.

Some authors proposed to recast the problem of model structure formulation as an op-

timisation problem and solve it employing numerical optimisation routines (Cozad et al.,

2015; Tsay et al., 2017; Wilson and Sahinidis, 2017; Neumann et al., 2019). Nonethe-

less, there may be infinite model structures that are accurate in representing the experimen-

tal observations. For such reason, model structure selection problems are inherently ill-

conditioned and the model structure space has to be manually constrained in order to make

the problem solvable. A limitation of this approach is that none of the model structures

in the constrained structure space may be appropriate to model the physical phenomenon.

Genetic programming was proposed as a mean of exploring effectively vast solution spaces

(Banzhaf et al., 2015). Applications of genetic programming to structural equation mod-

elling are also available in the literature (Florin Metenidis et al., 2004; Xiao-lei Yuan et al.,

2008; Gandomi and Alavi, 2011). However, genetic approaches rely on the construction and

identification of a substantial number of model structures. The estimation of parameters in

a high number of kinetic models may be impractical, especially if the models are nonlinear

in the parameters (Florin Metenidis et al., 2004; Transtrum et al., 2010) and affected by

problems of identifiability.

A number of software packages have been developed for supporting the scientist in the

construction of reaction networks starting from given chemistry rules, i.e., a potential sets

of elementary reactions or reactions families that can occur in the system (Oliveira et al.,

2016). Some of these computational tools are NetGen from Broadbelt et al. (1994), the

Reaction Mechanism Generator developed by Song (2004), the Reaction Modeling Suite

proposed by Katare et al. (2004) and the Genesys software developed by Vandewiele et al.

(2012). This list is by no means comprehensive and more detailed overviews on software for

the automated generation of kinetic models can be found in Ugi et al. (1993); Katare et al.
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(2004); Klein et al. (2005); Van de Vijver et al. (2015a). Software for automated generation

of reaction networks were employed on a number of different modelling problems, from the

modelling of pyrolysis (Broadbelt et al., 1994; Van de Vijver et al., 2015b), hydrocracking

(Mizan and Klein, 1999) and aromatisation (Bhan et al., 2005) to the description of syngas

production (Seyedzadeh Khanshan and West, 2016) and biomass conversion (Rangarajan

et al., 2010). A more comprehensive overview on the applications of automated model

building software can be found in Oliveira et al. (2016).

These algorithms generate exhaustive reaction networks by accessing a user-defined

library of possible chemical species and a database of elementary reactions. They then

parse the reaction network into a set of kinetic model equations (Katare et al., 2004). This

typically results in the formulation of models involving a high number of species and reac-

tions, which may be inappropriate for parameter estimation and simulation purposes. The

generated model may be simplified by removing irrelevant reactions from the full mech-

anism. However, information on which are the relevant reactions occurring in the system

is seldom available and heuristic model reduction rules are used instead. These rules may

involve limiting the maximum molecule size, excluding chemical species, ignoring reac-

tion families and so on (Oliveira et al., 2016). The computational complexity associated

with the application of such reaction mechanism generators makes them inappropriate for

application in online model identification platforms. Furthermore, such algorithms require

the availability of substantial prior information on the system in the form of species and

elementary reactions libraries. Possible elementary reactions may be identified through ab

initio quantum mechanical simulations (Lu and Yang, 2004). However, molecular simu-

lations typically require substantial computational resources and numerical results of ab

initio calculations are sensitive to a high number of user-defined assumptions on the system

behaviour (Parr, 1980).

It is extremely challenging to formalise the problem of selecting and refining modelling

hypotheses in a computer program and the introduction of human bias is currently unavoid-

able. This bias is provided to model identification algorithms in the form of candidate

model structures derived from simplifying hypotheses. If none of the proposed structures

is appropriate to describe the dynamics of the system, these should be evolved embracing

the available experimental evidence. The concept of evolution in structural equation mod-

elling is borrowed from the literature on genetic programming (Banzhaf et al., 2015) and
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Figure 1.3: Roadmap representing the structure of this Thesis.

will be used to refer the act of improving a kinetic model by modifying its mathematical

structure. Even for an experienced scientist, refining the modelling hypotheses is not a triv-

ial task and no algorithm exists that can perform such operation efficiently and taking into

account all the aforementioned modelling requirements. One of the aims of this research

project is the definition of computationally tractable approaches to support the scientist in

diagnosing model misspecification and evolving approximated model structures embracing

both experimental evidence and prior knowledge available on the system.

1.3 Contribution and structure of this Thesis

In the previous sections, the main sources of uncertainty associated with the study of kinetic

phenomena were illustrated and discussed. The challenge embraced in this research project
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is the development of intelligent algorithms for kinetic modelling that are robust, i.e. insen-

sitive, to the presence of these uncertainties. In particular, the work presented in this Thesis

focuses on four fundamental problems encountered in kinetic modelling practice:

1. The online estimation of kinetic parameters in the presence of a sloppy parametrisa-

tion, i.e., in the presence of extreme parameter correlation and/or poor sensitivity of

the measured model responses to a change in the parameter values.

2. The estimation of kinetic parameters and determination of the model validity domain

(i.e., the range of conditions in which the modelling assumptions may be considered

acceptable) in the presence of approximated kinetic model structures and in the con-

text of online kinetic modelling.

3. The diagnosis of model misspecification in approximated model structures, namely

the detection of the model components that are inappropriately specified and require

reformulation.

4. The systematic improvement of approximated kinetic model structures embracing

both prior knowledge and experimental evidence available on the dynamic behaviour

of the system.

A roadmap representing the structure of this Thesis is given in Figure 1.3. This work

is organised in seven Chapters whose content is briefly summarised in the following list

Chapter 1 An overview on current challenges in kinetic modelling studies is given and the

main goals of the research project are described.

Chapter 2 This Chapter organises and presents the state-of-the-art of kinetic model build-

ing and identification. It provides an introduction on the mathematical and statistical

tools that will be used in the following research Chapters.

Chapter 3 A systematic approach to online model reparametrisation for robust parameter

estimation in the presence of model sloppiness is presented in this Chapter. In the

approach, the arising of model sloppiness is averted by optimally transforming the

model parameter space every time new data are collected and included in the param-

eter estimation problem. The aim of online reparametrisation is to reduce the chance

of numerical failures associated with model sloppiness without wasting experimental
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resources and avoiding the introduction of bias in the parameter estimation problem.

The approach is demonstrated both on a simulated and on a real case study where

the aim is the estimation of parameters in a model of benzoic acid esterification with

ethanol in a tubular reactor (Pipus et al., 2000). The modelling frameworks proposed

in the following Chapters are formulated assuming that model parameters can be ro-

bustly estimated from available experimental data. The reparametrisation approach

proposed in this Chapter may be coupled with any of the modelling algorithms illus-

trated in the following Chapters to improve their robustness at the parameter estima-

tion and experimental design stages.

Chapter 4 A systematic approach for the online identification of approximated model

structures is introduced in this Chapter. The central block in the procedure is a Model-

Based Data Mining (MBDM) method for parameter estimation derived from robust

regression theory (Rousseeuw and Leroy, 1987). MBDM generates two outputs: i)

it classifies the explored experimental conditions as compatible or incompatible with

the modelling hypotheses and ii) it estimates the model parameters excluding from

the fitting the data that are incompatible with the modelling assumptions. A nonlin-

ear support vector classifier (Cortes and Vapnik, 1995; Schölkopf and Smola, 2002)

is then trained on the classified (observed) experimental conditions to build a reliabil-

ity map, which quantifies the expected model reliability in unexplored experimental

conditions. The generated maps can be employed to prevent the use of false opti-

mal process points located in regions of low model reliability. Furthermore, an ex-

perimental design criterion to improve parameter precision in approximated models

will be introduced in this Chapter where the design of experiments is constrained

within the model reliability domain. The approach is demonstrated online in a simu-

lated case study on the identification of an approximated model of ethanol dehydro-

genation on copper-based catalyst (Carotenuto et al., 2013). A further case study is

presented where the approach is applied offline for the identification of an approx-

imated model of methanol oxidation on silver catalyst using real experimental data

(Andreasen et al., 2005).

Chapter 5 If the available model is not reliable at the conditions of interest, a change in

the model structure may be required. In this Chapter, a model building framework

based on maximum likelihood inference is proposed where the structure of an avail-
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able kinetic model is iteratively refined until an appropriate structure is obtained. In

the proposed approach, model improvement is achieved in two steps: 1) a step of

model misspecification diagnosis and 2) a step of model structure evolution. This

Chapter focuses primarily on the former aspect. Statistical evidence provides an in-

dex to the scientist to justify changes in the model structure. Whenever over-fitting

is detected, irrelevant free parameters are removed from the model structure. A Wald

test (Wald, 1943) is employed to detect which parameters are unnecessary for fitting

the data. If under-fitting is detected, the model structure is evolved by replacing rele-

vant free parameters with state-dependent functions. A tailored Lagrange multipliers

test (Silvey, 1959) is introduced in this manuscript to support the detection of promis-

ing parameters that should be considered for evolution. A Model Modification Index

(MMI) is defined as a function of the Lagrange multipliers statistic and is proposed

as a heuristic measure of model misspecification. The use of the MMI is illustrated

in two simulated case studies on the diagnosis of model misspecification in a model

of baker’s yeast growth in a fed-batch bioreactor (Asprey and Macchietto, 2000) and

in a model of glucose-insulin interaction in a healthy subject (Bergman et al., 1981).

Chapter 6 The main focus in this Chapter is the evolution of under-fitting model structures,

i.e., the evolution of models in the presence of significant process-model mismatch.

Under-fitting model structures are evolved by replacing some relevant model parame-

ter with a state-dependent function. Relevant model parameters are detected by using

a MMI-based approach. An Effect Relevance Index (ERI) is introduced as a function

of the Lagrange multipliers statistic (Silvey, 1959) to support the scientist in the con-

struction of opportune functional forms to replace model parameters. The use of the

ERI is illustrated on the same simulated case studies used in Chapter 5.

Chapter 7 In this Chapter, the achievements of the research projects are summarised and

possible future research directions are illustrated.

1.4 Computational resources
A number of computational resources were employed in this project and were instru-

mental for demonstrating the proposed computational frameworks and model identifica-

tion techniques. Most of the numerical results presented in this Thesis were obtained

using Python (Python Core Team, 2018). Python is a high-level programming language
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that is widely used for numerical analysis. Some of its most established open-source li-

braries are extensively used throughout this work. The Python package NumPy https:

//github.com/numpy/ (Oliphant, 2015) is employed for the manipulation of algebraic

objects, i.e., arrays and matrices. Equations solvers and optimisation routines implemented

in the library SciPy https://github.com/scipy/ (Jones et al., 2001) are also used.

The integration of systems of ordinary differential equations is performed using the equation

solver LSODA (Petzold, 1983; Hindmarsh, 1992) implemented in SciPy. LSODA can solve

initial value Cauchy problems with dense or sparse Jacobian. It also implements an auto-

matic method to monitor the stiffness of the problem and choose which integration method

to use (Petzold, 1983). The LSODA function implemented in the package Scipy (Mayorov

et al., 2018) represents a wrapper to the LSODA routine that was originally implemented in

the Fortran ODEPACK library, which can be accessed at www.netlib.org/odepack/

(Hindmarsh, 2001).

Two numerical optimisation routines implemented in SciPy are employed in the work

presented in this Thesis to solve parameter estimation and optimal experimental design

problems, namely the gradient-free Nelder-Mead algorithm (Nelder and Mead, 1965) and

the SLSQP solver (Nocedal and Wright, 2006). Assuming that the optimisation prob-

lem involves n optimisation variables, the Nelder-Mead method starts by building a sim-

plex, namely a polytope of n+1 vertices. It evaluates the objective function at all ver-

tices and then replaces the worst point with a new point, which is computed as a func-

tion of the polytope vertices at the current iteration (Nelder and Mead, 1965). In con-

trast to the Nelder-Mead method, the SLSQP algorithm can handle equality and inequal-

ity constraints. Since SLSQP requires the computation of second-order derivatives, both

objective functions and constraints must be twice-differentiable with respect to the op-

timisation variables. With SLSQP, the step at a given iteration is computed by solving

a quadratic optimisation program where the objective function includes the gradient and

the second-order derivatives of the objective function and its constraints (Nocedal and

Wright, 2006). The Python code for both the Nelder-Mead and the SLSQP algorithm

can be found in https://github.com/scipy/scipy/blob/master/scipy/

optimize/. The Python package scikit-learn (Pedregosa et al., 2011) includes a com-

prehensive library of Machine Learning models and it is employed in this work for the

rapid implementation and training of Support Vector Machine Classifiers (Cortes and Vap-
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nik, 1995; Schölkopf and Smola, 2002). The scikit-learn library can be downloaded from

https://github.com/scikit-learn/scikit-learn.

In addition to Python, the software gPROMS® ModelBuilder developed by Pro-

cess Systems Enterprise is used (PSE gPROMS, 2017). gPROMS® is a general-purpose

modelling software for dynamic processes. It implements a comprehensive set of equa-

tion solvers, optimisation routines and model validation tools. In particular, the solver

OAERAP (Outer Approximation Equality Relaxation Augmented Penalty) implemented in

gPROMS® is used to solve robust regression problems with the aim of identifying outliers

in kinetic datasets. The OAERAP solver is designed to solve both steady-state and dynamic

optimisation problems with both continuous and discrete decision variables, i.e., Mixed-

Integer NonLinear Programming (MINLP) optimisation problems. The OAERAP solver

operates by performing a relaxation of the MINLP problem as a sequence of simpler opti-

misation problems, including NonLinear Programming (NLP) problems and Mixed-Integer

Linear Programming (MILP) problems (Adjiman et al., 1998). Beside OAERAP, the differ-

ential and algebraic equations solver DASOLV implemented in gPROMS® is employed for

the numerical integration of the dynamic models.

Unless differently stated, the numerical results presented in this work are obtained on

a 64-bit Windows machine with processor Intel® Xeon® CPU E5-1650 v3 @ 3.50GHz

and 32.0GB RAM. The Python scripts used to generate the numerical results presented

in this Thesis can be accessed at the following repository https://github.com/

marcoquaglio92/quaglio_phd_thesis_code.
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Chapter 2

Literature survey

A survey of relevant literature on the topic of kinetic modelling is presented in this Chapter.

A general form for the kinetic models considered in this Thesis is given in Section 2.1. An

overview on different model classes is given in Section 2.2. Approaches available in the

literature to build kinetic model structures are presented in Section 2.3. Statistical tools for

bridging modelling and experimental activity are illustrated in Section 2.4. In the following

sections, non-ideal scenarios in kinetic modelling studies are discussed, namely situations

in which the model is affected by problems of practical identifiability (Section 2.5), cases in

which collected data significantly deviate from the modelling assumptions (Section 2.6) and

situations in which an available kinetic model structure has to be improved embracing the

available experimental evidence (Section 2.7). In Section 2.8, a summary of the literature

review is presented highlighting possible grey areas where additional research is required

and where the work of this Thesis fits.

2.1 Deterministic models

The models considered in this work are in the form of mathematical laws stating a relation-

ship among some variables of interest in the physical system and some parameters. Vari-

ables are quantities that may be either measurable or not and generally vary in both space

and time. Parameters are assumed to be constant quantities that are not directly measurable.

Throughout this Thesis, models are assumed to take the following general form

f(ẋ,x,u, t,θ) = 0

ŷ = h(x,u, t,θ)
(2.1)
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where f and h are respectively a N f ×1 and a Ny×1 array of model equations, x is an Nx×1

array of state variables, u ∈U is a Nu×1 array of control input variables, t is time and array

θ= [θ1, ....,θNθ
]T ∈Θ represents a Nθ ×1 array of model parameters. ŷ represents a Ny×1

array of model predictions for a measurable set of system states y. Possible constraints on

the state variables are not explicitly stated in (2.1) for simplicity of notation. However, in

general, sets of model equations may also include equality and inequality constraints on

the state variables and/or on functions of the state variables. A model in the above form

is called deterministic since the quantities appearing in its structure are assumed to be well

determined in principle and not characterised by randomness (Bard, 1974). The modelling

activity is concerned with selecting an opportune form for f and properly tuning the values of

the parameters θ on the experimental observation. As opposed to deterministic models are

stochastic models (Nelson, 1995). Quantities appearing in stochastic models are treated as

inherently random and the simulation at the same conditions of a stochastic model produces

different outcomes. Stochastic models are not considered throughout this work and more

information about the application of stochastic modelling to chemical engineering related

problems can be found in the literature (Diwekar and Rubin, 1991; Kristensen et al., 2004;

Alshraideh and Runger, 2014).

2.2 Model classes

Every modelling assigment shall begin with the question: Why is a model required? In

fact, depending on the final use of the model, some modelling strategies may be more op-

portune and effective than others. Furthermore, even for the same system, different models

may be required depending on the specific application, e.g. process design (Biegler et al.,

1997), process control (Ogunnaike and Ray, 1994) or optimisation (Pardalos and Resende,

2002). Following the distinction proposed by Bonvin et al. (2016), deterministic models

are classified into three groups, depending on the factors that drive and determine their final

structure.

Knowledge-driven models The structure of a knowledge-driven model is derived from a

set of physically significant hypotheses. In process systems engineering, knowledge-

driven models typically involve mass, momentum and energy balances and include

phenomenological relationships to describe complex kinetic mechanisms (Rasmuson

et al., 2014). These models are the most desirable because their structure organ-
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ises the knowledge available on a system in a way that reflects the intrinsic causal

mechanisms of the system itself. Knowledge-driven models possess some attractive

characteristics:

• they provide insights on the fundamental degrees of freedom that are eventually

responsible for the system behaviour (White et al., 2016).

• validated knowledge-driven models normally allow for extrapolation outside the

range of data fitted for estimating their parameters (Bonvin et al., 2016).

• parameters in knowledge-driven models carry physical significance, which may

help their estimation. As an example, the knowledge on a specific physical

quantity (e.g. the kinetic rate of a known reaction, viscosity, etc.) may be

transferred from a system to another.

The principal drawback of knowledge-driven models is that their development may

require the investment of extensive amounts of time and resources for performing

kinetic studies, formulate and select appropriate modelling hypotheses and translating

them into a model structure.

Data-driven models There may be conditions in which it is impractical and/or unneces-

sary to capture the phenomenology of the system. In such situations, the aim is to

identify an efficient mathematical description of the experimental observations, i.e.,

a regression curve or surface that well describes the distribution of the available data.

This is the so called data-driven approach to modelling (Box and Draper, 1987). In

data-driven modelling, parameters normally do not have physical significance and the

model structure does not reflect the causal mechanisms of the physical system. As a

direct consequence, data-driven models shall not be trusted when used to extrapolate

the system behaviour beyond the conditions explored for their identification. A wide

variety of data-driven model types were proposed in the scientific literature. These

include response surfaces that were developed in the domain of statistical experi-

mental design for studying the relationship between input factors and response vari-

ables (Box and Wilson, 1951), regression models based on artificial neural networks

(Bishop, 1995), multivariate analysis methods such as principal component analysis

(Jackson, 2003; Geladi and Kowalski, 1986) and kernel-based methods (Vapnik and

Lerner, 1963; Smola and Schölkopf, 2004; Bah, 2008; Pillonetto et al., 2014).
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Hybrid models A third class of models is identified by Bonvin et al. (2016) in the hybrid

or grey-box models. In this model class, model structures are derived partially by

physical and engineering knowledge, but including components that are constructed

empirically from experimental observations. Typically, these components are built

from data-driven models such as response surfaces (Bonvin et al., 2016), artificial

neural networks (Cubillos et al., 2007; Xiong and Jutan, 2002) or kernel-based models

(Del Rio Chanona et al., 2019). Data-driven components are included in the structure

primarily for bridging the gap left by the incomplete knowledge available on the

system (Brendel and Marquardt, 2008; Hof et al., 2009).

Disadvantages and merits of the three model classes are related to the effort required

for the development of the model structure and to the extent to which the model captures

the phenomenology of the system. Bonvin et al. (2016) also observed that methodologies

for the identification of hybrid models were not pursued as systematically as for the other

model classes. As a consequence, it frequently happens that when prior knowledge is not

sufficient to build a knowledge-driven model, a purely data-driven model is built instead

and the available insights on the system mechanisms are completely neglected.

2.3 Approaches for model structure building

Harnessing the complexity of kinetic phenomena into mathematical equations has been ob-

ject of study for many scientists. Four main approaches for constructing phenomenological

kinetic model structures were identified in the scientific literature: Bottom-up, Top-down,

Superstructure-based and Incremental.

Bottom-up In the bottom-up approach, the starting point is a minimal reaction network

where thermodynamically consistent rate laws are built using algebraic methods

and/or graph theory (Marin and Yablonsky, 2011). Kinetic parameters may be then

obtained from either a database of chemical properties (Song, 2004), theoretical cal-

culations (Benson and Buss, 1958; Magoon and Green, 2013) or through the fitting

of experimental data (Bard, 1974). If experimental evidence shows that the minimal

mechanism does not represent the phenomenon with satisfactory accuracy, then the

modelling activity shall proceed with the extension of the reaction network. Addi-

tional species and/or reactions are included in the model following thermodynami-

cally consistent additivity rules (Benson and Buss, 1958). The majority of algorithms
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for the automated generation of reaction networks implement a bottom-up approach

(Ugi et al., 1993).

Top-down The application of a bottom-up approach to model building may lead to the

construction of a very detailed and broad reaction network that is impractical and/or

unnecessary for engineering purposes. For such reason, top-down approaches were

developed to identify simplified models, out of complex mechanisms, without losing

significant model descriptive capability. A top-down approach may aim at reducing

the model size by removing irrelevant, slow reactions from the model and/or lumping

fast reactions together. The most popular methods for model reduction are driven by

sensitivity analysis (Seigneur et al., 1982), linear and nonlinear mixed-integer pro-

gramming (Petzold and Zhu, 1999; Edwards et al., 2000; Bhattacharjee, 2003) and

manifold learning (Chiavazzo et al., 2014).

Superstructure-based In superstructure-based kinetic modelling frameworks a model su-

perstructure is first constructed including possible lumped reactions occurring in the

system and possibly present chemical species. Reactions and species may be included

in the superstructure even if their presence is only speculated. Optimisation methods

are then used to identify the smallest set of reactions that is capable of represent-

ing the experimental observations according to a pre-set level of accuracy (Petzold

and Zhu, 1999; Edwards et al., 2000; Wilson and Sahinidis, 2016; Tsay et al., 2017).

Superstructure-based modelling methods were also employed in the context of data-

driven kinetic modelling (Cozad et al., 2014).

Incremental In an incremental modelling framework the identification of the model struc-

ture proceeds in an incremental fashion towards increasing level of detail (Marquardt,

2005). The procedure begins with the determination of an opportune reaction net-

work. Techniques based on target factor analysis are available in the literature for

determining the set of independent lumped reactions occurring in the system in a way

that is independent from the kinetic rates (Bonvin and Rippin, 1990; Amrhein et al.,

1999). The following step involves the determination of the functional dependencies

to describe the kinetic rate laws. The procedure requires high-resolution measure-

ment techniques for extracting functional dependencies for the variables of interest

without assuming structures for the kinetic laws. Once opportune model inversion
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techniques are applied (Engl et al., 2000) it is possible to move towards a higher

level of detail postulating structures for the kinetic rates and fit the parameters to the

data. The advantage of the method is that the functional dependencies extracted from

high-resolution datasets can be employed for running simulations even if fundamental

knowledge on the reaction rate structures is lacking.

The application of any of these strategies to kinetic modelling shall always be coupled

to a thoughtful experimental activity for estimating the model parameters and for validating

the modelling hypotheses in the course of the model building process. The following section

provides an overview on the statistical approaches proposed in the literature to bridge the

gap between modelling and experimental activities.

2.4 Statistical model building and identification
A general framework for model identification linking modelling and experimental activi-

ties is presented and the fundamental steps in the procedure are detailed. A summary of

the most significant approaches and frameworks available in the literature for supporting

the construction of kinetic model structures is reported. Particular attention is given to

knowledge-based and hybrid kinetic models, i.e. kinetic models embodying causal mecha-

nistic knowledge on the process behaviour.

2.4.1 Bridging modelling and experimental activity

A possible framework for linking modelling and experimental activity is given in Figure 2.1.

The framework proposed here does not cover all the possible pathways that a modelling

activity can take. However, it is general enough for allowing the introduction of a set of

fundamental modelling tools that shall be employed in modern modelling practice.

In general, kinetic modelling studies involve three main stages (Asprey and Macchi-

etto, 2000; Galvanin, 2010):

1. Preliminary analysis. At this stage, the prior knowledge available on the system is

translated into a set of candidate model structures. Approaches as the ones presented

in Section 2.3 may be employed for the purpose. An identifiability analysis shall then

be performed to assess whether it is possible a-priori to uniquely estimate the model

parameters by fitting experimental data.

2. Model discrimination. An appropriate model structure is selected at this stage by

challenging the available models against experimental evidence. If experimental ev-
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Figure 2.1: A general framework for model identification adapted from Asprey and Macchietto
(2000).

idence suggests that none of the models is adequate, the modelling activity should

start again from stage 1 with the formulation of a different set of model structures. If

more than one model is adequate for describing the process, additional experiments

may be performed with the aim of discriminating between rival model structures.

3. Parameter precision. When an adequate model structure has been selected, its iden-

tification requires the precise estimation of its kinetic parameters. If the available

experimental data do not provide sufficient information to meet the desired statistical

quality, additional experiments may be performed with the aim of maximising the

collection of information for improving parameter precision.

The final model obtained at the end of the procedure shall be considered as a reasonably

good representation of the physical system up to the moment when it is proved wrong by
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Figure 2.2: Generic Multiple Input Multiple Output (MIMO) system with Nu system inputs and Ny
system outputs.

some new observations (Popper, 2002).

The tight interconnection between modelling and experimental activity needed in ki-

netic modelling studies requires the employment of a number of computational and statis-

tical tools for identifiability analysis, experimental design, parameter estimation and model

validation. A survey of the most relevant tools available for these purposes is given in

the following sections. Particular emphasis is given to the concepts and tools that will be

instrumental in the next research Chapters.

2.4.2 Identifiability analysis

In general, an experimental setup may be formalised mathematically as a Multiple Input

Multiple Output (MIMO) system as shown in Figure 2.2 (Walter and Pronzato, 1997). In

the figure, u is the array of system inputs and y is a Ny× 1 array of measurable, output

system states.

The inference problem is concerned with the selection of a model in the form (2.1)

whose parameters can be uniquely identified from input-output measurements performed

on the system. A formal definition of identifiability is now given.

Structural identifiability: A model in the form (2.1) is structurally globally identifi-

able from input-ouput data if for almost any parameter set θ∗ ∈ Θ there exists at least one

input function u(t) such that the set of equations

ŷ(u,θ) = ŷ(u,θ∗) (2.2)
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admits the unique solution θ = θ∗ for all the possible initial values of the state variables

x(0). A model is structurally locally identifiable if such condition is satisfied only in an

open neighbourhood of the generic parameter set θ∗ ∈ Θ (Walter and Lecourtier, 1982;

Saccomani et al., 2003).

In different words, if there exist at least two distinct parameter sets such that the

input-output mapping described by the model is identical for any conceivable experiment

then the model is deemed non-identifiable and cannot be employed for inference purposes.

Structural identifiability is an intrinsic property of the system model structure (Walter and

Lecourtier, 1982). Several systematic approaches were proposed in the literature to check

if a model is identifiable. These can be classified as a-priori, which can be applied before

any data is collected and data-based approaches (Raue et al., 2014). A further classification

can be made between methods for global and local identifiability analysis.

A power series approach for testing local identifiability was proposed by Pohjanpalo

(1978). The method aims at demonstrating that a model is structurally identifiable by

analysing the power series of the time derivatives of the model outputs ŷ at t = 0. In the ap-

proach the following set of equations is constructed and constitutes the so called exhaustive

summary

dkŷ(θ)
dtk

∣∣∣
t=0

= ak(0) ∀ k = 1, ...,∞ (2.3)

Using a differential algebra approach, a maximum order for the time derivatives can

be obtained (Sedoglavic, 2002). The rank of the Jacobian associated with the exhaustive

summary is then used as an index to assess which model parameters can be uniquely re-

trieved from input-output measurements (Karlsson et al., 2012). This method is known as

the Exact Arithmetic Rank approach and it is implemented as a fully automatic function

in Mathematica® (Wolfram Research, Inc., 2019). The approach can also be used to iden-

tify minimal sets of system outputs that guarantee a-priori model identifiability (Anguelova

et al., 2012).

An approach for global identifiability was proposed by Ljung and Glad (1994) and

is based on differential algebra. In this approach, model equations are manipulated in or-

der to eliminate the non-observed states of the system. The input-output mapping is then

parametrised linearly through a set of algebraic equations of the unknown parameter set θ.

It is then possible to check using linear algebra algorithms whether this system of equations
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admits a unique solution, which is a sufficient condition for global identifiability. The com-

putational efficiency of the approach was improved by Audoly et al. (2001) and the method

is now available for use in the system identification software DAISY (Bellu et al., 2007).

Nevertheless, the application of such approaches remains impractical whenever the system

of equations is large (more than 10 equations) (Raue et al., 2014).

An optimisation-based approach was proposed by Asprey and Macchietto (2000) as

a mean to test identifiability in models involving a substantial number of equations. The

approach aims at identifying two distinct parameter sets θ ∈ Θ and θ∗ ∈ Θ such that the

associated model predictions over an experimental time horizon τ are identical. Formally,

the approach involves testing the following condition ∀u ∈U

max
θ,θ∗∈Θ

[θ−θ∗]T Wθ [θ−θ∗]< εθ (2.4)

s.t.
∫

τ

0
[ŷ(u,θ)− ŷ(u,θ∗)]T Wy[ŷ(u,θ)− ŷ(u,θ∗)]dt < εy (2.5)

where Wθ [Nθ ×Nθ ] and Wy [Ny×Ny] are weighting matrices and εy and εθ are arbitrarily

small positive real numbers. This approach has been successfully employed to test global

identifiability in large scale biological models involving hundreds of parameters (Sidoli

et al., 2005).

As observed by Saccomani et al. (2003), a-priori identifiability is a necessary condi-

tion for model-based inference. Nevertheless, even if a model satisfies the requirements for

a-priori identifiability, it may still be impractical or impossible to estimate its parameters

from noisy experimental data (Söderström and Stoica, 1989). To assess whether a model

is identifiable in practice, data-based identifiability analysis methods may be employed.

Data-based approaches are typically applied either with real experimental data or with sim-

ulated data if these can be generated under reasonable assumptions (Raue et al., 2014). The

fundamental idea behind data-based approaches is that non-identifiability manifests as a flat

fitting cost function in the parameter space (Raue et al., 2009). Data-based approaches to

assess whether a model is identifiable from noisy experimental data will be discussed in

Section 2.5 after the introduction of some additional concepts.
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2.4.3 The parameter estimation problem

The estimation of the model parameters θ requires the fitting of experimental data. It is

assumed that a dataset Y is available and it consists of N samples of y. The dataset is

denoted as follows

Y = {y1, ...,yN} (2.6)

Let ϕi ∈ Φ with i = 1, ...,N denote the set of experimental conditions adopted for

the collection of the i-th sample in Y . It is assumed that the measured quantities involved

in a sample y are affected by Gaussian noise with known covariance Σy. A method that

demonstrated to provide good estimates in a broad range of situations is the Maximum

Likelihood (ML) estimator (Bard, 1974). As observed by Akaike (1998), the ML estimator

aims at identifying the value of the parameters, namely the maximum likelihood estimate

θ̂= [θ̂1, ..., θ̂Nθ
]T , which minimises the Kullback-Leibler divergence (Kullback and Leibler,

1951) between the nominal and the postulated distribution of the data. In different words,

the ML estimate is the value of parameters that minimises the discrepancy between the

distribution predicted by the model and the actual distribution of the data (White, 1982). The

computation of the maximum likelihood estimate is performed through the maximisation of

the likelihood function or, indifferently, its natural logarithm, which will be denoted with

the symbol L . The optimisation of the log-likelihood function L frequently reduces the

numerical complexity of the problem (Bard, 1974).

L (Y |θ) =− N
2
[Ny ln(2π)+ ln(det(Σy))]

− 1
2

N

∑
i=1

[yi− ŷi(θ)]
T

Σ
−1
y [yi− ŷi(θ)]

(2.7)

θ̂= argmax
θ∈Θ

L (Y |θ) (2.8)

In (2.7), ŷi represents the model prediction for the i-th sample yi. The ML estimate

satisfies the unconstrained maximum likelihood equations

∇L (Y |θ̂) = 0 (2.9)

where the symbol ∇ denotes the gradient operator in the parameter space. The ML estimator
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is consistent, i.e. if the model (2.1) is identifiable and correctly specified, the maximum

likelihood estimate θ̂ exhibits a convergent behaviour as the number of fitted samples tends

to infinity (Bard, 1974).

Many other popular estimators such as the Least Squares or the Weighted Least

Squares estimators represent special cases of the ML estimator under the assumption of

normally distributed measurement noise. Alternative estimators based on Bayesian infer-

ence were also proposed in the literature, e.g. the Maximum A Posteriori (MAP) estimator

θ̂MAP (Bassett and Deride, 2019). The MAP estimator may be interpreted as a ML estimator

which also accounts for prior knowledge on the possible values of the model parameters.

Such prior knowledge is provided as an input to the problem in the form of a prior distribu-

tion p(θ) defined on the parameter domain Θ (Sorenson, 1980).

θ̂MAP = argmax
θ∈Θ

L (Y |θ)+ ln(p(θ)) (2.10)

2.4.4 Statistical tools for model validation

Once the model parameters have been optimally tuned to the experimental data, model

adequacy is checked by performing statistical tests. Tests may be performed for different

purposes: 1) diagnosing the presence of modelling errors through the detection of over-

fitting or under-fitting; 2) assessing whether parameter estimates have been estimated with

sufficient precision; 3) selecting the best model available from the set of possible candidate

models. This section is dedicated to a description of statistical methods for performing the

aforementioned tasks.

2.4.4.1 Goodness of fit test

A model may be evaluated on its ability of producing predictions that are close to the cor-

responding experimental data. However, while assessing the quality of a model fitting, one

shall take into account that measurements are inherently affected by measurement noise.

The assessment of the model fitting involves a comparison between the distribution of the

model residuals with the hypothetical distribution of the measurement errors. This may be

performed through a χ2 test (Silvey, 1975). The test aims at quantifying the probability of

observing a certain distribution of residuals under the null hypothesis, i.e. under the hypoth-

esis that the proposed model is correctly specified (Devore, 2010). The test starts from the

hypothesis that the model residuals for θ = θ̂ asymptotically follow the same distribution

of the measurement noise, namely a multivariate Gaussian distribution with mean 0 and
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covariance Σy.

yi− ŷi(θ̂)∼N (0,Σy) ∀ i = 1, ...,N (2.11)

From the assumption (2.11) it is derived that the sum of the squared normalised residuals

χ2
Y is a random variable that is distributed as a χ2 statistic where the appropriate degree of

freedom in the presence of finite datasets is N ·Ny−Nθ .

χ
2
Y =

N

∑
i=1

[yi− ŷi(θ̂)]
T

Σ
−1
y [yi− ŷi(θ̂)]∼ χ

2
N·Ny−Nθ

(2.12)

A two-tailed goodness-of-fit test based on χ2 test may be employed to detect whether

model residuals are too small or too large to be explained only with measurement noise.

The two-tailed χ2 test with significance α may have three possible outcomes which are

summarised in the following

Goodness-of-fit test :


χ2

Y < χ2
(1−α

2

)
Failed for over-fitting

χ2
(1−α

2

)
< χ2

Y < χ2
(1+α

2

)
Passed

χ2
(1+α

2

)
> χ2

Y Failed for under-fitting

(2.13)

where χ2(·) represents the percentile of a χ2 distribution with degree of freedom N ·Ny−Nθ

and the argument in brackets represents the level of significance. When the test is failed

for over-fitting, the probability of observing residuals equal or smaller than χ2
Y is low and

typically indicates that the model involves an excessive number of free parameters, i.e. an

excessive number of degrees of freedom to capture the trend underlying the available noisy

data. When the test is failed for under-fitting, the probability of observing residuals equal

or larger than χ2
Y is low and indicates that the model structure may be inappropriate to

model the system. In PSE, the presence of under-fitting is also referred to as the presence of

process-model mismatch (Lee et al., 1989; Fotopoulos et al., 1996; Meneghetti et al., 2014).

If the test is passed, the model structure may be considered as an appropriate description of

the system.

2.4.4.2 Statistical quality of parameter estimates

The characterisation of the parameter estimates requires the computation of a confidence

region in the parameter space. Under the assumption of Gaussian measurement noise, the
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covariance matrix Vθ of the parameter estimates is well approximated by the inverse of the

observed Fisher Information Matrix (FIM) H (Walter and Pronzato, 1997).

Vθ 'H−1 (2.14)

The quality of the above approximation improves as the variance of the measurement noise

decreases and the fitting of the model improves (Bard, 1974). The observed FIM H may

be computed as the negative Hessian of the log-likelihood function L evaluated at the

maximum likelihood estimate θ̂ (2.15).

H =−∇∇
T L (Y |θ̂) (2.15)

From the covariance Vθ , it is possible to derive the confidence intervals for the es-

timates θ̂ and the correlation coefficient ci j between any estimated parameter pair θ̂i and

θ̂ j (Bard, 1974). Let vθ ,i j be the i j-th element of the covariance matrix Vθ . The confi-

dence interval with significance α for the i-th parameter estimate θ̂i can be computed as

θ̂i± zα/2
√vθ ,ii where zα/2 represents a two-tailed value computed from a standard normal

distribution with significance α . The correlation coefficient between any parameter pair θ̂i

and θ̂ j can be computed according to

ci j =
vθ ,i j√vθ ,iivθ , j j

∀ i, j (2.16)

The statistical quality of the parameter estimates θ̂ can be checked through a one-

tailed t-test with opportune significance α (Walpole et al., 2011). The test involves the

computation of t-values for all parameters and their comparison with the t-value of reference

as follows
θ̂i

t
(1+α

2

)√vθ ,ii
≥ t(α) ∀ i = 1, ...,Nθ (2.17)

where t(·) represent the t-values obtained from a Student’s distribution with degree of free-

dom equal to N ·Ny−Nθ and significance given by the argument in brackets. If conditions

(2.17) are satisfied for all parameters this may be interpreted as an index of satisfactory

parameter precision.

The evaluated covariance matrix Vθ can be used to compute an approximated confi-

dence region for the parameter estimates in the form of a confidence ellipsoid. The 95%
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Figure 2.3: Parameter estimates for the parameter pair θ1− θ2 and associated 95% confidence el-
lipsoid.

confidence ellipsoid is computed as the set of parameters θ that satisfy the following con-

dition

[θ− θ̂]T V−1
θ
[θ− θ̂]≤ χ

2
Nθ
(95%) (2.18)

An example of how confidence ellipsoids may be represented graphically is given in

Figure 2.3, where the confidence region is projected on the θ1−θ2 plane in the parameter

space. Alternative approaches for constructing more accurate parameter inference regions

accounting for possibly complex geometries in the log-likelihood profile are also available

in the literature (Benabbas et al., 2005).

2.4.4.3 Model structure selection

Whenever multiple models are proposed to describe a given phenomenon, the scientist may

be interested in comparing their performance in representing the experimental observations.

A number of information-theoretic criteria have been proposed to select the best available

model assuming that the goal is the identification of an optimal compromise between fitting

quality and model complexity, which is quantified by the number of free parameters Nθ . The

Akaike Information Criterion (AIC) was proposed by Akaike (1974) as a relative measure

of the information loss associated with the selection of a certain model compared to another.

The AIC index associated with a given model structure is evaluated as follows

AIC = 2Nθ −2L (Y |θ̂) (2.19)
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The AIC index may be evaluated for all the available models and the model with the low-

est AIC index may be selected. Statistical tests based on the AIC are available to assess

whether there is sufficient evidence to state that a model is significantly better than another

(Sakamoto et al., 1986). The AIC may be interpreted as a relative measure of merit that

accounts both for the model fitting quality but penalises models with a high number of

parameters.

An alternative criterion based on Bayesian inference was derived by Schwarz (1978),

i.e. the Bayesian Information Criterion (BIC). The criterion proposed by Schwarz (1978)

was derived from the Bayesian Occam’s razor under a number of simplifying hypotheses

(Barber, 2011). The BIC index of a given model is evaluated as follows

BIC = Nθ ln(N ·Ny)−2L (Y |θ̂) (2.20)

The BIC index shall be evaluated for all the available models and the model with the smallest

BIC may be selected as the best available structure. Analogously to the AIC, statistical tests

can be performed to assess whether the BIC of a given model is significantly smaller than

the BIC of a competing model structure (Burnham and Anderson, 2002). As observed by

Burnham and Anderson (2004), the BIC tends to penalise more than the AIC the presence

of a higher number of parameters in the model. For such reason, it is often stated that the

BIC criterion is more conservative than the AIC (Burnham and Anderson, 2004).

2.4.5 Model-based design of experiments for model discrimination

The application of the statistical tools presented in Section 2.4.4 may not allow a clear-cut

selection of a single appropriate model. As an example, it may happen that two model

structures derived from two sets of irreconcilable modelling hypotheses cannot be both true

at the same time. Nonetheless, it may happen that neither model is falsified by the goodness-

of-fit test given the available experimental evidence. If multiple models are adequate in

representing the dataset Y the scientist shall proceed by performing additional experiments

with the aim of discriminating between the competing model structures (Hill, 1978).

Perhaps, the first who posed the problem of designing experiments for model discrimi-

nation was Cox (1961, 1962). However, his first scientific contributions were more focused

on the problem of model selection for a given dataset rather than on the design of experi-

ments for model selection. In a later work, Chambers and Cox (1967) extended the work of

Cox (1961) including an experimental design step, but the problem was addressed only in
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the context of distinguishing between a logistic and binary response models.

Hunter and Reiner (1965) were the first who considered the problem of designing

samples with the aim of discriminating between rival kinetic models. They proposed a

criterion for discriminating between two rival models that is based on the design of samples

at conditions where the divergence between model predictions is largest (Hunter and Reiner,

1965). The work of Hunter and Reiner (1965) was extended to the case where there are

three or more competing model structures by Roth (1966). The design criterion proposed by

Hunter and Reiner (1965) was introduced only on an intuitive basis and was later formalised

by Atkinson and Fedorov (1975a,b).

Box and Hill (1967) and Fedorov and Pázman (1968) observed that the criterion pro-

posed by Hunter and Reiner (1965) failed to consider the variance on the model responses.

They extended the work including the uncertainty on the model predictions in criteria for

MBDoE for model discrimination. In particular, Box and Hill (1967) proposed a Bayesian

approach were the design is performed by evaluating the posterior probabilities that the

available models are appropriate to model the phenomenon. In a later work, Hsiang and

Reilly (1971) improved the approach considering the possibility that model predictions and

measurement noise may not follow normal distributions.

A criterion based on frequentist statistic was proposed by Buzzi-Ferraris and Forzatti

(1983). The proposed approach does not require the computation of posterior probabilities

and incorporates criteria to assess whether the level of measurement noise is excessive for

model discrimination purposes. The approach was later refined and extended to the case of

multiresponse models (Buzzi-Ferraris et al., 1984, 1990). In a later work, Schwaab et al.

(2006) extended the work of Buzzi-Ferraris et al. (1984) including Bayes factors in the

objective function to quantify the probability that a given model is the most appropriate

representation of the system. Schwaab et al. (2008b) also proposed an improved version of

this criterion where the influence of the designed experiment on the posterior covariance of

the model predictions is considered in the design stage.

Once the discriminant experiment is performed, additional collected samples are in-

cluded in the dataset. The parameters of the competing models are re-estimated and model

adequacy is checked again with a goodness-of-fit test and/or with statistical tests based on

information criteria (see Section 2.4.4). The collection of samples shall continue until a

single model is found adequate for describing the physical phenomenon.
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2.4.6 Model-based design of experiments for parameter precision

Once a single model structure is selected as an adequate representation of the system, fur-

ther validation procedures may aim at reducing the uncertainty on the parameter estimates,

i.e. improving parameter precision. The precise estimation of the model parameters relies

on the fitting of measurements collected at conditions where model predictions are most

sensitive to a change in the parameter values (Box and Lucas, 1959). This sensitivity can

be interpreted as the information that measurable system states carry for the estimation

of non-measurable model parameters and it is quantified by the Fisher Information Matrix

(FIM) (Walter and Pronzato, 1997). A variety of Model-Based Design of Experiments (MB-

DoE) criteria have been proposed in the literature to design information-rich experiments

accounting for the limited amount of resources available for the experimentation (Espie and

Macchietto, 1989; Prasad and Vlachos, 2008; Dirion et al., 2008). These approaches are

based on the computation of the expected covariance matrix of the model parameters V̂θ as

a function of the experimental conditions of the samples to be designed. Let Nsp denote the

number of samples that the scientist is willing to design for improving parameter precision.

Furthermore, let ϕk with k = 1, ...,Nsp be the experimental conditions associated with the

samples to be designed. The predicted covariance matrix is evaluated as follows

V̂θ (ϕ1, ...,ϕNsp
) =

[
V−1

θ
+

Nsp

∑
k=1

Ĥk

]−1
(2.21)

where the first addend in the brackets quantifies the information that is available from previ-

ously fitted samples and the second addend quantifies the expected information associated

with the samples that are yet to be collected. The quantity Ĥk appearing in (2.21) represents

the expected FIM associated with the k-th sample under design and it is evaluated according

to the following expression

Ĥk = ∇ŷ(ϕk, θ̂)Σ
−1
y ∇ŷ(ϕk, θ̂)

T ∀ k = 1, ...,Nsp (2.22)

The MBDoE problem is then recast in terms of minimising the expected confidence

region of the parameters after the conduction of the experiment to be designed. In order to

summarise the multidimensional nature of V̂θ into a scalar quantity, different measures ψ

of V̂θ were proposed in the literature as objective functions to be minimised for an optimal

MBDoE. The most popular design criteria are (Pukelsheim, 2006):
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• A-optimal: the objective function is ψ =Tr(V̂θ ) and it is equivalent to minimising the

volume of the rectangular hyper-box that contains the expected confidence ellipsoid

of the parameter estimates;

• D-optimal: where the objective function chosen for minimisation is ψ =Det(V̂θ ) and

it corresponds to minimising the volume of the expected confidence ellipsoid in the

parameter space;

• E-optimal: this criterion aims at minimising the largest eigenvalue of V̂θ and it is

equivalent to minimising the longest axis of the expected confidence ellipsoid;

A geometric interpretation of these design criteria is given in Figure 2.4. The above list

of design metrics is by no means complete. For a more comprehensive review of design

criteria for parameter precision the reader is referred to the relevant literature (Pukelsheim,

2006; Franceschini and Macchietto, 2008b; Galvanin, 2010).

Once an appropriate scalar measure ψ is selected, optimal MBDoE problems are recast

as an optimisation problem in the following form

ϕ
∗
1, ...,ϕ

∗
Nsp

= arg min
ϕ1,...,ϕNsp

ψ(ϕ1, ...,ϕNsp
)

s.t. ϕk ∈Φ ∀k = 1, ...,Nsp

(2.23)

and are typically solved by using numerical optimisation routines. Once the above opti-

misation problem is solved, from the predicted covariance V̂θ (ϕ
∗
1, ...,ϕ

∗
Nsp

) it is possible to

derive an approximation for the predicted confidence intervals for the model parameters.

One shall observe that whenever the model is nonlinear in the parameters, the expected

information matrix Ĥ is a function of the parameter values. The expected FIM is therefore

evaluated at the best estimate available, namely the ML estimate θ̂. Nonetheless, parameter

estimates may be highly uncertain at the experimental design stage. MBDoE approaches

that are robust towards parameter uncertainty have been proposed in the literature (Asprey

and Macchietto, 2002; Körkel et al., 2004; Bruwer and MacGregor, 2006; Mesbah and

Streif, 2015).

2.5 Practical identifiability and model sloppiness
Even if a model structure satisfies the requirements for a-priori identifiability (see Section

2.4.2), it may still be impossible or extremely challenging to precisely estimate its param-

eters by fitting noisy experimental data (Transtrum et al., 2010). Let λ1, ...,λNθ
denote the
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Figure 2.4: Geometric interpretation of the experimental design criteria. Figure adapted from
Franceschini and Macchietto (2008b), Galvanin (2010) and Fedorov and Leonov (2013).

eigenvalues of the observed FIM H. The ratio between the maximum and the minimum

eigenvalue represents the condition number of the model identification problem κ

κ =
maxi λi

mini λi
(2.24)

It may happen that the smallest eigenvalue of H is below unity. When such circum-

stance occurs, the model is considered non-identifiable given the available dataset (White

et al., 2016). In fact, White et al. (2016) observed that changes in the parameter values

along the directions associated with eigenvalues smaller than unity tend to produce changes

in the model predictions that are irrelevant compared to the level of measurement noise in

the system. It may also happen that the eigenvalues of H span over a wide range of orders of

magnitude. Whenever these circumstances occur the condition number may be extremely

high and the model is called sloppy (Chiş et al., 2014). As shown in Figure 2.5, model

sloppiness manifests in confidence ellipsoids characterised by extremely high eccentricity

(Raue et al., 2009). It is recognised that kinetic models of chemical and biochemical phe-

nomena frequently exhibit a sloppy behaviour (White et al., 2016). Parameter estimation

and optimal MBDoE problems are normally recast as optimisation problems and solved nu-

merically. In the presence of a nearly singular information matrix and/or a high condition

number, numerical optimisation routines may fail in solving the aforementioned problems.

More information on the possible numerical failures associated with model sloppiness can

be found in Section 1.2.2.1.
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Figure 2.5: In the presence of model sloppiness, the eigenvalues of the FIM H and consequently
the eigenvalues of the parameter covariance Vθ span over a wide range of scale lengths.
This typically results in confidence ellipsoids characterised by high eccentricity and
a high chance of numerical failures when numerical model identification routines are
invoked.

Several approaches have been proposed in the literature to address the practical identi-

fiability problems associated with sloppy models and mitigate the risk of numerical failures

associated with practical identifiability issues (Dovi et al., 1994):

1. Experimental-design-based (ED) methods. These methods are based on the design of

optimal experiments for reshaping the covariance matrix of the parameter estimates

and improve the condition number. For more information on these approaches, the

reader is referred to the relevant literature on design criteria for relaxing model slop-

piness and reducing parameter correlation (Hosten, 1974; Pritchard and Bacon, 1978;

Versyck and Van Impe, 1997; Galvanin et al., 2007; Franceschini and Macchietto,

2008a,c,d; Maheshwari et al., 2013; Chiş et al., 2014; Wilson et al., 2015; Shahmo-

hammadi and McAuley, 2019).

2. Regularisation-based (RG) methods. Regularisation involves the introduction of a

bias in the parameter estimates with the aim of constraining their variance and, con-

comitantly, reducing the condition number associated to the parameter estimation

problem (Barz et al., 2016). Popular regularisation techniques are i) Tikhonov regu-

larisation (Johansen, 1997; Hansen, 2005; Bardow, 2008) ii) truncated singular value

decomposition (Hansen, 2005; López Cárdenas et al., 2015) and iii) parameter subset

selection (Barz et al., 2013; López Cárdenas et al., 2015).
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3. Reparametrisation-based (RP) methods. The aim of reparametrisation is transform-

ing the original parameter space Θ into a robust parameter space Ω where both param-

eter estimation and MBDoE can be performed more effectively on well-conditioned

objective functions (Agarwal and Brisk, 1985a,b). Although there is no theoretical

advantage in the use of a reparametrised model (Rimensberger and Rippin, 1986;

Dovi et al., 1994), the performance of model identification algorithms is sensitive to

the type of parametrisation used (Espie and Macchietto, 1988). The effectiveness of

RP-based methods has been recognised in many kinetic studies in the literature (Es-

pie and Macchietto, 1988; Asprey and Naka, 1999; Benabbas et al., 2005; Schwaab

and Pinto, 2007; Schwaab et al., 2008a; Buzzi-Ferraris and Manenti, 2009).

These methods present strengths and weaknesses. ED-based methods are systematic.

Optimal ED criteria to relax model sloppiness can be easily implemented into a computer

program. However, even optimally designed experiments may not be sufficient to bring the

condition number below critical levels. This weakness of ED-based methods is typically

associated with either a too narrow range of explorable experimental conditions and/or an

insufficient experimental budget to perform these optimal experiments. Furthermore, opti-

mally designed experiments to reduce the condition number may not carry optimal amounts

of information for the estimation of the model parameters. This limitation may be over-

come by designing experiments that represent a compromise between improving the pa-

rameter statistics and reducing the condition number (Franceschini and Macchietto, 2008c;

Maheshwari et al., 2013).

An advantage of RG-based and RP-based methods is that they do not require the ex-

ecution of experiments for improving the condition number and one can devote the entire

experimental budget on improving the statistics of the parameter estimates. In RG-based

approaches, the condition number is controlled through the introduction of prior informa-

tion on the model parameter values in the form of a prior parameter distribution. Systematic

approaches, e.g. approaches based on Bayesian inference (MacKay, 1992), are available

in the literature for supporting the selection of appropriate priors (Hansen, 2005). The in-

troduction of prior information in the parameter estimation problem generally results in the

computation of biased parameter estimates.

In contrast to RG-based approaches, RP-based methods do not involve the introduction

of any bias in the model identification problem. Ad hoc strategies to reparametrise sloppy
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models were suggested for very specific kinetic model structures, e.g. Arrhenius-type reac-

tion rates (Asprey and Naka, 1999; Schwaab and Pinto, 2007; Schwaab et al., 2008a; Buzzi-

Ferraris and Manenti, 2009). However, only few systematic approaches to the reparametri-

sation of sloppy models are available in the literature (Espie and Macchietto, 1988). An

additional feature of RP-based methods is that whenever a model is reparametrised, the

parametrisation is fixed until the end of the experimental campaign. However, sloppiness is

a consequence of the combination of both the model parametrisation and the dataset avail-

able to identify the model (Söderström and Stoica, 1989). There is no theoretical guarantee

that the reparametrised model will not become sloppy after the collection of new data (Wil-

son et al., 2015). The arising of sloppiness may be averted by adjusting the parametrisation

online in the course of the experimental activity, i.e. by reparametrising the model every

time new data are collected and included in the parameter estimation problem. Nonetheless,

online applications of RP-based methods seem to be missing in the scientific literature.

2.6 Robust regression and outlier detection

In kinetic modelling studies it frequently happens that some observations significantly de-

viate from the modelling assumptions (Huber, 1981). These observations represent outliers

and their presence in the dataset may be explained with three possible causes:

1. Significant system disturbances. External disturbances occurring in the course of the

experiments and/or in the course of the sampling process may lead to the collection

of data affected by a measurement noise that deviates from the postulated assumption

of Gaussian noise with zero mean and covariance Σy.

2. Systematic errors. The presence of offsets in the setup control system and/or an

inaccuracy in following the experimental protocol may lead to the collection of data

that deviate significantly from the nominal behaviour of the system.

3. Inappropriate modelling assumptions. The model structure used to fit the data may

be inappropriate to represent the behaviour of the system across the entire domain of

experimental conditions.

A fraction of outliers in the dataset between 1% and 10% shall always be expected

(Huber, 1981). When classic estimators are employed, the presence of outliers in the dataset

inevitably leads to biased parameter estimates (Rousseeuw and Leroy, 1987). The concept
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(a) (b)

Figure 2.6: Effect of a single outlier on the Least Squares Estimator. (a) The dataset does not contain
outliers and the estimated slope in the linear fit is unbiased. (b) There is a single outlier
in the dataset and the slope estimated through the linear fit is biased. If the value of the
outlier were increased to infinity also the estimated slope would increase beyond any
finite bound.

of asymptotic breakdown point is used to quantify the robustness of an estimator to outlier

contamination in the dataset. The breakdown point is defined as the minimum fraction

of outlier contamination in the dataset that can carry the parameter bias beyond any finite

bound (Hampel, 1985).

For standard ML estimators, the asymptotic breakdown point is 0%, meaning that the

presence of a single outlier in the dataset can result in an unbounded bias on the parameter

estimates. This is illustrated in Figure 2.6 for the Least Squares Estimator. Figure 2.6a

shows a linear fit in the absence of outliers, where the estimated slope associated with the

linear regression is unbiased. In Figure 2.6b, one of the points is replaced with an outlier

and the slope computed through linear regression is biased. If the value of the outlier were

brought up to infinity, the estimated slope would also be carried beyond any finite bound.

The acknowledgement of this weakness led to the development of different estimators ca-

pable of handling outlier contamination in the dataset and a whole sub-field of statistics,

namely the field of robust regression. Rousseeuw and Leroy (1987) attribute the first impor-

tant step in the field of robust regression to Edgeworth (1887). He observed that estimators

based on least squares minimisation are particularly sensitive to outliers because residuals

are squared in the objective function. He therefore proposed to minimise the sum of the

absolute values of the residuals. Such estimator is known as the L1 estimator. Nonetheless,

Rousseeuw and Leroy (1987) showed that the L1 estimator reduces the parameter bias but
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its breakdown point is still 0%.

Significant contributions in the field of robust regression are attributed to Huber (1981)

with the development of the so-called M-estimators. In this class of estimators, the objective

function is the sum of an appropriate function ρ of the residuals. Such function ρ may

be appropriately selected to exclude from the fitting data that are in disagreement with

the modelling assumption. In its seminal work on M-estimators, Huber (1973) considered

only single-response linear models and the problem of estimating location parameters in

multivariate Gaussian populations. A M-estimator θ̂M for multi-response linear models

was studied by Collins (1982) in the following form

θ̂M = argmin
θ∈Θ

N

∑
i=1

ρ
(
[yi− ŷi(θ)]

T
Σ
−1
y [yi− ŷi(θ)]

)
(2.25)

As observed by Rousseeuw and Leroy (1987), M-estimators still suffer from a break-

down point of 0% due to their sensitivity to outliers caused by offsets in the explanatory

variables. This led to an extension of the approach proposed by Huber that resulted in

the development of generalised M-estimators, also known as GM-estimators or bounded-

influence estimators (Mallows, 1975; Hill, 1977). The main idea behind GM-estimators

was to bound the effect of outliers in the explanatory variables by including weights in

the objective function. However, Maronna et al. (1979) demonstrated that even for GM-

estimators, the breakdown point cannot be above a certain threshold and decreases as the

number of parameters increases.

A different approach, namely the repeated median method was proposed by Siegel

(1982). The repeated median estimator can achieve a breakdown point of 50%, which is

the maximum fraction of outlier contamination that an estimator can theoretically handle

(Hampel, 1985). However, the approach proposed by Siegel (1982) involves a check on all

the possible subset of samples in the dataset and the method may rapidly become computa-

tionally intractable. From the idea of Siegel (1982), Rousseeuw (1984) developed the Least

Median of Square LMS estimator where the sum of squared residuals is replaced by the

median operator

θ̂LMS = argmin
θ∈Θ

mediani
(
[yi− ŷi(θ)]

T
Σ
−1
y [yi− ŷi(θ)]

)
(2.26)

The LMS estimator still possesses the property of the high 50% breakdown point and
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was also tested on nonlinear regression problems (Stromberg, 1993). Nonetheless, the LMS

estimator is characterised by poor efficiency compared to other estimators (Rousseeuw,

1984), i.e. it is characterised by a slow convergence rate. Furthermore, since it is not based

on the minimisation of the sum of squared residuals, standard inference procedures cannot

be directly applied.

To overcome these limitations, a robust weighted least squares estimator was devel-

oped by Rousseeuw and Leroy (1987) where binary weights are introduced in the objective

function to include or exclude measurements from the fitting. The estimation of the param-

eters requires the solution of a Mixed-Integer NonLinear Program (MINLP) and retains the

highest breakdown point theoretically achievable. The approach was also extended to multi-

response models (Hubert et al., 2008) with the idea of detecting outlying samples involving

multiple measurements. An interesting feature of the robust weighted least squares estima-

tor is that it can be employed to perform unsupervised model-based data mining (MBDM)

and effectively classify samples in terms of good or bad model predictive performance. Let

βi ∈ {+1,−1} ∀ i = 1, ...,N be binary weights. The robust weighted least squares approach

proposed by Rousseeuw et al. (2004) can be formulated as follows where the objective

function to maximise is a modified log-likelihood function LDM given in (2.28).

θ̂DM = argmax
θ∈Θ

LDM (2.27)

LDM =
N

∑
i=1

1+βi

2
· {Nyc2− [yi− ŷi(θ)]

T
Σ
−1
y [yi− ŷi(θ)]} (2.28)

s.t. βi(θ) =

+1 if [yi− ŷi(θ)]
T Σ
−1
y [yi− ŷi(θ)]≤ Nyc2

−1 if [yi− ŷi(θ)]
T Σ
−1
y [yi− ŷi(θ)]> Nyc2

∀ i (2.29)

The binary weights are introduced to control the inclusion (βi = +1) or exclusion

(βi =−1) of samples in the objective function LDM. The binary weights are subject to the

conditions in (2.29). In words, the conditions in (2.29) state that if the residuals associated

with the i-th sample (i.e. yi) are too large, then the sample yi is excluded from the objective

function and ignored for the fitting of the model parameters. The quantity c appearing in

(2.28) and (2.29) is a user-defined hyperparameter which quantifies the maximum threshold
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of acceptance for a model residual. The value of c shall be set ≥ 2.0 to reduce the chance

of excluding samples whose residuals are compatible with measurement noise (Rousseeuw

and Leroy, 1987).

The quantity θ̂DM represents a robust maximum likelihood estimate obtained from the

fitting of a possibly reduced dataset

Y ′ = {yi ∈ Y |βi(θ̂DM) = +1} ⊆ Y (2.30)

The covariance associated with the estimate θ̂DM can be obtained from the observed infor-

mation matrix constructed using the reduced dataset Y ′ as follows

Vθ = [−∇∇
T L (Y ′|θ̂DM)]−1 (2.31)

where L (Y ′|θ̂DM) is the log-likelihood function constructed on the reduced dataset Y ′ eval-

uated at θ= θ̂DM.

2.7 Model structure improvement
In likelihood-based inference, model parameters are estimated by maximising the likeli-

hood function (or equivalently the log-likelihood function) and the modelling hypotheses

are checked using a goodness-of-fit test (Silvey, 1975). The two-tailed goodness-of-fit test

illustrated in Section 2.4.4.1 can inform on the appropriateness of the model in represent-

ing the data. Nonetheless, whenever over-fitting or under-fitting is detected by a failed

goodness-of-fit test, no information is obtained on how the model structure can be improved.

In general, in parametric modelling, it is desirable that the number of free model pa-

rameters Nθ is kept as small as possible. The inclusion of unnecessary parameters in the

model (e.g. the inclusion of an additional reaction that is not actually taking place in the sys-

tem) typically causes an increase in the confidence range of the parameter estimates given

the same dataset. As a consequence, more experimental resources will be required to obtain

estimates with the desired level of statistical quality. Statistical tests were proposed in the

literature to assess whether it is possible to refine a model by reducing its number of free

parameters, i.e. by applying constraints on the parameters, without causing a significant

degradation of the model fitting quality. More specifically, the likelihood ratio (LR) test, the

Wald (W) test and the Lagrange multipliers (LM) test (Buse, 1982) are regularly applied for

structural equation modelling in many applied sciences including psychometrics and econo-
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metrics (Green et al., 1999; Engle, 1984; Chou and Bentler, 1990; Anselin, 1988). These

tests were proposed to evaluate the generic null hypothesis that parameters satisfy a certain

set of Ns < Nθ constraints

s(θ) = 0 (2.32)

where s is a Ns× 1 array of functions of the model parameters. As an example, one may

use the aforementioned tests to challenge the hypothesis that some parameters are equal to

zero. If there is not sufficient evidence from the data for disproving this hypothesis, the

considered parameters should be fixed to zero and treated as constants.

The tests are asymptotically equivalent and assume the same null hypothesis, but they

differ significantly in the construction of their test statistics (Chandra and Joshi, 1983). In

the following, the symbol θ̂ is used to denote the ML estimate obtained by maximising the

unconstrained log-likelihood function as in (2.8). Let θ̂s be the ML estimate obtained by

maximising the log-likelihood function under the constraints (2.32). The ML estimate θ̂s

satisfies the constrained ML equations

∇L (Y |θ̂s)+∇s(θ̂s)α̂= 0

s(θ̂s) = 0
(2.33)

where α̂ denotes a Ns×1 array of Lagrange multipliers.

The Wald statistic ξW is defined as

ξW = s(θ̂)T [
∇s(θ̂)T Vθ ∇s(θ̂)

]−1s(θ̂) (2.34)

and it is a measure of the distance between the unconstrained and the constrained maximum

likelihood estimates in the parameter space (Wald, 1943).

The Lagrange multipliers statistic is computed as

ξLM = α̂T
∇s(θ̂s)

T H(θ̂s)
−1

∇s(θ̂s)α̂ (2.35)

and it is a function of the log-likelihood gradient at the constrained estimate (Silvey, 1959;

Bera and Bilias, 2001; Rao, 1948).

The statistic used in the likelihood ratio test is

ξLR = 2
[
L (Y |θ̂)−L (Y |θ̂s)

]
= χ

2
Y (θ̂)−χ

2
Y (θ̂s) (2.36)
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Figure 2.7: A graphical interpretation of the Likelihood Ratio (LR), Wald and Lagrange Multiplier
(LM) statistics for hypothesis testing in model identification frameworks based on max-
imum likelihood inference. If the statistics are small, the presence of the constraint is
not disproved and the constrained model should be selected because it involves a smaller
number of parameters.

and quantifies the distance between the constrained and the unconstrained estimates in terms

of log-likelihood values (Wilks, 1938). A graphical interpretation of the statistics for the

different tests is given in Figure 2.7.

All the above statistics are asymptotically distributed as a χ2 distribution with degree

of freedom Ns under the null hypothesis being true (Engle, 1984). However, depending on

the specific case, one statistic may be significantly more convenient to compute than the

others (Engle, 1984). In fact, while the likelihood ratio test requires both the constrained

and the unconstrained estimates to be computed, the Wald test and Lagrange multipliers test

require respectively only the unconstrained and the constrained estimates.

Whenever a proposed kinetic model is falsified for over-fitting, one may regard its pa-

rameter estimates as an unconstrained estimate. A Wald test may then inform on which

parameters can be constrained to zero and removed from the model structure. When under-

fitting is detected, a change in the model structure may be required. An approach for im-

proving an under-fitting model consists of regarding the proposed model as a constrained

instance of one or multiple alternative superstructures (Breusch and Pagan, 1980; Engle,

1982). A Lagrange multipliers test may then be performed to challenge the constrained
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model against the available alternatives without the necessity or re-estimating the model

parameters for each superstructure. A limitation of this approach is that the definition of

appropriate superstructures still relies entirely on the intuition of the modeller.

2.8 Summary of literature review

A survey of the scientific literature on the field of parametric modelling for describing chem-

ical kinetics was presented in this Chapter. In Section 2.2, kinetic models were classified

as knowledge-driven, data-driven and hybrid, highlighting the fact that systematic tech-

niques for the identification of hybrid models were not pursued as systematically as for the

previous two categories. As a consequence, whenever the knowledge available on the sys-

tem behaviour is not sufficient to build a knowledge-driven model, an entirely data-driven

approach is typically adopted and any valuable information on the system mechanisms is

completely neglected.

Techniques from the literature on statistical inference were presented in Section 2.4

for bridging modelling and experimentation in kinetic modelling studies. It was shown that

the problem of inferring the values of kinetic model parameters from input-output exper-

iments requires that the model structure satisfies requirements for a-priori identifiability

(see Section 2.4.2). Nonetheless, it was also highlighted that a-priori identifiability is only

a necessary, but not sufficient, condition for model-based inference and that it may still be

impossible or extremely challenging to estimate model parameters from noisy experimental

data. In Section 2.5, a survey of the techniques available for addressing practical identi-

fiability problems is presented. Techniques were classified as experimental-design-based

(ED), regularisation-based (RG) and reparametrisation-based (RP). It was shown that, in

contrast to ED-based and RG-based methods, RP-based methods do not require the exe-

cution of experiments nor the introduction of bias in the parameter estimation problem to

address practical identifiability issues. Nonetheless, it was also observed that general RP-

based approaches have received little attention from the scientific community and RP-based

methods have never been considered in the context of online kinetic modelling studies.

In Section 2.4, it was also shown that standard techniques for parameter estimation and

model-based experimental design account for the measurement noise present in the system,

but do not account for the possible systematic deviations between observations and model

predictions. Data deviating from the assumptions are called outliers and their presence in

the dataset may be associated with a number of causes: from experimental disturbances to
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systematic errors and inappropriate modelling assumptions. A review of robust regression

methods for parameter estimation in the presence of outlier contamination in the dataset was

given in Section 2.6. It is observed that robust regression methodologies are seldom em-

ployed in kinetic modelling practice. Furthermore, the development of criteria for optimal

experimental design that are robust towards systematic errors and/or model misspecification

were not pursued as systematically as robust regression methods.

Statistical tools for refining model structures in likelihood-based modelling frame-

works were discussed in Section 2.7. It is shown that a number of statistical tests, i.e.

the likelihood-ratio test, the Wald test and the Lagrange multipliers test, are available in the

literature to support the scientist in the identification of appropriate parameter constraints to

reduce the number of free parameters in a model without causing a significant degradation

of the model fitting quality. These tests can be directly applied to remove irrelevant param-

eters whenever a candidate model is over-fitting. Nonetheless, few systematic approaches

have been proposed in the literature to support the scientist in the improvement of under-

fitting models, which is a task that still relies almost entirely on the intuition of experienced

researchers.

The work presented in the following research Chapters aims at bridging the aforemen-

tioned gaps in the literature. An online-RP approach is proposed in Chapter 3 to systemati-

cally reparametrise the model equations in the course of online kinetic modelling studies. A

framework for the estimation of parameters in approximated kinetic models is introduced in

Section 4, where a criterion for optimal MBDoE in the presence of model misspecification

is also proposed. A statistical test based on maximum likelihood inference is formulated in

Chapter 5 for diagnosing model misspecification in under-fitting models, i.e. in the pres-

ence of significant process-model mismatch. In Chapter 6, further tests are formulated to

support the scientist in the improvement of under-fitting model structures. The content of

the following Chapters is also summarised in the Thesis roadmap in Figure 1.3.
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Chapter 3

Online model reparametrisation for robust

parameter estimation

Part of this Chapter is adapted from the following articles:

Quaglio M., Waldron C., Pankajakshan A., Cao E., Gavriilidis, A., Fraga E. S., Gal-

vanin F., On the use of online reparametrization in automated platforms for kinetic model

identification, Chemie Ingenieur Technik 91(3), 2019, pp. 268-276

Quaglio M., Waldron C., Pankajakshan A., Cao E., Gavriilidis A., Fraga E. S., Gal-

vanin F., An online reparametrisation approach for robust parameter estimation in auto-

mated model identification platforms, Computers & Chemical Engineering 124, 2019, pp.

270-284

The author of this Thesis contributed to the above articles by developing the main

novel ideas, implementing the simulations, and writing a significant part of the text. Hence,

the author retains the right to include the articles in this Thesis since it is not published

commercially and the journals are referenced as the original source.

3.1 Introduction

The structure of kinetic models is frequently affected by problems of practical identifia-

bility. In different words, the fitting quality may be insensitive to a change in the param-

eter values and/or parameters may be extremely correlated. Whenever the model exhibits

this type of behaviour it is called sloppy (see Section 2.5) (White et al., 2016). Standard

model identification algorithms are prone to numerical failures in the presence of a sloppy

parametrisation (see Section 1.2.2.1). Numerical failures may result in the invalidation of

the model identification process and a significant waste of experimental resources, espe-

75



cially if the identification of the model is performed online on an autonomous setup without

scientist supervision. An approach for the identification of sloppy models in online model

identification platforms is presented in this Chapter. The central step in the framework is

an automated approach to online model reparametrisation. The goal of online reparametri-

sation is to control model sloppiness by optimally transforming the parameter space every

time new samples become available to the online model identification algorithm. Parame-

ter estimation and MBDoE problems are solved in a transformed, robust parameter space

where the risk of numerical failures is low. The approach is demonstrated both in-silico and

in a closed-loop system on the identification of a kinetic model of catalytic esterification of

benzoic acid with ethanol in an automated flow microreactor system.

3.2 Proposed methodology

It is assumed that an experimental platform for kinetic model identification is available to

study the dynamics of a chemical process of interest. A set of Ny physical quantities can be

sampled in the experiments. The sample is denoted with the Ny×1 vector y. Measurements

of y are affected by Gaussian noise with zero mean and covariance Σy. A preliminary dataset

Y is available and it consists of N samples of y, i.e., Y = {y1, ...,yN}. The scientist proposes

a model structure in the general form (2.1) to describe the dynamics of the system

f(ẋ,x,u, t,θ) = 0

ŷ = h(x,u, t,θ)
(2.1)

An online approach to model reparametrisation is now introduced with the aim of effectively

estimating the parameter set θ∈Θ. The original set of model equations is initially extended

including a linear system of equations to transform the parameter space.

θ= Gω (3.1)

In (3.1),ω ∈Ω represents the Nθ ×1 array of model parameters in the transformed param-

eter space Ω, G is a Nθ ×Nθ matrix which transforms the parameter space Ω to the original

model parameter space Θ. A diagram showing the proposed procedure is given in Figure

3.1. The parameter transformation G is initially set equal to Iθ , where Iθ is the Nθ ×Nθ

identity matrix, i.e., the parameter spaces Θ and Ω are initially coincident. The model iden-

tification algorithm is then called providing the available dataset as input. The fundamental
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Figure 3.1: Proposed framework for the online identification of sloppy models. Fundamental step in
the procedure is the update of the parametrisation matrix G after the collection and fit-
ting of each sample. The online modification of the model parametrisation is performed
to maintain a high computational performance at the parameter estimation and optimal
MBDoE stages in the procedure.

steps in the algorithm are:

1. A primary parameter estimation step. At this stage, the set of transformed parameters

ω is estimated fitting the available dataset using a maximum likelihood approach

(Bard, 1974). The Hessian of the likelihood function is then computed to characterise

the geometry of the parameter space and quantify its sloppiness.

2. A parametrisation update step. The Hessian matrix computed at the primary param-

eter estimation step is employed to compute an update for the transformation matrix

77



G with the aim of minimising the condition number (i.e., eliminating the sloppiness)

given the available dataset.

3. A secondary parameter estimation step. The model parameters ω ∈ Ω are esti-

mated after the parametrisation update step and their statistical quality is quantified

by computing their covariance matrix Vω . Parameter estimates and related covariance

computed in the transformed parameter space Ω are then transformed to the original

parameter space Θ and returned as output.

4. An optimal MBDoE for parameter precision step. If parameter statistics in Θ are

unsatisfactory and the experimental budget allows for additional samples to be col-

lected, the experimental activity shall proceed. Optimal experimental conditions for

the collection of additional samples are identified at this stage through MBDoE tech-

niques for parameter precision (Franceschini and Macchietto, 2008b). The optimal

MBDoE problem is solved in the transformed parameter space Ω.

The illustrated steps constitute an iteration in the presented online framework. These

are further detailed in the following subsections. The computational burden associated with

the application of the proposed methodology is comparable with standard parameter esti-

mation algorithms based on parameter fitting. The procedure shows how it is possible to

achieve an effective estimation of parameters in a (potentially) sloppy parameter space Θ

by invoking the parameter estimation and the MBDoE algorithms in a conveniently trans-

formed, non-sloppy, parameter space Ω. Operations of optimisation and matrix inversion

are performed in the robust parameter space Ω where the risk of numerical failures is low.

The values of the estimates and the related covariance obtained in Ω are then transformed

to the original parameter space Θ by applying linear transformations.

3.2.1 Primary parameter estimation

The available dataset Y is provided to the model identification algorithm (see Figure 3.1).

The transformation matrix G is set equal to the primary transformation matrix GP. At the

beginning of the model identification procedure GP is initialised as the identity matrix Iθ .

A primary estimation of the model parameters ω̂P is performed as in (3.3) maximising the
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log-likelihood function (3.2).

L (Y |ω)|G=GP =−
N
2
[Ny ln(2π)+ ln(det(Σy))]

− 1
2

N

∑
i=1

[yi− ŷi(ω)]T Σ
−1
y [yi− ŷi(ω)]|G=GP

(3.2)

ω̂P = arg max
ω∈Ω

L (Y |ω)|G=GP (3.3)

In (3.2), the quantity ŷi represents the model prediction for the sample yi. The nega-

tive Hessian H of the log-likelihood function is then computed to evaluate the geometrical

properties of the log-likelihood profile in proximity of the maximum likelihood estimate as

H(ω̂P)|G=GP =−∇∇
T L (Y |ω̂P)|G=GP (3.4)

In (3.4), the symbol ∇ defines the gradient operator in the parameter space Ω. Matrix

H is also known as the observed Fisher information matrix and its inverse quantifies the

covariance matrix of the parameter estimates (Pukelsheim, 2006).

3.2.2 Parametrisation update

An eigendecomposition of the matrix (3.4) is performed at this stage with the aim of diag-

nosing the structure of the log-likelihood function in proximity of the maximum likelihood

estimate and compute an opportune update to the transformation matrix G. Let Λ be the

diagonal matrix whose diagonal elements are the eigenvalues λ1, ...,λNθ
of the observed

Fisher information matrix (3.4). The eigenvalues of the observed Fisher information matrix

represent the inverse eigenvalues of the parameter covariance matrix and the ratio between

the maximum and the minimum eigenvalue is the condition number κ .

κ =
maxi λi

mini λi
(2.24)

Let matrix U be the matrix whose columns represent the right normalised eigenvec-

tors of the observed Fisher information matrix (3.4). Matrix Λ and matrix U quantify the

sloppiness of the model in a more readable format. In fact, the eigenvalues and eigen-

vectors of the negative Hessian (3.4) respectively quantify the extent of the sloppiness and

the directions in the parameter space which are associated to the sloppy behaviour of the

model (López Cárdenas et al., 2015). A family of secondary transformations GS can be
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constructed from GP, U and Λ as in (3.5) with the aim of minimising the condition number

of the problem (i.e., making κ = 1.0).

GS = d GPUΛ
− 1

2 R (3.5)

The family of transformations given in (3.5) is parametrised by the scalar d > 0 and

by the matrix R, which represent respectively a scaling factor and a rotation matrix in the

parameter space. The condition number κ is not influenced by the choice of d and R. How-

ever, the omission of d and R from (3.5) (the omission is equivalent to setting d = 1.0 and

R = Iθ ) may result in a transformation to a new parameter space in which there is signifi-

cant discrepancy in the orders of magnitude of the model parameters. Model identification

algorithms are influenced by the relative scale of parameters, e.g. in the computation of the

gradients and, consequently, in the computation of the covariance of parameter estimates

(Saltelli et al., 2000). Working with parameters sharing the same order of magnitude is

therefore desirable to avoid discrepancies on how the model identification algorithm han-

dles different directions of the parameter space. In this work, the scaling factor d and the

matrix R are computed to scale the parameter values to the same order of magnitude.

The secondary transformation matrix GS, computed as in (3.5), is then used to update

the primary transformation matrix GP that will be used at the following iteration in the

procedure of Figure 3.1.

3.2.3 Secondary parameter estimation

The aim at the secondary parameter estimation stage is to obtain a more accurate estimate

for the parameters in the transformed space Ω. This is done by repeating the estimation of

the parameters ω after the parametrisation update stage, i.e., after the transformation of

the (possibly) sloppy parameter space in a more robust, non sloppy parameter space. The

log-likelihood function of the model is optimised as in (3.6) with G = GS obtaining the

secondary parameter estimate ω̂S.

ω̂S = arg max
ω∈Ω

L (Y |ω)|G=GS (3.6)

In principle, the primary and the secondary parameter estimates satisfy the equality

GPω̂P = GSω̂S. However, numerical algorithms for parameter estimation are sensitive

to the model parametrisation (Rimensberger and Rippin, 1986; Dovi et al., 1994). More
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specifically, the convergence rate of numerical optimisation routines to the maximum like-

lihood estimate is sensitive to the choice of the transformation matrix G and the aforemen-

tioned equality may not be satisfied in practice (Higham, 1996). The covariance Vω is

then computed for the secondary parameter estimates as the inverse of the observed Fisher

information matrix (Bard, 1974).

Vω =
[
H(ω̂S)|G=GS

]−1 (3.7)

The parameter estimates θ̂ and their associated covariance matrix Vθ in the original

parameter space Θ are then computed by applying the secondary transformation to the esti-

mates ω̂S and covariance Vω computed in the transformed space Ω.

θ̂= GSω̂S (3.8)

Vθ = GSVωGT
S (3.9)

In standard parameter estimation algorithms, the computation of the covariance Vθ

requires the inversion of the information matrix in the original parameter space Θ (Bard,

1974). However, in the presence of a sloppy parametrisation, the information matrix

in Θ may be ill-conditioned. Notice that, in the proposed framework, the inversion of

ill-conditioned matrices is avoided. In fact, matrix inversion is performed in a conve-

niently transformed parameter space Ω, as in (3.7), where the information matrix is well-

conditioned. The covariance in the original parameter space Vθ is then computed as in (3.9)

by applying algebraic transformations, which are numerically more robust operations than

matrix inversions (Higham, 1996).

3.2.4 Optimal MBDoE for parameter precision

If some parameter statistics are not satisfactory and the experimental budget allows for the

collection of additional data then the experimental activity will continue with the collection

of an additional sample from the experimental setup. The following sample will be collected

with the aim of minimising the size of the confidence region of the parameter estimates

θ̂ ∈Θ.

Optimal MBDoE problems for parameter precision may be ill-conditioned in the pres-

ence of a sloppy parametrisation (White et al., 2016). In fact, the solution of an optimal
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MBDoE problem requires the inversion of an ill-conditioned matrix if the parametrisation

is sloppy. In this work it is proposed to solve the MBDoE problem in the robust parameter

space Ω with the aim of minimising the size of the confidence region in the original parame-

ter space Θ. In general, the optimal experimental conditions depend on the type of criterion

adopted for the design (see Section 2.4.6 for more information on experimental design cri-

teria) and on the model parametrisation. In this study, the D-optimal criterion is employed

because it is invariant under linear transformations of the parameter space (Fedorov, 1972;

Rimensberger and Rippin, 1986). In fact, the following equality holds:

det(Vθ ) = det(GS)
2 det(Vω) (3.10)

It is sufficient to notice that matrix GS is not modified at the optimal MBDoE stage

of the procedure (see Figure 3.1), i.e., det(GS) represents a constant in the MBDoE prob-

lem. Therefore, minimising the determinant of the covariance det(Vω) in the transformed

parameter space Ω is equivalent to minimising the determinant of the covariance det(Vθ )

in the original parameter space Θ.

The optimal MBDoE problem in the robust space Ω requires the computation of a

prediction for the parameter covariance V̂ω (i.e., the posterior covariance matrix) after the

collection of the new sample.

V̂ω =
[
V−1

ω +∇ŷ(ω̂S)Σ
−1
y ∇ŷ(ω̂S)

T |G=GS

]−1 (3.11)

In (3.11), the second addend in the bracket represents the expected Fisher information

matrix of the sample to be designed, which is a function of the experimental design vector ϕ .

The inverse of the prior covariance matrix Vω is also included in (3.11) to quantify the pre-

liminary information that is available from previously fitted samples. The prior covariance

is updated at every iteration of the procedure in Figure 3.1, i.e., after the collection of each

sample, according to (3.7). The D-optimal experimental conditions ϕ∗ for the collection of

the following sample are computed solving the following optimisation problem

ϕ
∗ = argmin

ϕ∈Φ
det(V̂ω) (3.12)
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3.3 Case study

The proposed algorithm presented in Section 3.2 is integrated in an automated platform for

kinetic model identification and tested on a case study. The objective is the identification of

a kinetic model of benzoic acid esterification with ethanol in a microreactor system (Pipus

et al., 2000). The reaction is homogeneous and it is catalysed by sulphuric acid. A descrip-

tion of the automated model identification platform is given in Section 3.3.1. The modelling

assumptions are presented in Section 3.3.2. The proposed online RP methodology is tested

both in-silico (Section 3.4.1) and experimentally on the automated system (Section 3.4.2).

For both the simulated and the real cases two experimental campaigns are performed:

• a campaign where the parametrisation matrix is not modified (non-RP campaign);

• a campaign where the parametrisation matrix is updated online (RP campaign).

The two campaigns are performed to assess the influence of the online RP on the

model identification process. The methods adopted for the conduction of the experimental

campaigns are detailed in Section 3.3.3.

3.3.1 Automated model identification platform

A simplified diagram for the online model identification platform is given in Figure 3.2.

The esterification of benzoic acid with ethanol catalysed by sulphuric acid occurs in a flow

microreactor. The microreactor is a 2 m long PEEK tube with a diameter of 250 µm. It is

placed in a stirred oil bath whose temperature is controlled by a rope heater. The reactants

and the catalyst are injected through the flow reactor by three syringe pumps. Syringe

1 and syringe 2 are filled with two different mixtures of benzoic acid and ethanol. The

feed concentration of benzoic acid in the reactor is manipulated by modifying the relative

flowrates of syringe 1 and syringe 2. Syringe pump 3 is filled with a 160 g L−1 sulphuric

acid solution. The flowrate of syringe 3 is kept at 10% of the overall flowrate to maintain

a constant concentration of sulphuric acid at 16 g L−1 at the inlet of the flow reactor. The

mixture at the outlet of the reactor is analysed online by a Jasco HPLC using a 250 mm

long, 4.6 mm internal diameter ODS hypersil column with a particle size of 5 µm (Thermo

Fisher Scientific).

The experimental conditions which can be manipulated by the automated system are:

• the inlet concentration of benzoic acid CIN
BA in the range 0.9 - 1.55 mol L−1;
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• the flowrate F of the feed mixture to the reactor in the range 7.5 - 30.0 µL min−1;

• the temperature of the oil bath T in the range 343.0 - 413.0 K.

These constitute independent directions of the explorable space of experimental condi-

tions Φ = (CIN
BA,F,T ). The experimental setup is controlled through a LabVIEW interface

(Elliott et al., 2007) implemented in a 32-bit Windows machine with Intel® Core® i7-3770

3.40 GHz processor and 4.0 GB of RAM. A script written in Python 2.7 implementing the

model identification algorithm presented in Section 3.2 is integrated with LabVIEW for the

purposes of online parameter estimation and sample design. The main Python packages

employed in the script are NumPy 1.13 (Oliphant, 2015) for the manipulation of algebraic

objects and SciPy 1.1 (Jones et al., 2001) for integrating the kinetic model equations and

solving the optimisation problems associated with parameter estimation and MBDoE. Pa-

rameter estimation problems are solved using the Nelder-Mead method. MBDoE problems

are solved employing the SLSQP solver.

The parametrisation update stage of the algorithm (see Figure 3.1) was implemented

in the Python script as an option that can be activated or deactivated from LabVIEW. This

option was implemented to give more flexibility to the user in testing the model identifica-

tion algorithm both in the presence and in the absence of the online RP method.

Figure 3.2: Simplified diagram representing the online model identification platform.
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3.3.2 Modelling assumptions

The catalytic esterification of benzoic acid and ethanol is modelled as a single reaction

system where benzoic acid (BA) and ethanol (Et) react to produce ethyl benzoate (EB) and

water (W) (Pipus et al., 2000).

Benzoic Acid+Ethanol � Ethyl Benzoate+Water (3.13)

Available studies in the literature report that the reaction is reversible. However, if a

large excess of ethanol in the reactor is maintained (as in this work), the reverse reaction

can be neglected (Pipus et al., 2000). The tubular reactor is modelled as an ideal plug flow

reactor operated at isothermal conditions, i.e., thermal and mass transfer resistances are

neglected. The validity of plug flow behaviour was checked by evaluating the vessel disper-

sion number (Levenspiel, 1998; Rossi et al., 2017). A maximum vessel dispersion number

of 6.8 · 10−4 was computed for the flowrate range considered in the study. The computed

value is significantly smaller than 1.28 · 10−2, i.e., the maximum vessel dispersion num-

ber recommended in the literature for the validity of the plug flow assumption (Levenspiel,

1998).

The reaction rate is assumed as first order with respect to benzoic acid. Following

from the aforementioned assumptions, the steady-state kinetic behaviour of the system is

modelled through the following set of ordinary differential equations (3.14):

v
dCi

dz
= νikCBA(z) ∀ i = BA,Et,EB,W (3.14)

In (3.14), Ci is the concentration of the i-th component in the mixture expressed in

mol L−1; z represents the axial spatial coordinate of the tubular reactor expressed in m; v is

the axial velocity of the liquid bulk expressed in m s−1; νi is the stoichiometric coefficient

of the i-th component in the mixture; k is the rate constant expressed in s−1.

An Arrhenius-type kinetic constant involving a set of two kinetic parameters θ =

[θ1,θ2] is assumed with the following mathematical structure:

k = eθ1−
104θ2

RT (3.15)

In (3.15), R is the ideal gas constant expressed in J mol−1 K−1. As one can see from

(3.15), the pre-exponential factor is included as exponent in the rate constant and the activa-

85



tion energy is multiplied by a scaling factor. The above structure for the kinetic rate constant

was selected because it is generally recognised as robust within the literature on kinetic pa-

rameter estimation (Asprey and Naka, 1999; Buzzi-Ferraris and Manenti, 2009). In other

words, parametrisation (3.15) generally leads to an improvement of the condition number

with respect to the original form of the Arrhenius constant, i.e. k = Ae−Ea/RT , parametrised

by pre-exponential factor A and activation energy Ea.

3.3.3 Objective and methods

The objective of the study is the estimation of the kinetic parameters θ = [θ1,θ2] with

the smallest volume confidence region of θ̂ by conducting an experimental campaign with

an available budget of 9 samples. A sample is constituted by the single measurement of

ethyl benzoate concentration at the outlet of the reactor, i.e., y = [COUT
EB ] mol L−1. The

measurement error is modelled as Gaussian noise with covariance matrix Σy = [2.5 ·10−5],

i.e., a standard deviation of 0.0165 molL−1 is assumed to model the Gaussian measurement

noise for COUT
EB . The experimental conditions for the collection of samples 1, 2 and 3 are

fixed to the values reported in Table 3.1. The following samples, i.e., samples from 4 to 9,

are designed by the model identification algorithm by employing a D-optimal criterion, i.e.,

by solving an MBDoE problem in the form (3.12).

Two cases are proposed to test the model identification algorithm implemented in the

online model identification platform:

1. Simulated case: samples generated in-silico. Samples are generated simulating the

experiments with the kinetic model (3.14) setting the kinetic parameters equal to the

value θ∗ = [15.27,7.60] and adding Gaussian noise with covariance Σy.

2. Real case: samples collected from the experimental platform. In this case, samples

are collected from the experimental platform described in Section 3.3.1. An interval

of 65 min is allowed between the collection of samples to let the system reach steady-

state conditions.

For both the Simulated and the Real case, two experimental campaigns are performed:

1) a non-RP campaign in which the online reparametrisation is not activated; 2) a RP cam-

paign in which the online reparametrisation is activated. This is done to provide a compar-

ison of the performance of the model identification algorithm both in the presence and in

the absence of the online RP method. In the Simulated case, the effect of the online RP is
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assessed comparing statistically the parameter estimates θ̂ computed in the two campaigns

with the target parameter value θ∗ = [15.27,7.60]T . This is done by means of a χ2-test in

the parameter space Θ. This involves testing the null hypothesis that the following statistic

χ2
θ

is distributed as a χ2 distribution with degree of freedom Nθ = 2.

[θ̂−θ∗]T V−1
θ
[θ̂−θ∗] = χ

2
θ ∼ χ

2 (3.16)

A small p-value associated to the statistic χ2
θ

(e.g. smaller than 1.0%) is interpreted as

an index of failure of the model identification algorithm in estimating the target parameter

values. In the Real case, the target parameter value θ∗ is unknown. Furthermore, a dis-

crepancy in the parameter estimates between the RP and the non-RP campaigns is not only

caused by numerical reasons, but also by problems of experimental repeatability caused

by external disturbances (Alberton et al., 2009). The presence of disturbances can lead to

changes in the parameters of the population from which experimental data are sampled and

the concomitant inclusion of outliers in the dataset (Huber, 2004). It is recognised that, in

the presence of such uncertainty sources, a statistical analysis to validate the models identi-

fied in the two campaigns would not be significant and it is therefore omitted.

The confidence intervals and the correlation coefficient c12 associated with the esti-

mates (see Section 2.4.4.2) are recorded in the course of the experimental campaigns and

they are reported in Section 3.4. The condition number κ is also recorded in the course of

the experimental campaigns and it is reported to demonstrate the performance of the online

RP in improving and maintaining the well-posedness of the model identification problem.

Table 3.1: Experimental conditions ϕ adopted for the collection of samples 1 to 3 in the experimen-
tal campaigns: inlet concentration of benzoic acid CIN

BA; flowrate F ; temperature of the
oil bath T .

Sample CIN
BA F T

number [mol L−1] [µL min−1] [K]

1 1.50 20.0 413.0
2 1.00 10.0 393.0
3 1.25 15.0 403.0
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3.4 Results

3.4.1 Simulated case: samples generated in-silico

Two campaigns of experiments, i.e., a non-RP campaign and a RP campaign, were simu-

lated by integrating the kinetic model presented in Section 3.3.2 and adding Gaussian noise.

Experimental conditions investigated in the course of the campaigns and the associated sam-

pled concentrations of ethyl benzoate are given in Appendix A. The estimates for the kinetic

parameters θ1 and θ2 for the non-RP campaign are reported in Table 3.2 together with infor-

mation on their statistical quality. More specifically, the 95% confidence intervals and the

correlation coefficient c12 between the kinetic parameters θ1 and θ2 are reported. One can

see from Table 3.2 that the correlation coefficient c12 remains above 99.96% in the course of

Table 3.2: Simulated case: non-RP campaign. Parameter estimates are reported together with their
respective 95% confidence intervals and correlation coefficient in the course of the exper-
imental campaign. Parameter estimation and MBDoE problems are solved in the original
parameter space Θ. The condition number of the log-likelihood function in Θ is reported
in the table.

Simulated case - non-RP campaign

Samples Estimates θ̂= [θ̂1, θ̂2] Correlation p-value of target Condition
collected with 95% confidence intervals coefficient c12 parameters θ∗ number κ in Θ

1 [ - , - ] - - -
2 [ - , - ] - - -
3 [ 12.15 ± 2.14 , 6.56 ± 1.35 ] 0.9998 0.00% 1.4·104

4 [ 14.83 ± 1.22 , 7.47 ± 0.81 ] 0.9996 0.00% 6.1·103

5 [ 15.99 ± 1.01 , 7.85 ± 0.70 ] 0.9998 0.00% 1.0·104

6 [ 15.06 ± 0.79 , 7.53 ± 0.53 ] 0.9997 0.00% 7.2·103

7 [ 14.90 ± 0.74 , 7.47 ± 0.50 ] 0.9997 0.00% 9.2·103

8 [ 14.84 ± 0.66 , 7.45 ± 0.44 ] 0.9997 0.00% 8.2·103

9 [ 14.94 ± 0.63 , 7.49 ± 0.42 ] 0.9998 0.00% 9.6·103

Table 3.3: Simulated case: RP campaign. Parameter estimates in the course of the experimental
campaign are reported together with their respective 95% confidence intervals and cor-
relation coefficient. Parameter estimation and MBDoE problems are solved in the trans-
formed parameter space Ω. The condition number of the log-likelihood function in Ω is
reported in the table.

Simulated case - RP campaign

Samples Estimates θ̂= [θ̂1, θ̂2] Correlation p-value of target Condition
collected with 95% confidence intervals coefficient c12 parameters θ∗ number κ in Ω

1 [ - , - ] - - -
2 [ - , - ] - - -
3 [ 16.44 ± 64.52 , 8.01 ± 25.05 ] 0.9999 0.00% 5.5·108

4 [ 16.61 ± 3.55 , 8.06 ± 1.21 ] 0.9999 68.26% 3.8·102

5 [ 15.60 ± 2.01 , 7.72 ± 0.68 ] 0.9998 86.41% 1.2·100

6 [ 15.72 ± 1.62 , 7.76 ± 0.55 ] 0.9997 70.47% 1.0·100

7 [ 15.72 ± 1.50 , 7.76 ± 0.51 ] 0.9998 69.84% 1.0·100

8 [ 15.59 ± 1.44 , 7.71 ± 0.49 ] 0.9998 56.62% 1.0·100

9 [ 15.39 ± 1.24 , 7.64 ± 0.42 ] 0.9998 64.74% 1.0·100
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Figure 3.3: Simulated case: parameter estimates throughout the non-RP campaign (dotted) and the
RP campaign (solid). The target parameter values are indicated by dashed lines.

the campaign. The parameter estimation and the MBDoE problems are solved in the orig-

inal parameter space Θ where the condition number of the log-likelihood function remains

above 6.1 ·103 throughout the whole experimental campaign. The χ2-test was conducted to

compare statistically the computed parameter distribution with the target parameter value

θ∗ (see Section 3.3.3 for information on how the test statistic is computed). As one can see

from Table 3.2, a p-value of 0.00% in the course of the non-RP campaign suggests that the

parameter estimates computed by the algorithm are statistically inconsistent with the target

parameter values.

Parameter estimates and related information on their statistical quality are given in Ta-

ble 3.3 for the RP campaign. In the course of the RP campaign, the correlation coefficient

c12 remains above 99.97%. In the RP campaign, the parameter estimation problem and the

MBDoE problem are solved in the transformed parameter space Ω, where the transforma-

tion matrix G is refined after the collection of each sample. The condition number of the

log-likelihood function in Ω starts from a value of 5.5 ·108 at the first iteration of the model

identification algorithm (i.e., after the collection of 3 samples) and it is reduced to 1.0 at

the fourth iteration (i.e., after the collection of 6 samples). The benefit derived from the

application of the online RP is validated by the χ2-test. The p-value of the target value θ∗

given the computed covariance at the end of the model identification campaign is 64.74%.

This confirms that the algorithm computed estimates that are statistically consistent with

the target parameter value θ∗.

The parameter estimates and related 95% confidence intervals obtained in the non-
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Figure 3.4: Simulated case: 95% confidence intervals associated with the parameter estimates
throughout the non-RP campaign (dotted) and the RP campaign (solid).

Figure 3.5: Simulated case: parameter estimates and related 95% confidence ellipsoids at the end
of the non-RP campaign (dotted) and at the end of the RP campaign (solid). The target
parameter value is highlighted in the graph by a star-shaped symbol.

RP campaign and in the RP campaign are compared graphically in Figure 3.3 and Figure

3.4. In Figure 3.3, one can see that both the methods present a similar convergence to the

target parameter values, highlighted with dashed lines in the plot. In Figure 3.4, one can

see that the 95% confidence intervals for the parameters are significantly different between

the non-RP and the RP campaign. In particular the confidence interval of parameter θ̂1 is

significantly larger in the RP case than in the non-RP case. The discrepancy is interpreted

as a consequence of an inaccurate computation of the log-likelihood gradient in the non-RP

case, which results in an underestimation in the variance of the estimate θ̂1.

The final estimates obtained in the non-RP and in the RP campaigns in the simulated
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case are compared graphically in Figure 3.5. In Figure 3.5 the final parameter estimates are

plotted with their respective 95% confidence ellipsoids for the non-RP campaign (dotted)

and for the RP campaign (solid). The target parameter value is highlighted in Figure 3.5

by a star-shaped symbol. As one can see from Figure 3.5 the target value lies within the

solid ellipsoid of the RP campaign, while it lies outside the dotted ellipsoid of the non-RP

campaign. The graph shows that the non-RP campaign leads to the misleading conclusion

that the target parameter values are not the parameters values of the physical system. The

RP campaign led to a more robust estimate of the kinetic parameter values.

For both the non-RP and the RP campaign, derived estimates of pre-exponential factor

and activation energy are available in Appendix A. Information on the goodness-of-fit after

the collection of each sample is also reported in Appendix A.

Additional campaigns were performed in-silico to demonstrate that the performance

of the model identification algorithm is insensitive to a change in the dataset, i.e., it is

insensitive to a change in the random seed used to generate the data in-silico. The results

obtained from 20 simulated campaigns are reported in Appendix B. Both in RP and non-RP

campaigns, each algorithm iteration required only few seconds of CPU time.

3.4.2 Real case: samples collected from the experimental platform

Two campaigns of experiments, i.e., a non-RP campaign and a RP campaign, were per-

formed on the automated system. Experimental conditions investigated in the course of the

campaign and the associated sampled concentrations are given in Appendix C. Parameter

Table 3.4: Real case: non-RP campaign. Parameter estimates in the course of the experimental
campaign with 95% confidence intervals and correlation coefficient. Parameter estima-
tion and MBDoE problems are solved in the original parameter space Θ. The condition
number of the log-likelihood function in Θ is reported in the table.

Real case - non-RP campaign

Samples Estimates θ̂= [θ̂1, θ̂2] Correlation Condition
collected with 95% confidence intervals coefficient c12 number κ in Θ

1 [ - , - ] - -
2 [ - , - ] - -
3 [ 16.16 ± 2.16 , 7.94 ± 1.49 ] 0.9998 1.5·104

4 [ 16.44 ± 1.29 , 8.03 ± 0.89 ] 0.9996 6.1·103

5 [ 17.15 ± 1.09 , 8.26 ± 0.77 ] 0.9998 1.1·104

6 [ 16.80 ± 0.85 , 8.14 ± 0.59 ] 0.9997 7.8·103

7 [ 17.23 ± 0.79 , 8.28 ± 0.56 ] 0.9998 1.1·104

8 [ 17.15 ± 0.68 , 8.26 ± 0.48 ] 0.9997 8.4·103

9 [ 17.42 ± 0.66 , 8.34 ± 0.47 ] 0.9998 1.0·104

91



Table 3.5: Real case: RP campaign. Parameter estimates in the course of the experimental cam-
paign with 95% confidence intervals and correlation coefficient. Parameter estimation
and MBDoE problems are solved in the transformed parameter space Ω. The condition
number of the log-likelihood function in Ω is reported in the table.

Real case - RP campaign

Samples Estimates θ̂= [θ̂1, θ̂2] Correlation Condition
collected with 95% confidence intervals coefficient c12 number κ in Ω

1 [ - , - ] - -
2 [ - , - ] - -
3 [ 17.54 ± 13.41 , 8.37 ± 5.38 ] 0.9999 2.6·107

4 [ 18.12 ± 3.59 , 8.56 ± 1.23 ] 0.9999 8.0·102

5 [ 16.86 ± 2.01 , 8.13 ± 0.68 ] 0.9998 1.3·100

6 [ 16.90 ± 1.64 , 8.15 ± 0.55 ] 0.9997 1.0·100

7 [ 16.91 ± 1.51 , 8.15 ± 0.51 ] 0.9998 1.0·100

8 [ 16.83 ± 1.32 , 8.12 ± 0.45 ] 0.9997 1.0·100

9 [ 16.98 ± 1.26 , 8.17 ± 0.43 ] 0.9998 1.0·100

Figure 3.6: Real case: parameter estimates throughout the non-RP campaign (dotted) and the RP
campaign (solid). The target parameter values are indicated by dashed lines.

estimates θ̂ with associated confidence intervals and correlation coefficient are reported in

Table 3.4 for the non-RP campaign and in Table 3.5 for the RP campaign. Numerical esti-

mates in terms of pre-exponential factor and activation energy were also computed from θ̂.

These are reported in Appendix C.

In the course of the non-RP campaign (see Table 3.4), the parameter correlation c12 be-

tween θ̂1 and θ̂2 remains above 99.96%. In the non-RP campaign the parameter estimation

and MBDoE problems are solved in the original parameter space Θ. The condition num-

ber of the log-likelihood function in Θ remains above 6.1 ·103 in the course of the non-RP

campaign.
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Figure 3.7: Real case: 95% confidence intervals associated with the parameter estimates throughout
the non-RP campaign (dotted) and the RP campaign (solid).

Figure 3.8: Real case: parameter estimates and related 95% confidence ellipsoids at the end of the
non-RP campaign (dotted) and at the end of the RP campaign (solid).

The correlation between θ̂1 and θ̂2 is above 99.97% throughout the whole RP campaign

(see Table 3.5). However, in the RP campaign, parameter estimation and MBDoE problems

are solved in the transformed parameter space Ω. The condition number in Ω is reduced by

the algorithm from an initial value of 2.6 · 107 to the minimum value 1.0 in four iterations

(i.e., after the collection of 6 samples). The transformation matrix G is then adjusted after

the collection of each sample to maintain a condition number κ = 1.0 until the end of the

experimental campaign.

The parameter estimates and related 95% confidence intervals obtained in the non-RP

and in the RP campaigns are plotted in Figure 3.6 and Figure 3.7. The 95% confidence
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ellipsoids associated to the final parameter estimates achieved in the non-RP campaign and

in the RP campaign are plotted in Figure 3.8.

Notice that in this case it is not possible to quantify and compare the performance of the

two campaigns in retrieving the target parameter value. The target kinetic parameters are in

fact unknown in the real case. One can observe from Figure 3.6 that the estimates achieved

in the RP campaign exhibit a convergent behaviour around the values θ = [16.90,8.15]T .

Estimates θ̂1 and θ̂2 in the non-RP campaign do not exhibit a convergent behaviour, but they

tend to increase in the course of the non-RP campaign (see Figure 3.6). It is not possible to

assess whether the absence of convergence in the non-RP campaign is the consequence of

an unknown systematic disturbance in the system. However, it is possible to appreciate that

the application of the online RP method led to the minimisation of the condition number

(see Table 3.5) with the concomitant improvement in the numerical performance of the

optimisation algorithms. Also in the real case, both in the RP and in the non-RP campaign,

the CPU time required to complete each algorithm iteration was on the order of seconds.

A goodness-of-fit test was also conducted to demonstrate that the postulated first order

single-reaction mechanism (see Section 3.3.2) provided an accurate representation of the

chemical system. Nonetheless, it was recognised that an analysis on the goodness-of-fit

was not significant for demonstrating the online RP method. It was chosen to report in

Appendix C the numerical details regarding the analysis on the fitting quality.

3.4.3 Results discussion

Both in the simulated and in the real case, the 95% confidence intervals of the estimates

after 9 collected samples differ significantly between the non-RP and the RP campaign (see

Figure 3.4 and Figure 3.7). In the simulated case, a χ2-test was conducted to compare

the final statistics on the parameters computed in the RP campaign with the final statistics

obtained in the non-RP campaign. It was shown that the confidence region of the parameter

estimates computed in the RP campaign contains the target parameter value θ∗ while the

ellipsoid computed in the non-RP campaign does not contain the target value θ∗ (see Figure

3.5). Hence, it was possible to demonstrate statistically that the campaign with online RP

led to a more accurate quantification of the uncertainty region associated to the computed

parameter estimates.

Figure 3.9a and Figure 3.9b show the condition numbers in the course of the non-RP

and RP campaigns respectively. In the non-RP campaigns (see Figure 3.9a), the condition
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number κ is around 104 and does not vary significantly in the course of the sample collection

process. In the RP campaigns, both in the simulated and in the real case, the employment of

the online RP method led to the minimisation of the condition number to κ = 1.0 in an ini-

tially ill-conditioned model identification problem (see Figure 3.9b). From Figure 3.9b, one

can see that, both in the simulated and in the real case, the condition number is minimised

to κ = 1.0 when sample 6 is collected, i.e., after 4 iterations in the model identification

algorithm. This is explained by the fact that the update for the transformation matrix G is

evaluated as a function of the Hessian H computed with the primary transformation matrix

GP (see Section 3.2).

The condition number in the transformed space associated with GP may be very high

at the first iteration of the algorithm. A high condition number at the primary parameter

estimation step may lead to an inaccurate computation of the Hessian (i.e., an inaccurate

quantification of the sloppiness) and, consequently, lead to the computation of an inap-

propriate update for G. This does not appear to affect the performance of the online RP

approach in the presented case study, but further analysis is required. It is object of future

research activities to make the proposed algorithm insensitive towards numerical inaccura-

cies in the initial diagnosis of model sloppiness.

3.4.4 Computational times and problem size

The proposed model identification algorithm was applied online on the identification of a

kinetic model involving ordinary differential equations. The model under study involves

Nθ = 2 model parameters. The numerical results presented in this Chapter were obtained

(a) (b)

Figure 3.9: Condition number after each sample collected in the simulated case (dotted line) and in
the real case (solid line): (a) non-RP campaigns; (b) RP campaigns.
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on a 32-bit Windows machine with Intel® Core® i7-3770 3.40 GHz processor and 4.0 GB

of RAM.

Table 3.6: Real case: Computational times associated with each algorithm iteration in the non-RP
campaign and in the RP campaign.

Algorithm Algorithm runtime [s]

call non-RP campaign RP campaign

1 8.85 11.14
2 8.76 9.72
3 8.70 10.31
4 9.37 10.20
5 9.00 10.75
6 9.62 10.03
7 9.72 12.04

The computational runtime associated with each iteration of the model identification

algorithm is reported in Table 3.6 for both the non-RP and the RP campaign performed on

the automated experimental setup. In the course of the experimental campaigns, the model

identification algorithm is called 7 times. As one can see from Table 3.6, the computational

times associated with the algorithm calls in the RP campaign are higher than in the non-RP

campaign. In the course of an algorithm call in the non-RP campaign, the parametrisation

update stage and the secondary parameter estimation stage are not performed. The longest

computation required in the RP case is associated primarily with the fact that the parameter

estimation problem is solved two times in the course of an algorithm call. Nonetheless, the

computational times in both campaigns are comparable for the considered case study, i.e.,

around 10.0 s per iteration both in the non-RP and in the RP case.

It is observed that in the presence of a higher number of parameters, the convergence

rate of optimisation algorithms in the presence of a sloppy parametrisation may significantly

decrease. Under such circumstance, an approach based on online RP may outperform a

standard model identification algorithm also in terms of computational time. In fact, in the

presence of a low condition number, a lower number of iterations and function evaluations is

typically required to achieve convergence (Pyzara et al., 2011). Assessing the computational

performance of the proposed approach in the presence of a higher number of parameters will

be object of future research activities.
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3.5 Final remarks

A parameter estimation algorithm implementing a novel approach of online reparametrisa-

tion, i.e., an approach of online transformation of the model parameter space, is proposed

in this Chapter. The tool is designed specifically to reduce the chance of numerical failures

associated with the estimation of parameters in the presence of sloppy model structures, i.e.,

models in which parameters are practically non-identifiable and/or extremely correlated.

The approach is based on two fundamental steps: 1) a primary parameter estimation

step, which is required to diagnose and quantify the sloppiness of the model parameter

space; 2) a parametrisation update step in which the sloppy parameter space is transformed

into a robust space with the aim of reducing the sloppiness. Once the model parametrisa-

tion is updated, the parameter estimation is repeated solving an optimisation problem in the

transformed, non-sloppy, parameter space. Additional samples are then designed by solv-

ing an optimal MBDoE problem in the transformed space with the aim of improving the

statistical quality of the estimates. It is shown that numerical optimisation routines benefit

significantly from the presence of a robust (i.e. non-sloppy) model parametrisation both

at the parameter estimation and at the experimental design stage. Eventually, parameter

estimates computed in the robust space are transformed to the original parameter space by

applying algebraic transformations and returned as output to the user.

The performance of the presented algorithm was tested both in-silico and on a real

system where an automated experimental platform was employed for online kinetic model

identification. The objective in the case study was the estimation of the kinetic parameters

in a two-parameter model of catalytic esterification of benzoic acid with ethanol in a flow

reactor. Both in the simulated and in the real case, the algorithm iteratively reduced and

eventually eliminated model sloppiness minimising the condition number of an originally

ill-conditioned model identification problem. The minimisation of the condition number to

unity and the concomitant elimination of model sloppiness resulted in an improved numer-

ical robustness of the optimisation routines and matrix inversion functions employed in the

course of the model identification process.

The proposed approach is particularly suited for implementation in autonomous model

identification platforms. The reparametrisation method was integrated as an optional step

in an online model identification algorithm implemented in a Python script. It was shown

that the computational performance of the algorithm was not affected significantly by the
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additional step of model reparametrisation. The modest computational cost associated with

the reparametrisation step and the low memory requirement of the method makes it suitable

for implementation also on embedded devices.

The numerical robustness of model identification algorithms towards model sloppiness

represents a prerequisite for the application of the modelling frameworks illustrated in the

following Chapters (see Figure 1.3). The next Chapter focuses on improving the robust-

ness of model identification algorithms towards the presence of inappropriate modelling

assumptions.
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Chapter 4

Parameter estimation under structural

model uncertainty

Part of this Chapter is adapted from the following articles:

Quaglio M., Fraga E. S., Cao E., Gavriilidis A., Galvanin F., A model-based data min-

ing approach for determining the domain of validity of approximated models, Chemometrics

and Intelligent Laboratory Systems 172, 2018, pp. 58-67

Quaglio M., Bezzo F., Gavriilidis A., Cao E., Al-Rifai N., Galvanin F., Identification

of kinetic models of methanol oxidation on silver in the presence of uncertain catalyst be-

haviour, AIChE Journal 65(10), 2019, pp:e16707

Quaglio M., Fraga E. S., Galvanin F., Constrained model-based design of experiments

for the identification of approximated models, Proceedings of the 18th IFAC Symposium on

System Identification 2018, pp. 515-520

The author of this Thesis contributed to the above articles by developing the main

novel ideas, implementing the simulations, and writing a significant part of the text. Hence,
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4.1 Introduction

Parametric models derived from simplifying assumptions give an approximated description

of the physical system under study. The practical applicability of an approximated model

depends on the consciousness of its descriptive limits and on the precise estimation of its

parameters. In this Chapter, a novel framework for the estimation of model parameters

embracing structural model uncertainty is presented. In the framework, a model-based data
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mining (MBDM) algorithm is used to estimate model parameters excluding the outliers

from the fitting. A supervised machine learning classifier is then employed to detect patterns

in the distribution of outliers to quantify the reliability of model predictions in unexplored

regions of the experimental design space. The classifier returns a reliability map that can

be used to constrain experimental design problems with the aim of collecting additional

informative samples with low associated fitting cost.

4.2 Proposed methodology

An experimental setup is available to perform kinetic experiments on a physical system of

interest. It is assumed that a preliminary dataset Y in the form (2.6) is collected for identi-

fying a kinetic model for the process under study. The scientist proposes an approximated

model structure in the form
f(ẋ,x,u, t,θ) = 0

ŷ = h(x,u, t,θ)
(2.1)

It is assumed that the objective of the scientist is to complete the identification of the

model, which requires both i) the precise estimation of the parameters θ by fitting experi-

mental data and ii) the computation of the domain of the model reliability, namely the range

of conditions in which the identified model is expected to provide accurate predictions. A

framework for the identification of approximated models is proposed in Figure 4.1 to ad-

dress the multi-objective task of both parameter estimation and the determination of the

domain of model reliability given the available experimental evidence. The approach starts

from the availability of a preliminary set of experimental data Y and an approximated model

structure in the form (2.1). The procedure involves three fundamental steps:

1. A Model-based data mining step. The model parameters are fitted to the available

dataset Y employing a tailored approach for robust regression (Rousseeuw and Leroy,

1987), namely a model-based data mining (MBDM) method for parameter estima-

tion. MBDM produces two outputs: i) it classifies the observed experimental condi-

tions ϕ i (with i = 1, ...,N) as compatible or incompatible with the candidate model

following a criterion based on the the quality of fitting and ii) it computes the maxi-

mum likelihood estimate for the parameters fitting only the model compatible data.

2. A Support Vector Machine training step. The classified conditions ϕ i with i= 1, ...,N,

returned by MBDM at step 1, are used to train a Support Vector Machine (SVM) clas-
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sifier (Schölkopf and Smola, 2002; Smola and Schölkopf, 2004), which generalises

the classification to unexplored experimental conditions. SVM returns a model relia-

bility map I(ϕ) which quantifies the expected model accuracy across the experimental

design space.

3. A constrained MBDoE step. If the parameter estimates computed by MBDM at step 1

do not meet the desired statistical requirements, then additional informative samples

should be collected and included in the parameter estimation problem. The following

experiments are designed employing known MBDoE criteria (see Section 2.4.6). The

optimal experimental design problem is bounded within the model reliability domain

(i.e. the design is constrained to conditions ϕ such that I(ϕ) > 0) to prevent the

collection of further model incompatible data.

In the following sections, the aforementioned steps are further detailed. The MBDM

approach is illustrated in Section 4.2.1. The underlying mathematics of SVM is then pre-

sented in Section 4.2.2. The constrained MBDoE problem is formulated in Section 4.2.3.

4.2.1 Model-Based Data Mining for Parameter Estimation

If the structure (2.1) is approximated, one shall not expect the model to be accurate across

the entire experimental design space. Rousseeuw and Leroy (1987) and Buzzi-Ferraris and

Manenti (2009) recognised that data collected at conditions where the modelling assump-

tions are not valid are not significant for the estimation of the model parameters and shall be

regarded as outliers (for more information on outlier types see Section 2.6). In fact, equiva-

lently to outliers caused by gross measurement error and/or system disturbances, the fitting

of these data may lead to estimates with debatable physical significance and the identifica-

tion of a model with poor predictive performance. Nevertheless, the domain in which the

approximated modelling assumptions are valid is normally not known a-priori.

A heuristic model-based data mining (MBDM) approach is proposed to detect the

presence of outliers in the dataset and estimate the model parameters neglecting model-

incompatible data. The robust weighted least square estimator proposed by Rousseeuw and

Leroy (1987) is employed as an MBDM tool. The estimator was introduced in Section 2.6.

MBDM requires the solution of the optimisation problem in (2.27) where the function LDM
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Figure 4.1: Proposed framework for model identification. Boldface blocks represent fundamental
steps in the proposed methodology.

to maximise is given in (2.28).

θ̂DM = argmax
θ∈Θ

LDM (2.27)

LDM =
N

∑
i=1

1+βi

2
· {Nyc2− [yi− ŷi(θ)]

T
Σ
−1
y [yi− ŷi(θ)]} (2.28)

s.t. βi(θ) =

+1 if [yi− ŷi(θ)]
T Σ
−1
y [yi− ŷi(θ)]≤ Nyc2

−1 if [yi− ŷi(θ)]
T Σ
−1
y [yi− ŷi(θ)]> Nyc2

∀ i (2.29)

In (2.28), the quantities βi ∈{+1,−1}with i= 1, ...,N represent binary weights, which

are introduced to control the inclusion (βi = +1) or exclusion (βi = −1) of samples in the

objective function LDM. The conditions in (2.29) ensure that samples are considered for
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parameter fitting only if the associated residuals are small. The quantity c quantifies the

maximum threshold of acceptance for a model residual.

Given a reasonable choice of the hyperparameter c, the solution of the MBDM prob-

lem in (2.27) leads to the automated exclusion from the parameter estimation problem of

the samples that are statistically incompatible with the modelling assumptions. The quan-

tity θ̂DM represents a robust maximum likelihood estimate obtained from the fitting of the

possibly reduced dataset Y ′ as in (2.30). The covariance associated with the estimate θ̂DM

is calculated as

Vθ = [−∇∇
T L (Y ′|θ̂DM)]−1 (2.31)

Detected outliers may be classified either as 1) samples collected outside the domain

of model reliability 2) samples collected in the presence of significant systematic errors or

3) samples collected in the presence of significant system disturbances. Notice that MBDM

does not distinguish between these three outlier classes. A possible practical way to classify

the outliers is to repeat the sampling. If the incompatibility persists after the repetition, the

outlier shall be classified in the first or in the second category, i.e. the sample is collected

outside the domain of model reliability or in the presence of systematic errors. If the re-

peated sample is instead found to be compatible, the incompatibility detected before the

repetition shall be interpreted as the consequence of a system disturbance.

4.2.2 Support Vector Machine training

The solution of the MBDM problem in (2.27), leads to the construction of a function

ϕ i → β̂i ∈ {1,−1} with i = 1, ...,N (where β̂i = βi(θ̂DM)), which classifies the observed

experimental conditions ϕ i, with i = 1, ...,N, either as compatible or incompatible with the

candidate model. It is now of interest to identify a decision function I(ϕ), based on the

training set {(ϕ i, β̂i)|i = 1, ...,N}, whose sign can be used to classify the performance of the

model in unexplored experimental conditions. A decision function is required to quantify i)

the reliability on the model predictions across the space of experimental conditions and ii)

the expected model fitting quality across the experimental design space for supporting the

design of new trials to enhance parameter precision.

In the proposed approach, the classification of the observed experimental conditions is

generalised to a generic set of conditions ϕ ∈Φ employing a non-linear Support Vector Ma-

chine classifier (Cortes and Vapnik, 1995) with Gaussian kernel K (Schölkopf and Smola,
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2002). The Gaussian kernel, also known as the radial basis function, is defined as

K(ϕ i,ϕ j) = e
−

(ϕi−ϕ j)
T (ϕi−ϕ j)

2γ2 (4.1)

where the hyperparameter γ represents a decay length, which quantifies the degree of simi-

larity between two different sets of experimental conditions ϕ i and ϕ j. The Gaussian kernel

is employed for its generality of application and for its capability of computing decision

functions with non-linear, non-connected and non-convex geometry.

The application of the non-linear SVM classifier results in the construction of a deci-

sion function I(ϕ), namely a model reliability map, in the form (4.2) whose sign is used

to classify unexplored conditions of the experimental design space in terms of acceptable

(I > 0) or unacceptable (I < 0) expected model performance.

I(ϕ) =
N

∑
i=1

α̂iβ̂ jK(ϕ,ϕ i)+b (4.2)

In (4.2), b represents the offset of the decision function and α̂i with i = 1, ...,N are the

values for the Lagrange multipliers obtained through the solution of the following convex

optimisation problem (Cortes and Vapnik, 1995):

max
α1,...,αN

N

∑
i=1

αi−
1
2

N

∑
i=1

N

∑
j=1

αiα jβ̂iβ̂ jK(ϕ i,ϕ j)

s.t.
N

∑
i=1

αiβ̂i = 0,

0≤ αi ≤Ci ∀i = 1, ...,N

(4.3)

The value for the parameter b in (4.2) is computed after the solution of the optimisation

problem (4.3) from the Karush-Kuhn-Tucker complementarity condition associated to any

margin support vector (characterised by the condition αi > 0) (Burges, 1998). In (4.3), Ci

(with i = 1, ...,N) are regularisation parameters that can be adjusted to modify the weight

of each sample in the decision function.

Since SVMs are sensitive to the scale of the input space, experimental conditions are

normalised before the application of the learning machine. Notice that a number of degrees

of freedom are present in the problem due to the regularisation parameters Ci and the de-

cay length of the radial basis function γ . The hyperparameters Ci and γ may be chosen a

priori or following heuristic rules (King and Zeng, 2001). Alternatively, in the presence
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of a sufficiently large dataset, an optimal hyperparameter set may be identified through

cross-validation (Bergstra and Bengio, 2012).

4.2.3 Constrained Model-Based Design of Experiments

From the covariance Vθ computed according to (2.31) it is possible to assess the statistical

quality of the parameter estimates, e.g. by performing a t-test. In case of unsatisfactory

parameter statistics, additional samples should be collected from the setup and included in

the parameter estimation problem. It is assumed that the scientist is willing to design Nsp

additional samples with the aim of reducing parameter uncertainty employing an MBDoE

approach (see Section 2.4.6).

MBDoE is formulated as an optimisation problems in which the function to be min-

imised is a measure ψ (e.g. the trace or the determinant) of the predicted covariance matrix

V̂θ , which is calculated as in (2.21). However, conventional MBDoE methods for parame-

ter precision do not consider the presence of structural model uncertainty in the formulation

of design metrics based on Fisher information. Hence, in the presence of an approximated

model structure, MBDoE methods may lead to the design of experiments in conditions

ϕ ∈Φ where the model is particularly inaccurate. Samples collected outside the domain of

model reliability may be rich in terms of Fisher information, but their fitting could result

in an unacceptable degradation of the model fitting quality and a loss of model predictive

performance. In this work, a conservative approach to MBDoE is proposed where the ex-

perimental design is constrained within the domain of model reliability, i.e., at conditions

ϕ ∈Φ|I(ϕ)≥ 0 in which the model is expected to provide a good fitting.

ϕ
∗
1, ...,ϕ

∗
Nsp

= arg min
ϕ1,...,ϕNsp

ψ(ϕ1, ...,ϕNsp
)|θ=θ̂DM

s.t. ϕk ∈Φ|I(ϕk)≥ 0 ∀k = 1, ...,Nsp

(4.4)

The constrained MBDoE problem is formulated in (4.4), where ϕ∗1, ...,ϕ
∗
Nsp

represent the

optimised experimental conditions for the collection of the additional samples. A sketch

to illustrate the procedure is proposed in Figure 4.2. The top-left colourmap in Figure 4.2

represents the distribution of the design metric ψ(ϕ) across the experimental design space.

The bottom-left graph in Figure 4.2 shows the reliability map I(ϕ). In the constrained

MBDoE problem, the information metric is maximised within the model reliability domain,

i.e. at conditions I > 0, as shown in the right graph in Figure 4.2.
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Figure 4.2: Qualitative sketch illustrating the proposed procedure for the identification of optimal
informative experimental conditions within the model reliability domain.

4.3 Case studies

The model identification approach presented in Section 4.2 is tested on a simulated case

study in Section 4.3.1 where the aim is the online identification of an approximated kinetic

model of ethanol dehydrogenation on a copper/copper-chromite based catalyst. The case

study is inspired by the work of Carotenuto and co-workers (Carotenuto et al., 2013). The

approximated model considers two reactions and its identification requires the estimation

of Nθ = 4 kinetic parameters. A second case study is proposed in Section 4.3.2, where the

aim is the identification of an approximated kinetic model of methanol oxidation on silver

catalyst (Andreasen et al., 2005) in a continuous flow microreactor (Galvanin et al., 2015).

In this case, the approximated model involves three reactions and its identification requires

the estimation of Nθ = 2 kinetic constants. In this case study the identification of the model

is performed offline using real experimental data.

4.3.1 Case study 1: ethanol dehydrogenation on copper

4.3.1.1 System model

The catalytic reaction of ethanol dehydrogenation is assumed to occur in an ideal packed-

bed tubular reactor. It is assumed that the reaction occurs at isothermal conditions in the
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absence of pressure drops and mass transfer limitations. The space evolution of the react-

ing gaseous mixture is described by the set of differential equations (4.5). Five chemical

species are considered, i.e.: ethanol CH3CH2OH (EtOH); acetaldehyde CH3CHO (AcH);

ethyl acetate CH3COOCH2CH3 (EA); hydrogen H2; and nitrogen N2 (used as inert carrier).

dṅi(z)
dz

= w
NR

∑
j=1

νi jr j ∀ i = EtOH,AcH,EA,H2,N2 (4.5)

In (4.5), z is the axial coordinate of the tubular reactor normalised on the catalyst bed length;

ṅi [mol h−1] is the molar flowrate of the i-th component of the mixture; w [g] is the catalyst

weight; NR is the number of reactions; νi j is the stoichiometric coefficient of the i-th species

in the j-th reaction; r j [mol h−1g−1] is the reaction rate of the j-th reaction normalised on

the catalyst weight.

In this study, the Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics proposed

by Carotenuto et al. is adopted as the true model of the physical system (Carotenuto et al.,

2013). The kinetic model involves NR = 3 reactions whose stoichiometry is

Reaction 1: Ethanol � Acetaldehyde+H2

Reaction 2: Ethanol+Acetaldehyde � Ethyl Acetate+H2

Reaction 3: Acetaldehyde→ other products

(4.6)

Reaction 1 describes the step of ethanol dehydrogenation into acetaldehyde, reaction 2 ac-

counts for the formation of ethyl acetate from ethanol and acetaldehyde and reaction 3 ac-

counts for parallel reactions consuming acetaldehyde to give side undesired products. The

reaction rates are

r1 =
A1e−

Ea1
RT bEtOHPEtOH

(
1−
(
1/Keq1

)(PAcHPH2
PEtOH

))(
1+bEtOHPEtOH +bAcHPAcH +bEAPEA +bH2PH2

)2

r2 =
A2e−

Ea2
RT bEtOHbAcHPEtOHPAcH

(
1−
(
1/Keq2

)( PEAPH2
PEtOHPAcH

))(
1+bEtOHPEtOH +bAcHPAcH +bEAPEA +bH2PH2

)2

r3 = A3e−
Ea3
RT P2

AcH

(4.7)

where A j [mol g−1h−1] and Ea j [J mol−1] are respectively the pre-exponential factor and the

activation energy of the j-th reaction; R is the ideal gas constant [J mol−1K−1] and T is

temperature [K]. Parameter bi [bar−1] is the adsorption coefficient related to the i-th mixture
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component. Pi [bar] is the partial pressures of the i-th chemical species and it is defined

as Pi = (ṅi/∑i ṅi)PTOT , where PTOT [bar] is the total pressure in the gas bulk. Quantities

Keq1 and Keq2 are the equilibrium constants for reaction 1 and reaction 2 respectively. The

equilibrium constants are evaluated from the Van’t Hoff equation (Carotenuto et al., 2013)

as illustrated in Appendix D. The values of the kinetic parameters estimated by Carotenuto

et al. (2013) are assumed as the true kinetic parameters of the system. Kinetic parameter

values associated with the LHHW model are reported in Table D.1 in Appendix.

4.3.1.2 Approximated model

The identification of the LHHW system model described in Section (4.3.1.1) requires the

estimation of 10 kinetic parameters, i.e. A1, Ea1, A2, Ea2, A3, Ea3, bEtOH, bAcH, bEA, bH2 . It

is assumed that the amount of resources to perform the experiments is insufficient for the

identification of a comprehensive LHHW model and a compromise between model com-

plexity and model accuracy is preferred. The scientist proposes an approximated kinetic

model which involves only reaction 1 and reaction 2 of the total mechanism (4.6). Further-

more, the scientist also suggests to model the rates for reaction 1 and 2 as simple power

laws. The approximated reaction rates are

r1 = A1e−
Ea1
RT PEtOH

(
1−
(
1/Keq1

)(PAcHPH2

PEtOH

))
r2 = A2e−

Ea2
RT PEtOHPAcH

(
1−
(
1/Keq2

)( PEAPH2

PEtOHPAcH

))
r3 = 0

(4.8)

The approximated kinetic model in (4.8) only involves four kinetic parameters, i.e. θ =

[A1,Ea1,A2,Ea2].

4.3.1.3 Objective and methods

The identification of the approximated kinetic model (4.8) requires the precise estimation of

the kinetic parameters θ = [A1,Ea1,A2,Ea2] and the determination of the model reliability

domain. A positive t-test with 95% of significance is set as statistical requirement for the

parameters. The following assumptions are made:

1. Design space. A three dimensional experimental design space is assumed Φ =

(ṅEtOH|z=0,PTOT ,T ) where the manipulable experimental conditions are: ethanol mo-

lar inlet flowrate ṅEtOH|z=0 (range 0.1−2.5 mol h−1); the total pressure PTOT (range

10−30 bar); temperature T (range 453-533 K). The inlet molar flowrate of the other
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species is fixed at [ṅAcH, ṅEA, ṅH2 , ṅN2 ]|z=0 = [0.0,0.0,0.057,0.057] molh−1. The cat-

alyst weight is fixed at w = 2.0 g.

2. Measurements and errors. It is assumed that the molar flowrates of ethanol, acetalde-

hyde, ethyl acetate and hydrogen at the outlet are the measurable output variables in

the system. Measurements are generated employing the system model illustrated in

Section 4.3.1.1) adding uncorrelated Gaussian noise with covariance Σy = 2.25 ·10−4I

mol2 h−2.

3. Preliminary dataset. A preliminary dataset with N = 8 sample is available to compute

a preliminary estimate for the model parameters. The preliminary dataset is obtained

from the simulation of a full factorial design with three factors (i.e. ethanol inlet

flowrate, total pressure and temperature) and two levels for each factor.

Two cases are presented and compared:

ML case The model parameters are estimated with a conventional Maximum Likelihood

approach (Bard, 1974) and additional samples are designed with standard MBDoE

methodologies for parameter precision (Pukelsheim, 2006). Parameter estimates θ̂

are updated after the collection of every sample. A sequential D-optimal MBDoE is

employed for designing the samples. The number of samples Nsp that are simultane-

ously designed at every iteration is chosen iteratively in the range Nsp = 1, ...,NMAX
sp

(where NMAX
sp is set equal to 3) to evaluate the minimum number of experiments re-

quired to meet the desired parameter statistics. Once Nsp experiments are designed,

the algorithm selects and performs the k-th most informative designed sample accord-

ing to k = argmaxk=1,...,Nsp Tr(Ĥk). The campaign stops when all parameters pass the

95% t-test or when the maximum number of samples NMAX is collected.

MBDM case The model is identified employing the methodology presented in Section 4.2.

Model parameters are estimated employing a MBDM estimator and additional sam-

ples are designed with a constrained MBDoE approach. The following settings are

adopted in the MBDM case:

1. MBDM settings. The MBDM problem is formulated as in (2.27) imposing a

maximum discrepancy tolerance c = 2.0. This is equivalent to treating as out-

liers the normalised residuals that exceed the range of 2 standard deviations of

measurement noise.

109



2. SVM settings. The experimental design space is normalised to the unit cube

before the training of SVM. The SVM classifier implemented in the Python

package scikit-learn (Pedregosa et al., 2011) is used. The hyperparameters of

the learning machine are set a priori: the decay length γ of the radial basis func-

tion is set to its default value γ = 1.0 in scikit-learn; C j are computed from the

balanced class weight module of scikit-learn (King and Zeng, 2001) to account

for the possibly very different number of compatible and incompatible samples

in the dataset.

3. Constrained-MBDoE settings. Additional samples are designed following the

same criteria as in the ML case, but bounding the MBDoE problem within the

domain of model reliability computed by SVM.

Estimates θ̂DM and reliability map I(ϕ) are updated after the collection of every sam-

ple. The procedure stops once all parameters pass the 95% t-test or when the maxi-

mum number of allowed samples NMAX is reached.

A script to conduct the case study was implemented in Python 2.7. The solver SLSQP

implemented in the scipy package (Jones et al., 2001) is employed at every iteration of the

procedure for both the parameter estimation and the experimental design steps.

4.3.1.4 Results and discussion

The parameter estimates θ̂ and the associated sum of squared residuals χ2
Y in the ML case

are reported in Table 4.1. When the parameters are estimated by using a standard maximum

likelihood approach, all the available samples are fitted. The sum of squared residuals is

χ2
Y = 88.41 and the model is falsified for under-fitting by the 90% goodness-of-fit test.

The information content of the full factorial preliminary design is sufficient for estimating

precisely all the model parameters, i.e. all the estimates pass the 95% t-test and there is no

necessity to collect additional samples.

Parameter estimates and model statistics in the course of the simulated campaign in

the MBDM case are reported in Table 4.2. One can see that the desired parameter statistics

are achieved after the collection of 8 additional samples, i.e. the identification of the model

required the collection of 16 samples in total. In the course of the constrained experimen-

tal campaign, the reliability map I(ϕ) is updated based on all the observed experimental

conditions and the labelling computed by MBDM. The dynamic behaviour of the reliabil-

ity function can be appreciated in the plots of Figure 4.3, where the reliability boundary,
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Table 4.1: ML case: Parameter estimates and model statistics in the course of the experimental
campaign.

Collected
samples N

Fitted
samples

Parameter estimates*
θ̂= [A1 Ea1 A2 Ea2]

χ2
Y ** χ2(95%)

8 8 [ 2.62 ·10−1 3.96 ·101 1.63 ·10−3 1.42 ·101 ] **88.41 36.42

*the parameter did not pass the t-test with 95% of significance
**A χ2

Y larger than χ2(95%) indicates that the 90% goodness-of-fit test is failed for under-fitting

Table 4.2: MBDM case: Parameter estimates and model statistics in the course of the experimental
campaign.

Collected
samples N

Fitted
samples

Parameter estimates*
θ̂DM = [A1 Ea1 A2 Ea2]

χ2
Y ** χ2(95%)

8 6 [ *3.56 ·10−1 *3.95 ·101 *1.99 ·10−3 *1.41 ·101 ] 21.10 36.42
9 7 [ *4.20 ·10−1 *3.92 ·101 *2.18 ·10−3 *1.40 ·101 ] 25.84 41.34
10 8 [ *4.17 ·10−1 *3.91 ·101 *2.24 ·10−3 *1.41 ·101 ] 29.20 46.20
11 9 [ *3.13 ·10−1 3.91 ·101 *1.78 ·10−3 *1.40 ·101 ] 32.52 51.00
12 8 [ *6.03 ·10−1 *3.89 ·101 *3.62 ·10−3 *1.37 ·101 ] 31.68 46.20
13 8 [ 7.67 ·10−1 3.84 ·101 *4.46 ·10−3 *1.36 ·101 ] 31.84 46.20
14 10 [ *2.79 ·10−1 3.93 ·101 1.71 ·10−3 1.32 ·101 ] 48.69 55.76
15 10 [ *4.41 ·10−1 3.64 ·101 2.00 ·10−3 1.35 ·101 ] 36.93 55.76
16 11 [ 4.41 ·10−1 3.64 ·101 1.97 ·10−3 1.35 ·101 ] 45.57 60.84

*the parameter did not pass the t-test with 95% of significance
**A χ2

Y larger than χ2(95%) indicates that the 90% goodness-of-fit test is failed for under-fitting

defined by I(ϕ) = 0, is reported after the collection of the preliminary 8 samples (Figure

4.3a), after 12 collected samples (Figure 4.3b) and after 16 collected samples (Figure 4.3c).

The dots in the plots of Figure 4.3 represent the conditions associated with the collected

samples and the colour indicates the labelling computed by MBDM at the given iteration:

compatible samples (β̂i =+1) are marked with green dots; incompatible samples (β̂i =−1)

are marked with red dots. Experimental conditions and generated samples in the course of

the experimental campaign in the MBDM case are reported in Table D.2 in Appendix. In

Table D.2, the final values of the labels computed by MBDM are also given.

One shall notice from (2.29) that the binary variables βi ∀ i = 1, ...,N are functions

of the parameter values θ. The value computed by the solution of the MBDM problem

in (2.27) may change significantly when additional samples are introduced in the objective

function. As a consequence, the classification of a specific sample may change in the course

of the experimental campaign. The MBDM estimator selects for the fitting the subset of

samples Y ′ which maximises the objective function LDM. As one can see from Table 4.2,

the number of fitted samples can either increase or decrease in the course of the experimental

campaign. This is explained by the tendency of MBDM to give fitting priority to samples
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(a)

(b)

(c)

Figure 4.3: Considered experimental design space defined by pressure, temperature and ethanol
inlet flowrate at different iterations of the model identification procedure implementing
a constrained MBDoE: (a) after the collection of the 8 preliminary samples; (b) after the
collection of 4 designed samples; (c) after the collection of 8 designed samples. Green
dots and red dots represent observed compatible (i.e. β̂ j = +1) and incompatible (i.e.
β̂ j =−1) experimental conditions respectively, according to the labelling computed by
MBDM. The grey surface at I(ϕ) = 0 represents the optimal boundary for the domain
of model reliability computed by the Support Vector Classifier.
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with small associated residuals. A qualitative sketch is proposed in Figure 4.4 to illustrate

this scenario. In Figure 4.4a two generic samples in the dataset, i.e. sample i and j are fitted

by MBDM because their squared residuals are below the maximum threshold Nyc2. In

this condition, both samples give a positive contribution to the objective function LDM. In

Figure 4.4b, an additional sample k is collected and included in the dataset. When MBDM

is applied, sample i and sample j are excluded from the fitting to give fitting priority to

sample k. In fact, sample k alone brings a higher contribution to the objective function LDM

than samples i and j together. Hence, it may happen that a highly compatible sample is

included in the dataset and a number of previously compatible samples are excluded from

the objective function to give fitting priority to the new sample.

(a) (b)

Figure 4.4: A possible effect of the MBDM approach when it is applied online. In the plots, green
arrows indicate a positive contribution of a sample to the objective function LDM . The
fitting of multiple samples with large residuals (a) may contribute less than a single
sample with small residual (b) to the objective function. The fitting of sample k in (b)
results in a better optimum than the fitting of samples i and j together. When sample k
is included in the dataset, sample i and j are excluded from the fitting by MBDM.

The identification of the model in the MBDM case required the collection of 16 sam-

ples, while only 11 samples were used for parameter fitting. This is due to the inaccurate

approximation of the model reliability domain computed by SVM when the number of

performed experiments in the training set is limited. This inaccuracy can lead to the de-

sign of samples at conditions where the model is inaccurate even if a constrained MBDoE

approach is employed. These model-incompatible samples are subsequently discarded by

MBDM and ignored in the model identification process. However, the accuracy of the

SVM classification improves in the course of the experimental design campaign and does

not prevent the ultimate identification of an approximated model that is accurate within its
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reliability domain. The model instance identified in the MBDM case is characterised by a

better fitting compared to the model identified in the ML case. The final sum of squared

residuals in the MBDM case is χ2
Y = 45.57, which is within the acceptable range assumed

in the goodness-of-fit test. In different words, the model identified in the MBDM case is not

falsified by the data used for the estimation of its parameters.

The precise estimation of the parameters in the MBDM case requires the fitting of

11 samples, while only 8 samples were required to identify the model in the ML case.

In the ML case, the information from all the available samples is used for the estimation.

In the MBDM case, only the information from samples collected within the domain of

reliability is exploited. Regions of the design space within the model reliability domain may

be associated with suboptimal levels of Fisher information. If the estimation of parameters

in the MBDM case must be performed fitting less informative data, a higher number of

samples must be fitted to achieve the same level of precision as in the ML case.

4.3.2 Case study 2: methanol oxidation on silver

4.3.2.1 Experimental setup and data set

A microreactor platform is available to perform kinetic experiments for the identification of

a kinetic model of methanol oxidation on silver. A schematic diagram of the device is given

in Figure 4.5. The reactor chip was constructed from a silicon wafer through photolithog-

raphy and deep reactive ion etching. A thin layer of silver was sputtered on the bottom of

the microchannel obtaining a catalyst film 78.1 mm in length. Mass flow controllers were

used to inject the gaseous mixture consisting of methanol, oxygen, water and helium (added

as inert carrier). A detailed description of the experimental setup is available in the liter-

ature (Cao and Gavriilidis, 2005). The independent conditions that can be manipulated in

the system are: the temperature T [K] of the microreactor; the flowrate F [ml min−1] of

the gaseous mixture at the inlet; molar fractions of methanol, oxygen and water in the inlet

mixture, i.e., yIN
CH3OH, yIN

O2
and yIN

H2O respectively.

A dataset Y consisting of N = 13 samples of the outlet composition was obtained

performing 13 steady-state experiments varying one factor at time. Each sample in Y in-

cludes Ny = 6 measurements, namely the outlet molar fraction of methanol, oxygen, water,

formaldehyde, hydrogen and carbon dioxide. A summary of the experimental conditions

investigated for the collection of the dataset is given in Table 4.3. The complete dataset is

reported in Appendix E.
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Table 4.3: Experimental conditions investigated in the available dataset. The volumetric flowrate F
is referred to standard conditions. Helium, used as inert carrier, represents the remaining
molar fraction at the inlet.

Sample number T [K] F* [ml min−1] yIN
CH3OH yIN

O2
yIN

H2O

1-3 783 29.1-73.1 0.0996 0.0414 0.0754
4-7 733-826 50.9 0.1468 0.0975 0.2293
8-10 765-826 93.9 0.1469 0.0980 0.2296

11-13 800-900 54.5 0.2590 0.1064 0.2122
* at temperature T = 273.15 K; pressure P = 101325 Pa.

Figure 4.5: Schematic representation of the microreactor chip and setup. The grey-coloured area in
the microchannel represents the sputtered silver catalyst film.

4.3.2.2 Approximated model

The section of the microchannel occupied by the silver catalyst film is modelled as an ideal

plug-flow reactor. Isothermal conditions are assumed along the channel (i.e. the energy

balance is omitted), and diffusion phenomena are completely neglected. The generic form

of the mass balance is given in (4.9), where NC and NR represent the number of compo-

nents and the number of reactions respectively, Ci is the species concentration expressed in

mol m−3, z represents the axial coordinate of the channel in m, v is the flow velocity along

z expressed in m s−1, νi j is the stoichiometric coefficient of the i-th component in the j-th

reaction and r j is the rate associated with the j-th reaction, expressed in mol m−3 s−1.

v
dCi

dz
=

NR

∑
j=1

νi jr j ∀ i = 1, ...,NC (4.9)
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Andreasen et al. (2003) formulated a micro-kinetic model for the reaction based on surface

science studies. From this micro-kinetic model, the same authors identified the presence

of two limiting steps in the oxidation. The first step is the intermediate methoxy decom-

position that results in the generation of formaldehyde and hydrogen. The second step is

the intermediate formate decomposition that results in the generation of carbon dioxide and

hydrogen. From these considerations, a simplified kinetic model which involves only two

lumped reactions was derived (Andreasen et al., 2005). As in other works available in the

literature, the two-reaction model proposed by Andreasen et al. is employed adding a third

reaction of hydrogen oxidation to account for the low amounts of hydrogen detected at the

outlet of the reactor (Galvanin et al., 2015). The stoichiometry and kinetics of the assumed

reactions are

Reaction 1: CH3OH+ 1
4 O2 � CH2O+ 1

2 H2 +
1
2 H2O

Reaction 2: CH2O+ 1
2 O2 � H2 +CO2

Reaction 3: H2 +
1
2 O2→ H2O

(4.10)

A total of NC = 6 species are considered in the approximated kinetics, i.e., methanol,

oxygen, water, formaldehyde, hydrogen and carbon dioxide. The rates of the three reactions

are given in (4.11), where R is the ideal gas constant, A j and Ea j (with j = 1, ...,3) represent

pre-exponential factors and activation energies of the Arrhenius type rate constants.

r1 = A1e−
Ea1
RT

CCH3OHC0.25
O2

C0.5
H2O

r2 = A2e−
Ea2
RT

CCH2OC0.5
O2

C0.5
H2

r3 = A3e−
Ea3
RT CH2C

0.5
O2

(4.11)

An instance for the kinetic parameters was available from previous kinetic investiga-

tions, conducted on a different setup (Quaglio et al., 2019). The values are reported in Table

4.4. The silver catalyst considered in this work went through a different fabrication history

compared to the catalyst used in previous works. Hence, one shall not expect the parameter

instance given in Table 4.4 to be representative for the catalyst employed in this case study.

The different kinetic behaviour between different silver catalyst types is assumed to de-

rive from a different density of active sites on the film surface. Following this assumption,
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only the pre-exponential factors of the catalytic reactions shall be tuned on the available

data set Y . The catalyst promotes the partial oxidation of methanol and the oxidation of

formaldehyde, i.e., reaction 1 and reaction 2. Evidence reported in the literature suggests

that reaction 3 occurs slowly on the catalyst surface (Schubert et al., 1994; Dokuchits et al.,

2012). Therefore, in this case study, the catalytic effect of silver on reaction 3 is neglected,

i.e., it is assumed that a different density of active sites on the catalyst surface does not

influence the kinetic rate of hydrogen oxidation. Thus, the kinetic constants A3, Ea1, Ea2

and Ea3 are fixed to the values given in Table 4.4 and only A1 and A2 are treated as the

parameters requiring re-estimation, i.e., θ= [A1,A2].

Table 4.4: Instance for the kinetic parameters obtained from previous kinetic studies.

Parameter Unit Value

A1 [(mol m−3)0.25s−1] 5.33 ·1011

A2 [s−1] 1.03 ·107

A3 [(mol m−3)−0.5s−1] 1.07 ·104

Ea1 [J mol−1] 1.42 ·105

Ea2 [J mol−1] 9.02 ·104

Ea3 [J mol−1] 1.83 ·104

4.3.2.3 Objective and methods

Since the model presented in Section 4.3.2.2 was derived by a number of simplifying

hypotheses, its identification requires both the quantification of the unknown parameters

θ= [A1,A2] through the fitting of dataset Y , and the identification of the reliability domain

associated with the estimated parameters. As in the previous case study (see Section 4.3.1),

two scenarios are presented:

ML case The model is identified using a standard Maximum Likelihood estimator (Bard,

1974).

MBDM case The model is identified employing the methodology presented in Section 4.2.

The following settings are adopted for the application of the proposed approach:

• MBDM settings. The MBDM problem is formulated as in (2.27). The mea-

sured molar fractions in a sample are assumed to be affected by Gaussian noise

with covariance Σy = 3 · 10−3 · I. The MBDM tolerance is set at c = 3.0. This

is equivalent to treating as outliers measurements with an associated residual

above the 3 standard deviations range.
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• SVM settings. A SVM is employed to identify a reliability map I(ϕ) in the ex-

perimental design space. Two cases are considered. In Case 1, the model is

assumed to be weak at describing certain ranges of temperature and inlet frac-

tion of methanol while it is assumed to be reliable on the other experimental

conditions. The SVM machine is therefore trained assuming a bi-dimensional

input space Φ = (T,yIN
CH3OH). In Case 2, the model is considered weak in rep-

resenting the system in broad ranges of temperature and inlet fraction of water,

but reliable on other experimental conditions. The SVM machine is then trained

on the reduced input space Φ = (T,yIN
H2O).

The experimental design step is not considered in this case study. The ML and

MBDM problems are solved employing respectively the solvers MAXLKHD and CVP SS

in gPROMS ModelBuilder 4.1 (PSE gPROMS, 2017). In the MBDM case, the model reli-

ability map is identified using the tool for support vector classification implemented in the

Python package scikit-learn (Pedregosa et al., 2011). In the present case study, the hyper-

parameters of the SVM are set a priori. The Gaussian kernel in (4.1) is employed with

γ = 0.2; being the experimental conditions in the training set normalised, this corresponds

to having a characteristic decay length equal to 20% of the explorable range in any direction

of Φ. The regularisation constants are set to the default value implemented in scikit-learn.

4.3.2.4 Results and discussion

The model parameters were fitted to the dataset using both a conventional ML estimator

and MBDM. The parameter estimates are reported in Table 4.5 with the associated t-value

statistics and the sum of squared residuals χ2
Y (for additional details on the performed sta-

tistical tests see Section 2.4.4). As one can see, all the computed parameters are statistically

satisfactory, but the estimates obtained in the two cases are significantly different. The

reason is that in the MBDM case, some of the binary variables β were switched to -1 to

satisfy the MBDM conditions in (2.29), excluding some samples from the parameter esti-

mation problem. In Table 4.6, the binary variables β̂ computed by MBDM are given for all

the experiments together with the conditions investigated for the collection of each sample.

The samples 4, 8, 12 and 13 (i.e., the samples with β̂ = −1) were labelled by MBDM as

incompatible with the modelling assumptions. The parity plot in Figure 4.6a shows the dis-

tribution of the residuals achieved by the candidate model if the ML method is employed

(i.e., if the whole dataset is fitted). In Figure 4.6b, the residuals associated with the fitted
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data in the MBDM case (i.e., only the residuals associated with samples 1-3, 5-7 and 9-11)

are reported. The distributions of the normalised residuals associated with the ML method

and with the MBDM method are plotted in Figure 4.7a and Figure 4.7b respectively. From

a comparison of the plots in Figure 4.6 and the bar charts in Figure 4.7 one can see that the

application of MBDM led to the identification of a model with improved fitting capabilities.

The exclusion of experiments 4, 8, 12 and 13 results in a significant reduction of the χ2
Y

from 1247.2 in the ML case to 180.3 in the MBDM case.

Table 4.5: Parameter estimates and related statistics: t-value and sum of squared residuals χ2; with
conventional ML estimator and MBDM estimator.

Method Estimates θ̂= [A1,A2] t-values* tre f χ2
Y

ML [5.66 ·1012,7.33 ·107] [19.51,15.39] 1.66 1247.2
MBDM [3.98 ·1012,6.16 ·107] [14.63,11.26] 1.67 180.3
*a t-value higher than tre f indicates satisfactory parameter precision.

Table 4.6: Experimental conditions investigated in the catalytic microreactor and binary variables β̂

computed by MBDM. Samples with β̂ = −1 were not considered for the estimation of
the kinetic parameters.

Sample T [K] F* [ml min−1] yIN
CH3OH yIN

O2
yIN

H2O β̂

1 783 73.1 0.0996 0.0414 0.0754 +1
2 783 41.7 0.0996 0.0414 0.0754 +1
3 783 29.1 0.0996 0.0414 0.0754 +1
4 733 50.9 0.1468 0.0975 0.2293 -1
5 765 50.9 0.1468 0.0975 0.2293 +1
6 796 50.9 0.1468 0.0975 0.2293 +1
7 826 50.9 0.1468 0.0975 0.2293 +1
8 765 93.9 0.1469 0.0980 0.2296 -1
9 796 93.9 0.1469 0.0980 0.2296 +1

10 826 93.9 0.1469 0.0980 0.2296 +1
11 800 54.5 0.2590 0.1064 0.2122 +1
12 850 54.5 0.2590 0.1064 0.2122 -1
13 900 54.5 0.2590 0.1064 0.2122 -1

* at temperature T = 273.15 K; pressure P = 101325 Pa.

The classified samples are used to train a SVM classifier and compute a model reliabil-

ity map I(ϕ) in the form of (4.2). The map obtained for Case 1 is represented in Figure 4.8a

in the input subspace defined by temperature and inlet fraction of methanol. Regions of the

input space at I(ϕ)> 0 (bright regions in the plot) identify conditions at which the model is

expected to provide a good representation of the reacting system. Conversely, conditions at
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ML method

(a)

MBDM method

(b)

Figure 4.6: Parity plot comparing measurements against model predictions: (a) if a conventional
ML estimator is employed; (b) if MBDM is adopted. In (b) only experimental data with
β̂ =+1 are reported.

ML method

(a)

MBDM method

(b)

Figure 4.7: Distribution of the normalised residuals: (a) if a conventional ML estimator is em-
ployed; (b) if MBDM is adopted. In (b) only residuals associated with the experimental
data with β̂ =+1 are reported.

I(ϕ)< 0 (dark regions in the plot) are considered too close to samples that were previously

classified as incompatible with the candidate model. The reliability map identified in Case

2 is plotted in Figure 4.8b in the input subspace defined by temperature and fraction of wa-

ter at the inlet. In this case study, the reliability map was computed in two cases where the

experimental design space is two-dimensional. However, maps of reliability may be easily

computed selecting different sets of training variables, possibly including more than two

experimental conditions.
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(a) (b)

Figure 4.8: Score of decision functions identified training the SVM with two different sets of exper-
imental conditions: (a) temperature and methanol fraction at the inlet; (b) temperature
and water fraction at the inlet. Solid black lines represent contours at I(ϕ) = 0.

4.3.3 Computational times and problem size

In the methanol oxidation case study, the identification of the model required the estimation

of Nθ = 2 kinetic parameters fitting N = 13 samples. The MBDM problem was formu-

lated as an MINLP with 2 continuous variables (i.e., the kinetic parameters) and 13 binary

variables (i.e., the binary switchers βi with i = 1, ...,N). The problem was solved using the

OAERAP solver (Adjiman et al., 1998) implemented in gPROMS and required 4.29 s.

In the ethanol dehydrogenation case study, the approximated model involved Nθ = 4

kinetic parameters. Its identification was performed online in a simulated experimental

campaign where the MBDM problem was solved with a number of samples ranging from

N = 8 to N = 16. Both MBDM and constrained experimental design problems were solved

using the SLSQP routine implemented in the package SciPy (Jones et al., 2001). The com-

putational times associated with the solution of the MBDM and constrained experimental

design problems are reported in Table 4.7. The CPU times associated with the solution of

the MBDM problem ranged from 29.32 s to 238.60 s. It is recognised that the CPU time

associated with the application of MBDM depends on the initial guess and the number of

optimisation variables. Furthermore, it is recognised that the employment of more advanced

optimisation routines for MINLP problems, e.g. the solver OAERAP (Adjiman et al., 1998)

or BARON (Sahinidis, 1996), may significantly improve the convergence rate of the optimi-

sation at the MBDM stage. The implementation in Python of a package for solving MBDM

problems using robust MINLP solvers will be the objective of future work.

In some cases, the design of a single experiment was performed, i.e., Nsp = 1. If the
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predicted information from a single experiment were not sufficient to achieve the desired

parameter precision, a design involving multiple experiments up to Nsp = 3 was performed

(see Section 4.3.1.3). The number of optimisation variables in the constrained experimen-

tal design problems is 3 ·Nsp. In fact, 3 experimental conditions (ethanol inlet flowrate,

pressure and temperature) are optimised independently for each designed experiment. The

design problems are solved using the SLSQP routine implemented in SciPy (Jones et al.,

2001). One can observe from Table 4.7 that the design of a single experiment with 3 opti-

misation variables required a CPU time between 21.73 s and 28.09 s; the design of Nsp = 2

experiments required between 65.95 s and 174.23 s. Only after the collection of sample 12,

a design with Nsp = 3 experiments was performed and required 489.32 s.

If the identification of the model is performed online, the time required to design the

following experiments should be substantially shorter than the sampling frequency allowed

in the experimental setup. The CPU time associated with the experimental design stage

may be reduced by designing a small number Nsp of experiments simultaneously and/or by

employing more efficient optimisation solvers.

Table 4.7: Ethanol dehydrogenation on copper. Computational times [s] associated with the solution
of the MBDM problem and the design of constrained experiments from the collection of
sample 8 to the collection of the last sample 16. Nsp indicates the number of experiments
that were simultaneously designed. N/A indicates that no experimental design was per-
formed because a lower number of designed experiments was found adequate to meet the
desired statistical quality of the parameter estimates.

Algorithm runtime [s]

Collected MBDM Constrained exp. design
samples problem Nsp = 1 Nsp = 2 Nsp = 3

8 66.78 25.95 163.68 N/A
9 92.12 24.86 97.59 N/A
10 103.29 25.45 N/A N/A
11 94.70 27.43 65.95 N/A
12 194.93 22.75 174.23 489.32
13 126.48 12.98 N/A N/A
14 67.15 28.09 N/A N/A
15 238.60 21.73 N/A N/A
16 29.32 N/A N/A N/A

4.4 Final remarks

The identification of an approximated model is a problem of multi-objective nature that

requires i) the estimation of the model parameters by fitting experimental data and ii) the
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computation of the domain of reliability associated with the estimated parameter values. A

framework for the identification of approximated models was presented in this Chapter.

If the model structure is approximated, one shall not expect the model to be accurate

across the entire range of observable experimental conditions. Data collected at conditions

where the model is inaccurate shall be treated as outliers and neglected for the purpose of

parameter estimation. In the proposed framework, model parameters are estimated using

a Model-Based Data Mining (MBDM) method, which is derived from robust regression

theory. MBDM produces two outputs: 1) it classifies the available samples in terms of low

or high model residuals compared with a user-defined accuracy tolerance c; 2) it returns

the maximum likelihood estimate associated with the fitting of only the samples with low

residuals (i.e., the samples that are in agreement with the model predictions).

The classified samples returned by MBDM are used to train a Support Vector Machine

(SVM) classifier with Gaussian kernel. The training of SVM results in the computation

of a decision function I, which quantifies the expected model accuracy across the space of

experimental conditions. If one is willing to enhance the precision on the model parameters

by fitting additional data, the research of optimal conditions through MBDoE methods shall

be bounded to regions of the design space space where I > 0, i.e., where the model is

expected to provide a good fitting.

Notice that the inclusion of additional samples in the dataset does not necessarily lead

to the computation of different parameter estimates (the new data may in fact be classified

as outliers by MBDM). However, the inclusion of new samples in the dataset always results

in an update of the model reliability map I. Since the SVM classifier in (4.2) is influenced

by all the available samples, its score will increase or decrease in the neighbourhood of the

conditions associated with the new sample depending on the labelling computed by MBDM.

The mapping of the design space provided by SVM is influenced by the choice of the

kernel function as well as the values of the associated hyperparameters (see Section 4.2.2).

Furthermore, an accurate SVM classification requires the availability of a relatively abun-

dant and distributed training set. Especially at the beginning of the experimental activity,

the number of samples may be limited and the classification may be poor. However, no-

tice that an inaccurate classification would only impact the efficiency of the method (i.e.,

the number of samples required to identify the model) and not the eventual outcome. An

initially inaccurate reliability map may lead to the collection of incompatible samples in re-
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gions of the design space that are classified as reliable. However, the accuracy of the SVM

classifier increases as the experimental activity proceeds and does not prevent the ultimate

identification of an approximated model that is accurate within its reliability domain.

The domain of reliability computed by SVM tends to approximate the range of condi-

tions in which residuals are within the range of c standard deviations of measurement noise.

In extreme cases, if the tolerance c is too small, the reliability domain may be extremely

narrow and the information available in the constrained design space may not be sufficient

for estimating precisely the parameters, i.e., the model may not be identifiable within its

reliability domain. In such cases, one may choose to relax the MBDM tolerance c and

expand the model reliability domain. Otherwise, if high model accuracy is a fundamental

requirement, one may prefer to test alternative model structures.

When the approximated model is identified, one may use the reliability map to check if

the model is appropriate for a specific application. As an example, the scientist may want to

employ the model to identify an optimal range of conditions to maximise the performance

of a process under study. This range of conditions will be denoted as the domain of appli-

cation of the model. If the domain of application lies within the domain of reliability, as in

Figure 4.9a, the model is expected to be reliable at the conditions of interest. In such case,

the approximated model may be adequate to optimise the process under study. Conversely,

if the domain of application is not contained within the domain of reliability, as in Figure

4.9b, the model shall not be trusted. In this scenario, one may employ an experimental

design approach where additional samples are designed in the domain of application with

the aim of improving the model performance in that region of the design space. This pos-

sible modelling path will be explored in future research activities. Alternatively, one may

conclude that the available model is inadequate for optimising the process and the model

structure should be modified embracing the available experimental evidence. In the fol-

lowing Chapter, a systematic approach is proposed to diagnose model misspecification and

inform the scientist on how an approximated model structure can be improved.
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(a) (b)

Figure 4.9: Graphical comparison between the domain of model reliability, i.e., the range of condi-
tions where the model is expected to be accurate, and the domain of application for the
model, i.e., the range of conditions where the scientist wants the model to be accurate.
(a) the domain of application is within the domain of reliability, i.e., the model is appro-
priate for the specific application. (b) the domain of application is not contained within
the domain of reliability, i.e., the model is not reliable in the conditions of interest and a
different model structure should be preferred.
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Chapter 5

Diagnosis of model misspecification

Part of this Chapter is adapted from the following articles:

Quaglio M., Fraga E. S. and Galvanin F., Statistical diagnosis of process-model mis-

match by means of the Lagrange Multipliers test, Proceedings of the 29th European Sympo-

sium on Computer Aided Process Engineering, 2019, pp. 679-684

Quaglio M., Fraga E. S., Galvanin F., A diagnostic procedure for improving the struc-

ture of approximated kinetic models, Computers & Chemical Engineering, 2019 (in press)

The author of this Thesis contributed to the above articles by developing the main

novel ideas, implementing the simulations, and writing a significant part of the text. Hence,

the author retains the right to include the articles in this Thesis since it is not published

commercially and the journals are referenced as the original source.

5.1 Introduction

Whenever a model is falsified by data, its mathematical structure should be modified em-

bracing the available experimental evidence. A framework based on maximum likelihood

inference is illustrated in this work for diagnosing model misspecification and improving the

structure of approximated models. In the proposed framework, statistical evidence provides

a measure to justify a modification of the model structure, namely the removal of irrelevant

parameters and/or the evolution of relevant parameters into state-dependent expressions. A

tailored Lagrange multipliers test (see Section 2.7) is proposed to detect which model pa-

rameters are expected to improve model fitting quality the most should they be evolved into

state-dependent quantities.
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5.2 Proposed methodology
A dataset Y = {y1, ...,yN} consisting of N samples of y is assumed to be available for mod-

elling the kinetic behaviour of a process under study. As in previous Chapters, the symbol

ϕ i denotes the set of experimental conditions adopted for the collection of the i-th sample

in Y . A framework for kinetic model building is introduced in Figure 5.1. The framework

begins with the construction of an approximated kinetic model. Recall the generic model

structure
f(ẋ,x,u, t,θ) = 0

ŷ = h(x,u, t,θ)
(2.1)

The identification of the model involves the estimation of a set of Nθ parameters θ.

It is assumed that the model satisfies the requirement for practical identifiability given the

available dataset Y (see Section 2.5). Hence, the model parameters θ can be uniquely

estimated by fitting the dataset Y .

The framework then involves the following sequential steps:

1. Parameter estimation. The model parameters are fitted to the available dataset using

a maximum likelihood approach (Bard, 1974).

2. Goodness-of-fit test. The adequacy of the model in representing the dataset is as-

sessed with a two-tailed test on the goodness-of-fit (Silvey, 1975). A two-tailed test

is employed to detect modeling errors either when model residuals are too small or

too large compared with the level of measurement noise present in the system. The

test has three possible outcomes:

(a) Passed. The model is not falsified and it is adequate for representing the dataset.

There is no evidence for justifying a change in the model structure.

(b) Failed for over-fitting. The model may involve parameters that are unnecessary

for representing the process. If over-fitting is detected, one shall proceed by

performing a Wald test (Wald, 1943) for parameter significance. Unnecessary

parameters are removed from the model structure and the procedure is repeated

from step 1.

(c) Failed for under-fitting. The model structure does not capture the underlying

dynamics of the physical system. A tailored Lagrange multipliers test (Silvey,

1959) is proposed in this work as a tool for measuring the statistical evidence to
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Figure 5.1: Proposed framework for kinetic model building. In the proposed approach, statistical
tests are performed to diagnose model misspecification and to support the scientist in
the improvement of misspecified model structures.

disprove the hypothesis that a given parameter is a state-independent quantity.

The model structure is evolved by substituting the parameter (or parameters)

with highest associated evidence with an opportune function of the states and

the procedure is repeated from step 1.

The illustrated procedure is further detailed in the following subsections assuming that

the model is falsified for under-fitting. Particular emphasis is given to the description of

the Lagrange multipliers test, which is proposed to diagnose model descriptive limits and

inform on which parameters should be considered for evolution into state-dependent ex-

pressions. The model evolution step in the procedure will be discussed in Chapter 6.

5.2.1 Parameter estimation

Model parameters θ are estimated with a maximum likelihood approach (see Section 2.4.3).

Recall, the log-likelihood function L is

L (Y |θ) =−N
2
[Ny ln(2π)+ ln(det(Σy))]

− 1
2

N

∑
i=1

[yi− ŷi(θ1, ...,θNθ
)]T Σ

−1
y [yi− ŷi(θ1, ...,θNθ

)]
(2.7)

The maximum likelihood estimate θ̂ = [θ̂1, ..., θ̂Nθ
]T is computed by maximizing the un-

constrained log-likelihood function

θ̂= argmax
θ

L (Y |θ) (2.8)
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The maximum likelihood estimate satisfies the unconstrained likelihood equations

∇L (Y |θ̂) = 0 (2.9)

5.2.2 Goodness-of-fit test

Once the model parameters are fitted to the available dataset, the adequacy of the model

is checked with a goodness-of-fit test (see Section 2.4.4.1) based on a two-tailed χ2 test.

Under the hypothesis of the proposed model being exact, the sum of normalized squared

residuals χ2
Y is distributed as a χ2 distribution with degree of freedom N ·Ny−Nθ

χ
2
Y =

N

∑
i=1

[yi− ŷi(θ̂)]
T

Σ
−1
y [yi− ŷi(θ̂)]∼ χ

2
N·Ny−Nθ

(2.12)

In this work, a two-tailed χ2 test with significance α = 90% is used. A significance of

90% in a two-tailed test represents a typical value assumed in statistical inference (Devore,

2010). If the statistic χ2
Y lies between the 5% and the 95% percentiles of the χ2 distribution,

the model is considered as an adequate representation of the physical system. Whenever χ2
Y

is below the 5% percentile, the model is falsified for over-fitting. If χ2
Y is above the 95%

percentile, the model is falsified for under-fitting.

5.2.3 Lagrange multipliers test

When the model is under-fitting, a significant discrepancy between experimental observa-

tions and model predictions is observed. It is assumed that a reduction of the discrepancy

(and eventually its elimination to the limit of measurement noise) can be achieved by evolv-

ing a certain model parameter into an opportune function of the state variables. A statistical

test is proposed to diagnose model misspecification by challenging the hypothesis that a

given parameter θi is a state-independent constant. The proposed test aims at diagnos-

ing whether it is appropriate to assume a specific model component as a free parameter or

whether a significant improvement in the model fitting quality is expected should that pa-

rameter be replaced with a function of the state variables. Without loss of generality, the test

is detailed assuming that the parameter under diagnosis is the first parameter, i.e., θi = θ1.

The competing hypotheses under test are:

Null hypothesis H0. θ1 and θ j ∀ j 6= 1 are all state-independent constants.

Alternative hypothesis Ha. θ1 is a state-dependent function and θ j ∀ j 6= 1 are state-
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independent constants.

The parameter estimation problem is formulated under the assumptions that θ1 is a function

g of the experimental conditions, i.e., θ1 = g(ϕ), and θ j ∀ j 6= 1 are fixed coefficients.

One shall notice that no assumption on the functional form of g is required to perform

the test. The N × 1 parameter array θd (subscript d stands for diagnosis) is defined as

θd = [θ1,1, ...,θ1,N ]
T where the i-th element in the array represents the value of g at the

experimental conditions ϕ i, i.e., θ1,i = g(ϕ i) ∀ i = 1, ...,N. The log-likelihood function Ld

is constructed under parametrization θd

Ld(Y |θd) =−
N
2
[Ny ln(2π)+ ln(det(Σy))]

− 1
2

N

∑
i=1

[yi− ŷi(θ1,i, θ̂2, ..., θ̂Nθ
)]T Σ

−1
y [yi− ŷi(θ1,i, θ̂2, ..., θ̂Nθ

)]
(5.1)

In (5.1), the i-th element in the sum is a function of parameter θ1,i only. The other

model parameters are set equal to their maximum likelihood value and treated as fixed

constants in the test, i.e., θ j = θ̂ j ∀ j 6= 1. In words, it is assumed that the parameter under

diagnosis does not interact with the other model parameters.

The set of N−1 functions s is defined as

s = [θ1,1−θ1,2, ...,θ1,N−1−θ1,N ]
T (5.2)

The null and alternative hypotheses are then formalised mathematically as the pres-

ence/absence of an N−1 set of constraints for the functions s as follows

H0 : s = 0

Ha : s 6= 0
(5.3)

Notice that the imposition of constraints s = 0 is equivalent to assuming that g is a constant

function that is independent from the experimental conditions ϕ . The constrained maxi-

mum likelihood estimate θ̂d = [θ̂1,1, ..., θ̂1,N ]
T is obtained by maximizing the log-likelihood

function Ld under constraints s = 0.

θ̂d = argmax
θd

Ld(Y |θd)

s.t. s = 0
(5.4)
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Under constraints s = 0 all the elements in θ̂d are equal to the unconstrained maximum

likelihood estimate for parameter θ1, i.e., θ̂1,i = θ̂1 ∀ i = 1, ...,N. The constrained maximum

likelihood estimate θ̂d also satisfies the set of constrained maximum likelihood equations

∇Ld(Y |θ̂d)+∇sα̂= 0

s = 0
(5.5)

where α̂ is the N− 1× 1 array of Lagrange multipliers associated to the constraints. As

demonstrated by Aitchison and Silvey (1958) and Silvey (1959), under the null hypothesis

being true, the Lagrange multipliers statistic ξd(θ1) is asymptotically distributed as a χ2

distribution with degree of freedom equal to the number of constraints (i.e., N−1) as shown

in the following equation

ξd(θ1) = α̂
T

∇sT H−1
d ∇sα̂∼ χ

2
N−1 (5.6)

In (5.6), Hd represents the N×N expected Fisher information matrix for the model under

parametrization θd , which is well approximated by the following expression under null

hypothesis conditions

Hd =
N

∑
i=1

∇ŷi(θ̂1,i)Σ
−1
y ∇ŷi(θ̂1,i)

T (5.7)

Notice that the solution of the constrained maximum likelihood equations (5.5) is not

required to compute the statistic ξd . In fact, ξd may be directly computed as a function of

the log-likelihood gradient evaluated setting θd = θ̂d as follows

ξd = ∇Ld(Y |θ̂d)
T H−1

d ∇Ld(Y |θ̂d)∼ χ
2
N−1 (5.8)

and does not require the evaluation of the Lagrange multipliers α̂ (Rao, 1948). In this work,

the Lagrange multipliers statistic is computed according to the expression in (5.8).

The illustrated approach for constructing the statistic ξd(θ1), associated with parameter

θ1, is repeated for all model parameters obtaining the set of statistics ξd(θi) ∀ i= 1, ...,Nθ . A

measure of model misspecification, namely a Model Modification Index (MMI), is defined
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as

MMI(θi) =
ξd(θi)

χ2
N−1(95%)

∀ i = 1, ...,Nθ (5.9)

The MMI represents a ratio between a Lagrange multipliers statistic and the 95% per-

centile of the χ2 distribution with degree of freedom N−1. A MMI larger than 1 indicates

that the null hypothesis is falsified by a χ2 test with 95% of significance. If MMI(θi) > 1,

one shall expect a significant improvement in the model fitting quality if parameter θi were

evolved into a state-dependent function. Conversely, if MMI(θi) < 1 there is no statistical

evidence for justifying the evolution of parameter θi into a function of the states. The MMI

quantifies the expected rate of increase in the log-likelihood function associated with an

infinitesimal relaxation of the constraint s = 0. Hence, if the null hypothesis is falsified for

more than one parameter, one shall expect a more significant improvement in the model fit-

ting quality if the parameters with the highest MMI were evolved. A MMI-based diagnosis

of model misspecification may be performed by using a radar chart as in Figure 5.2. In the

example, the model involves Nθ = 5 parameters. The MMIs associated with parameters θ1,

θ2 and θ4 are below 1, i.e., there is no evidence to justify the evolution of these parameters

into functions. MMI(θ3) and MMI(θ5) are above 1. Hence, the analysis suggests that a sig-

nificant improvement of the fitting may be achieved by evolving either θ3 or θ5 into some

function. Nonetheless, since MMI(θ3)> MMI(θ5)> 1, a more significant improvement in

the fitting is expected from the evolution of θ3, compared with θ5.

The MMI formulated in (5.9) does not consider the possible interaction between the

parameter under diagnosis and the other model parameters. It is recognised that if param-

eter interaction is considered, the computation of the MMI may not be possible unless an

appropriate experimental design is adopted for the collection of the dataset Y . This is due

to the possible singularity of the information matrix, which must be invertible to compute

the Lagrange multipliers statistic. In this work, the study of experimental design criteria for

MMI-based model misspecification diagnosis will not be considered. Nonetheless, a multi-

variate MMI that considers the effect of parameter interaction is formulated in Appendix H

where necessary conditions for the application of a multivariate MMI-based diagnosis are

also derived.
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Figure 5.2: A possible approach for visualising the MMIs is through a radar chart. In this example,
the model involves 5 parameters under diagnosis. The MMI associated with parameter
θ3 and θ5 are above 1. Hence, the analysis suggests that a significant improvement in
the model fitting quality may be achieved if either θ3 or θ5 were evolved into some
opportune state-dependent function.

5.3 Case studies

In this section, two simulated case studies are presented to demonstrate the Lagrange mul-

tipliers test proposed in Section 5.2.3 for the diagnosis of model misspecification. In case

study 1 (Section 5.3.1), the test is applied to the diagnosis of under-fitting in an approx-

imated model of baker’s yeast growth (Asprey and Macchietto, 2000). In case study 2

(Section 5.3.2), the MMI-based approach is employed to diagnose under-fitting in an ap-

proximated model of glucose-insulin interaction (Bergman et al., 1981). In case study 2,

the sensitivity of the MMIs to a change in the experimental design and in the system noise

is assessed. The numerical results presented in this section were obtained with Python 3.5

(Python Core Team, 2018).
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5.3.1 Case study 1: baker’s yeast growth model

5.3.1.1 System model

The considered system is a cultivation of yeast in a fed-batch bioreactor. The system kinetics

are assumed to be described by the following set of differential and algebraic equations:

dx1

dt
= (r−u1−θ4)x1 (5.10)

dx2

dt
=−rx1

θ3
+u1(u2− x2) (5.11)

r =
θ1x2

θ2x1 + x2
(5.12)

where x1(t) [g L−1] is the yeast concentration and x2(t) [g L−1] is the substrate con-

centration. The kinetic behaviour of the system is expressed as a function of two sys-

tem inputs, namely the dilution factor u1 [h−1] and the substrate concentration in the

feed u2 [g L−1]. In the system model, the yeast growth rate r obeys a Contois-type ki-

netic law. The system model involves a set of Nθ = 4 parameters θ whose values are

θ∗ = [0.310,0.180,0.550,0.050]T .

5.3.1.2 Approximated model

It is assumed that the scientist does not know the functional form of the system model and

proposes an approximated model structure. The approximated model includes equations

(5.10) and (5.11) with a Monod-type kinetic law

dx1

dt
= (r−u1−θ4)x1 (5.10)

dx2

dt
=−rx1

θ3
+u1(u2− x2) (5.11)

r =
θ1x2

θ2 + x2
(5.13)

The approximated model and the system model differ in the functional form of the rate

expression. The element θ2x1 appearing at the denominator in (5.12) is modeled as a state

independent parameter, i.e. θ2, in the denominator of the approximated rate law (5.13).

The identification of the approximated model requires the estimation of a set of Nθ = 4

parameters θ.
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5.3.1.3 Objective and Methods

The objective in this case study is to diagnose model misspecification in the approximated

model of yeast growth presented in Section 5.3.1.2 using an approach based on the compu-

tation of the MMIs. It is assumed that an array y = [x1,x2]
T of system states can be sampled

in the simulated experiments. Samples of y are assumed to be corrupted by uncorrelated

Gaussian measurement noise with covariance Σy = 2.5 ·10−3I.

A full factorial experimental design with four dynamic experiments is assumed with

two levels for the dilution factor, i.e. u1 = {0.05,0.20} h−1, and two levels for the substrate

concentration in the feed, i.e. u2 = {5.0,35.0} g L−1. In each experiment, 7 samples of

y are collected at sampling times ts = {3.0,6.0,9.0,12.0,15.0,18.0,21.0} h. The initial

conditions for the differential variables are the same in all the experiments, i.e., x1(0) = 1.0

g L−1 and x2(0) = 0.01 g L−1. A dataset Y is generated in-silico by integrating the system

model presented in Section 5.3.1.1 and adding random Gaussian noise with covariance Σy.

The complete dataset is reported in Appendix F.

The dataset is fitted both with the system model and with the approximated model.

The MMIs are then computed for both model structures. The procedure is performed on

both models to assess the behaviour of the MMIs both in the presence of appropriate and

inappropriate modelling assumptions.

5.3.1.4 Results and discussion

When the system model is used to fit the dataset, the sum of squared residuals is χ2
Y = 61.32,

which lies within the acceptable range assumed for the two-tailed goodness-of-fit test with

90% of significance, i.e. 36.44 < χ2
Y < 69.83. The test suggests that there is no evidence

for evolving the model structure. The MMIs associated with the system model are reported

in Table 5.1 and plotted in the radar chart in Figure 5.3a for visualisation purposes. All the

Table 5.1: Baker’s yeast system. Goodness-of-fit test and model modification index for all model
parameters. Results are presented both for the system model and for the approximated
model structure.

Model Goodness-of-fit test MMIs associated to

structure χ2(5%) χ2
Y χ2(95%) Outcome [θ1,θ2,θ3,θ4]

System
36.44 61.32 69.83 Passed [0.67, 0.74, 0.77, 0.77]model

Approximated
36.44 2210.37 69.83

Failed for
[16.98, 47.08, 11.90, 18.58]model under-fitting
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MMIs associated with the parameters in the system model are below 1. Hence, there is no

evidence to justify the evolution of any parameter in the system model.

The parameter set involved in the approximated model is estimated by fitting the

dataset. As one can see from Table 5.1, the approximated model is falsified by the goodness-

of-fit test. More specifically, a sum of squared residuals χ2
Y = 2210.37 larger than the χ2

value at 95% of significance highlights the presence of significant under-fitting. The approx-

imated model should be modified by replacing some parameter with an opportune function

of the state-variables. The MMIs associated with the model parameters are plotted in Figure

5.3b. The MMI is larger than 1 for all model parameters. Hence, a significant improvement

of the fitting quality is expected if any of the model parameters were evolved. The highest

MMI is associated to θ2, i.e. MMI(θ2) = 47.08. The scientist may then focus on choosing

an opportune state-dependent function to replace parameter θ2 in the approximated model.

In practice, the exact model structure is unknown, nonetheless, in this simulated case study

one can appreciate that it is possible to make the approximated model indistinguishable

from the system model by replacing parameter θ2 with the functional form θ2x1. Hence,

the MMI-based analysis correctly highlights that a major improvement on the model fitting

may be achieved by evolving θ2.

(a) (b)

Figure 5.3: Baker’s yeast system. Model Modification Index associated with the model parameters
of (a) the system model and (b) the approximated model.
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5.3.2 Case study 2: glucose-insulin interaction model

5.3.2.1 System model

The physical system of interest in this case study is the glucose-insulin regulatory system

of a healthy test subject with basal glucose concentration Gb = 93.0 mg dL−1. The system

dynamics are described by the following set of equations (Bergman et al., 1981)

dG
dt

=−θ1(G−Gb)−θ2XG (5.14)

dX
dt

=−θ3X + I (5.15)

IDR = max[0, θ4(G−θ5)t] (5.16)

dI
dt

= IDR−θ6I (5.17)

where G(t) [mg dL−1] is the plasma glucose concentration, X(t) [µU min mL−1] repre-

sents the insulin action term associated with the remote insulin receptor (Bergman et al.,

1981, 1979; Zeleznik and Roth, 1978; Insel et al., 1975), I(t) [µU mL−1] is the plasma

insulin concentration and IDR represents the insulin delivery rate as a function of glu-

cose concentration in plasma (Toffolo et al., 1980). The system model involves a set θ

of Nθ = 6 parameters. The values of the system parameters associated with the test subject

are θ∗ = [2.96 ·10−2,6.51 ·10−6,1.86 ·10−2,5.36 ·10−3,9.09 ·101,2.3 ·10−1]T .

5.3.2.2 Approximated model

The physiologist proposes an approximated model for the system which involves the fol-

lowing set of differential and algebraic equations (Bergman et al., 1981)

dG
dt

=−θ1(G−Gb)−θ2X (5.18)

dX
dt

=−θ3X + I (5.15)

IDR = max[0, θ4(G−θ5)t] (5.16)

dI
dt

= IDR−θ6I (5.17)

The system model and the approximated model differ in the functional form of equa-

tions (5.14) and (5.18), which describe the glucose concentration in plasma. The nonlinear

term −θ2XG appearing in the system equation (5.14) is modelled as a linear term, i.e.
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−θ2X , in the approximated model equation (5.18). The approximated model structure in-

volves a set of Nθ = 6 kinetic parameters θ.

5.3.2.3 Objective and Methods

It is assumed that G, I and X may be sampled from the patient during an intravenous glu-

cose tolerance test (IVGTT). The protocol assumed for the IVGTT is the same adopted by

Bergman et al. (1981), where 23 samples are collected from the test subject in the course of

a 182.0 min assay.

The model identification approach proposed in Section 5.2 is applied to diagnose

model misspecification in the approximated model structure presented in Section 5.3.2.2.

Four different cases are considered to assess the sensitivity of the MMIs to a change in the

experimental design (i.e., different sets of measured state variables and different initial con-

ditions of the test subject) and to a change in the level of measurement noise in the system.

In all the illustrated cases, the dataset is generated in-silico by integrating the system model

described in Section 5.3.2.1 and adding random measurement noise to the measured states.

The simulated datasets analysed in this case study are reported in Appendix G. The cases

are summarized in Table 5.2 and further described in the following list.

Case A. A single IVGTT is performed at initial conditions G(0) = 298.0 mg dL−1, I(0) =

333.0 µU mL−1, X(0) = 0.0 µU min mL−1. The sample includes measurements

for G and I, i.e. y = [G, I]T . A low level of uncorrelated, Gaussian system noise is

assumed with standard deviations 1.0 mg dL−1 for measurements of G and 1.5 µU

mL−1 for measurements of I. The dataset is reported in Table G.1 (only measured

values for G and I are considered in this case).

Case B. Same as Case A, but measuring also the insulin action X , i.e. y = [G, I,X ]T . Mea-

surement noise for X is characterized by a standard deviation of 10.0 µU min mL−1.

The dataset is reported in Table G.1.

Table 5.2: Glucose-Insulin interaction system. Summary of cases considered in the study.

Case IVGTT Measured Measurement
ID number variables noise

A 1 G, I low
B 1 G, I, X low
C 2 G, I low
D 1 G, I high
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Case C. Same as Case A, but with an additional IVGTT performed at initial conditions

G(0) = 276.0 mg dL−1, I(0) = 69.0 µU mL−1, X(0) = 0.0 µU min mL−1. Data

associated with the additional IVGTT are reported in Table G.2.

Case D. Same as Case A, but assuming high system noise with standard deviations 5.0 mg

dL−1 for G and 7.5 µU mL−1 for I. The dataset considered in this case is reported in

Table G.3.

For all the cases, the parameters of both system model and approximated model are

fitted to the data. The goodness-of-fit test is then performed and the MMIs are computed

for both the system and the approximated model structure. As in case study 1, the MMIs are

evaluated for both models to assess their behaviour in the presence of both an appropriate

and an inappropriate set of modelling hypotheses.

Table 5.3: Glucose-insulin interaction system. Goodness-of-fit test and model modification index
for all model parameters. Results are presented both for the system model and for the
approximated model structure in the different considered cases.

Case Model Goodness-of-fit test MMIs associated to

ID structure χ2(5%) χ2
Y χ2(95%) Outcome [θ1,θ2,θ3,θ4,θ5,θ6]

A

System
26.51 42.05 55.57 Passed [0.61, 0.61, 0.61, 0.70, 0.66, 0.80]model

Approximated
26.51 97.8 55.57

Failed for
[2.20, 2.19, 2.20, 1.18, 1.17, 1.40]model under-fitting

B

System
45.57 64.34 82.57 Passed [0.69, 0.59, 0.64, 0.80, 0.79, 0.71]model

Approximated
45.74 128.75 82.57

Failed for
[2.17, 2.15, 0.68, 0.85, 0.86, 0.76]model under-fitting

C

System
65.62 85.99 108.64 Passed [0.81, 0.80, 0.79, 0.69, 0.69, 0.74]model

Approximated
65.62 334.71 108.64

Failed for
[4.23, 4.27, 4.27, 2.39, 1.91, 2.63]model under-fitting

D

System
26.51 36.96 55.57 Passed [0.45, 0.45, 0.46, 0.72, 0.65, 0.64]model

Approximated
26.51 49.17 55.57 Passed [0.81, 0.83, 0.84, 0.77, 0.73, 0.91]model

5.3.2.4 Results and discussion

Numerical results for the goodness-of-fit test and computed MMIs are reported in Table 5.3.

As one can see from Table 5.3, in all cases, the system model passes the goodness-of-fit test

and its associated MMIs are always below 1, suggesting that there is no evidence to justify

an evolution of the model structure. The approximated model is falsified for under-fitting in

Cases A-C. In Case D, the approximated model is not falsified due to an excessive level of
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system noise. The MMIs associated with the system model are plotted in the radar charts in

Figure 5.4 (dotted lines) together with the MMIs associated with the approximated model

(solid lines) for a visual comparison.

The MMIs associated with the approximated model in Case A are plotted in Figure 5.4a

(solid line). As one can see from Figure 5.4a, all the MMIs associated with the approximated

model are higher than 1. The MMIs associated with θ1, θ2 and θ3 are the largest with a value

around 2.20. The analysis suggests that the most significant improvement in the model

fitting quality may be achieved by evolving any of these parameters. In practice there is

uncertainty on how these parameters could be evolved. Nonetheless, since the system model

is known in this case study, it is possible show that an opportune evolution of parameters θ1,

θ2 or θ3 in the approximated model can make it indistinguishable from the system model

structure. The discrepancy between approximated and system model structures vanishes if

parameter θ1 were evolved into θ1 +θ2X(G−1)/(G−Gb) or θ2 were evolved into θ2G. It

is also possible to make the approximated model indistinguishable from the system model

by evolving θ3. In fact, by evolving θ3, it is possible to modify the behaviour of variable X

in order to compensate for the absence of state G in the addend −θ2X in (5.18).

A change in equation (5.15) has the potential of improving the fitting quality for vari-

ables G and I without causing a degradation in the fitting quality for X . In fact, variable X

is not observed in Case A. The observed under-fitting vanishes if parameter θ3 evolves into

the function

θ1 +θ3−
GI
X

+
I
X
− θ1Gb

G
+

θ2X
G

(5.19)

In Case B, measurements of X are included in the log-likelihood function. The MMIs

associated with the approximated model in Case B are plotted in Figure 5.4b (solid line).

In Case B, only the MMIs of parameters θ1 and θ2 are above 1. The Lagrange multipliers

test does not suggest the evolution of parameters θ3−θ6. Parameters θ3−θ6 are involved

in the correctly specified equations (5.15) and (5.17), and their evolution is not expected to

improve the fitting quality.

In Case C, the inclusion in the log-likelihood function of an additional IVGTT causes

an increase of all MMIs with respect to Case A. The MMIs associated with the approximated

kinetic model in Case C are plotted in Figure 5.4c (solid line). As in Case A, also in

Case C the state X is not observed and the Lagrange multipliers test suggests that a major
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(a) (b)

(c) (d)

Figure 5.4: Glucose-Insulin interaction system. Model Modification Indexes for all model parame-
ters. (a) Case A: One performed IVGTT; G, I observed variables; low system noise. (b)
Case B: One performed IVGTT; G, I, X observed variables; low system noise. (c) Case
C: Two performed IVGTTs; G, I observed variables; low system noise. (d) Case D: One
performed IVGTT; G, I observed variables; high system noise. For all Cases, MMIs are
plotted for the approximated model (solid line) and for the system model (dotted line).
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model improvement may be achieved by evolving parameter θ1, θ2 or θ3. A less significant

improvement may be achieved by evolving parameters θ4, θ5 or θ6. As in Case A, a change

in the correctly specified equations (5.16) and (5.17) may benefit the fitting quality for

variable G, but it would cause a degradation in the fitting quality of I.

In Case D, the approximated model does not fail the goodness-of-fit test. The high

system noise in Case D prevents the falsification of the modelling hypothesis and there is

no evidence to modify the model structure. The MMIs in Case D, plotted in Figure 5.4d

(solid line) are all below 1, suggesting that no parameter should be evolved.

5.3.3 Computational times and problem size

Quantitative information on the size of the model identification problems considered in the

case studies is reported in Table 5.4 together with a min-max algorithm runtime range asso-

ciated with the computation of the MMIs. In the baker’s yeast case study, the approximated

model consisted of 2 ODEs involving Nθ = 4 parameters. The dataset Y consisted of N = 28

samples where each sample involved Ny = 2 measured quantities, namely the biomass con-

centration x1 and the substrate concentration x2. The computation of the MMIs associated

with the approximated model required only few seconds of CPU time and never more than

26.0 s.

In the case study on the glucose-insulin regulatory system, the approximated model

structure involved 3 ODEs and included Nθ = 6 parameters. Furthermore, as one can see

in Section 5.3.1.2, a discontinuity associated with the IDR dynamics was present in the

approximated model structure. The dataset Y in Case A consisted of N = 23 samples, each

involving Ny = 2 measured quantities, namely the glucose concentration in plasma G and

the insulin concentration in plasma I. The computation of the MMIs required around 25.0 s

per parameter as shown in Table 5.4.

The computational time associated with the evaluation of the MMIs is not significantly

different in the two case studies despite the difference in the number of model equations

and model parameters. In fact, it is recognised that the computational time is primarily

influenced by the number of samples N in the dataset Y . The computation of the MMIs

requires the evaluation of the N×1 gradient of the log-likelihood function Ld(Y |θ̂d), and

the computation and inversion of the N×N Fisher information matrix Hd . However, it is

also observed that the amount of samples available in kinetic modelling studies is typically

small. It is therefore expected that in most practical cases it will be possible to compute the
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MMIs with a limited employment of computational resources.

Table 5.4: Problem size and algorithm runtime [s] for case study 1, i.e., the Baker’s yeast system,
and case study 2, i.e., the glucose-insulin regulatory system. The number of ODEs,
parameters Nθ and samples N considered in the respective case studies are reported. The
runtime is given in the form of a min-max range.

Case Problem size Runtime for

study ODEs Parameters Nθ Samples N MMI evaluation [s]

1 2 4 28 22.61 - 25.56
2 (Case A) 3 6 23 24.90 - 25.01

5.4 Final remarks

A diagnostic procedure based on maximum likelihood inference is illustrated in this Chapter

to support scientist in the improvement of approximated kinetic model structures. In the

proposed model building framework, modifications in the model structure are justified and

supported by experimental evidence. When the model is over-fitting, model parameters that

are irrelevant for representing the data are removed from the model structure. A Wald test

is used to determine which model parameters one shall omit from the model. When the

model is in conditions of under-fitting, relevant model parameters are evolved into more

state-dependent functions. A tailored Lagrange multipliers test is proposed in this work

to determine which model parameters one shall consider to substitute with state-dependent

expressions.

The proposed Lagrange multipliers test does not require the definition of alternative

model structures or superstructures. In fact, the test aims at disproving the null hypothesis

that a given model parameter under diagnosis is a state-independent constant. A model

modification index (MMI) is introduced as a function of a Lagrange multipliers statistic.

Parameters with the highest MMI are those that are expected to improve the model fitting

quality the most if they were replaced with state-dependent functions. When the MMI is

below unity there is scarce evidence for justifying an alteration of the parameter. The test

was demonstrated in a number of simulated cases with a baker’s yeast growth model and

with a model of glucose-insulin interaction. It is shown that, in the presence of moderate

system noise, the MMIs correctly highlight the parameters that are primarily associated with

model misspecification. When the system noise increases, the falsification of an incorrect

modelling hypothesis for under-fitting becomes increasingly challenging and a decrease in
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the MMIs is observed. When the system noise is excessive, the falsification of an incorrectly

specified model structure with a finite dataset may be impractical and the computed MMIs

decrease below unity, suggesting that there is no evidence to justify the evolution.

The MMI represents a scalar measure of model misspecification that accounts for sys-

tem measurement noise, model residuals and parameter sensitivities. Nonetheless, the MMI

formulated in this Chapter neglects the interaction between the parameter under diagnosis

and the other free model parameters. A multivariate MMI that considers parameter interac-

tion is formulated in Appendix H, where it is shown that a multivariate MMI-based analysis

is possible only if an appropriate experimental design is adopted. In fact, in the presence of

an inappropriate experimental design, the Fisher information matrix may be non-invertible

and it may not be possible to compute the Lagrange multipliers statistic considering pa-

rameter interaction. Future work shall focus on the study of sufficient conditions for an

experimental design to advocate a multivariate MMI-based diagnosis of model misspecifi-

cation.

In the next Chapter, additional tests will be developed to support the scientist in the

selection of appropriate functional forms to replace critical model parameters in under-

fitting models.
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Chapter 6

Evolution of kinetic model structures

Part of this Chapter is adapted from the following articles:

Quaglio M., Fraga E. S., Galvanin F., A diagnostic procedure for improving the struc-

ture of approximated kinetic models, Computers & Chemical Engineering, 2019 (in press)

Quaglio M., Fraga E. S., Galvanin F., The evolution of approximated kinetic model

structures, Proceedings of the 2019 AIChE Annual Meeting, 2019

The author of this Thesis contributed to the above articles by developing the main

novel ideas, implementing the simulations, and writing a significant part of the text. Hence,

the author retains the right to include the articles in this Thesis since it is not published

commercially and the journals are referenced as the original source.

6.1 Introduction

A statistical tool for diagnosing model misspecification in under-fitting models was pro-

posed in Chapter 5. A Model Modification Index (MMI) was defined as a function of a

Lagrange multipliers statistic to detect which model parameters are likely to hide state de-

pendencies. Whenever a high MMI is computed for a given model parameter, a significant

improvement in the model fitting quality is expected should that parameter be replaced

with an opportune function of the state variables. In this Chapter, an Effect Relevance In-

dex (ERI) is introduced as a computationally cheap heuristic to quantify the relevance of a

candidate effect for the evolution of model parameters into state-dependent functions. An

analysis on the ERIs may inform the scientist on which effects are the most important to

consider in the definition of state-dependent expressions to evolve model parameters and

improve the model fitting performance.

147



Figure 6.1: Proposed framework for kinetic model building. In the proposed approach, statistical
tests are performed to diagnose model misspecification and to support the scientist in the
improvement of misspecified model structures. Particular emphasis in the framework is
given to the improvement of a model structure when under-fitting is detected.

6.2 Proposed methodology

A setup is available for studying the dynamics of a physical system of interest. It is assumed

that a dataset Y in the form (2.6) is available to identify a kinetic model of the system. The

model building approach illustrated in Section 5.2 is employed for the construction and

identification of a kinetic model. The framework is re-proposed in Figure 6.1, where the

boldface blocks represent the main focus in the present Chapter. The scientist proposes

an approximated model in the usual form (2.1). This model represents the initial model

structure and will be denoted as M0.

M0 :

f(ẋ,x,u, t,θ) = 0

ŷ = h(x,u, t,θ)
(2.1)

The maximum likelihood estimate for the model parameters θ̂ = [θ̂1, ..., θ̂Nθ
]T is ob-

tained by fitting the dataset Y using a maximum likelihood approach. It is assumed that

the model is falsified for under-fitting by the two-tailed goodness-of-fit test. The procedure

then involves the following sequential steps:

1. Diagnosis of model misspecification. At this stage, the scientist performs a diagno-

sis of model misspecification based on the computation of the Model Modification

Indexes (MMIs) for all the model parameters (see Section 5.2.3). Parameters with

the highest MMIs are those that are expected to improve the model fitting quality the

most should they be evolved into state-dependent functions. The scientist selects the
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parameters with the highest MMI for evolution into state-dependent functions.

2. Identification of relevant effects. The scientist may not know a-priori which func-

tional forms should be chosen to evolve the parameters with the highest MMI. The

scientist shall proceed by proposing a set of candidate effects that may be relevant

for the construction of such functional forms. An Effect Relevance Index (ERI) is

then computed from a Lagrange multipliers statistic (see Section 2.7) to quantify the

relevance of each effect on the candidate parameters selected for evolution. The com-

putation of the ERI requires the inversion of the expected Fisher information matrix

in an extended parameter space. Hence, the ERI for a given effect is evaluated only

if practical model identifiability requirements are respected in the presence of the ex-

tended parametrisation (for more information on practical identifiability see Section

2.5).

3. Model evolution. The model structure is evolved by replacing the parameters selected

for evolution with opportune functions of the effects with the highest ERI.

The aforementioned steps represent an iteration in the proposed model building proce-

dure for improving the structure of under-fitting models. These main stages will be further

detailed in the following subsections. Particular emphasis will be given to the approach

proposed to compute the ERIs. The use of the ERIs will also be demonstrated in simulated

case studies highlighting the strengths of the approach and discussing its limitations.

6.2.1 Diagnosis of model misspecification

Model misspecification is diagnosed by computing the Model Modification Index (MMI)

for all the model parameters in the set θ. A detailed discussion on the computation and

application of the MMIs for model diagnosis is given in Chapter 5. If the MMI is above 1 for

some model parameter, a significant improvement in the model fitting quality is expected,

should that parameter be evolved into a state-dependent function. If the MMI is higher than

1 for multiple parameters, one shall expect a more significant improvement in the model

fitting quality if the parameters with the highest MMI were evolved. A MMI-based analysis

can inform the scientist on which parameters should be considered for revision and which

might be left unaltered.
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6.2.2 Identification of relevant effects

For illustrative purposes, it is assumed that the highest MMI is computed for parameter θ1.

The scientist chooses to improve the model structure by replacing parameter θ1 with an

opportune state-dependent function. It is not known a-priori how parameter θ1 should be

evolved. Nonetheless, the scientist identifies a set of Ne potentially relevant effects that may

be considered in the construction of a function for replacing θ1. A candidate effect may be a

state variable or a combination of state variables (Box and Lucas, 1959). The set of possible

effects is denoted as E = {η1, ...,ηNe}, where ηi denotes the i-th effect.

A statistical test is formulated to measure the relevance of the i-th postulated effect for

the evolution of parameter θ1 without the necessity of re-estimating the model parameters.

Without loss of generality, the test is formulated to quantify the relevance of effect η1 on

parameter θ1. The original parameter set is extended by adding an extra parameter θNθ+1.

The new parameter set is denoted as θe = [θ1, ...,θNθ
,θNθ+1]

T (the subscript e stands for

effect). The model structure Me(M0 : θ1 → η1) is constructed from the original structure

M0 by replacing parameter θ1 with the first-order response surface θ1 + θNθ+1 ·η1. The

construction of the model structure Me is illustrated with an example in Figure 6.2. All the

model structures Me(M0 : θi→ η j) ∀ i, j are equivalent to the original model structure M0

under the constraint θNθ+1 = 0.

Figure 6.2: Illustrative example of how a model structure Me is constructed from the original model
structure M0. In this example, the model structure Me is constructed to assess the rele-
vance of effect η1 for the evolution of parameter θ1 into a function. For this purpose,
the model structure Me is constructed from M0 by replacing parameter θ1 with the first
order response surface θ1 +θ5 ·η1.

150



A Lagrange multipliers test is formulated on Me(M0 : θ1 → η1) to assess the signifi-

cance of effect η1 on parameter θ1. The null and alternative hypothesis considered in the

test are formalised mathematically as the presence/absence of a constraint on parameter

θNθ+1 as follows

H0 : θNθ+1 = 0

Ha : θNθ+1 6= 0
(6.1)

The log-likelihood function is constructed for the model structure Me with parametri-

sation θe and it is denoted with the symbol Le(Y |θe). The constrained maximum likeli-

hood estimate θ̂e is obtained by maximising the log-likelihood function Le under constraint

θNθ+1 = 0.

θ̂e = argmax
θe

Le(Y |θe)

s.t. θNθ+1 = 0
(6.2)

Notice that it is not necessary to solve the optimisation problem in (6.2). In fact, the

parameter set θ̂e = [θ̂1, ..., θ̂Nθ
,0 ]T maximises the constrained log-likelihood function and

the estimates θ̂1, ..., θ̂Nθ
are already available from the solution of the parameter estimation

problem associated with the original model structure M0.

The parameter set θ̂e also satisfies the constrained maximum likelihood equations

∇Le(Y |θ̂e)+∇θNθ+1α̂ = 0

θNθ+1 = 0
(6.3)

where α̂ is the value of the Lagrange multiplier associated with the constraint θNθ+1 =

0. The computation of the Lagrange multipliers statistic requires the inversion of the

(Nθ + 1)× (Nθ + 1)-dimensional Fisher information matrix He, which is computed at the

constrained maximum likelihood estimate θ̂e using the model structure Me

He =
N

∑
i=1

∇ŷi(θ̂e)Σ
−1
y ∇ŷi(θ̂e)

T (6.4)

In different words, the computation of the Lagrange multipliers statistic is only possi-

ble if the model structure Me with the extended parameter set θe satisfies the requirements

for practical identifiability (for more information on model identifiability see Section 2.5).
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In this work, the model Me will be considered identifiable only if the smallest eigenvalue of

He is larger than 1 (Transtrum et al., 2015). If the identifiability requirement is satisfied, the

Lagrange multipliers statistic ξe(η1|θ1) can be computed as in (6.5) and it is asymptotically

distributed as a χ2 with degree of freedom 1 (Aitchison and Silvey, 1958; Silvey, 1959)

under H0.

ξe(η1|θ1) = α̂∇θ
T
Nθ+1H−1

e ∇θNθ+1α̂ ∼ χ
2
1 (6.5)

In this work, the statistic ξe is computed directly as a function of the log-likelihood

gradient evaluated at θe = θ̂e (Rao, 1948) as follows

ξe(η1|θ1) = ∇Le(Y |θ̂e)
T H−1

e ∇Le(Y |θ̂e)∼ χ
2
1 (6.6)

The statistic ξe(η1|θ1) was constructed to assess the relevance of effect η1 for the

evolution of parameter θ1. The procedure can be repeated for all the effects in the set E

obtaining the set of statistics ξe(ηi|θ1) ∀ i = 1, ...,Ne. An Effect Relevance Index (ERI) is

proposed as a heuristic measure of relevance of a given effect for the evolution of a given

model parameter.

ERI(ηi|θ1) =
ξe(ηi|θ1)

χ2
1 (95%)

∀i = 1, ...,Ne (6.7)

If ERI(ηi|θ1) is larger than 1, there is significant evidence to justify the replacement of

θ1 in the model structure M0 with the response surface θ1 +θ5 ·ηi. The ERI quantifies the

expected improvement in the log-likelihood function as a consequence of an infinitesimal

relaxation of the constraint θNθ+1 = 0. Hence, if ERI(ηi|θ1) > ERI(η j|θ1) > 1, one shall

expect a more significant improvement in the fitting quality if parameter θ1 were evolved

into the response surface θ1 +θNθ+1 ·ηi rather than the response surface θ1 +θNθ+1 ·η j.

6.2.3 Model evolution

The Effect Relevance Indexes ERI(ηi|θ1) ∀i = 1, ...,Ne quantify the relevance of each ef-

fect for the evolution of parameter θ1. The ERIs provide quantitative information on the

expected improvement in the model fitting quality associated with a broad range of modifi-

cations in the model structure. The scientist shall proceed by constructing an evolved model

structure M1 from the initial model structure M0 by replacing parameter θ1 with an appropri-

ate functional form of the most relevant effect (or effects). Any appropriate functional form

may be employed to replace the critical parameter. Nonetheless, in this work, the model
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structure M0 will be evolved by replacing parameters with a first-order response surface of

the single most relevant effect. The evolved model structure will be M1 ≡Me(M0 : θi→ η j)

where θi and η j are respectively the model parameter and the effect associated with the

largest computed ERI.

6.3 Case studies

The use of the Effect Relevance Indexes (ERIs) as a support for the evolution of under-fitting

model structures is illustrated on two simulated case studies. The case studies represent an

extension of the studies presented in Chapter 5 on the diagnosis of model misspecification.

In the first case study, presented in Section 6.3.1, the objective is improving the structure

of an approximated model of baker’s yeast growth by performing an analysis based on the

computation of the ERIs. In Section 6.3.2, an ERI-based approach is employed to improve

two model structures of glucose-insulin interaction with different level of approximation.

The numerical results presented in this section were obtained using Python 3.5 (Python

Core Team, 2018).

6.3.1 Case study 1: baker’s yeast growth model

6.3.1.1 System model

Baker’s yeast growth is assumed to obey the dynamics described by the following system

of equations with a Contois-type growth rate

dx1

dt
= (r−u1−θ4)x1 (5.10)

dx2

dt
=−rx1

θ3
+u1(u2− x2) (5.11)

r =
θ1x2

θ2x1 + x2
(5.12)

The system model is the same described in Section 5.3.1.1. The value of the Nθ = 4

parameters in the system model are θ∗ = [0.310,0.180,0.550,0.050]T .

6.3.1.2 Approximated model

The scientist does not know the exact functional form of the system model and proposes an

approximated model structure M0 assuming a Monod-type growth rate
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M0 :



dx1
dt = (r−u1−θ4)x1

dx2
dt =− rx1

θ3
+u1(u2− x2)

r = θ1x2
θ2+x2

(6.8)

The approximated model is the same described in Section 5.3.1.2. The identification

of the approximated model requires the estimation of Nθ = 4 parameters θ.

6.3.1.3 Objective and methods

The objective in this case study is to improve the structure of the approximated model

M0 described in Section 6.3.1.2 by adopting an ERI-based approach. The same dataset

Y used in Section 5.3.1 is used in this case study. The dataset is reported in Appendix

F and consists of N = 28 samples of y = [x1,x2]
T generated in-silico by integrating the

system model and adding Gaussian noise with covariance Σy = 2.5 ·10−3I g2 L−2. With the

considered experimental design and assumed level of system noise, the approximated model

structure M0 is falsified for under-fitting (see Section 5.3.1) with a sum of squared residuals

χ2
Y (M0) = 2210.37. A MMI-based diagnosis of model misspecification was conducted in

Section 5.3.1 showing that the largest model modification index is MMI(θ2) = 47.08.

The set of effects E = {x1,x2,u1,u2,x−1
1 ,x−1

2 ,u−1
1 ,u−1

2 } is considered for the con-

struction of a function to evolve parameter θ2. The effect relevance indexes ERI(ηi|θ2)

∀ i = 1, ...,Ne are computed to assess the relevance of all the effects in the set E for the

evolution of θ2 into a state-dependent function. The ERI for a given effect η ∈ E is com-

puted only if the model structure Me satisfies the requirements for practical identifiability.

In this work, the model structure Me(M0 : θ2 → η) is considered identifiable if the small-

est eigenvalue of the Fisher information matrix He(θ̂e) is larger than 1 according to White

et al. (2016). An evolved model structure M1 is then constructed by replacing parameter θ2

in M0 with the response surface θ2+θ5 ·η∗, where η∗ is the effect with the highest ERI, i.e.

M1 ≡Me(M0 : θ2→ η∗). The model parameters involved in M1 are estimated by fitting the

dataset Y . The fitting of model M1 is compared with the fitting of model M0 by performing

a Likelihood ratio test (see Section 2.7). The quality of the evolved model structure M1 is

then assessed by performing a two-tailed goodness-of-fit test with 90% of significance. A

check on the statistical quality of the parameter estimates is also conducted by performing

a 95% t-test.
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6.3.1.4 Results

The minimum eigenvalue associated with the model structures Me(M0 : θ2 → η) ∀η ∈ E

are reported in Table 6.1. The model structure Me(M0 : θ2 → x2), obtained by replacing

parameter θ2 in M0 with the expression θ2 + θ5 · x2 did not satisfy the requirements for

identifiability. Therefore, the ERI(x2|θ2) was not computed. In all the other cases the

model structure Me is identifiable and the ERIs were evaluated. The ERIs associated with

the model structure M0 are reported in Table 6.2. All the computed ERIs are above 1,

i.e. ERI(η |θ2) ∀η 6= x2. Hence, the analysis suggests that any of the considered effects

may be relevant for the construction of a function to evolve parameter θ2. A significant

improvement in the model fitting quality is expected should parameter θ2 be evolved in

any response surface θ2 + θ5 ·η with η ∈ E s.t. η 6= x2. Nevertheless, the highest ERI

is ERI(x1|θ2)=513.64. Hence, the most significant improvement is expected if θ2 were

replaced with the expression θ2 +θ5 · x1.

Table 6.1: Baker’s yeast system. Computed minimum eigenvalue associated with the evolved mod-
els constructed starting from the model structure M0.

Parameter Minimum eigenvalue of Information matrix

to evolve x1 x2 u1 u2 x−1
1 x−1

2 u−1
1 u−1

2

θ2 1.04 ·104 1.03 ·10−10 1.43 ·103 1.31 ·104 3.71 ·102 1.84 ·104 1.44 ·104 4.17 ·102

Table 6.2: Baker’s yeast initial model structure M0. Effect Relevance Indexes associated with the
considered effects for the evolution of parameter θ2. The ERI is not computed and it is
not reported (N/A) whenever the model structure Me does not satisfy the requirements
for identifiability.

Parameter Effect Relevance Indexes

to evolve x1 x2 u1 u2 x−1
1 x−1

2 u−1
1 u−1

2

θ2 513.64 N/A 162.87 193.83 331.82 104.78 165.22 189.41

An evolved model structure M1 is constructed by evolving parameter θ2 into the re-

sponse surface θ2 +θ5 · x1, i.e. M1 ≡Me(M0 : θ2→ x1). The model structure M1 involves

the following set of differential and algebraic equations
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M1 :



dx1
dt = (r−u1−θ4)x1

dx2
dt =− rx1

θ3
+u1(u2− x2)

r = θ1x2
θ2+θ5x1+x2

(6.9)

The identification of model structure M1 requires the estimation of a set of Nθ = 5 pa-

rameters. Parameters are estimated by fitting the dataset Y . Parameter estimates and related

model statistics are reported in Table 6.3. The model M1 is not falsified by the goodness-of-

fit test, i.e. the sum of squared residuals χ2
Y (M1) = 61.32 is within the range of acceptability

assumed in the test χ2
N·Ny−Nθ

(5%) < χ2
Y (M1) < χ2

N·Ny−Nθ
(95%). The Likelihood ratio test

also suggests that model structure M1 fits the dataset Y significantly better than the initial

model structure M0

χ
2
Y (M0)−χ

2
Y (M1) = 2149.05 > χ

2
1 (95%) = 3.84 (6.10)

As one can see from Table 6.3, a t-test with 95% of significance highlights that param-

eter θ2 in the evolved model structure M1 is not relevant for fitting the data. A t-value� tre f

suggests that parameter θ2 may be constrained to 0 without causing a significant degrada-

tion in the model fitting quality. It is observed that under the constraint θ2 = 0, the model

structure M1 becomes equivalent to the system model structure.

Table 6.3: Baker’s yeast model structure M1. Parameter estimates with related 95% t-values and
goodness-of-fit test outcome.

Parameter Parameter 95% t-value*
ID estimate tre f = 1.68

θ1 3.04 ·10−1 67.54
θ2 1.21 ·10−4 0.007*
θ3 5.37 ·10−1 43.71
θ4 4.54 ·10−2 11.13
θ5 1.82 ·10−1 20.67

Goodness-of-fit test: Passed

χ2(5%) χ2
Y χ2(95%)

35.59 61.32 68.66
*t-value< tre f indicates that a parameter is irrelevant for the fitting.
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6.3.2 Case study 2: glucose-insulin interaction model

6.3.2.1 System model

The glucose-insulin regulatory system of a healthy test subject is described by the following

set of equations

dG
dt

=−θ1(G−Gb)−θ2XG (5.14)

dX
dt

=−θ3X + I (5.15)

IDR = max[0, θ4(G−θ5)t] (5.16)

dI
dt

= IDR−θ6I (5.17)

The system model is the same model described in Section 5.3.1.1, where the basal

glucose concentration is assumed as Gb = 93.0 mg dL−1. The numerical value of the Nθ = 6

parameters appearing in the system model structure is θ∗ = [2.96 · 10−2,6.51 · 10−6,1.86 ·

10−2,5.36 ·10−3,9.09 ·101,2.3 ·10−1]T .

6.3.2.2 Approximated models

The scientist does not know the form of the system model and proposes two possible struc-

tures to describe the process, namely M0,A and M0,B. The model structure M0,A is the fol-

lowing

M0,A :



dG
dt =−θ1(G−Gb)−θ2X

dX
dt =−θ3X + I

IDR = max[0, θ4(G−θ5)t]

dI
dt = IDR−θ6I

(6.11)

and it is the same approximated model structure described in Section 5.3.2.2. The model

structure M0,A differs from the structure of the system model in the differential equation de-

scribing the glucose concentration in plasma G, where the nonlinear term θ2XG is modelled

as a linear term θ2X . The identification of the model structure M0,A requires the estimation

of Nθ = 6 parameters.
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A second model structure M0,B is also considered

M0,B :



dG
dt =−θ1−θ2X

dX
dt =−θ3X + I

IDR = max[0, θ4(G−θ5)t]

dI
dt = IDR−θ6I

(6.12)

Also the approximated model structure M0,B differs from the system model structure in

the equation describing the concentration of glucose in plasma. In the approximated model

structure M0,B, the first order derivative of G is expressed as a function of X only. The

identification of model structure M0,B also involves the estimation of Nθ = 6 parameters.

6.3.2.3 Objective and methods

The objective in this case study is to diagnose model misspecification with a MMI-based ap-

proach and improve the structure of the approximated models using a ERI-based approach.

The experimental design adopted in this case study for the generation of dataset Y is the

same design adopted in Case A, illustrated in Section 5.3.2.3. The design involves the col-

lection of 23 samples collected in a single IVGTT at initial conditions G(0) = 298.0 mg

dL−1, I(0) = 333.0 µU mL−1, X(0) = 0.0 µU min mL−1. Only G and I can be measured,

i.e. y = [G, I]T . Uncorrelated Gaussian system noise is added to the sample with standard

deviations 1.0 mg dL−1 for measurements of G and 1.5 µU mL−1 for measurements of I.

The dataset is reported in Table G.1 in Appendix G (only the measurements for G and I in

Table G.1 are considered for this case study).

In both model structures M0,A and M0,B, parameters are estimated by fitting the dataset

Y . Model adequacy is checked with a goodness-of-fit test and in case of under-fitting,

model misspecification is diagnosed by computing the MMIs associated with all the model

parameters. ERIs are then computed for the parameters with the highest MMI considering

the set of possible effects E = {G,X , I,G−1} *.

As in the previous case study, the generic ERI(η j|θi) is computed only if the minimum

*The effects X−1 and I−1 are not considered in this study because the initial value for X is X(0) = 0.0
µU min mL−1 and I tends to 0.0 µU mL−1 in the course of the simulated IVGTT. The numerical integration
of the model Me when the presence of effect X−1 is checked is not possible. When the presence of effect I−1

is checked, numerical problems in the integration of the system are observed due to a gradient explosion. In
some cases, the issue may be solved by performing an algebraic manipulation of the equations in the models
Me. However, algebraic manipulations in the model structures Me will not be performed in this case study and
only models Me in the form illustrated in Figure 6.2 will be considered.
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eigenvalue of the information matrix associated with the structure Me(M0 : θi→η j) is above

1. Model structures are then evolved following the criterion of the largest computed ERI and

parameters are re-estimated by fitting the dataset Y . The improvement of the evolved models

compared with the initial model structure is measured by performing a Likelihood ratio test

with 95% of significance. The appropriateness of the evolved models in representing the

data is quantified by means of a goodness-of-fit test with 95% of significance (see Section

2.7). The statistical quality of the parameter estimates is quantified by means of a t-test with

95% of significance.

6.3.2.4 Results

The parameters in the model structures M0,A and M0,B are estimated by fitting the dataset Y .

Estimates for model M0,A are reported in Table 6.4. As one can see, all the model parameters

are estimated precisely. All the t-values are above the reference threshold tre f . However,

the model is falsified for under-fitting by the two-tailed goodness-of-fit test, i.e., the sum of

squared residuals χ2
Y (M0,A) = 97.79 is above the 95% value χ2(95%) = 55.75.

Parameter estimates and related statistics associated with model structure M0,B are re-

ported in Table 6.5. The 95% t-test failed for parameter θ1 while the other parameters passed

the test. This highlights that parameter θ1 in model structure M0,B may be constrained to

0 without causing a significant loss of fitting quality. Nevertheless, the model structure

M0,B is falsified for under-fitting by the goodness-of-fit test. The sum of squared residuals

χ2
Y (M0,B) = 220.29 is above the 95% reference value χ2(95%) = 55.75.

A diagnosis of model misspecification based on the MMIs is performed for both model

structures. For both models, the largest MMIs are computed for parameters θ1, θ2 and θ3.

As one can see from Table 6.4, the MMIs associated with parameters θ1− θ3 in model

structure M0,A are around the value 2.20. The MMIs associated with the model structure

M0,B are reported in Table 6.5, where one can see that the MMIs of parameters θ1−θ3 are

around the value 5.38.

The model structures Me(M0,k : θi→ η j) with k = A,B; i = 1,2,3 and j = 1, ...,Ne are

constructed to assess the relevance of the effects in the set E for the evolution of parameters

θ1−θ3 in both model structures. An identifiability analysis based on the eigendecomposi-

tion of the Fisher information matrix is conducted. The minimum eigenvalues are reported

for all the model structures Me constructed starting from model M0,A in Table 6.6 and from

model M0,B in Table 6.7. In the M0,A case, the minimum eigenvalue is below 1 in a signifi-
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Table 6.4: Glucose-insulin interaction model structure M0,A. Parameter estimates with related 95%
t-values and MMIs and goodness-of-fit test outcome.

Parameter Parameter 95% t-value*
ID estimate tre f = 1.68 MMI

θ1 3.44 ·10−2 45.12 2.20
θ2 8.01 ·10−4 9.10 2.19
θ3 2.15 ·10−2 8.08 2.21
θ4 5.33 ·10−3 18.03 1.17
θ5 9.34 ·10+1 36.38 1.17
θ6 2.28 ·10−1 68.04 1.39

Goodness-of-fit test: Failed for under-fitting

χ2(5%) χ2
Y χ2(95%)

26.50 97.79 55.75
*t-value< tre f indicates that a parameter is irrelevant for the fitting.

Table 6.5: Glucose-insulin interaction model structure M0,B. Parameter estimates with related 95%
t-values, MMIs and goodness-of-fit test outcome.

Parameter Parameter 95% t-value*
ID estimate tre f = 1.68 MMI

θ1 1.93 ·10−3 0.11* 5.38
θ2 1.28 ·10−2 29.34 5.37
θ3 1.73 ·10−1 22.52 5.39
θ4 5.06 ·10−3 24.70 4.48
θ5 9.30 ·10+1 70.28 3.56
θ6 2.26 ·10−1 74.72 4.58

Goodness-of-fit test: Failed for under-fitting

χ2(5%) χ2
Y χ2(95%)

26.50 220.29 55.75
*t-value< tre f indicates that a parameter is irrelevant for the fitting.

cant number of cases (see Table 6.6). In the case of model structure M0,B, in all the cases,

the minumum eigenvalue is below 1 (see Table 6.7). In different words, starting from model

structure M0,B, whenever a parameter in the range θ1−θ3 is evolved into a response surface

of any of the effects in E the resulting model does not satisfy the requirements set for iden-

tifiability with θe = θ̂e. None of the ERIs is therefore computed for model structure M0,B

and the model structure is not evolved.

The ERIs are computed only for the model structure M0,A when the model structure

Me satisfies the requirements for identifiability. The ERIs are reported in Table 6.8. The
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Table 6.6: Glucose-insulin interaction system. Computed minimum eigenvalue associated with the
model structures Me(M0,A : θi→ η j) with i = 1,2,3 and j = 1, ...,Ne constructed starting
from the model structure M0,A.

Parameter Minimum Eigenvalue of Information Matrix

to evolve G X I G−1

θ1 7.21 ·10−1 3.65 2.11 2.14 ·10−4

θ2 4.62 ·10−1 4.97 ·10−2 1.85 3.53 ·10−5

θ3 3.75 ·10−2 1.48 4.86 ·10−2 1.94 ·10−5

Table 6.7: Glucose-insulin interaction system. Computed minimum eigenvalue associated with the
model structures Me(M0,B : θi→ η j) with i = 1,2,3 and j = 1, ...,Ne constructed starting
from the model structure M0,B.

Parameter Minimum Eigenvalue of Information matrix

to evolve G X I G−1

θ1 3.62 ·10−5 2.46 ·10−6 1.38 ·10−2 8.08 ·10−9

θ2 1.40 ·10−2 1.41 ·10−2 1.26 ·10−2 9.13 ·10−3

θ3 1.38 ·10−2 1.37 ·10−2 1.40 ·10−2 1.34 ·10−2

largest ERI is ERI(X |θ1) = 60.7 and it is associated with the evolution of parameter θ1 into

the response surface θ1 +θ7 ·X . An evolved model structure M1,A ≡Me(M0,A : θ1→ X) is

constructed as follows

M1,A :



dG
dt =−(θ1 +θ7 ·X)(G−Gb)−θ2X

dX
dt =−θ3X + I

IDR = max[0, θ4(G−θ5)t]

dI
dt = IDR−θ6I

(6.13)

Parameters in the model structure M1,A are estimated by fitting dataset Y . The sum of

Table 6.8: Model structure M0,A: Effect Relevance Indexes associated with the set of effects E =
{G,X , I,G−1}. The ERI is not computed and it is not reported (N/A) whenever the model
structure Me does not satisfy the requirements for identifiability.

Parameter Effect Relevance Indexes

to evolve G X I G−1

θ1 N/A 60.7 55.4 N/A
θ2 N/A N/A 2.87 N/A
θ3 N/A 58.5 N/A N/A
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Table 6.9: Generation 2: Glucose-insulin interaction model. Parameter estimates with related 95%
t-values and goodness-of-fit test outcome.

Parameter Parameter 95% t-value*
ID estimate tre f = 1.68

θ1 2.69 ·10−2 12.73
θ2 5.94 ·10−4 5.95
θ3 1.74 ·10−2 4.95
θ4 5.30 ·10−3 19.39
θ5 9.12 ·10+1 40.23
θ6 2.29 ·10−1 67.89
θ7 8.70 ·10−6 4.11

Goodness-of-fit test: Passed

χ2(5%) χ2
Y χ2(95%)

25.69 39.09 54.57
*t-value< tre f indicates that a parameter is irrelevant for the fitting.

squared residuals associated with the evolved model M1,A is χ2
Y (M1,A) = 39.09. Parameter

estimates and related t-values are reported in Table 6.9. All the parameters pass the 95% t-

test, i.e., the t-value is above tre f for all parameters. This suggests that fixing any parameter

to 0 is expected to result in a significant degradation of the fitting quality. In particular, the

introduced parameter θ7 associated with the presence of effect X is detected as relevant.

The improvement achieved by model structure M1,A compared with the initial model M0,A

is also demonstrated by the failed Likelihood ratio test

χ
2
Y (M0,A)−χ

2
Y (M1,A) = 58.7 > χ

2
1 (95%) = 3.84 (6.14)

The failed Likelihood ratio test suggests that model structure M1,A should be preferred

over the initial model structure M0,A. The evolved model structure M1,A passes the goodness-

of-fit test , i.e., χ2(5%)< χ2
Y (M1,A)< χ2(95%).

6.3.3 Results discussion

Two simulated case studies were presented in this Chapter to demonstrate the use of MMIs

and ERIs as tools for improving the structure of approximated kinetic models.

In Case study 1, a baker’s yeast bioreactor system was considered. The objective was

to improve an approximated model in the form of the system of equations M0 in (6.8). A

model misspecification diagnosis based on the computation of the MMIs highlighted that a

significant improvement in the model fitting quality was expected should parameter θ2 be
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evolved into a function of the state variables. The largest ERI associated with parameter θ2

was ERI(x1|θ2), suggesting that the most relevant effect for the evolution of θ2 is the state x1,

namely the concentration of biomass in the bioreactor. Parameter θ2 appears at the denom-

inator of the rate expression. Hence, it was possible to detect the presence of an inhibiting

effect of biomass concentration on the growth rate that was not considered in the initially

available model M0. An evolved model M1 (6.9) was constructed by evolving parameter θ2

into the response surface θ2 +θ5 · x1, which included the main detected effect. The evolved

model structure M1 achieved a significantly better fitting compared with the initial structure

M0 and was not falsified by the goodness-of-fit test. The evolved model structure M1 is

indistinguishable from the system model structure described in Section 5.3.1.1, which was

used to generate the in-silico dataset Y . In different words, it is not possible to design an

experiment with the aim of discriminating between the model structure M1 and the system

model.

In Case Study 2, the glucose-insulin regulatory system of a healthy test subject was

considered. The objective was to improve the structure of two approximated kinetic models,

namely model M0,A (6.11) and model M0,B (6.12). Both model structures differ from the

system model in the form of the equation describing the glucose concentration in plasma G.

In fact, while the system model equation includes a linear effect of G and a nonlinear effect

XG, the approximated model M0,A only includes a linear effect for G and for X ; the model

structure M0,B includes only a linear effect of X on the concentration of glucose in plasma.

A MMI-based analysis highlighted that, in both model M0,A and model M0,B, the model

parameters θ1, θ2 and θ3 are those that are expected to reduce process-model mismatch the

most should any of them be evolved in a state-dependent function.

Starting from model structure M0,A, the set of models Me(M0,A : θi → η) with i =

1,2,3 and η ∈ E was constructed. The minimum eigenvalue computed for the information

matrices associated with these model structures was always below 4.27 and in a significant

number of cases the minimum eigenvalue was below 1 (see Table 6.6). In such cases,

the ERI was not evaluated. The largest ERI was computed for effect X on parameter θ1,

namely ERI(X |θ1). The evolved model structure M1,A, constructed by replacing parameter

θ1 in M0,A with the response surface θ1 +θ7 ·X was not falsified by the goodness-of-fit test.
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It is recognised that such model structure is equivalent to the system model structure, in fact

dG
dt =−(θ1 +θ7X)(G−Gb)−θ2X

=−θ1(G−Gb)−θ7XG+(θ7Gb−θ2)X
(6.15)

The term (θ7Gb−θ2)X is not present in the system model structure. The discrepancy

between model M1,A and system model vanishes if the constraint s = [θ7Gb− θ2] = 0 is

enforced in the parameter estimation problem. This is validated through a Wald test (see

Section 2.7). The statistic is computed as

ξW = s(θ̂)T [
∇sT Vθ ∇s

]−1s(θ̂) = 3.34 (6.16)

Since ξW < χ2
1 (95%) = 3.84 it is concluded that there is no evidence to disprove the

presence of the constraint.

It is also recognised that the model structure Me(M0,A : θ2 → G) is equivalent to

the system model structure under the constraint θ2 = 0. However, the model structure

Me(M0,A : θ2→ G) did not satisfy the requirement for identifiability at the constrained es-

timate θ̂e and the associated effect relevance index ERI(X |θ2) was not computed. None of

the model structures Me constructed from model M0,B, i.e., Me(M0,B : θ → η), satisfied the

requirements for identifiability and no ERI was computed in this case.

6.3.4 Computational times and problem size

In the baker’s yeast case study, the model M0 is the same approximated model considered

in Section 5.3.1.2 and involves Nθ = 4 parameters. Also, the dataset Y used for the compu-

tation of the ERIs is the same used in Section 5.3.1 and consisted of N = 28 samples where

each sample involved Ny = 2 measured quantities, namely the biomass concentration x1 and

the substrate concentration x2. The computation of the ERIs associated with the approxi-

mated model M0 required around 10.0 s of CPU time. The times required for the evaluation

of the ERIs are reported in Table 6.10.

In the case study on the glucose-insulin regulatory system, the model structure M0,A is

the same approximated model considered in Section 5.3.2.2, which involved 3 ODEs and

included Nθ = 6 parameters. The dataset Y is also the same considered in Section 5.3.2.3

and consisted of N = 23 samples, each involving Ny = 2 measured quantities, namely the

glucose concentration in plasma G and the insulin concentration in plasma I. The compu-

tational times required for the evaluation of each ERI is around 18.0 s, as shown in Table
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6.11.

The higher computational time in the glucose-insulin case is associated primarily with

the increase in the number of parameters. The number of parameters affects the dimension

of the log-likelihood gradient and the dimension of the Fisher information matrix. A higher

number of parameters results in an increase in the computational cost associated with the

evaluation of the sensitivities, and the computation and inversion of the Fisher information

matrix. However, the main advantage of the ERI-based approach is that the model param-

eters are not re-estimated to assess the relevance of the effects and therefore, the possible

numerical failures associated with the re-estimation of parameters are avoided.

Table 6.10: Baker’s yeast system. Computational time expressed in [s] required for the computation
of the ERIs.

Parameter Computational time for ERI evaluation [s]

to evolve x1 x2 u1 u2 x−1
1 x−1

2 u−1
1 u−1

2

θ2 10.42 N/A 10.81 10.80 10.38 10.41 10.78 10.78

Table 6.11: Glucose-insulin regulatory system. Computational times associated with the computa-
tion of the ERIs of model structure M0,A.

Parameter Computational time for ERI evaluation [s]

to evolve G X I G−1

θ1 N/A 17.88 17.87 N/A
θ2 N/A N/A 17.92 N/A
θ3 N/A 18.05 N/A N/A

6.4 Limitations of the ERI-based approach

In the computation of the ERIs, the Fisher information matrix He(θ̂e) is evaluated at the

constrained maximum likelihood estimate θ̂e, i.e., under the constraint that θNθ+1 = 0. The

Lagrange multipliers test assumes that the matrix He(θ̂e) well approximates the information

matrix at the unconstrained maximum likelihood estimate (Silvey, 1959). This assumption

may not hold whenever the model is nonlinear in the parameters and the unconstrained

estimate is far from the constrained estimate (Silvey, 1959; Buse, 1982). It is therefore

possible that the information matrix evaluated at the constrained estimate is singular or

nearly singular when the actual information matrix evaluated at the unconstrained estimate

is well-conditioned.
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In the glucose-insulin case study, most models Me did not satisfy the identifiability

requirement at the constrained maximum likelihood estimate (see Section 6.3.2.4). In all

these cases, an ERI-based approach cannot be applied and a re-estimation of the parameters

would be required to check for the relevance of a given effect. Whenever the matrix He(θ̂e)

is singular or nearly singular, one may proceed by estimating the unconstrained maximum

likelihood estimate and test model identifiability after the re-estimation of the parameters.

Nonetheless, also in this case identifiability problems may hamper the application of an

ERI-based approach. This is recognised as an important limitation of the proposed method-

ology. In fact, it may happen that a transition through a non-identifiable model structure is

required to evolve towards an appropriate model that is not falsified by the observations.

It is important to observe that the ERI is a local measure of model improvement and

misleading results may be obtained from an ERI-based analysis also when the information

matrix He(θ̂e) is invertible. A qualitative example is reported in Figure 6.3, which shows the

log-likelihood profiles associated with two superstructures including respectively effect ηA

(dark line) and effect ηB (red line). As one can see, the peak in the log-likelihood associated

with effect ηA is higher than the peak associated with the effect ηB. However, the ERI for

both models is evaluated at the constrained estimate, i.e., under the constraint θNθ+1 = 0,

where the gradient associated with effect ηB is steeper than the gradient associated with ηA.

If the model is nonlinear in the parameters, the Fisher information matrix evaluated at the

constrained estimate may not be representative of the actual curvature at the peak of the log-

likelihood. Hence, the Lagrange multipliers statistic may fail to accurately quantify how far

is the unconstrained estimate from the constrained estimate. It is therefore possible that the

expected rate of improvement in the log-likelihood measured at the constrained estimate is

higher for ηB than for effect ηA. This would lead to the misleading conclusion that effect

ηB is more relevant than ηA for the improvement of the model fitting quality.

6.5 Final remarks

A procedure for supporting the scientist in the improvement of models in the presence of

significant process-model mismatch was illustrated in this Chapter. The procedure follows

from the assumption that the improvement of a model structure requires the evolution of a

certain model parameter into an opportune state-dependent function. The selection of rele-

vant parameters that should be considered for evolution may follow from an analysis based

on the computation of the MMIs or from the modeller’s insight on the physical system.
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Figure 6.3: Qualitative diagram showing the locality of the ERI-based approach for the detection of
relevant effects. In the figure, two different effects ηA ad ηB are tested. The maximum
likelihood estimate associated with effect ηA is higher than the maximum likelihood
estimate achievable with the inclusion of ηB in the model. However, the relevance of the
effects in a ERI-based framework is checked only locally at the constrained maximum
likelihood estimate. Assuming that the information associated with the two effects is
the same, an analysis based on the ERIs would suggest that effect ηB is more relevant
than ηA. In fact, the rate of change of the log-likelihood at the constrained estimate is
higher in the ηB case than in the ηA case.

Once relevant parameters are selected for evolution, the modeller proposes a set of effects

that may be relevant for the evolution of those parameters.

The procedure continues with the construction of a set of superstructures so that i) each

superstructure includes a different effect compared with the initial approximated model ii)

the presence of the extra effect in each superstructure is controlled by an additional param-

eter θNθ+1 iii) each superstructure is equivalent to the original model under the constraint

θNθ+1 = 0. A Lagrange multipliers test is then performed on each superstructure with the

aim of disproving the presence of the constraint.

An Effect Relevance Index (ERI) is proposed in this Chapter as a normalised Lagrange

multipliers statistic to quantify the relevance of each postulated effects for the evolution of

the approximated model without re-estimating the model parameters. The ERI provides a

quantification for the expected rate of change of the log-likelihood profile at the constrained

maximum likelihood estimate. The inclusion in the model of effects with high ERI is ex-
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pected to produce a more significant improvement on the fitting than the inclusion of effects

with low ERI. The ERI-based approach was demonstrated on simulated case studies where

the objective was to improve the structure of three approximated models, namely a model of

baker’s yeast growth M0 and two models of glucose-insulin interaction M0,A and M0,B. The

ERI-based approach led to a significant improvement of the approximated model structures

M0 and M0,A and the identification of models that were equivalent to their respective system

models. In the case of model structure M0,B, however, the ERIs were not computed because

their associated information matrix was nearly singular (i.e., the minimum eigenvalue of the

information matrix was smaller than 1).

The limitations of the ERI-based approach for effect detection are associated primar-

ily with the locality of the Lagrange multipliers test and with the fact that the information

matrix may be extremely sensitive to a change in the model parameters when the model

is nonlinear in the parameters. As a consequence, it may be not be possible to accurately

quantify the model improvement associated with the inclusion of a given effect by perform-

ing an ERI-based analysis at the constrained estimate. In such conditions, a re-estimation

of the parameters in the presence of the postulated effects may be required. When both the

constrained and the unconstrained estimates are available for each effect, effect relevance

may be quantified by employing a likelihood ratio test (Wilks, 1938), the Akaike Infor-

mation criterion (Akaike, 1974) or the Bayesian information criterion (Schwarz, 1978). In

future works, further frameworks for model improvement will be tested including a step

of re-estimation of the model parameters and advocate the computation of more accurate

indexes to quantify effect relevance.
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Chapter 7

Conclusion and future perspectives

The identification of a kinetic model requires 1) the formulation of an appropriate model

structure 2) the estimation of its kinetic parameters by fitting experimental data and 3) the

validation of the model predictions against experimental observations. Thanks to the in-

valuable contribution of many scientists in the fields of automation and model building,

automated platforms for kinetic model identification are now becoming a reality. Nonethe-

less, it is argued that there are still a number of computational challenges that need to be

addressed to promote the diffusion of these platforms in research laboratories.

These challenges are associated with aspects of the modelling activity that cannot be

effectively automated with current model building techniques. Some of these aspects are i)

the definition of an appropriate set of modelling assumptions and their translation into a set

of model equations ii) the estimation of parameters and the optimal MBDoE for parameter

precision in the presence of approximated model structures iii) the improvement of approx-

imated model structures embracing the available experimental evidence and iv) the robust

estimation of parameters in the presence of model sloppiness. The aim of this research

project is the formulation of robust modelling frameworks to systematically address these

challenges.

A number of novel techniques for model identification and refinement are proposed

in this Thesis to make the kinetic modelling activity more systematic and less sensitive to

human error and bias. The main scientific contributions presented in this Thesis are:

1. An online Reparametrisation (RP) method to automatically reduce the chance of nu-

merical failures associated with model sloppiness in the course of online kinetic mod-

elling studies.

2. A systematic framework for the online identification of kinetic models in the presence
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of structural model uncertainty. In the frameworks, model parameters are inferred

together with the geometry of the model reliability domain, which is returned by the

algorithm in the form of a model reliability map. A conservative MBDoE criterion for

the identification of approximated models is proposed where the research of optimal

experimental conditions is constrained within the domain of model reliability.

3. A Model Modification Index (MMI) based on maximum likelihood inference for di-

agnosing model misspecification in under-fitting models, i.e., in the presence of a

significant process-model mismatch.

4. An Effect Relevance Index (ERI) to rapidly evaluate effective strategies to improve

the structure of an approximated model when under-fitting is detected.

Online-RP was tested both in-silico and in an automated platform for the identification

of a 2-parameter model of benzoic acid esterification with ethanol in a microreactor. It was

shown that the application of online-RP led to the minimisation of the condition number

associated with the parameter estimation problem in 4 iterations, i.e., after the collection

of 4 samples from the initial algorithm call. This resulted in a more robust estimation of

the model parameters compared with a standard model identification algorithm. It was also

shown that the computational burden associated with the identification of the model is not

significantly affected by the introduction of the online-RP step. Future work on the online-

RP framework shall focus primarily on three aspects: i) improving the initialisation of the

algorithm to reduce the number of iterations required to bring the condition number to unity;

ii) validating the framework on more complex model structures, e.g., in the presence of a

higher number of parameters and/or measured system states; iii) extending the framework

to include also nonlinear transformations of the parameter space.

The proposed framework for the identification of models under structural model un-

certainty was applied on two case studies 1) a simulated case where it was applied online on

the identification of an approximated model of ethanol dehydrogenation on copper-based

catalyst 2) a real case where it was employed offline to identify an approximated model

of methanol oxidation on silver catalyst. In both cases, it was shown that it is possible to

effectively identify approximated models by using only the data collected within the model

reliability domain. The model reliability maps returned by the algorithm may be employed

to quantify the expected model accuracy in unexplored experimental conditions and assess
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whether the available model structure is appropriate for a specific task or whether a change

in the model structure is required. Future research activities shall aim at implementing the

proposed framework in an automated kinetic modelling platform and validate the approach

on the online identification of kinetic models. The proposed framework may also offer a

basis for the formulation of alternative criteria for model selection based on reliability maps.

As an example, the problem of choosing the best model among a set of candidates may be

recast in terms of selecting the model with the largest domain of reliability.

If a modification in the model structure is required, a MMI-based model diagnosis

may be employed to detect which parameters in the model are most likely to hide state de-

pendencies. Parameters with the highest MMI are those that are expected to improve the

model fitting quality the most should they be evolved into state-dependent expressions. A

ERI-based approach may then be employed to detect which effects are the most relevant

for the construction of opportune functions to replace model parameters. The approach

was tested on simulated case studies where the aim was to improve the structure of an ap-

proximated model of baker’s yeast growth in a bioreactor and approximated models of the

glucose-insulin regulatory system of a healthy test subject. The MMI and ERI represent

computationally inexpensive heuristics. In fact, their computation does not require a re-

estimation of the model parameters. Nonetheless, it is recognised that both heuristics only

represent a local measure of model improvement. In particular, it was shown that a ERI-

based analysis may lead to an inaccurate quantification of the relevance of a given effect if

the model is nonlinear in the parameters. Furthermore, the computation of both MMIs and

ERIs requires the inversion of information matrices. Unless an appropriate experimental

design is employed for the collection of the dataset, such information matrices may not be

invertible. In addition to the previous aspects, the MMI proposed in Chapter 5 was for-

mulated neglecting parameter interaction. A possible formulation of a multivariate MMI is

reported in Appendix H, where some necessary conditions for its computation are derived.

Future research activities shall aim at i) identifying sufficient conditions for the computation

of a multivariate MMI to account for parameter interaction in the diagnosis and ii) formu-

lating and validating experimental design approaches to handle cases where the information

matrix is not invertible and make the computation of MMIs and ERIs feasible.

The integration of the aforementioned approaches may also offer the basis for interest-

ing future research developments. It is conjectured that a combined application of online-
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RP with the MBDM estimator may represent a powerful tool for online kinetic modelling

studies in the presence of both model sloppiness and approximated modelling assumptions.

A further research direction may focus on the employment of MMI-based and ERI-based

approaches for improving the reliability of an approximated model specifically within the

domain of application, i.e., the range of experimental conditions where the modeller wants

the model to be accurate. The proposed RP approach may also be employed (either offline

or online), on the extended parameter spaces associated with the computation of MMIs and

ERIs. It is speculated that the application of a RP approach may contribute to reducing

the chance of numerical issues that may occur in the computation of Lagrange multipliers

statistics when the condition number of the information matrix is high.

It is expected that the employment of the proposed modelling frameworks may be

particularly beneficial in the identification and improvement of models for complex bio-

logical systems, e.g. models of algae growth for biofuel production (Zhang et al., 2015)

and models of biomass conversion (Ranzi et al., 2008). In fact, systems in bioengineering

are recognised to be extremely challenging to model due to a high requirement for time

and resources in the experimentation, model sloppiness and poorly understood dynamics.

It is also in the aims of future research to validate the proposed modelling frameworks

on case studies outside the field of process systems engineering, particularly in the areas

of haematology, physiology and pharmacology. In fact, the identification of accurate ki-

netic models in all the aforementioned areas relies on an efficient extraction of information

from small datasets in order to reduce the distress caused to test subjects. In the field of

haematology, the proposed modelling frameworks may be employed to improve fundamen-

tal understanding on the mechanisms of tumour growth in-vivo, advocating a more rapid

quantification of the potency of specific cancer treatments (Klinke and Wang, 2017). The

proposed modelling frameworks could be also employed for better understanding human

physiology, enabling the development of robust model-based diagnostic tools for healthcare

applications (Galvanin et al., 2014). In pharmacology, modelling algorithms sprouting from

this research project could be validated on the identification of pharmacodynamic models

to describe the dynamic response of bacterial species to specific pharmaceutical treatments

in-vitro (Foerster et al., 2016). A further validation of the proposed tools for diagnosis and

improvement of approximated models could be conducted on the identification of pharma-

cokinetic models to understand and quantify the response of test subjects to given clinical
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protocols, advocating the design of more effective, safer and less invasive clinical trials

(Abbiati et al., 2018).

In the frameworks illustrated in this Thesis, some prior knowledge on the system dy-

namics is provided as an input to the model identification algorithm in the form of a can-

didate model structure (possibly approximated). Future work should focus on developing

cognitive algorithms for model identification that do not require such prior knowledge. Re-

cent advances in the fields of artificial intelligence, reinforcement learning and genetic pro-

gramming suggest the feasibility of constructing surrogate cognitive agents (SCAs) in the

form of algorithms executed in computational frameworks (Mnih et al., 2015). The re-

cent application of artificial neural networks and genetic algorithms to complex control and

design problems led to solutions that were previously thought to be achievable only by a

cognitive agent. It was also demonstrated that SCAs may even surpass cognitive human-

level capabilities in achieving pre-defined goals in pre-defined environments (Mnih et al.,

2015; Chen et al., 2016; Nourbakhsh et al., 2016). Currently, SCAs are being trained either

on insufficient data or on virtual realities that have little connection with the physical world,

e.g. chessboards (Campbell et al., 2002) or Atari videogames (Mnih et al., 2015). Never-

theless, the technology required to build a surrogate scientist that can autonomously learn

how to build kinetic model structures embracing first principles, identifiability constraints

and experimental evidence may soon be available.
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López Cárdenas, D. C., Barz, T., Körkel, S., and Wozny, G. (2015). Nonlinear ill-posed

problem analysis in model-based parameter estimation and experimental design. Com-

puters & Chemical Engineering, 77:24–42.

Lu, Z. and Yang, W. (2004). Reaction path potential for complex systems derived from

combined ab initio quantum mechanical and molecular mechanical calculations. Journal

of Chemical Physics, 121:89–100.

MacKay, D. J. C. (1992). Bayesian methods for adaptive models. Ph.D. Thesis, California

Institute of Technology.

Magoon, G. R. and Green, W. H. (2013). Design and implementation of a next-generation

software interface for on-the-fly quantum and force field calculations in automated reac-

tion mechanism generation. Computers & Chemical Engineering, 52:35–45.

188



Maheshwari, V., Rangaiah, G. P., and Samavedham, L. (2013). Multiobjective Framework

for Model-based Design of Experiments to Improve Parameter Precision and Minimize

Parameter Correlation. Industrial & Engineering Chemistry Research, 52(24):8289–

8304.

Malig, T. C., Koenig, J. D. B., Situ, H., Chehal, N. K., Hultin, P. G., and Hein, J. E. (2017).

Real-time HPLC-MS reaction progress monitoring using an automated analytical plat-

form. Reaction Chemistry & Engineering, 2(3):309–314.

Mallows, C. (1975). On some topics in robustness: Technical memorandum. Murray Hill,

New Jersey: Bell Telephone Laboratories.

Marin, G. B. and Yablonsky, G. S. (2011). Kinetics of chemical reactions : decoding

complexity. Wiley-VCH, Weinheim.

Maronna, R., Bustos, O., and Yohai, V. (1979). Bias-and efficiency-robustness of general

m-estimators for regression with random carriers. In Smoothing techniques for curve

estimation, pages 91–116. Springer.

Marquardt, W. (2005). Model-Based Experimental Analysis of Kinetic Phenomena in

Multi-Phase Reactive Systems. Chemical Engineering Research and Design, 83(6):561–

573.

Mathworks MATLAB (2015). Matlab, version r2015a. https://uk.mathworks.

com/products/matlab.html.

Mayorov, N., Gommers, R., Flamm, M., and Hagen, D. (2018). Lsoda - scipy wrapper to the

fortran solver odepack. https://github.com/scipy/scipy/blob/master/

scipy/integrate/_ivp/lsoda.py.

McMullen, J. P. and Jensen, K. F. (2010). An Automated Microfluidic System for On-

line Optimization in Chemical Synthesis. Organic Process Research & Development,

14(5):1169–1176.

McMullen, J. P. and Jensen, K. F. (2011). Rapid determination of reaction kinetics with an

automated microfluidic system. Organic Process Research & Development, 15(2):398–

407.

189

https://uk.mathworks.com/products/matlab.html
https://uk.mathworks.com/products/matlab.html
https://github.com/scipy/scipy/blob/master/scipy/integrate/_ivp/lsoda.py
https://github.com/scipy/scipy/blob/master/scipy/integrate/_ivp/lsoda.py


Meneghetti, N., Facco, P., Bezzo, F., and Barolo, M. (2014). A Methodology to Diagnose

Process/Model Mismatch in First-Principles Models. Industrial & Engineering Chem-

istry Research, 53(36):14002–14013.

Mesbah, A. and Streif, S. (2015). A Probabilistic Approach to Robust Optimal Experiment

Design with Chance Constraints. IFAC-PapersOnLine, 48(8):100–105.

Mizan, T. I. and Klein, M. T. (1999). Computer-assisted mechanistic modeling of n-

hexadecane hydroisomerization over various bifunctional catalysts. Catalysis Today,

50(1):159–172.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,

A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,

Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. (2015).

Human-level control through deep reinforcement learning. Nature, 518(7540):529–533.

Moore, J. S. and Jensen, K. F. (2012). Automated Multitrajectory Method for Reaction Op-

timization in a Microfluidic System using Online IR Analysis. Organic Process Research

& Development, 16(8):1409–1415.

Nelder, J. A. and Mead, R. (1965). A Simplex Method for Function Minimization. The

Computer Journal, 7(4):308–313.

Nelson, B. L. (1995). Stochastic Modeling: Analysis & Simulation. Courier Corporation.

Neumann, P., Cao, L., Russo, D., Vassiliadis, V. S., and Lapkin, A. A. (2019). A new

formulation for symbolic regression to identify physico-chemical laws from experimental

data. Chemical Engineering Journal, page 123412.

Nocedal, J. and Wright, S. (2006). Numerical Optimization. Springer, New York.

Nourbakhsh, M., Morris, N., Bergin, M., Iorio, F., and Grandi, D. (2016). Embedded

sensors and feedback loops for iterative improvement in design synthesis for additive

manufacturing. In ASME 2016 International Design Engineering Technical Conferences

and Computers and Information in Engineering Conference. American Society of Me-

chanical Engineers Digital Collection.

Ogunnaike, B. A. and Ray, W. H. (1994). Process Dynamics, Modeling, and Control.

Oxford University Press, New York.

190



Oliphant, T. E. (2015). Guide to NumPy. CreateSpace Independent Publishing Platform,

USA, 2nd edition.

Oliveira, L. P. d., Hudebine, D., Guillaume, D., and Verstraete, J. J. (2016). A Review

of Kinetic Modeling Methodologies for Complex Processes. Oil & Gas Science and

Technology – Revue d’IFP Energies nouvelles, 71(3):45.

Özyurt, D. B. and Pike, R. W. (2004). Theory and practice of simultaneous data reconcilia-

tion and gross error detection for chemical processes. Computers & Chemical Engineer-

ing, 28(3):381–402.

Pardalos, P. M. and Resende, M. G. C., editors (2002). Handbook of Applied Optimization.

Oxford University Press, New York, N.Y, 1st edition.

Parr, R. G. (1980). Density Functional Theory of Atoms and Molecules. In Fukui, K. and

Pullman, B., editors, Horizons of Quantum Chemistry, Académie Internationale Des Sci-
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Appendix A

Online RP - Simulated case: additional

information

Additional details are presented in this appendix regarding the simulated experimental cam-

paigns performed on the benzoic acid esterification system both in the absence and in the

presence of online RP. Information related to the campaign performed without reparametri-

sation, i.e. the non-RP campaign, is reported in Table A.1. Information on the campaign

conducted keeping the online reparametrisation active, i.e. the RP campaign, is given in

Table A.2. In Table A.1 and Table A.2 the following information is given: 1) experimen-

tal conditions adopted to collect the samples, i.e. inlet concentration of benzoic acid CIN
BA,

flowrate F and temperature T ; 2) sampled concentration of ethyl benzoate at the outlet

COUT
EB ; 3) computed parameter estimates θ̂ = [θ̂1, θ̂2]; 4) the pre-exponential factor and ac-

tivation energy derived from the estimates θ̂1 and θ̂2 as A = eθ̂1 and Ea = 104 · θ̂2; 5) the

sum of squared residuals χ2
Y and the reference value χ2

re f computed from a χ2 distribution

with degree of freedom equal to the number of samples minus the number of parameters

and 95% of significance.
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Table A.1: Simulated case: experimental campaign with online RP option inactive. Experimen-
tal conditions, sampled concentrations, estimated kinetic parameters θ̂ (and related Ar-
rhenius constants) and information regarding the goodness-of-fit are reported for the 9
samples collected in the campaign.

Simulated Case - Online RP Inactive

Sample Experimental conditions ϕ Sample Estimates θ̂ Arrhenius constants1 Goodness-of-fit2

number CIN
BA [mol L−1] F [µL min−1] T [K] COUT

EB [mol L−1] θ̂1 θ̂2 A [s−1] Ea [J mol−1 K−1] χ2
Y χ2

re f

1 1.50 20.00 413.0 0.368 - - - - - -
2 1.00 10.00 393.0 0.188 - - - - - -
3 1.25 15.00 403.0 0.272 12.15 6.56 1.89·105 6.56·104 0.5 3.8
4 1.55 7.50 385.0 0.212 14.83 7.47 2.76·106 7.47·104 3.3 6.0
5 1.55 7.50 412.5 0.871 15.99 7.85 8.77·106 7.85·104 6.6 7.8
6 1.55 7.50 389.0 0.320 15.06 7.53 3.48·106 7.53·104 9.2 9.5
7 1.55 7.50 413.0 0.860 14.90 7.47 2.95·106 7.47·104 9.5 11.1
8 1.55 7.50 393.5 0.383 14.84 7.45 2.78·106 7.45·104 9.5 12.6
9 1.55 7.50 413.0 0.831 14.94 7.49 3.08·106 7.49·104 9.8 14.1

1 Pre-exponential factor and activation energy are computed from θ1 and θ2 as A = eθ1 and Ea = θ2 ·104

2 A χ2
sample larger than χ2

re f is an index of inappropriate modelling assumptions

Table A.2: Simulated case: experimental campaign with online RP option active. Experimental con-
ditions, sampled concentrations, estimated kinetic parameters θ̂ (and related Arrhenius
constants) and information regarding the goodness-of-fit are reported for the 9 samples
collected in the campaign.

Simulated Case - Online RP Active

Sample Experimental conditions ϕ Sample Estimates θ̂ Arrhenius constants1 Goodness-of-fit2

number CIN
BA [mol L−1] F [µL min−1] T [K] COUT

EB [mol L−1] θ̂1 θ̂2 A [s−1] Ea [J mol−1 K−1] χ2
Y χ2

re f

1 1.50 20.00 413.0 0.400 - - - - - -
2 1.00 10.00 393.0 0.178 - - - - - -
3 1.25 15.00 403.0 0.248 16.44 8.01 1.38·107 8.01·104 0.5 3.8
4 1.55 7.50 413.0 0.872 16.61 8.06 1.64·107 8.06·104 0.5 6.0
5 1.55 7.50 392.5 0.356 15.60 7.72 5.96·106 7.72·104 1.0 7.8
6 1.55 7.50 389.5 0.294 15.72 7.76 6.71·106 7.76·104 1.1 9.5
7 1.55 7.50 413.0 0.870 15.72 7.76 6.72·106 7.76·104 1.1 11.1
8 1.55 7.50 413.0 0.857 15.59 7.71 5.87·106 7.71·104 1.5 12.6
9 1.55 7.50 390.3 0.319 15.39 7.64 4.83·106 7.64·104 1.8 14.1

1 Pre-exponential factor and activation energy are computed from θ1 and θ2 as A = eθ1 and Ea = θ2 ·104

2 A χ2
sample larger than χ2

re f is an index of inappropriate modelling assumptions
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Appendix B

Online RP - Additional simulated cases

A total number of 20 experimental campaigns were simulated to further validate the results

presented in the manuscript. This was done primarily to demonstrate that the performance

achieved by the algorithm both in the RP and in the non-RP campaigns is insensitive to the

choice of the dataset (i.e. it is insensitive to the choice of the random seed used to generate

the experimental data in-silico).

The results obtained in the simulated campaigns are reported in Table B.1. Campaigns

1-10 were performed applying the online reparametrisation method (RP campaigns), while

campaigns 11-20 were performed without online reparametrisation (non-RP campaigns).

As one can see from Table B.1, the algorithm with online RP option active retrieved the

target parameter value in all the campaigns, i.e. the final p-value of the target parameters

is above 1.00% in campaigns 1-10. The condition number of the log-likelihood functions

at the end of experimental campaigns 1-10 is 1.0, demonstrating that the application of the

online RP led to the elimination of the model sloppiness. In the campaigns where the online

RP is inactive, i.e. campaigns 11-20, the final p-value is 0.00%, demonstrating the failure

of the algorithm in retrieving the target value of the parameters. The failure is associated

to the high condition number of the log-likelihood function, which is around 103− 104 in

campaigns 11-20.
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Table B.1: Results obtained in 20 simulated experimental campaigns: experimental campaigns 1-
10 were performed keeping the online reparametrisation option active; campaigns 11-
20 were performed keeping the option for online reparametrisation inactive. The p-
value of the target parameters θ∗ = [15.27,7.6] given the final parameter statistics is
reported together with the condition number of the log-likelihood function at the end of
the experimental campaigns.

Campaign Online Final p-value of target Final condition
number reparametrisation parameters θ∗ number κ

1 Active 64.74% 1.0·100

2 Active 98.91% 1.0·100

3 Active 91.98% 1.0·100

4 Active 20.59% 1.0·100

5 Active 30.52% 1.0·100

6 Active 67.93% 1.0·100

7 Active 16.61% 1.0·100

8 Active 92.17% 1.0·100

9 Active 23.19% 1.0·100

10 Active 71.59% 1.0·100

11 Inactive 0.00% 9.6·103

12 Inactive 0.00% 9.4·103

13 Inactive 0.00% 9.5·103

14 Inactive 0.00% 9.3·103

15 Inactive 0.00% 1.1·104

16 Inactive 0.00% 9.5·103

17 Inactive 0.00% 1.0·104

18 Inactive 0.00% 9.2·103

19 Inactive 0.00% 8.7·103

20 Inactive 0.00% 9.3·103
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Appendix C

Online RP - Real case: additional

information

Additional details are presented in this appendix regarding the non-RP campaign and the

RP campaign performed on the experimental automated system. Information related to the

campaign performed keeping the option for online model reparametrisation inactive, i.e.

the non-RP campaign, is reported in Table C.1. Information on the campaign conducted

keeping the option for online reparametrisation active, i.e. the RP campaign, is given in

Table C.2. In Table C.1 and Table C.2 the following information is presented: 1) experi-

mental conditions adopted to collect the samples, i.e. inlet concentration of benzoic acid

CIN
BA, flowrate F and temperature T ; 2) sampled concentration of ethyl benzoate at the outlet

COUT
EB ; 3) parameter estimates θ̂ = [θ̂1, θ̂2] returned by the model identification algorithm;

4) the pre-exponential factor and activation energy computed from the estimates θ̂1 and θ̂2

as A = eθ̂1 and Ea = 104 · θ̂2; 5) the sum of squared residuals χ2
Y and the reference value χ2

re f

computed from a χ2 distribution with degree of freedom equal to the number of samples

minus the number of parameters and 95% of significance.

A sum of squared residuals χ2
Y larger than the reference value χ2

re f is interpreted as an

index of inappropriate modelling assumptions (Silvey, 1975). As one can see from Table

C.1, the χ2
Y after the collection of 9 samples in the non-RP campaign is 5.92. From Table

C.2, it can be appreciated that the χ2
Y after the collection of 9 samples in the RP campaign

is 1.83. Both in the non-RP and in the RP campaign the χ2
Y is smaller than the χ2

re f = 17.88,

thus demonstrating that the modelling assumptions (see Section 3.3.2) are not falsified by

the experimental evidence.

As one can see from Table C.1, the experimental conditions designed by the algorithm
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for samples 5, 7 and 9 in the non-RP case were similar, i.e. inlet concentration of benzoic

acid CIN
BA = 1.55 mol L−1, flowrate around F = 7.5 µL min−1 and temperature T = 413.0

K, i.e. the upper limit for the temperature. Samples 4, 6 and 8 were instead designed by the

algorithm at conditions CIN
BA = 1.55 molL−1, flowrate F = 7.5 µLmin−1 and temperature in

the range T = 383.0−390.0 K. The designed samples in the non-RP case suggest the pres-

ence of two optimally informative sets of experimental conditions at maximum temperature

T = 413.0 K and at temperature around T = 385.0 K, given that the inlet concentration of

benzoic acid CIN
BA is set at the maximum and that flowrate F is set at the minimum.

An analogous situation can be observed in the RP case. As one can see from Table

C.2, samples 4, 7 and 9 in the RP case were designed at conditions CIN
BA = 1.55 mol L−1,

F = 7.5 µLmin−1 and T = 413.0 K. Samples 5, 6 and 8 were instead designed at conditions

CIN
BA = 1.55 mol L−1, F = 7.5 µL min−1 and temperature around T = 391.0 K.

Table C.1: Real case: experimental campaign with online RP option inactive. Experimental con-
ditions, sampled concentrations, estimated kinetic parameters θ̂ (and related Arrhenius
constants) and information regarding the goodness-of-fit are reported for the 9 samples
collected in the campaign.

Real Case - Online RP Inactive

Sample Experimental conditions ϕ Sample Estimates θ̂ Arrhenius constants1 Goodness-of-fit2

number CIN
BA [mol L−1] F [µL min−1] T [K] COUT

EB [mol L−1] θ̂1 θ̂2 A [s−1] Ea [J mol−1 K−1] χ2
Y χ2

re f

1 1.50 20.00 413.0 0.370 - - - - - -
2 1.00 10.00 393.0 0.161 - - - - - -
3 1.25 15.00 403.0 0.240 16.16 7.94 1.04·107 7.94·104 4.35·10−4 3.84
4 1.55 7.50 383.0 0.175 16.44 8.03 1.39·107 8.03·104 2.65·10−2 5.99
5 1.55 7.58 413.0 0.848 17.15 8.26 2.81·107 8.26·104 1.04 7.81
6 1.55 7.50 390.2 0.284 16.80 8.14 1.98·107 8.14·104 1.31 9.49
7 1.55 7.50 413.0 0.876 17.23 8.28 3.03·107 8.28·104 3.56 11.07
8 1.55 7.50 388.5 0.254 17.15 8.26 2.82·107 8.26·104 3.59 12.59
9 1.55 7.50 413.0 0.887 17.42 8.34 3.69·107 8.34·104 5.92 14.07

1 Pre-exponential factor and activation energy are computed from θ1 and θ2 as A = eθ1 and Ea = 104 ·θ2
2 A χ2

Y larger than χ2
re f is an index of inappropriate modelling assumptions
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Table C.2: Real case: experimental campaign with online RP option active. Experimental condi-
tions, sampled concentrations, estimated kinetic parameters θ̂ (and related Arrhenius
constants) and information regarding the goodness-of-fit are reported for the 9 samples
collected in the campaign.

Real Case - Online RP Active

Sample Experimental conditions ϕ Sample Estimates θ̂ Arrhenius constants1 Goodness-of-fit2

number CIN
BA [mol L−1] F [µL min−1] T [K] COUT

EB [mol L−1] θ̂1 θ̂2 A [s−1] Ea [J mol−1 K−1] χ2
Y χ2

re f

1 1.50 20.00 413.0 0.409 - - - - - -
2 1.00 10.00 393.0 0.172 - - - - - -
3 1.25 15.00 403.0 0.252 17.54 8.37 4.13·107 8.37·104 0.21 3.84
4 1.55 7.50 413.0 0.900 18.12 8.56 7.39·107 8.56·104 0.52 5.99
5 1.55 7.50 392.3 0.346 16.86 8.13 2.10·107 8.13·104 1.27 7.81
6 1.55 7.50 390.6 0.307 16.90 8.15 2.18·107 8.15·104 1.27 9.49
7 1.55 7.50 413.0 0.895 16.91 8.15 2.20·107 8.15·104 1.27 11.07
8 1.55 7.50 391.2 0.323 16.83 8.12 2.04·107 8.12·104 1.31 12.59
9 1.55 7.50 413.0 0.908 16.98 8.17 2.36·107 8.17·104 1.83 14.07

1 Pre-exponential factor and activation energy are computed from θ1 and θ2 as A = eθ1 and Ea = 104 ·θ2
2 A χ2

Y larger than χ2
re f is an index of inappropriate modelling assumptions
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Appendix D

Ethanol dehydrogenation - Experimental

data generated in-silico

Additional information is provided regarding the simulated experimental campaign con-

ducted on the ethanol dehydrogenation system illustrated in Section 4.3.1. The experimen-

tal campaign is simulated in an ideal tubular reactor of unit length assuming a fixed catalyst

mass w = 2.0 g. The LHHW kinetic model proposed by Carotenuto et al. (2013) is em-

ployed for the generation of the in-silico data. For the generation of the dataset, the kinetic

parameters are set to the values reported in (Carotenuto et al., 2013). Numerical values and

associated units are also reported in Table D.1. The values for the equilibrium constants are

computed from the following Van’t Hoff equations

Keq1 = e16.5−9134.6/T (D.1)

Keq2 = e−4.79+4386.0/T (D.2)

The experimental conditions observed in the course of the experimental campaign are re-

ported in Table D.2 together with the associated sampled values at the outlet of the tubu-

lar reactor. Samples 1-8 were obtained with a full factorial design with three factors (i.e.

ethanol inlet flowrate, total pressure and temperature) and two levels for each factor. These

were the samples analysed in the ML case.

The additional samples, i.e. samples 9-16, were collected in the MBDM case adopting

an A-optimal MBDoE criterion constrained within the model reliability domain. The value

for the binary switchers β computed at the last iteration of the experimental campaign in
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the MBDM case is also reported in Table D.2 for all the generated samples.

Table D.1: Parameter values of the LHHW model of ethanol dehydrogenation on copper-based cat-
alyst (from Carotenuto et al. (2013)).

Parameter Value Unit

A1 1.13 ·1018 [mol g−1 h−1]
A2 4.87 ·104 [mol g−1 h−1]
A3 1.0 ·10−3 [mol g−1 h−1 bar−2]
Ea1 1.52 ·105 [J mol−1 K−1]
Ea2 5.42 ·104 [J mol−1 K−1]
Ea3 6.70 ·10−1 [J mol−1 K−1]

bEtOH 10.40 [bar−1]
bAcH 98.40 [bar−1]
bEA 41.20 [bar−1]
bH2 2.50 ·10−4 [bar−1]

Table D.2: Simulated experimental campaign conducted on the ethanol dehydrogenation system in
a tubular reactor with unit length assuming a fixed catalyst mass w = 2.0 g.

Sample Inlet molar flowrate [mol h−1] Press. [bar] Temp. [K] Measured Outlet Flowrates [mol h−1] Computed

number EtOH AcH EA H2 N2 PTOT T EtOH AcH EA H2 β̂

1 0.100 0.0 0.0 0.057 0.057 10.0 453.15 0.126 0.033 0.031 0.066 +1
2 2.500 0.0 0.0 0.057 0.057 10.0 453.15 2.456 0.036 0.022 0.135 -1
3 0.100 0.0 0.0 0.057 0.057 30.0 453.15 0.111 0.013 0.009 0.052 +1
4 2.500 0.0 0.0 0.057 0.057 30.0 453.15 2.490 0.022 0.011 0.054 -1
5 0.100 0.0 0.0 0.057 0.057 10.0 533.15 0.037 0.010 0.017 0.108 +1
6 2.500 0.0 0.0 0.057 0.057 10.0 533.15 1.839 0.450 0.093 0.718 +1
7 0.100 0.0 0.0 0.057 0.057 30.0 533.15 0.059 0.003 0.019 0.112 +1
8 2.500 0.0 0.0 0.057 0.057 30.0 533.15 2.071 0.206 0.111 0.510 +1
9 1.242 0.0 0.0 0.057 0.057 18.9 512.29 1.027 0.062 0.061 0.262 +1
10 2.498 0.0 0.0 0.057 0.057 29.9 532.91 2.041 0.197 0.119 0.496 +1
11 0.578 0.0 0.0 0.057 0.057 18.9 515.18 0.444 0.039 0.051 0.188 +1
12 2.500 0.0 0.0 0.057 0.057 30.0 499.13 2.288 0.158 0.027 0.264 -1
13 1.674 0.0 0.0 0.057 0.057 25.5 506.24 1.464 0.097 0.042 0.246 -1
14 0.887 0.0 0.0 0.057 0.057 30.0 479.41 0.839 0.006 0.003 0.105 -1
15 1.767 0.0 0.0 0.057 0.057 30.0 517.00 1.515 0.089 0.079 0.314 +1
16 0.649 0.0 0.0 0.057 0.057 19.9 501.99 0.552 0.050 0.052 0.156 +1
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Appendix E

Methanol oxidation - Experimental data

Table E.1 reports the experimental data collected in a campaign aimed at the identification

of a kinetic model of methanol oxidation on silver catalyst. Data include: temperature T ;

inlet and outlet pressure P; inlet and outlet flowrates F (referred to standard conditions

STC at temperature T = 273.15 K and pressure P = 101325 Pa); inlet and outlet molar

fractions for methanol yCH3OH, oxygen yO2 , water yH2O, formaldehyde yCH2O, hydrogen yH2

and carbon dioxide yCO2 .
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Table E.1: Experimental data associated with the experimental campaign conducted on the microre-
actor platform illustrated in Section 4.3.2.

Sample T [K] Location P [Pa] F∗ [ml min−1] yCH3OH yO2 yH2O yCH2O yH2 yCO2

1 783
Inlet 260000 73.1 0.0994 0.0415 0.0753 0.0 0.0 0.0

Outlet 160000 76.8 0.0124 0.0 0.1401 0.0749 0.0179 0.0078

2 783
Inlet 220000 41.7 0.0997 0.0414 0.0755 0.0 0.0 0.0

Outlet 160000 44.0 0.0094 0.0 0.1468 0.075 0.0188 0.0071

3 783
Inlet 200000 29.1 0.0996 0.0414 0.0755 0.0 0.0 0.0

Outlet 160000 30.3 0.0101 0.0 0.136 0.0748 0.0187 0.0065

4 733
Inlet 220000 50.9 0.1468 0.0975 0.2293 0.0 0.0 0.0

Outlet 160000 53.5 0.0339 0.0101 0.3568 0.0447 0.0133 0.0391

5 765
Inlet 226000 50.9 0.1468 0.0975 0.2293 0.0 0.0 0.0

Outlet 160000 53.6 0.0123 0.0006 0.3401 0.0893 0.0201 0.0359

6 796
Inlet 235000 50.9 0.1468 0.0975 0.2293 0.0 0.0 0.0

Outlet 160000 53.7 0.0049 0.0002 0.3467 0.0998 0.0188 0.0293

7 826
Inlet 240000 50.9 0.1468 0.0975 0.2293 0.0 0.0 0.0

Outlet 160000 53.8 0.0016 0.0001 0.3417 0.107 0.0195 0.0309

8 765
Inlet 280000 93.9 0.1469 0.098 0.2296 0.0 0.0 0.0

Outlet 160000 99.8 0.0171 0.0063 0.3467 0.0865 0.0174 0.0306

9 796
Inlet 286000 93.9 0.1469 0.098 0.2296 0.0 0.0 0.0

Outlet 160000 100.0 0.0054 0.0026 0.3481 0.1 0.0181 0.0312

10 826
Inlet 295000 93.9 0.1469 0.098 0.2296 0.0 0.0 0.0

Outlet 160000 100.5 0.0015 0.0016 0.3507 0.1079 0.0179 0.0282

11 800
Inlet 240000 54.6 0.259 0.1064 0.2122 0.0 0.0 0.0

Outlet 160000 59.7 0.043 0.0001 0.3449 0.1686 0.0375 0.0187

12 850
Inlet 245000 54.6 0.259 0.1064 0.2122 0.0 0.0 0.0

Outlet 160000 59.8 0.026 0.0 0.3183 0.2089 0.0458 0.0143

13 900
Inlet 252000 54.6 0.259 0.1064 0.2122 0.0 0.0 0.0

Outlet 160000 60.6 0.0187 0.0 0.3226 0.2116 0.0523 0.0127
* at temperature T = 273.15 K; pressure P = 101325 Pa.
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Appendix F

Baker’s yeast system - Experimental data

generated in-silico

The in-silico dataset presented in Table F.1 was generated by integrating the Contois-

type baker’s yeast growth model presented in Section 5.3.1.1 using the parameter val-

ues θ∗ = [0.310,0.180,0.550,0.050]T . The 28 samples of biomass concentration x1 [g

L−1] and substrate concentration x2 [g L−1] were generated adding uncorrelated Gaus-

sian measurement noise with covariance Σy = 2.5 · 10−3I. A full factorial design was

adopted with 2 levels for the dilution factor u1 = {0.05,0.20} [h−1], 2 levels for the sub-

strate concentration in the feed u2 = {5.0,35.0} [g L−1] and 7 levels for the sampling time

t = {3.0,6.0,9.0,12.0,15.0,18.0,21.0} [h].

The dataset in Table F.1 was employed in both in Section 5.3.1 and in Section 6.3.1 for

the identification, diagnosis and evolution of the approximated Monod-type baker’s yeast

growth model.
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Table F.1: Experimental conditions and samples generated in-silico for the simulated experimental
campaign conducted on the baker’s yeast system illustrated in Section 5.3.1.

Sample Initial states x(0) Inputs u Sampling Measured states x(t)
number x1 [g L−1] x2 [g L−1] u1 [h−1] u2 [g L−1] time t [h] x1 [g L−1] x2 [g L−1]

1 1.00 0.01 0.05 5.00 3.00 1.12 0.15
2 1.00 0.01 0.05 5.00 6.00 1.17 0.24
3 1.00 0.01 0.05 5.00 9.00 1.27 0.08
4 1.00 0.01 0.05 5.00 12.00 1.27 0.11
5 1.00 0.01 0.05 5.00 15.00 1.25 0.14
6 1.00 0.01 0.05 5.00 18.00 1.28 0.19
7 1.00 0.01 0.05 5.00 21.00 1.33 0.12
8 1.00 0.01 0.05 35.00 3.00 1.64 3.20
9 1.00 0.01 0.05 35.00 6.00 2.88 4.49
10 1.00 0.01 0.05 35.00 9.00 4.66 3.71
11 1.00 0.01 0.05 35.00 12.00 6.58 1.75
12 1.00 0.01 0.05 35.00 15.00 7.77 0.91
13 1.00 0.01 0.05 35.00 18.00 8.31 0.80
14 1.00 0.01 0.05 35.00 21.00 8.51 0.84
15 1.00 0.01 0.20 5.00 3.00 1.04 1.38
16 1.00 0.01 0.20 5.00 6.00 1.06 1.83
17 1.00 0.01 0.20 5.00 9.00 1.11 1.88
18 1.00 0.01 0.20 5.00 12.00 1.24 1.96
19 1.00 0.01 0.20 5.00 15.00 1.42 1.90
20 1.00 0.01 0.20 5.00 18.00 1.43 1.68
21 1.00 0.01 0.20 5.00 21.00 1.47 1.49
22 1.00 0.01 0.20 35.00 3.00 1.06 14.59
23 1.00 0.01 0.20 35.00 6.00 1.33 22.14
24 1.00 0.01 0.20 35.00 9.00 1.55 26.12
25 1.00 0.01 0.20 35.00 12.00 1.83 27.87
26 1.00 0.01 0.20 35.00 15.00 2.21 28.48
27 1.00 0.01 0.20 35.00 18.00 2.64 28.26
28 1.00 0.01 0.20 35.00 21.00 3.13 27.72
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Appendix G

Glucose-insulin interaction system -

Experimental data generated in-silico

The simulated IVGTTs presented in the following Tables were obtained by integrating the

glucose-insulin interaction model presented in Section 5.3.2.1 using the parameter values

θ∗ = [2.96 · 10−2,6.51 · 10−6,1.86 · 10−2,5.36 · 10−3,9.09 · 101,2.3 · 10−1]T . The in-silico

data were generated adding uncorrelated Gaussian measurement noise as specified in the

captions of each table. The data provided in this Appendix were used to identify and di-

agnose the approximated model of glucose-insulin interaction presented in Section 5.3.2.2.

The IVGTT reported in Table G.1 (only measurements of G and I) was also analysed in Sec-

tion 6.3.2 for computing the ERIs and support the evolution of two approximated models of

glucose-insulin interaction.
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Table G.1: IVGTT simulated on a healthy test subject with basal glucose concentration Gb = 93.0
[mg dL−1]. The experimental design is the same proposed by Bergman et al. (1981) and
involves 23 samples. The sampled quantities are G [mg dL−1], I(t) [µU mL−1] and X
[µU min mL−1]. Gaussian noise was added with standard deviations 1.0 mg dL−1 for
measurements of G, 1.5 µU mL−1 for measurements of I and 10.0 µU min mL−1 for X .

IVGTT 1

Sample Initial states Sampling Measured states
number G(0) X(0) I(0) time t [h] G(t) I(t) X(t)

1 298.00 0.00 333.00 2.00 286.93 213.51 528.55
2 298.00 0.00 333.00 4.00 273.90 137.32 861.95
3 298.00 0.00 333.00 6.00 259.17 95.00 1036.59
4 298.00 0.00 333.00 8.00 245.62 71.98 1161.12
5 298.00 0.00 333.00 10.00 233.59 56.22 1240.13
6 298.00 0.00 333.00 12.00 221.49 47.65 1309.36
7 298.00 0.00 333.00 14.00 210.51 40.39 1328.62
8 298.00 0.00 333.00 16.00 200.60 41.52 1381.99
9 298.00 0.00 333.00 19.00 188.10 42.16 1407.56
10 298.00 0.00 333.00 22.00 172.91 44.34 1483.14
11 298.00 0.00 333.00 27.00 154.80 40.12 1541.41
12 298.00 0.00 333.00 32.00 137.23 39.20 1590.24
13 298.00 0.00 333.00 42.00 117.05 28.86 1649.78
14 298.00 0.00 333.00 52.00 99.94 14.80 1560.09
15 298.00 0.00 333.00 62.00 88.73 3.72 1418.43
16 298.00 0.00 333.00 72.00 84.35 1.61 1164.47
17 298.00 0.00 333.00 82.00 80.26 1.29 976.66
18 298.00 0.00 333.00 92.00 81.04 1.76 807.71
19 298.00 0.00 333.00 102.00 80.44 0.10 679.16
20 298.00 0.00 333.00 122.00 81.97 0.54 458.88
21 298.00 0.00 333.00 142.00 82.95 1.21 317.11
22 298.00 0.00 333.00 162.00 83.90 0.60 222.85
23 298.00 0.00 333.00 182.00 85.75 1.36 157.03
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Table G.2: IVGTT simulated on a healthy test subject with basal glucose concentration Gb = 93.0
[mg dL−1]. The experimental design is the same proposed by Bergman et al. (1981)
and involves 23 samples. The sampled quantities are G [mg dL−1], I(t) [µU mL−1].
Gaussian noise was added with standard deviations 1.0 mg dL−1 for measurements of G
and 1.5 µU mL−1 for measurements of I.

IVGTT 2

Sample Initial states Sampling Measured states
number G(0) X(0) I(0) time t [h] G(t) I(t)

1 276.00 0.00 69.00 2.00 265.33 45.39
2 276.00 0.00 69.00 4.00 256.02 33.58
3 276.00 0.00 69.00 6.00 244.24 26.85
4 276.00 0.00 69.00 8.00 235.10 24.79
5 276.00 0.00 69.00 10.00 227.26 25.32
6 276.00 0.00 69.00 12.00 219.22 31.64
7 276.00 0.00 69.00 14.00 209.33 34.18
8 276.00 0.00 69.00 16.00 201.27 35.69
9 276.00 0.00 69.00 19.00 191.57 40.23
10 276.00 0.00 69.00 22.00 180.25 42.34
11 276.00 0.00 69.00 27.00 164.92 42.98
12 276.00 0.00 69.00 32.00 149.30 43.52
13 276.00 0.00 69.00 42.00 123.49 38.56
14 276.00 0.00 69.00 52.00 112.37 31.76
15 276.00 0.00 69.00 62.00 99.34 19.24
16 276.00 0.00 69.00 72.00 90.33 5.80
17 276.00 0.00 69.00 82.00 85.83 1.82
18 276.00 0.00 69.00 92.00 83.95 0.49
19 276.00 0.00 69.00 102.00 83.89 0.22
20 276.00 0.00 69.00 122.00 82.34 1.00
21 276.00 0.00 69.00 142.00 84.65 0.80
22 276.00 0.00 69.00 162.00 85.30 0.95
23 276.00 0.00 69.00 182.00 88.25 0.31
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Table G.3: IVGTT simulated on a healthy test subject with basal glucose concentration Gb = 93.0
[mg dL−1]. The experimental design is the same proposed by Bergman et al. (1981)
and involves 23 samples. The sampled quantities are G [mg dL−1], I(t) [µU mL−1].
Gaussian noise was added with standard deviations 5.0 mg dL−1 for measurements of G
and 7.5 µU mL−1 for measurements of I.

IVGTT 3

Sample Initial states Sampling Measured states
number G(0) X(0) I(0) time t [h] G(t) I(t)

1 298.00 0.00 333.00 2.00 293.98 219.39
2 298.00 0.00 333.00 4.00 282.87 131.45
3 298.00 0.00 333.00 6.00 262.97 94.39
4 298.00 0.00 333.00 8.00 247.26 80.71
5 298.00 0.00 333.00 10.00 236.63 58.88
6 298.00 0.00 333.00 12.00 222.82 46.42
7 298.00 0.00 333.00 14.00 211.76 25.08
8 298.00 0.00 333.00 16.00 203.22 37.07
9 298.00 0.00 333.00 19.00 197.18 42.43
10 298.00 0.00 333.00 22.00 172.16 53.16
11 298.00 0.00 333.00 27.00 155.42 34.79
12 298.00 0.00 333.00 32.00 129.31 40.14
13 298.00 0.00 333.00 42.00 121.97 26.54
14 298.00 0.00 333.00 52.00 98.73 6.28
15 298.00 0.00 333.00 62.00 81.90 0.67
16 298.00 0.00 333.00 72.00 82.59 6.28
17 298.00 0.00 333.00 82.00 73.81 6.67
18 298.00 0.00 333.00 92.00 82.59 8.85
19 298.00 0.00 333.00 102.00 80.33 0.49
20 298.00 0.00 333.00 122.00 83.18 2.72
21 298.00 0.00 333.00 142.00 80.27 6.09
22 298.00 0.00 333.00 162.00 76.99 3.01
23 298.00 0.00 333.00 182.00 79.22 6.80
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Appendix H

Multivariate MMI-based analysis

In Section 5.2.3, a statistical test based on the Lagrange multipliers test was formulated

with the aim of detecting which parameters should be considered for evolution in under-

fitting parametric models. The test formulated in Section 5.2.3 did not consider the possible

interaction between the parameter under diagnosis and the other model parameters. In this

Appendix, a multivariate version of the same test is formulated and it is tested on the same

case study presented in Section 5.3.1.

H.1 Lagrange multiplier test

A multivariate statistical test for diagnosing process-model mismatch is introduced with the

aim of testing the hypothesis that a certain parameter θi is a state-independent constant.

Without loss of generality, it is assumed that the parameter under analysis is θi = θ1. The

competing hypotheses under test are:

Null hypothesis H0. θ1 and θ j ∀ j 6= 1 are all state-independent constants.

Alternative hypothesis Ha. θ1 is a state-dependent function and θ j ∀ j 6= 1 are state-

independent constants.

The log-likelihood function is written assuming that θ1 is a function of the experimental

conditions ϕ , i.e., θ1 = g(ϕ) (knowledge of the functional form of g is not required in

the test). The parameter array θm is defined as the (N +Nθ − 1)× 1 array of parameters

θm = [θ1,1, ...,θ1,N ,θ2,θ3, ...,θNθ
]T . In θm, parameter θ1,i = g(ϕ i) represents the value of

function g at experimental conditions ϕ i. Let Lm(Y |θm) be the log-likelihood function
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written for dataset Y under parametrisation θm.

Lm(Y |θm) =−
N
2
[Ny ln(2π)+ ln(det(Σy))]

− 1
2

N

∑
i=1

[yi− ŷi(θ1,i,θ2, ...,θNθ
)]T Σ

−1
y [yi− ŷi(θ1,i,θ2, ...,θNθ

)]
(H.1)

Under parametrisation θm, the i-th element in the sum in (H.1) is a function of param-

eters θ1,i,θ2, ...,θNθ
. One shall notice that in (5.1), the i-th element in the sum is a function

of parameter θ1,i only.

The set of N−1 functions s is defined as

s = [θ1,1−θ1,2, ...,θ1,N−1−θ1,N ]
T (5.2)

As in Section 5.2.3, the null and alternative hypotheses are formalised as the pres-

ence/absence of an N−1 set of constraints for the functions s as follows

H0 : s = 0

Ha : s 6= 0
(5.3)

The imposition of constraints s = 0 is equivalent to assuming that g is a parameter, i.e.,

the functional form g is constant and independent from the experimental conditions ϕ . The

constrained maximum likelihood estimate θ̂m is obtained solving the constrained likelihood

equations

∇Lm(Y |θ̂m)+∇sα̂= 0

s = 0
(H.2)

where ∇ is the (N +Nθ − 1)× 1 gradient operator in the parameter space associated

with θm.

The Lagrange multipliers statistic is defined as

ξm(θ1) = ∇Lm(Y |θ̂m)
T H−1

m ∇Lm(Y |θ̂m)∼ χ
2
N−1 (H.3)

where Hm is the (N+Nθ −1)× (N+Nθ −1) Fisher information matrix associated with the

estimates θ̂m (Bard, 1974).

The illustrated procedure for the construction of the statistic ξm(θ1) can be repeated

for diagnosing all the model parameters obtaining the set of statistics ξm(θi) ∀ i = 1, ...,N.

220



The multivariate MMI is then computed from each Lagrange multipliers statistic as

MMI(θi) =
ξm(θi)

χ2
N−1(95%)

∀ i = 1, ...,Nθ (H.4)

H.2 Case study and results
Model misspecification is diagnosed with the multivariate Lagrange multiplier in a simu-

lated case study on a fed-batch bio-reactor system (Asprey and Macchietto, 2000). The

case study is the same considered in Section 5.3.1. The system model involves the set of

equations (5.10) and (5.11) with a Contois-type kinetic (5.12).

dx1

dt
= (r−u1−θ4)x1 (5.10)

dx2

dt
=−rx1

θ3
+u1(u2− x2) (5.11)

r =
θ1x2

θ2x1 + x2
(5.12)

The approximated model structure involves the same set of differential equations (5.10) and

(5.11), but with a Monod-type kinetic (5.13).

dx1

dt
= (r−u1−θ4)x1 (5.10)

dx2

dt
=−rx1

θ3
+u1(u2− x2) (5.11)

r =
θ1x2

θ2 + x2
(5.13)

Experimental data are generated in-silico by integrating the model equations with

the system model. The parameter set assumed to simulate the experiments is θ∗ =

[0.310,0.180,0.550,0.050]T . The same experimental design and measurement noise as-

sumed in Section 5.3.1 are assumed here.

Table H.1: Comparison between the MMIs obtained neglecting parameter interaction and consider-
ing parameter interaction.

Parameter Model Modification Indexes

interaction θ1 θ2 θ3 θ4

neglected 16.98 47.08 11.90 18.58
considered 52.74 53.39 16.05 43.07

The MMIs obtained neglecting parameter interaction (i.e., the MMIs computed with
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the univariate Lagrange multipliers statistic ξd) and the MMIs obtained considering parame-

ter interaction (i.e., the MMIs computed with the multivariate Lagrange multipliers statistic

ξm) are reported in Table H.1. The MMIs are also reported in the radar charts in Figure

H.1 for a visual comparison. In both cases, the MMIs associated with all the parameters are

above unity. Hence, both the univariate MMIs and the multivariate MMIs suggest that a sig-

nificant improvement in the model fitting quality is expected should any of the parameters

be evolved.

As one can see, when parameter interaction is considered, all the MMIs increase in

value. In particular, it is observed that the highest MMIs in the multivariate case are asso-

ciated with parameters θ2 and θ1, respectively MMI(θ2) = 53.39 and MMI(θ1) = 52.74.

These parameters are involved in the misspecified rate equation (5.13). It is observed that it

is possible to make the approximated model indistinguishable from the system model either

by evolving θ2 into the function θ2x1, but also by evolving θ1 into θ1(θ2 + x2)/(θ2x1 + x2).

Hence, the multivariate MMI-based analysis better highlights that also the evolution of θ1

may result in a major improvement of the fitting quality.

(a) (b)

Figure H.1: Baker’s yeast system. Model Modification Indexes associated with the approximated
model (a) when the univariate Lagrange multipliers statistic ξd is used neglecting pa-
rameter interaction and (b) when the multivariate Lagrange multipliers statistic ξm is
employed considering parameter interaction.
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H.3 On the computability of the multivariate MMI

The (N + Nθ − 1)× (N + Nθ − 1) Fisher information matrix Hm used in the multivari-

ate Lagrange multiplier test refers to the (N + Nθ − 1)× 1 array of parameters θm =

[θ1,1, ...,θ1,N ,θ2,θ3, ...,θNθ
]T . The information matrix is computed according to

Hm =
N

∑
i=1

∇ŷi(θ̂1,i, θ̂2, ..., θ̂Nθ
)Σ−1

y ∇ŷi(θ̂1,i, θ̂2, ..., θ̂Nθ
)T (H.5)

Matrix Σy is the covariance of the measurement noise associated to a Ny× 1 sample

of y. A necessary condition for the computability of the Lagrange multipliers statistic ξm

is that the matrix Hm is invertible. The matrix Hm can be decomposed in the following

quadratic form

Hm = Q


Σy 0 · · · 0

0 Σy · · · 0
...

...
. . .

...

0 0 · · · Σy



−1

QT (H.6)

Where Q is a (N +Nθ −1)×N ·Ny sensitivity matrix constructed as follows

Q =



∂y1,1
∂θ1,1

· · · ∂y1,Ny
∂θ1,1

0 0 0 · · · 0 0 0

0 0 0 ∂y2,1
∂θ1,2

· · · ∂y2,Ny
∂θ1,2

· · · 0 0 0

0 0 0 0 0 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 · · · ∂yN,1
∂θ1,N

· · · ∂yN,Ny
∂θ1,N

∂y1,1
∂θ2

· · · ∂y1,Ny
∂θ2

∂y2,1
∂θ2

· · · ∂y2,Ny
∂θ2

· · · ∂yN,1
∂θ2

· · · ∂yN,Ny
∂θ2

...
...

...
...

...
...

...
...

...
∂y1,1
∂θNθ

· · · ∂y1,Ny
∂θNθ

∂y2,1
∂θNθ

· · · ∂y2,Ny
∂θNθ

· · · ∂yN,1
∂θNθ

· · · ∂yN,Ny
∂θNθ



(H.7)

In (H.7), quantity yi, j represents the model prediction for the j-th measured response

in the i-th sample. Since in (H.6), the matrix in the center of the quadratic form is positive

definite, the rank of H is equal to the row-rank of the sensitivity matrix Q. From this, it is

possible to derive two necessary conditions for Q to be full row-rank:

• The number of columns of Q has to be greater or equal than the number of rows, i.e.,
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N ·Ny ≥ N +Nθ −1;

• The approximated model must be identifiable, i.e., the sensitivity matrix in the origi-

nal parameter space Θ must have full row-rank Nθ .

If the latter condition is not satisfied, the row-rank of the Nθ ×N ·Ny sensitivity matrix

in (H.8) is lower than Nθ . If the rows of the sensitivity matrix in (H.8) are linearly depen-

dent, since θ̂1,i = θ̂1 ∀ i = 1, ...,N, then also the rows in matrix Q are linearly dependent.



∂y1,1
∂θ1

· · · ∂y1,Ny
∂θ1

∂y2,1
∂θ1

· · · ∂y2,Ny
∂θ1

· · · ∂yN,1
∂θ1

· · · ∂yN,Ny
∂θ1

∂y1,1
∂θ2

· · · ∂y1,Ny
∂θ2

∂y2,1
∂θ2

· · · ∂y2,Ny
∂θ2

· · · ∂yN,1
∂θ2

· · · ∂yN,Ny
∂θ2

...
...

...
...

...
...

...
...

...
∂y1,1
∂θNθ

· · · ∂y1,Ny
∂θNθ

∂y2,1
∂θNθ

· · · ∂y2,Ny
∂θNθ

· · · ∂yN,1
∂θNθ

· · · ∂yN,Ny
∂θNθ

 (H.8)

Future research activities may focus on the identification of sufficient conditions for

matrix Q to be full row-rank. It is recognised that an experimental design approach may

be employed to design samples with the purpose of obtaining a non-singular information

matrix Hm.
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