
Noname manuscript No.
(will be inserted by the editor)

Quantifying vegetation biophysical variables from imaging1

spectroscopy data: a review on retrieval methods2
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Abstract An unprecedented spectroscopic data stream will soon become available with22

forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers.23

This data stream will open up a vast array of opportunities to quantify a diversity of biochem-24

ical and structural vegetation properties. The processing requirements for such large data25

streams require reliable retrieval techniques enabling the spatio-temporally explicit quantifi-26

cation of biophysical variables. With the aim of preparing for this new era of Earth observa-27

tion, this review summarizes the state-of-the-art retrieval methods that have been applied in28

experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical vari-29

ables. Identified retrieval methods are categorized into: (1) parametric regression, including30

vegetation indices, shape indices and spectral transformations; (2) non-parametric regres-31

sion, including linear and non-linear machine learning regression algorithms; (3) physically-32

based, including inversion of radiative transfer models (RTMs) using numerical optimiza-33

tion and look-up table approaches; and (4) hybrid regression methods, which combine RTM34

simulations with machine learning regression methods. For each of these categories, an35

overview of widely applied methods with application to mapping vegetation properties is36

given. In view of processing imaging spectroscopy data, a critical aspect involves the chal-37

lenge of dealing with spectral multicollinearity. The ability to provide robust estimates, re-38

trieval uncertainties and acceptable retrieval processing speed are other important aspects in39

view of operational processing. Recommendations towards new-generation spectroscopy-40

based processing chains for operational production of biophysical variables are given.41
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1 Introduction42

Quantitative vegetation variable extraction is fundamental to assess the dynamic response43

of vegetation to changing environmental conditions. Earth observation sensors in the opti-44

cal domain enable the spatiotemporally-explicit retrieval of plant biophysical variables. This45

data stream has never been so rich as is foreseen with the new generation imaging spectrom-46

eter missions. The forthcoming EnMAP (Guanter et al, 2015), HyspIRI (Lee et al, 2015),47

PRISMA (Labate et al, 2009) and FLEX (Drusch et al, 2017) satellite missions will produce48

large spectroscopic data streams for land monitoring, which will soon become available to a49

diverse user community. This upcoming vast data stream will not only be standardized (e.g.50

atmospherically-corrected), but will also require reliable and efficient retrieval processing51

techniques that are accurate, robust and fast.52

Since the advent of optical remote sensing science, a variety of retrieval methods for veg-53

etation attribute extraction emerged. Most of these methods have been applied to the data54

of traditional multispectral sensors (Verrelst et al, 2015), but increasingly they are also ap-55

plied within imaging spectroscopy studies. This review provides a summary of recently de-56

veloped methodologies to infer per-pixel biophysical variables from imaging spectroscopy57

data, covering the visible, near-infrared (NIR) and shortwave infrared spectral regions. Es-58

sentially, quantification of surface biophysical variables from spectral data always relies on a59

model, enabling the interpretation of spectral observations and their translation into a surface60

biophysical variable. Biophysical variable retrievals, as traditionally described in terrestrial61

remote sensing literature, are grouped into two categories: (1) the statistical (or variable-62

driven) category; and (2) the physical (or radiometric data-driven) category (Baret and Buis,63

2008). Over the last decade, however, both methodological categories expanded into sub-64

categories and combinations thereof. Exemplary is the increasing number of elements of65

both categories which have been integrated into hybrid approaches. This methodological66

expansion, therefore, demands for a more systematic categorization. From an optical remote67

sensing point of view, and in line with an earlier, more general review paper (Verrelst et al,68

2015), retrieval methods can be classified in the following four methodological categories:69

1. Parametric regression methods: Parametric methods assume an explicit relationship be-70

tween spectral observations and a specific biophysical variable. Thus, explicit parame-71

terized expressions are built usually based on some physical knowledge of absorption72

and scattering properties and statistical relationship between the variable and the spec-73

tral response. Typically a band arithmetic formulation is defined (e.g., a spectral index)74

and then linked to the variable of interest based on a fitting function.75

2. Non-parametric regression methods: Non-parametric methods directly define regression76

functions according to information from the given spectral data and associated variable,77

i.e., they are data-driven methods. Hence, in contrast to parametric regression methods,78

a non-explicit choice is to be made on spectral band relationships, transformation(s) or79

fitting function. Non-parametric methods can further be split into linear or nonlinear80

regression methods.81

3. Physically-based model inversion methods: Physically-based algorithms are applica-82

tions of physical laws establishing photon interaction cause-effect relationships. Model83

variables are inferred based on specific knowledge, typically obtained with radiative84

transfer functions.85

4. Hybrid regression methods: A hybrid-method combines elements of non-parametric86

statistics and physically-based methods. Hybrid models rely on the generic properties87

of physically-based methods combined with the flexibility and computational efficiency88

of non-parametric nonlinear regression methods.89
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These categories provide a theoretical framework to organize the myriad of retrieval meth-90

ods, as well to overview the diversity of published imaging spectroscopy applications based91

on these methods. However, a few remarks must be considered. One should be aware that92

the boundaries of these categories are not always clearly defined; for instance, spectral in-93

dices are also often used as input into non-parametric methods. Another important aspect is94

that the majority of the here reviewed methods is not exclusively designed for retrieval of95

biophysical variables. This especially holds for the statistical methods, whereby a regression96

model is used to link spectral data with a biophysical variable. In optical remote sensing sci-97

ence these methods are commonly applied to map any feasible continuous variable, as well98

in the domains of snow, water or soil properties (see Matthews (2011), Mulder et al (2011)99

and Dietz et al (2012) for reviews). Nevertheless, to keep this review comprehensive, it is100

limited to retrieval methods with applications in the domain of vegetation properties map-101

ping. On the other hand, even within these boundaries each of the above methodological cat-102

egories continue to be expanded with all kinds of spectroscopic data processing applications103

(e.g. Gewali et al, 2018). The drivers behind this methodological expansion can be found104

in the: (1) interminable increase of computational power, (2) the increasing availability and105

democratizing of spectroscopic data, and (3) the steady progress in imaging spectroscopy106

sensor technology, which produces each time more sensitive sensors. This progress in imag-107

ing spectroscopy technology enables to infer each time more subtle and highly dynamic108

vegetation properties from spectral data. For instance, the forthcoming FLEX mission aims109

to deliver a portfolio of dynamic plant stress and productivity variables based on, among110

others, the exploitation of sun-induced chlorophyll fluorescence emitted by terrestrial vege-111

tation (Drusch et al, 2017). Hence, this underlines the fact that the list of biophysical vari-112

ables that can be extracted from imaging spectroscopy is not closed, but instead continues113

to grow with ongoing progress in spectrometer technology. Consequently, biophysical vari-114

ables are in this review paper defined as any vegetation property that can be quantified,115

i.e. any pigments, chemical constituents, structural variables, but also variables related to116

plant photosynthesis, productivity or diseases. Altogether, the drivers behind methodolog-117

ical expansion are not mutually exclusive, but they strengthen each other, which leads to118

a rapid progress in the development of advanced retrieval methods that goes hand in hand119

with improved capabilities to quantify a broad diversity of biophysical variables. As will be120

demonstrated throughout this review, these trends are resulting in an unprecedented richness121

of imaging spectroscopy mapping applications.122

Regardless of the used methodology or the targeted application, the principal characteristic123

of spectroscopic data lies in their dense information content embedded in a few hundred124

spectrally narrow bands. Although such spectrally dense data source proved to be beneficial125

for the majority of targeted mapping applications, a key challenge for many retrieval meth-126

ods is how to deal with spectral multicollinearity, i.e. band redundancy. Special attention,127

therefore, will be devoted to address common spectroscopic data processing challenges, and128

solutions will be given how to overcome them. Finally, while imaging spectrometers are so129

far mostly applied in an experimental context, the developments towards operational systems130

have manifestly taken off – and undoubtedly will lead to new directions and possibilities of131

Earth observation. In view of getting prepared for these upcoming global spectroscopic data132

streams, we will close this review with recommendations about the possibilities of integrat-133

ing promising retrieval approaches into operational schemes.134
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2 Parametric regression methods135

Parametric regression methods have long been the most popular method to quantify bio-136

physical variables in optical remote sensing; and the field of imaging spectroscopy is no137

exception to that. This simplest way of developing a regression model explicitly determines138

parameterized expressions relating a limited number of spectral bands with a biophysical139

variable of interest. The empirical models rely on a selection of bands with high sensitiv-140

ity towards the variable of interest, typically in combination with subtle spectral features to141

reduce undesired effects; related to variations of, for instance, other leaf or canopy prop-142

erties, background soil reflectance, solar illumination and sensor viewing geometry and143

atmospheric composition (e.g. Verrelst et al, 2008, 2010). In the following overview we144

present common parametric regression methods, which are based on (1) vegetation indices,145

(2) shape indices, and (3) spectral transformations.146

Fig. 1 Principles of parametric regression. Left: RGB subset of a hyperspectral HyMap image (125 bands)
over Barrax agricultural site (Spain). Right: illustrative map of a vegetation property (LAI, m2/m2) as obtained
by a 2-band normalized difference index and linear regression. The model was validated with a R2 of 0.89
(RMSE: 0.63; NRMSE 10.1%). It took 0.2 seconds to produce the map using ARTMO’s SI toolbox (Rivera
et al, 2014). No uncertainty estimates are provided.

2.1 Discrete spectral band approaches: vegetation indices147

Parametric regression models based on vegetation indices (VIs) are by far the oldest and148

largest group of variable estimation approaches. VIs are defined to enhance spectral features149

sensitive to a vegetation property, while reducing disturbances by combining some spectral150

bands into a VI (Clevers, 2014; Glenn et al, 2008). The main advantage of VIs is their in-151

trinsic simplicity. VI-based methods found their origin in the first applications of broadband152

sensor satellites. During the pioneering years of optical remote sensing only a small set of153

spectral bands were available and computational power was limited. It led to a long tradition154

of the development of simple two-bands, or at most three to four band indices that continues155

until today (e.g. Kira et al, 2016). New possibilities have opened with the advent of imaging156

spectrometers. Optimized narrowband information extraction algorithms were developed157

based on adaptations of established index formulations, such as simple ratio, normalized158

difference (see reviews Clevers (2014); Glenn et al (2008); Xue and Su (2017)). On the159

other hand, the possibilities to develop spectral indices based on a few band combinations160

grew exponentially, and it demanded for more systematic band evaluation methods.161

A popular solution involves correlating all possible band combinations according to estab-162

lished index formulations. For two-band index formulations, such as simple ratio or normal-163

ized difference, this approach leads to 2D correlation matrices, which enables to visually164

identify optimal band combinations (e.g. Atzberger et al, 2010; le Maire et al, 2004, 2008;165

Mariotto et al, 2013; Rivera et al, 2014; Thenkabail et al, 2000). Subsequently, given all166

possible combinations permits to select a ’best performing index’. Nevertheless, while be-167

ing mathematically simple, this method is not only tedious – especially when evaluating168



Methods to process imaging spectroscopy data into vegetation properties 5

all possible combinations of more than two bands – but also keeps on being restricted to169

formulations that make use of a few bands only, with at most using three or four bands.170

Thus, although the approach is systematic, it continues to underexploit the comprehensive171

information content hidden in the contiguous spectral data. Moreover, when applying this172

technique in mapping applications making use of imaging spectroscopy, identical best per-173

forming spectral band combinations for the same biophysical variable have rarely been re-174

ported. This suggests that optimized narrowband VIs are strongly case specific and seem to175

lack generic capacity (Gonsamo, 2011; Heiskanen et al, 2013; Mariotto et al, 2013).176

More fundamentally, it remains dubious whether relying on transformed data originating177

from a few discrete bands fully captures the complexity of real world observation conditions178

as has been observed by a spectroradiometer. Reducing full-spectrum datasets into simple179

indices formulations intrinsically leads to remaining spectral information left unexploited.180

Accordingly, the following two aspects should be considered to ensure optimized use of VIs181

in a spectroscopic context: (1) Band selection. Spectral indices are mathematical functions182

based on discrete bands, or at best a subset of full spectral information. Thus, the question183

arises: how do we assess with high enough accuracy whether the most sensitive spectral184

bands – with respect to biophysical variable retrieval – have been selected? (2) Formulation.185

Enhancing spectral information according to a mathematical transformation should lead to186

an optimal sensitivity of the spectral signal with respect to the variable of interest. While187

established formulations such as the simple ratio or normalized difference are commonly188

used, here the question arises again: how can we be sure whether these linear formula-189

tions are the most powerful ones with respect to biophysical variable retrieval? These two190

questions are almost impossible to resolve considering the unlimited possibilities of band191

selections together with designing index formulations. Consequently, given their inherent192

constraints, it can be be concluded that VI-based regression models exploit spectroscopic193

data suboptimally.194

2.2 Parametric approaches based on spectral shapes and spectral transformations195

Because none of the above few-band indices methods take full advantage of spectroscopic196

datasets, alternative methods were pursued with the advent of hyperspectral spectroradiome-197

ters that allow to exploit specific absorption regions of the reflectance spectrum. It led to the198

development of so-called shape indices and spectral transformation methods. Shape indices,199

listed below, extract shape-related information from contiguous spectral signatures for a spe-200

cific spectral region that is then correlated with a biophysical variable. These types of para-201

metric methods are therefore exclusively applicable to spectroscopic data. The following202

categories can be identified:203

– Red-edge position (REP) calculations. Mathematically, the REP inflection point is the204

position of a wavelength defined as the maximum of the first derivative reflectance be-205

tween the red and NIR regions, i.e., between 670 and 780 nm (Kanke et al, 2016). The206

red-edge position is known to be sensitive to multiple biophysical variable variations,207

both chlorophyll pigments (Delegido et al, 2011) as well as structural variables, for208

instance the leaf area index (LAI) (Delegido et al, 2013). Therefore, REP-related meth-209

ods are typically used to derive canopy chlorophyll content, being the product of LAI210

and leaf chlorophyll content (Clevers and Kooistra, 2012; Li et al, 2017). Many math-211

ematical approaches have been proposed to exploit this region as a sensitive indicator,212

including: (1) high-order curve fitting (Broge and Leblanc, 2001; Clevers et al, 2004);213

(2) inverted Gaussian models (Cho and Skidmore, 2006; Cho et al, 2008; Miller et al,214

1990); (3) linear interpolation and extrapolation methods (Cho et al, 2008; Tian et al,215
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2011); (4) Lagrangian interpolation (Dawson et al, 1998; Pu et al, 2003); (5) rational216

function application (Baranoski and Rokne, 2005); and more recently, (6) a wavelet-217

based technique (Li et al, 2017).218

– Derivative-based indices. Although several of the above-described methods make use219

of derivatives, e.g. linear extrapolation (Cho and Skidmore, 2006) and Lagrangian tech-220

nique (Dawson et al, 1998), the calculation of a derivative does not have to be restricted221

to the red edge. The derivative of any spectral region can be calculated and transformed222

into an index (Elvidge and Chen, 1995; Penuelas et al, 1994; Sims and Gamon, 2002;223

Zarco-Tejada et al, 2002). A systematic comparison of first derivative-based indices and224

conventional indices was performed by le Maire et al (2004) using the leaf optical model225

PROSPECT. Interestingly, the authors concluded that derivative-based indices are not226

necessarily better than conventional and properly elaborated indices.227

– Integration-based indices. Alternatively, some authors proposed to calculate finite inte-228

grals of specific spectral regions, typically covering a part of the visible and the red-edge229

region for LAI or chlorophyll content estimations, into a (normalized) index (Broge230

and Leblanc, 2001; Delegido et al, 2010; Malenovský et al, 2006; Malenovský et al,231

2015; Mutanga et al, 2005; Oppelt and Mauser, 2004). Likewise, in a recent study of232

Pasqualotto et al (2018) this method exploited the water absorption spectral regions to233

quantify canopy water content. In these studies, integration-based indices were demon-234

strated to perform superior to classical vegetation indices, as they exploit more optimally235

absorption regions embedded in spectroscopic data than indices relying on a reflectance236

intensity of few individual bands (Kováč et al, 2013). It can be expected that with the237

upcoming free availability of imaging spectroscopy data more of this kind of methods238

that explicitly exploit absorption features related to foliar constituents and pigments will239

emerge.240

– Continuum removal. Whereas the above techniques focus on one or more specific spec-241

tral regions, continuum removal is a spectral transformation that can be applied over242

the full spectrum. This technique normalizes reflectance spectra, allowing comparison243

of individual absorption features with a common baseline (Clark and Roush, 1984).244

The continuum removal transformation enhances and standardizes the specific absorp-245

tion features related to vegetation properties. Continuum removal can be considered as246

a standard spectroscopic data processing technique and has found its way in various247

image processing software packages. Spectroscopic examples of applications include248

mapping of chlorophyll (Broge and Leblanc, 2001; Malenovský et al, 2013; Malen-249

ovský et al, 2017), numerous studies on mapping nitrogen content (Huang et al, 2004;250

Mitchell et al, 2012; Mutanga and Kumar, 2007; Mutanga and Skidmore, 2004; Schlerf251

et al, 2010; Yao et al, 2015), foliar water condition (Stimson et al, 2005), plant stress252

(Sanches et al, 2014) and grassland biomass (Buchhorn et al, 2013; Cho et al, 2007).253

– Wavelet transform. Wavelet analysis has been increasingly used to extract information254

from spectral data, e.g. related to vegetation properties (Rivard et al, 2008). Processing255

of reflectance spectra with wavelets can be performed as discrete or continuous (CWT)256

transforms. CWT outputs are directly comparable to the original spectrum and are sim-257

ple to interpret. In this case, the original spectrum is represented by a set of spectra from258

small (narrow bandwidth absorption feature and noise) to larger scales (broad features,259

continuum). By selecting small scale spectra (i.e. discarding the smallest scale, which260

contains white noise and high scales related to the continuum), the absorption features261

of the components are enhanced, preserving the spectral information of the original data262

(Scafutto et al, 2016). Based on the type of wavelet transform, specific bands sensitive263

to the targeted variable are then selected (Bao et al, 2017). CWT is often compared in264

spectroscopic studies against spectral indices and was found to be capable of delivering265
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stronger correlations, e.g. in the detection of wheat aphid pests (Luo et al, 2013), LAI266

estimation (Huang et al, 2014), nitrogen content and chlorophyll content estimation (He267

et al, 2015; Kalacska et al, 2015; Luo et al, 2013) and in amplifying spectral separability268

of alpine wetland grass species. (Bao et al, 2017).269

Altogether, correlations based on shape indices and spectral transformations are undoubt-270

edly more sophisticated normalization approaches than traditional spectral indices for ex-271

ploiting the spectral information embedded in spectroscopic data. Moreover, their rela-272

tively simple mathematical formulation ensures fast processing. It seems thus logical that273

these spectral transformation methods became standard spectroscopy image processing tech-274

niques. However, these methods alone provide nothing more than spectral transformations275

and enhancements. When aiming to estimate a biophysical variable, a fitting function – typ-276

ically a linear least squares fitting, but also exponential, power and polynomial – is still re-277

quired. Yet it remains questionable whether the selected fitting function is the most suitable278

one. Moreover, since parametric approaches are based on relatively simple mathematical279

definitions – as opposed to more advanced methods – no associated uncertainty intervals280

are provided. Although their strengths lie in their straightforward use and fast processing,281

with the absence of a per-pixel uncertainty estimate, the performance quality of parametric282

regression methods as a mapping method is hard to judge. Given the surface diversity cap-283

tured in a single airborne or spaceborne image, and despite a standard validation exercise for284

a number of pixels, it still remains unknown how the retrieval quality evolves throughout a285

complete image. The absence of a quality indicator is, therefore, in our view the main reason286

why parametric regression methods are not recommendable for operational quantification of287

biophysical variables.288

(a) Spectral indices (b) REP calculation (c) Derivative-based indices
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(d) Integral-based indices (e) Continuum removal (f) Wavelet transform
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Fig. 2 Schematic representation of parametric regression methods: Spectral indices (a), Red-edge position
(REP) calculation (b), derivative-based indices (c), integral-based indices (d) continuum removal (e), and
wavelet transform (f). Note that a fitting function is still required to convert these transformations towards a
biophysical variable.
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3 Non-parametric regression methods289

Contrary to parametric methods, non-parametric methods optimize the regression algo-290

rithm by means of an inherent learning phase based on training data. Essentially, the non-291

parametric model develops weights (coefficients) adjusted to minimize the estimation error292

of the variables extracted. This means that no explicit parametrization is required, which293

practically simplifies the model development, but more expert knowledge to understand294

and execute these models may be required. Another important advantage of non-parametric295

methods is the possibility of training with the full-spectrum information. Hence, an explicit296

selection of spectral bands or transformations is in principle not required. A flexible model297

is able to combine different data structure features in a nonlinear manner to conform re-298

quirements; however model definition with a too flexible capacity may incur the problem of299

over-fitting the training dataset. To avoid this pitfall, model weights are defined by jointly300

minimizing the training set approximation error while limiting the model complexity. In301

view of processing spectroscopic data, a more prevalent problem lies in the so-called curse302

of dimensionality (Hughes phenomenon) (Hughes, 1968). Adjacent, contiguous bands carry303

highly intercorrelated information, which may result in redundant data and possible noise304

and potentially suboptimal regression performances. As discussed further on, band selection305

or dimensionality reduction methods that transform the spectral data to lower-dimensional306

space, while containing the vast majority of the original information can overcome this307

problem.308

Fig. 3 Principles of non-parametric regression. Left: RGB subset of a hyperspectral HyMap image (125
bands) over Barrax agricultural site (Spain). Right: illustrative map of a vegetation property (LAI, m2/m2)
as obtained by PROSAIL with Gaussian processes regression (GPR). The model was validated with a R2 of
0.94 (RMSE: 0.39; NRMSE: 6.3%). It took 5.7 seconds to produce the map using ARTMO’s MLRA toolbox
(Rivera Caicedo et al, 2014). With GPR also uncertainty estimates are provided (not shown).

3.1 Linear non-parametric methods309

Non-parametric regression algorithms that apply linear transformations are attractive be-310

cause of their fast performance. These methods became standard methods in chemometric311

and in image processing software packages. Multivariable linear regression methods can312

cope with spectroscopic data and typically rely on the estimation of co-variances. When313

moving towards spectroscopic data, however, this can become problematic when input data314

quantity is limited with respect to the dimensionality of the dataset. To alleviate collinear-315

ity, often linear non-parametric methods are applied in combination with a dimensionality316

reduction step. Some methods are even intrinsically based on this principle, i.e. principal317

component regression (PCR) (Wold et al, 1987), and partial least squares regression (PLSR)318

(Geladi and Kowalski, 1986). Common linear non-parametric regression approaches are319

provided in table 1 and imaging spectroscopy applications are discussed below.320



Methods to process imaging spectroscopy data into vegetation properties 9

Table 1 Linear non-parametric regression methods applicable to spectroscopic data.

Method Description Ref.
Stepwise
multiple linear
regression
(SMLR)

SMLR recursively applies multiple regression a number of times. Each step removes a
variable eliciting the weakest correlation. At the end of the recursive process, a variable
set is obtained that is optimally explaining the spectral data distribution.

Draper
and Smith
(2014)

Principal
components
regression
(PCR)

PCR is a regression analysis method based on principal components analysis (PCA)
estimating regression coefficients. Solutions from PCR are generated performing linear
regression of the most relevant components (called scores) obtained after applying PCA.

Wold et al
(1987)

Partial least
squares
regression
(PLSR)

PLSR is similar as PCR but tackles the co-linearity problem differently than PCR. Ap-
plying PCR, regression is performed using PCA scores. These projections are obtained
using only input patterns, not outputs. In contrast, PLSR builds the regression model
on projections obtained using the partial least squares (PLS) approach. It elicits the di-
rections of maximum input-output cross-covariance. Therefore, PLSR takes both input
patterns and output variables into account.

Geladi and
Kowalski
(1986)

Ridge
(regulated)
regression
(RR)

RR is the most commonly used method of regularization for ill-posed problems, which
are problems that do not have a unique solution. RR deals with co-linearity by allowing
a degree of bias in the estimates. Therefore, RR adds a small positive value λ to the
diagonal elements of the input data covariance matrix. Hence, RR requires finding an
optimal value for λ . Typically, cross-validation is used to reach near optimal values. An
important fact about RR is that it enforces the regression coefficients to be lower, but it
does not enforce them to be zero. That is, it will not get rid of irrelevant features (bands)
but rather minimize their impact on the trained model.

Geladi and
Kowalski
(1986)

Least absolute
shrinkage and
selection
operator
(LASSO)

Lasso is an extension built on RR, but with a small twist. It also penalizes the regression
coefficients absolute size. By this penalization some of the variable estimates may be
exactly zero. The larger the penalty, the more the estimates will tend toward zero. This
is a convenient approach to automatically perform feature selection, or to deal with
correlated predictors.

Tibshirani
(1996)

On the application side, stepwise multiple linear regression (SMLR) is a classical multivari-321

able regression algorithm commonly applied in chemometrics (Atzberger et al, 2010). To322

evaluate its predictive power, SMLR has been often compared with alternative regression323

techniques such as PLSR and some studies concluded that PLSR yielded better results when324

estimating LAI (Darvishzadeh et al, 2008) and canopy chlorophyll content (Atzberger et al,325

2010). Also Ramoelo et al (2011) compared both regression algorithms to estimate foliar ni-326

trogen and phosphorus in combination with continuum removal using field spectrometry. By327

estimating canopy nitrogen, Miphokasap et al (2012) demonstrated that the model developed328

by SMLR led to a higher correlation coefficient and lower errors than model applications329

based on narrowband VIs. This suggests that non-parametric (full-spectrum) models tend to330

be more powerful than parametric models. Likewise, Yi et al (2014) compared SMLR with331

PLSR and spectral indices for carotenoid estimation in cotton and concluded that best esti-332

mations were obtained with PLSR. Likewise, SMLR was compared with PLSR and (nonlin-333

ear) machine learning regression algorithms for estimating leaf nitrogen content (Yao et al,334

2015). Because of their enhanced flexibility, it may not be a surprise that the nonlinear meth-335

ods outperformed SMLR and PLSR. This was also observed by various similar studies, as336

will be addressed in section 3.2.337

PCR seems to be more effective in the conversion of spectroscopic data into the estimation338

of vegetation properties, because the PCA-based dimensionality reduction method is embed-339

ded in the method in combination with a linear regression function. Hence, by converting340

the spectral data to a lower dimensional space automatically overcomes the band redundancy341

problem. This method has been improved with PLSR, where the projections are optimized in342

view of the regression. It is, therefore, not a surprise that only few spectroscopic studies ex-343

amined the predictive power of PCR. Those studies compared PCR against PLSR or against344

VIs (Atzberger et al, 2010; Fu et al, 2012; Marshall and Thenkabail, 2014; Rivera Caicedo345

et al, 2014; Wang et al, 2017b). Although PCR generally outperformed VIs in explaining346
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variability of a vegetation attribute, in all cases PLSR or any other non-parametric method347

overran PCR.348

PLSR found its way in a broad diversity of imaging spectroscopy applications, especially349

in the mapping of biochemicals, pigments and vegetation density properties. For instance,350

PLSR was used in several spectroscopic studies applied to estimate foliage nitrogen content351

(Coops et al, 2003; Hansen and Schjoerring, 2003; Huang et al, 2004). Also Gianelle and352

Guastella (2007) used PLSR to derive grassland phytomass and its total (percentage) nitro-353

gen content from spectroscopic data. Similarly, Cho et al (2007) and Im et al (2009) applied354

PLSR to estimate a diversity of grass and crop biophysical variables (LAI, stem biomass and355

leaf nutrient concentrations), and Ye et al (2007) applied PLSR for yield prediction purposes.356

Beyond individual vegetation attributes, PLSR was recently used to predict landscape-scale357

fluxes of net ecosystem exchange (NEE) and gross primary productivity (GPP) across mul-358

tiple timescales (Matthes et al, 2015), and also for the estimation of floristic composition359

of grassland ecosystems (Harris et al, 2015; Neumann et al, 2016; Roth et al, 2015). At the360

same time, thanks to its PLS-vectors, PLSR is also increasingly applied for band sensitivity361

analysis of spectroscopic datasets in view of the targeted application (e.g. Feilhauer et al,362

2015; Kiala et al, 2016; Kira et al, 2016; Li et al, 2014a; Neumann et al, 2016). Various363

experimental studies demonstrated the superior predictive power of PLSR as opposed to364

VIs for the prediction of multiple vegetation properties, including above-ground biomass,365

LAI, leaf pigments (chlorophyll, carotenoids), GPP and NEE fluxes, leaf rust disease detec-366

tion and nutrients concentration (nitrogen and phosphorus concentrations) (Capolupo et al,367

2015; Dreccer et al, 2014; Foster et al, 2017; Hansen and Schjoerring, 2003; Matthes et al,368

2015; Wang et al, 2017a; Yue et al, 2017). However, when compared against machine learn-369

ing methods, then PLSR no longer appeared to be top performing (Ashourloo et al, 2016;370

Kiala et al, 2016; Wang et al, 2015; Yao et al, 2015). As will be addressed in section 3.2,371

this is due to the nonlinear transformation conducted in machine learning methods.372

Other linear non-parametric regression methods, such as ridge regression (RR) and LASSO,373

hardly made it into applications for vegetation properties mapping. Yet a few spectroscopic374

examples are worth mentioning. For instance, Addink et al (2007) used RR to map LAI375

and biomass, and more recently Bratsch et al (2017) applied LASSO to estimate above-376

ground biomass quantities among different plant tissue type categories in Alaska. In another377

biomass estimation study, both RR and LASSO were compared against PLSR (Lazaridis378

et al, 2010) and also random forests (Zandler et al, 2015). Interestingly, RR and LASSO379

appeared to be top performing. One may, therefore, wonder why these techniques have not380

been applied more often. On the other hand, these linear methods are increasingly replaced381

by their nonlinear counterparts. For instance, RR has been replaced by kernel ridge regres-382

sion (KRR) (Suykens and Vandewalle, 1999), and also PLSR has been redesigned into a383

kernel version, i.e. the KPLSR, which proved to be more powerful than PLSR for chloro-384

phyll concentration estimation (Arenas-García and Camps-Valls, 2008). The family of ker-385

nel methods is addressed in section 3.2. That none of these linear methods deliver uncer-386

tainty estimates is another drawback. Similar as in case of parametric regression, without387

uncertainty estimates it remains questionable whether these methods can deliver consistent388

mapping quality throughout a complete image, or are applicable to other images in space389

and time.390
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(a) PCR (b) PLSR (c) RR & LASSO

Fig. 4 Schematic representation of principal component (PC) (a), partial least squares (PLS) (B), ridge re-
gression and LASSO (c). PC and PLS is combined with a linear regression model.

3.2 Nonlinear non-parametric models391

When advancing beyond linear transformation techniques, a diversity of nonlinear non-392

parametric models has been developed during last few decades. These methods, also re-393

ferred to as machine learning regression algorithms, apply nonlinear transformations. An394

important methodological advantage is their capability to capture nonlinear relationships of395

image features without explicitly knowing the underlying data distribution. Hence, they are396

developed without assuming a particular probability density distribution, which is the rea-397

son why they work well with all kinds of data types. Machine learning methods also offer398

the possibility to incorporate a prior knowledge and the flexibility to include different data399

types into the analysis. In principle they are perfectly suited to process spectroscopic data.400

In the following sections, examples of the families of (1) decision trees, (2) artificial neural401

networks and (3) kernel-based regression are explained.402

3.2.1 Decision trees403

Table 2 Decision tree regression methods applicable to spectroscopic data.

Method Description Ref.
Decision trees
(DT)

DT learning is based on decision tree predictive modeling. A decision tree is based on
a set of hierarchical connected nodes. Each node represents a linear decision based on a
specific input feature.

Breiman
et al
(1984)

Boosted trees
(BoT)

BoT Incrementally builds an ensemble by training each new instance to emphasize the
training instances previously mis-modeled.

Friedman
et al
(2000)

Bagging trees
(BaT)

BaT an early ensemble method based on building multiple decision trees by iteratively
replacing resampled training data and voting for the decision trees leading to a consensus
prediction.

Breiman
(1996)

Random
Forests (RF)

RF is a specific type of BaT that in constructs a collection of decision trees with con-
trolled variance.

Breiman
(2001)

Decision tree algorithms use a branching method to illustrate every possible outcome of a404

decision (for examples see Table 2). They are more frequently applied in classification than405

in regression. Only a few decision tree feasibility studies dealing with imaging spectroscopy406

data are presented in the scientific literature (e.g. Im et al, 2009) most likely because boosted407

and bagging trees hardly found their way to regression applications. They might be con-408

sidered as obsolete with the improvements introduced into random forests (RF), which is409

essentially a specific type of bagging trees. RF builds an ensemble of individual decision410
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trees working with different subsets of features (bands) and eventually different training411

data points both selected randomly, from which a final prediction is made using particular412

combination schemes. RF can handle a large number of training samples, does not suffer413

from overfitting and is robust to outliers and noise (Belgiu and Drăguţ, 2016), which makes414

it an attractive method for spectroscopic mapping applications. RF has recently been made415

available in various software packages and proved to be a competent regression algorithm.416

It therefore comes as no surprise that RF gained rapid popularity in imaging spectroscopy417

mapping of a diverse range of vegetation attributes, including biomass (Adam et al, 2014;418

Vaglio Laurin et al, 2014), canopy nitrogen (Li et al, 2014b) and as indicator of plant species419

composition (Feilhauer et al, 2017). Some of these studies have compared RF with support420

vector regression (SVR) or neural networks, but no strong preference towards one or the421

other method was found, which suggests that all three methods are competitive (Han et al,422

2016; Pullanagari et al, 2016). However, just like other machine learning regression meth-423

ods, RF can face difficulties coping with the collinearity of the spectroscopic data (Rivera-424

Caicedo et al, 2017). To overcome this problem, RF is often used in combination with sen-425

sitive bands or simple transformations in the form of VIs that are known to be sensitive to426

the targeted vegetation property (Adam et al, 2014; Han et al, 2016; Liang et al, 2016). Al-427

ternatively, RF is inherently able to identify sensitive spectral bands, and selection of only428

those sensitive bands can subsequently improve the regression model (Balzarolo et al, 2015;429

Feilhauer et al, 2015). Whether applying a band selection method is the most successful430

strategy, however, remains an open question. Rather than seeking for optimized individual431

bands, a more elegant solution may lie in firstly applying dimensionality reduction method,432

and then inputting the features of the lower-dimensional space (i.e., components) into the433

decision tree (Rivera-Caicedo et al, 2017).434

3.2.2 Artificial neural networks435

Table 3 Artificial neural network regression methods applicable to spectroscopic data.

Method Description Ref.
Artificial
neural
networks
(ANN)

ANNs in their basic form are essentially fully connected layered structures of artificial
neurons (AN). An AN is basically a pointwise nonlinear function (e.g., a sigmoid or
Gaussian function) applied to the output of a linear regression. ANs with different neural
layers are interconnected with weighted links. The most common ANN structure is a
feed-forward ANN, where information flows in a unidirectional forward mode. From
the input nodes, data pass hidden nodes (if any) toward the output nodes.

Haykin
(1999)

Back-
propagation
ANN
(BPANN)

The he basic type of neural network is multi-layer perceptron, which is feed-forward
back-propagation ANN. BPANN consists of 2 steps: 1) feed forward the values, and
2) calculate the error and propagate it back to the earlier layers. So to be precise,
forward-propagation is part of the backpropagation algorithm but comes before back-
propagating. This is the most common used algorithm when referring to ANN. In many
papers using ANN these standard designs are not explicitly mentioned.

Haykin
(1999)

Radial basis
function ANN
(RBFANN)

RBFANN is a type of ANN that uses non-linear radial basis functions (RBF) as activa-
tion functions in the hidden layer. The output of the network is a linear combination of
RBFs of the inputs and neuron parameters.

Broomhead
and Lowe
(1988)

Recurrent
ANN (RANN)

A RANN is a type of ANN that make use of sequential information by introducing loops
in the network.

Hochreiter
and
Schmid-
huber
(1997)

Bayesian
regularized
ANN
(BRANN)

BRANNs are more robust than standard BPANNs and can reduce or eliminate the need
for lengthy cross-validation. Bayesian regularization is a mathematical process that con-
verts a nonlinear regression into a "well-posed" statistical problem in the manner of a
ridge regression.

Burden
and Win-
kler (1999)
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Artificial neural networks (ANNs) methods are listed in table 3. Since the early 90s, feed-436

forward and back-propagation ANNs thrived in all kinds of mapping applications, including437

vegetation properties mapping (Francl and Panigrahi, 1997; Kimes et al, 1998; Paruelo and438

Tomasel, 1997). Their strengths lie in their adaptability that can lead to excellent perfor-439

mances. The superiority of ANNs in vegetation properties mapping compared to parametric440

models (e.g. those based on VIs) has been demonstrated repeatedly in experimental studies441

(Kalacska et al, 2015; Malenovský et al, 2013; Uno et al, 2005; Wang et al, 2013). Examples442

of successful spectroscopic applications include the estimation of foliage nitrogen concen-443

trations (Huang et al, 2004) and LAI (Jensen et al, 2012; Neinavaz et al, 2016). In both444

cited studies, ANN outperformed other linear non-parametric models (e.g. PLSR). Alter-445

native powerful structures involve RBFANNs, BRANNs and RANNs (for explanation see446

table 3). Although these advanced ANNs have been primarily used for classification appli-447

cations, only recently they were explored to map vegetation properties from spectroscopic448

data (Chen et al, 2015; Feng et al, 2016; Pôças et al, 2017; Wang et al, 2013). Some of these449

studies mention the superiority of these advanced ANN designs as compared to standard450

ANN designs or other machine learning approaches in estimating vegetation properties (Du451

et al, 2016; Li et al, 2017; Pham et al, 2017).452

Applying ANNs to spectroscopic data, nonetheless, can be quite challenging due to the453

multicollinearity. Feeding many bands into an ANN requires a complex design and conse-454

quently a long training time. Just as with decision trees, a popular approach is applying a455

band selection or the calculation of several sensitive VIs or shape indices such as red edge456

position that are then entered either individually or as a combination into the ANN. Various457

of these band selection studies investigated combinations of VIs that led to best prediction458

models (Chen et al, 2015; Feng et al, 2016; Jia et al, 2013; Liang et al, 2015; Mutanga459

and Kumar, 2007; Pôças et al, 2017; Schlerf and Atzberger, 2006). As discussed before, it460

remains questionable whether the selected indices preserve a maximum amount of useful461

information. In contrary, when compressing the spectral data using dimensionality reduc-462

tion methods into a lower-dimensional space, then it is ensured that a maximum amount of463

spectral information is preserved. This approach was applied e.g. to assess corn yield (Uno464

et al, 2005) and phosphorus and nitrogen concentrations (Knox et al, 2011). It is therefore465

not surprising that a study comparing PCA vs. indices inputted into ANNs concluded that466

the PCA-ANN design outperformed VI-ANN designs (Liu and Pan, 2017). Moreover, given467

that only linear transformations are applied in PCA, it may even be that more adaptive di-468

mensionality reduction methods yield superior accuracies when combined with ANN, e.g.469

partial least squares (PLS), or in the field of nonlinear kernel-based dimensionality reduction470

methods, e.g. kernel PCA (KPCA) or kernel PLS (KPLS). To ascertain this hypothesis, PCA471

was compared against 10 alternative dimensionality reduction methods in combination with472

ANN to carry out LAI estimation. As expected, various alternative dimensionality reduc-473

tion methods outperformed PCA in developing accurate models (e.g., PLS, KPLS, KPCA)474

(Rivera-Caicedo et al, 2017).475

3.2.3 Kernel-based machine learning regression methods476

Kernel-based regression methods solve nonlinear regression problems by transferring the477

data to a higher-dimensional space by a kernel function (Table 4). The flexibility offered478

by kernel methods allows to transform almost any linear algorithm that can be expressed in479

terms of dot products, while still using only linear algebra operations. Kernel methods pro-480

vide a consistent theoretical framework for developing nonlinear techniques and have useful481

properties when dealing with a low number of (potentially high dimensional) training sam-482

ples, and outliers and noise in the data (Gómez-Chova et al, 2011; Tuia et al, 2018). Given483
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Table 4 Kernel-based regression methods applicable to spectroscopic data.

Method Description Ref.
Support vector
regression
(SVR)

The Support Vector Machine (SVM) is a supervised machine learning technique that
was invented in the context of the statistical learning theory. It was not until the mid-90s
that an algorithm implementation of the SVM was proposed with the introduction of the
kernel trick and the generalization to the non-separable case. SVR is built on the prin-
ciple of SVM: a non-linear function is learned by linear learning machine mapping into
high dimensional kernel induced feature space. The capacity of the system is controlled
by parameters that do not depend on the dimensionality of feature (bands) space.

Vapnik
et al
(1997)

Kernel ridge
regression
(KRR)

KRR combines RR with the kernel trick. It thus learns a linear function in the space
induced by the respective kernel and the data. For non-linear kernels, this corresponds
to a non-linear function in the original space. The form of the model learned by KR is
identical to SVR. However, different loss functions are used: KRR uses squared error
loss while SVR uses ε-insensitive loss combined with RR regularization.

Suykens
and Van-
dewalle
(1999)

Gaussian
process
regression
(GPR)

GPR is based on Gaussian processes (GPs), which generalize Gaussian probability dis-
tributions in a function’s space. A GP is stochastic since it describes the properties of
functions. As in Gaussian distributions, a GP is described by its mean (which for GPs is
a function) and covariance (a kernel function). This represents an expected covariance
between function values at a given point. Because a GPR model is probabilistic, it is
possible to compute the prediction intervals using the trained model.

Rasmussen
and
Williams
(2006)

these attractive properties, kernel-based regression methods seem perfectly suited to ex-484

tract nonlinear information related to vegetation properties from imaging spectroscopy data.485

Developed in the mid-90s, among the most popular kernel-based method for classification486

purposes involves SVMs. Its regression version (SVR) gained popularity for the retrieval of487

continuous vegetation attributes from imaging spectroscopy data in the last decade. Exam-488

ples include plant height, leaf nitrogen content, and leaf chlorophyll content (Karimi et al,489

2008; Yang et al, 2011). A multi-output version of SVR was presented by Tuia et al (2011),490

with LAI, leaf chlorophyll content and fractional vegetation content being simultaneously491

estimated. Recently, SVR was used for processing spectroscopic images of sub-decimeter492

spatial resolution as acquired by low-altitude unmanned aircraft system to infer Antarc-493

tic moss vigour (Malenovský et al, 2017). Yet just as with the other advanced regression494

methods, SVR face the same difficulties of coping with multicollinearity. Therefore, SVR495

has been commonly applied in combination with specific spectral subsets or VIs (Lin et al,496

2013; Marabel and Alvarez-Taboada, 2013), or with wavelet transforms (He et al, 2015).497

To deal with spectroscopic band redundancy, an advantage of SVR is that it allows band498

selection (analogous as PLSR and RF), which in principle allows the development of more499

optimized models (Feilhauer et al, 2015). On the other hand, it is likely that the combination500

with dimensionality reduction methods will lead to more powerful models (Rivera-Caicedo501

et al, 2017). To assess its predictive power, various spectroscopic studies compared SVR502

against similar methods such as SMLR or PLSR, although some band selection method ap-503

peared to be essential (Kiala et al, 2016; Wang et al, 2015; Yao et al, 2015). Conversely,504

when comparing SVR against other machine learning methods such as RF or GPR, then505

SVR no longer excelled (Pullanagari et al, 2016).506

Kernel ridge regression (KRR) emerged as one of the promising upcoming kernel-based507

regression methods, although only a few spectroscopic studies have used it. For instance,508

Wang et al (2011) compared KRR with linear non-parametric methods (multiple linear re-509

gression and PLSR) for LAI estimation. The authors concluded that KRR yielded the most510

accurate estimates. Also Peng et al (2011) used KRR for the detection of chlorophyll con-511

tent. Apart from these two studies, the spectroscopy vegetation community may not yet be512

familiar with this method. Solely Rivera Caicedo et al (2014) had compared KRR against513

other machine learning algorithms applied to CHRIS (62 bands) and HyMap (125 bands)514

spectroscopic data for LAI mapping. In that study, KRR not only proved to be a very com-515

petitive regression algorithm, but also proved to be extremely fast. This is due to its relatively516
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simple design that requires only one hyperparameter to be tuned. Because of its simplicity,517

another advantage is that KRR is capable to deal with collinearity; the method can cope518

with thousands of contiguous bands. In fact, in the dimensionality reduction comparison519

study tested with simulated (2100 bands) and HyMap data (Rivera-Caicedo et al, 2017),520

KRR was the only regression method where dimensionality reduction methods did not lead521

to improvements as compared to using all bands. In conclusion, KRR emerged as an attrac-522

tive regression method due to its competitive performance, fast processing and easiness to523

deal with spectroscopic data.524

From all machine learning regression algorithms, probably the most exciting one is Gaus-525

sian process regression (GPR). Contrary to other methods, the training phase in GPR takes526

place in a Bayesian framework, leading to probabilistic outputs (Camps-Valls et al, 2016;527

Rasmussen and Williams, 2006). GPR applied to spectroscopic data started only recently,528

e.g. for airborne HyMap mapping of leaf chlorophyll content (Verrelst et al, 2013a), and529

for spaceborne CHRIS mapping of leaf chlorophyll content, LAI and fractional vegetation530

content (Verrelst et al, 2012a). Of interest is that along with these maps also maps of associ-531

ated uncertainties (prediction intervals) were provided. Also with an Airborne Hyperspectral532

Scanner (Roelofsen et al, 2014) applied GPR to map salinity, moisture and nutrient concen-533

trations that in turn were used as inputs for plant association mapping. In the Rivera Caicedo534

et al (2014) comparison paper, GPR outperformed the majority of other tested machine535

learning methods for the prediction of leaf chlorophyll content and LAI from various spec-536

troscopic datasets. Similarly, Ashourloo et al (2016) concluded that GPR yielded most ac-537

curate leaf rust disease detection as compared to VIs, PLSR and SVR. However, GPR is538

no exception in suffering from radiometric collinearity when many bands are included; and539

related spectroscopic studies demonstrated that results can be further improved by com-540

bining GPR with band selection (Verrelst et al, 2016b) or with dimensionality reduction541

methods (Rivera-Caicedo et al, 2017). At the same time, alternative GPR versions continue542

to be developed within the machine learning community. For instance, Lazaro-Gredilla et al543

(2014) refined the GPR method by proposing a non-standard variable approximation allow-544

ing for accurate inferences in signal-dependent noise scenarios. The so-called variational545

heteroscedastic GPR (VHGPR) appears to be an excellent alternative for standard GPR,546

which was demonstrated on a CHRIS dataset where VHGPR outperformed GPR in leaf547

chlorophyll content estimation.548

(a) RF (b) NN (c) SVR (d) GPR

X

Y

Underlying function
GP prediction
Noisy data
Confidence interval

Fig. 5 Schematic representation of Random forest (RF) (a), Neural networks (NN) (b), Support vector re-
gression (SVR) (c), and Gaussian processes regression (GPR) (d).

4 Physically-based model inversion methods549

Physically-based model inversion is based on physical laws establishing cause-effect rela-550

tionships. Inferences on model variables are based on generally accepted knowledge em-551

bedded in radiative transfer models (RTMs). RTMs are deterministic models that describe552
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absorption and multiple scattering, and some of them even describe the microwave region,553

thermal emission or sun-induced chlorophyll fluorescence emitted by vegetation (e.g., see554

Table 5). A diversity of canopy RTMs have been developed over the last three decades with555

varying degrees of complexity. Gradual increase in RTMs accuracy, yet in complexity too,556

have diversified RTMs from simple turbid medium RTMs to advanced Monte Carlo RTMs557

that allow for explicit 3D representations of complex canopy architectures (e.g., see the558

RAMI exercises (Pinty et al, 2001, 2004; Widlowski et al, 2007, 2011, 2015) for a thorough559

comparison). This evolution has resulted in an increase in the computational requirements560

to run the model, which bears implications towards practical applications. From a compu-561

tational point of view, RTMs can be categorized as either (1) economically invertible (or562

computationally cheap); or as (2) non-economically invertible models (or computationally563

expensive). These terms refer to the model complexity and associated run-time constrain-564

ing the mathematical inversion of such models. Economically invertible models are models565

with relatively few input parameters and fast processing that enables fast calculations and566

consequently fast model inversion or rendering of simulated scenes. A well-known example567

of this category includes the widely used leaf RTM PROSPECT (Feret et al, 2008) coupled568

with the canopy RTM SAIL (Verhoef, 1984a) (combined named as PROSAIL (Jacquemoud569

et al, 2009a)).570

Non-economically invertible RTMs refer to advanced, computationally-expensive RTMs,571

often with a large number of input variables and sophisticated computational and mathemat-572

ical modelling. These type of RTMs enable the generation of complex or detailed scenes, but573

at the expense of a significant computational load. In short, the following families of RTMs574

can be considered as non-economically invertible: (1) Monte Carlo ray tracing models (e.g.,575

Raytran (Govaerts and Verstraete, 1998), FLIGHT (North, 1996) and librat (Lewis, 1999));576

(2) voxel-based models (e.g., DART (Gastellu-Etchegorry et al, 1996)) and (3) advanced in-577

tegrated vegetation and atmospheric transfer models (e.g., SCOPE (Van Der Tol et al, 2009)578

and MODTRAN (Berk et al, 2006)). Descriptions of advanced canopy RTM models and579

their latest developments are provided in Table 5. Although these advanced RTMs serve580

perfectly as virtual laboratories for fundamental research on light-vegetation interactions,581

they are in general less suitable for retrieval applications, because of either a large number582

of input variables or a long processing time. Nevertheless, as outlined below, some exper-583

imental studies demonstrated that they can as well be applied into inversion schemes, e.g.584

based on look-up tables and in hybrid strategies.585

Regardless of their complexity, they all deliver spectroscopic outputs, typically at 1 nm586

resolution. Hence, RTMs outputs can fit perfectly into inversion schemes of imaging spec-587

troscopy data, while at the same time the simulated data can be resampled to reassemble588

the band settings of multispectral sensors. Because inversion strategies are usually based on589

spectral fitting (i.e. only radiometric information is used), the drawback of collinearity com-590

plicating regression is not an issue here; however, removal of noisy bands is still a standard591

and much-needed preprocessing step to enable adequate spectral fitting. Another point to be592

mentioned is that inversion scheme can only retrieve the RTM input variables. Hence, using593

this strategy implies that only RTM state variables can be mapped. Yet because the RTM594

input variables drive the canopy absorbance and scattering mechanisms, the resulting output595

maps are considered to be physically sound (Knyazikhin et al, 2013; Myneni et al, 1995).596

Given that in principle only a coupled leaf-canopy RTM and an inversion routine are re-597

quired for the retrieval of RTM state variables, the approach is generic and generally ap-598

plicable. Nevertheless, these approaches are not straightforward. First, an RTM has to be599

selected, whereby a trade-off between the realism and inversion possibility of the RTM has600

to be made. As discussed above, typically, complex models are more realistic, but they have601

many variables and consequently challenging to invert, whereas simpler models may be602
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Fig. 6 Principles of RTM inversion. Left: RGB subset of a hyperspectral HyMap image (125 bands) over
Barrax agricultural site (Spain). Right: illustrative map of a vegetation property (LAI, m2/m2) as obtained
by RMSE inversion against a 100000 PROSAIL LUT (5% noise added, mean of 5% multiple solutions).
The model was validated with a R2 of 0.44 (RMSE: 1.85; NRMSE: 31.9%). A systematic underestimation
occurred, which in principle implies that the RTM simulated LUT needs to be better parameterized.
It took 2315 seconds to produce the map using ARTMO’s LUT-based inversion toolbox (Rivera et al, 2013).

Also uncertainty estimates are provided, e.g. in the form of residuals (not shown).

less realistic but easier to invert. Secondly, according to the Hadamard postulates, RTMs603

are invertible only when an inversion solution is unique and dependent – in a continuous604

mode – on the variables to be extracted. Unfortunately, this boundary condition is often605

not met. The inversion of canopy RTMs is frequently under-determined and ill-posed. The606

number of unknowns can be much larger than the number of independent observations.607

This makes physically-based retrievals of vegetation properties a challenging task. Several608

strategies have been proposed to cope with the under-determined problem of optimizing the609

inversion process, including (1) iterative numerical optimization methods, (2) lookup-table610

(LUT) based inversion, or (3) hybrid approaches in which LUTs are generated as input for611

machine learning approaches (see section 5). Below we briefly review some common RTM612

inversion techniques in view of converting spectroscopic data into maps of RTM leaf and613

canopy input variables.614

Numerical optimization: Iterative optimization is a classical technique to invert RTMs in615

image processing (Botha et al, 2007; Jacquemoud et al, 1995; Zarco-Tejada et al, 2001).616

The optimization is minimizing a cost function, which estimates the difference between617

measured and estimated variables by successive input variable iteration. Optimization al-618

gorithms are computationally demanding and hence potentially time-consuming depending619

on the complexity of the RTM and the numbers of image pixels to be processed. However,620

with the ongoing increase in computational power and open-source availability of optimiza-621

tion libraries, a renaissance of numerical approaches is emerging. Examples of numerical622

inversion against spectroscopic data include: PROSPECT inversion to retrieve leaf chloro-623

phyll content (Zhang and Wang, 2015), retrieval of leaf biochemistry against an improved624

version of PROSPECT (COSINE) (Jay et al, 2016), and PROSAIL leaf and canopy vari-625

ables (Bayat et al, 2016; van der Tol et al, 2016). Despite a gain in computational power,626

numerical inversion algorithms applied to images are still time-consuming given the many627

per-pixel iterations and a high number of pixels involved. Hence, in its current form this628

method stays restricted to computationally fast RTMs in merely experimental settings.629

Look-up table (LUT) strategies are based on the generation of simulated spectral reflectance630

scenarios for a high number of plausible combinations of variable value ranges. As such,631

the inversion problem is reduced to the identification of the modeled reflectance set that632

resembles most closely the measured one. This process is based on querying the LUT and633

applying a cost function. A cost function minimizes the summed differences between sim-634

ulated and measured reflectances for all wavelengths. The main advantage of LUT-based635

inversion routines over numerical optimization is their computational speed, since the com-636

putationally most demanding part of the inversion procedure is completed before the inver-637

sion itself (Dorigo et al, 2007). Consequently, LUT-based inversion methods are typically638
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Table 5 Advanded canopy RTMs commonly used in imaging spectroscopy applications.

RTM Description
SCOPE(Soil-
Canopy-
Observation
of Photosyn-
thesis and
Energy
fluxes)

SCOPE (Van Der Tol et al, 2009) is a Soil-Vegetation-Atmosphere (SVAT) scheme that includes RTMs
along with a micrometeorological model for simulating turbulent heat exchange, and a plant physio-
logical model for photosynthesis (Van Der Tol et al, 2014). The radiative transfer scheme is based
on SAIL (Verhoef, 1984b, 1985), extended with a similar radiative transfer for emitted radiation. The
emitted radiation includes chlorophyll fluorescence and thermal radiation. Leaf radiative transfer is cal-
culated with Fluspect (Vilfan et al, 2016) which also includes emitted fluorescence radiation. SCOPE
is intended as tool to scale processes from leaf to canopy, and to analyse the effects of light scattering.
Recent developments include vertical heterogeneity (Yang et al, 2017) and the zeaxanthin-violaxanthin
pigment cycles.

Discrete
Anisotropic
Radiative
Transfer
(DART)

DART model is being developed since 1992 as a physically based 3D computer programme (Gastellu-
Etchegorry et al, 1996), which simulates radiative budget and remote sensing (airborne and space-
borne) optical image data of natural and urban landscapes for any wavelengths from the ultraviolet
to the thermal infrared part of the electromagnetic spectrum (Gastellu-Etchegorry et al, 1999; Guille-
vic et al, 2003). It computes and provides bottom and top of the atmosphere spectral quantities (i.e.,
irradiance, exitance and radiance) that are transformed into reflectance or brightness temperature de-
pending on the user DART mode preferences (Gastellu-Etchegorry et al, 2004). Simulated scenes may
include the atmosphere, topography and any natural or anthropogenic objects at any geographical lo-
cation (Grau and Gastellu-Etchegorry, 2013). The latest DART optical development includes also the
specular reflectance and the light polarization (Gastellu-Etchegorry et al, 2015). Apart of passive re-
mote sensing data, it also simulates active terrestrial and air-/space-borne light detection and ranging
(LiDAR) discrete return, full waveform, multi-pulse and photon counting measurements (Gastellu-
Etchegorry et al, 2016; Yin et al, 2016). In case of vegetation, it can also simulate radiative transfer of
the solar-induced chlorophyll fluorescence for any virtual 3D Earth scene numerically and as images
(Gastellu-Etchegorry et al, 2017).

librat librat is a 3D Monte Carlo ray tracing radiative transfer model developed as a library interface to
the original ararat (Advanced RAdiometric RAy Tracer) model. The first version of ararat was pub-
lished in 1992 (Lewis and Muller, 1993) as part of the Botanical Plant Modelling System (BPMS)
(Lewis, 1999; Lewis and Muller, 1990). Subsequently, the sampling scheme was improved as reported
in Saich et al (2002), and the codes developed into a library in recent years. librat reads a 3D descrip-
tion of (canopy/soil/topographic) geometry, along with associated information on material scattering
properties. The main function in the library then is that a ray is launched from some origin in 3D space,
in a specified direction, and the code returns all information about the associated scattering paths and
interactions, separated as direct and diffuse components. This core functionality, along with a set of
associated sensor models but integrating paths fired into some volume. It allows for a wide range of
radiative transfer calculations, including time-resolved/lidar, splitting of the radiometric information
per scattering order etc. as well as straightforward raflectance/transmittance calculations (e.g. Disney
et al, 2006; Hancock et al, 2012).

FLIGHT FLIGHT (Barton and North, 2001; North, 1996) is a Monte Carlo ray tracing model designed to
rapidly simulate light interaction with 3D vegetation canopies at high spectral resolution, and produce
reflectance spectra for both forward simulation and for use in inversion (Leonenko et al, 2013). Foliage
is represented by structural properties of leaf area, leaf angle distribution, crown dimensions and frac-
tional cover, and the optical properties of leaves, branch, shoot and ground components. The model
represents multiple scattering and absorption of light within the canopy and with the ground surface.
It has been developed to model 3D canopy photosynthesis (Alton et al, 2007), to simulate waveform
and photon counting lidar (Montesano et al, 2015; North et al, 2010) and emitted fluorescence radi-
ation (Hernández-Clemente et al, 2017). Structural data may be specified as a statistical distribution,
derived from field measurements (Morton et al, 2014) or by direct inversion from LiDAR data (Bye
et al, 2017).

used as a preferred solution in RTM inversion studies. The classical LUT-based inversion639

approach is based on a RMSE cost function, which continues to be applied until today. This640

approach proved to be especially successful for chlorophyll (Kempeneers et al, 2008; Omari641

et al, 2013; Zhang et al, 2008) and LAI mapping. For instance, by using LUT-based inver-642

sion routines imaging spectroscopy data has been processed for the mapping of forest LAI643

(Banskota et al, 2013, 2015), grassland LAI (Atzberger et al, 2015) and LAI over agricul-644

tural crops based on UAVs (Duan et al, 2014). To further mitigate the ill-posed problem and645

optimize the robustness of the LUT-based inversion routines, a diversity of regularization646

strategies have been explored in inversion applications against spectroscopic data:647

– The use of prior knowledge to constrain model variables in the development of a LUT648

(Baret and Buis, 2008; Darvishzadeh et al, 2008; Koetz et al, 2005). Prior knowledge649

typically involves information on the feasible variable ranges for involved vegetation650
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types (Dorigo et al, 2009; Verrelst et al, 2012c). Prior information together with prior651

distributions are also increasingly applied into a Bayesian context, whereby the inverted652

values are generated based on likelihoods (Laurent et al, 2013, 2014; Shiklomanov et al,653

2016). The advantage of a Bayesian framework is its capability to quantify an inversion654

uncertainty around an inversion variable.655

– Selection of cost function. The inverse problem of a nonlinear RTM is based on the656

minimization of a cost function concurrently measuring the discrepancy between (i) ob-657

served and simulated reflectance, and (ii) variables to estimate and the associated prior658

information (Jacquemoud et al, 2009b). To avoid solutions reaching fixed boundaries, a659

modified cost function in the LUT search that takes uncertainty of provided prior infor-660

mation into account is sometimes used, e.g. by means of the above-mentioned Bayesian661

approach. Alternatively, Leonenko et al (2013) proposed and evaluated over 60 different662

cost functions dealing with different error distributions. Some more spectroscopic stud-663

ies have evaluated among others the role of cost function (Danner et al, 2017; Locherer664

et al, 2015) in LUT-based inversion. Although the classical RMSE is a robust cost func-665

tion, sometimes improvements can be gained with alternative cost functions, e.g. when666

the LUTs are non-normal distributed.667

– The use of multiple best solutions in the inversion (mean or median), as opposed to a668

single best solution (Banskota et al, 2015; Kattenborn et al, 2017; Koetz et al, 2005;669

Locherer et al, 2015).670

– The addition of artificial noise (additive or inverse multiplicative white noise) to account671

for uncertainties linked to measurements and models (Danner et al, 2017; Koetz et al,672

2005; Locherer et al, 2015).673

– Several spectroscopic studies reported that the relationship between measured and esti-674

mated variable perceptibly improves when only specific (sensitive) spectral ranges are675

selected for model inversion (Darvishzadeh et al, 2012; Meroni et al, 2004; Schlerf et al,676

2005). To account for noise in the observations, other spectroscopic studies instead ma-677

nipulated the observed spectra by applying a smoothing filter (Arellano et al, 2017) or678

wavelet transforms (Ali et al, 2016; Banskota et al, 2013; Kattenborn et al, 2017). Spec-679

tral selection and spectral polishing methods can be applied at the same time in order to680

enhance the resemblance with the usually more spectrally smooth simulated spectra.681

Because of taking sun-target-sensor geometry into account, the use of RTM-based methods682

has been demonstrated to improve robustness to solar and view angle effects, compared to683

index-based methods (Kempeneers et al, 2008). Another advantage of RTM inversion rou-684

tines is that uncertainties are provided as spectral residuals (Rivera et al, 2013) or standard685

deviations, when mapping multiple solution means (Verrelst et al, 2014). Yet the main draw-686

back lies in its computational burden resulting from too many per-pixel iterations. Although687

LUT-inversion approaches may speed-up the inversion process as opposed to numerical in-688

version, these inversion routines are still computationally expensive due to the iterative calls689

of LUT entries on a per-pixel basis. Consequently, despite attempts to optimize inversion al-690

gorithms in order to save-up computational time for solving inverse radiative transfer prob-691

lems (Favennec et al, 2016; Gastellu-Etchegorry et al, 2003), in terms of processing speed692

the RTM inversion routines run still behind statistical methods.693

5 Hybrid regression methods694

Having discussed the more fundamental categories of retrieval methods, this section ad-695

dresses hybrid regression methods. Hybrid methods combine the generalization level of696

physically-based methods with the flexibility and computational efficiency of advanced ma-697

chine learning methods. This approach replaces the ground data needed for training of the698
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(a) Numerical inversion (b) LUT-based inversion
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Fig. 7 Examples of numerical inversion (a) and LUT-based inversion (b). A HyMaP spectrum was inverted
against PROSAIL. In case of LUT-inversion, overview statistics of 5% best multiple solutions are shown.

parametric or non-parametric models by RTM input variables, which makes it computation-699

ally efficient. It is important to note that the hybrid approach does not alleviate the main700

issues of RTMs, notably that they only include existing knowledge and concepts. Similarly701

as in case of LUT-based inversion, RTM simulations build a LUT representing a broad set702

of canopy realizations and the hybrid approach uses all available data stored in LUT to train703

a machine learning regression model.704

Fig. 8 Principles of hybrid regression. Left: RGB subset of a hyperspectral HyMap image (125 bands) over
Barrax agricultural site (Spain). Right: illustrative map of a vegetation property (LAI, m2/m2) as obtained by
PROSAIL with Gaussian processes regression (GPR) and 15% white noise added. The model was validated
with a R2 of 0.88 (RMSE: 0.70; NRMSE: 10.1%)
. It took 6.3 seconds to produce the map using ARTMO’s MLRA toolbox (Rivera Caicedo et al, 2014). With
GPR also uncertainty estimates are provided (not shown). Because not being trained with bare soil spectra,

LAI over the non-irrigated parcels is overestimated.

The awareness in the mid 90’s that ANNs are excellent algorithms to deal with large datasets705

led to the introduction of hybrid methods based on ANNs trained with generically applicable706

RTM-generated data. It led to operational retrieval algorithms for datastreams acquired by707

multispectral and superspectral sensors (see Verrelst et al (2015)). Although this approach708

is less straightforward in the context of imaging spectroscopy, because of the challenge709

of collinearity, some recent efforts have been undertaken in exploring this research direc-710

tion. Noteworthy is the work of Vohland et al (2010) comparing a numerically optimized711

ANN with a LUT-based inversion using PROSAIL RTM simulations. Prediction accura-712

cies generally decreased in the following sequence: numerical optimization > LUT > ANN.713

This would indicate that an ANN may not always be the best choice for inversion applica-714

tions. However, no dimensionality reduction method was applied, which suggests that the715

regression model suffered from band collinearity effects. Also Fei et al (2012) compared716

a PROSAIL-ANN hybrid approach with a PCA approach. The authors concluded that a717

PCA transformation into a regression function can mitigate the known reflectance satura-718
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tion effect of dense canopies to some extent. This PROSAIL-ANN strategy was revisited by719

Rivera-Caicedo et al (2017) with alternative dimensionality reduction methods. Although720

PCA improved accuracies as opposed of using all bands, substantially more improvements721

were achieved when converting the spectra into components by means canonical correlation722

analysis (CCA) or orthonormalized PLS (OPLS).723

Likewise, inputs from more advanced RTMs were explored to develop specialized hybrid724

structures. In Malenovský et al (2013) an ANN was trained based on PROSPECT-DART725

simulations that explicitly took 3D canopy structures into account to estimate forest leaf726

chlorophyll content from hyperspectral airborne AISA data. In this approach the DART sim-727

ulations went first through a continuum removal transformation. Alternatively, some studies728

have attempted to move away from ANN models by exploring hybrid structures on the ba-729

sis of kernel-based machine learning regression algorithms, particularly the popular SVR.730

For instance, leaf chlorophyll content was estimated based on a PROSAIL-SVR model and731

applied to imaging spectroscopy (Preidl and Doktor, 2011). An analogous concept was ap-732

plied for a SVR that was trained by PROSPECT-DART simulations in combination with733

continuum removal transformations, with the purpose of quantifying forest biochemical and734

structural properties (Homolová et al, 2016). Similarly, Doktor et al (2014) used a PROSAIL735

dataset to train a random forests (RF) model to predict LAI and leaf chlorophyll content, and736

Liang et al (2016) compared PROSAIL-based hybrid models with SVR and RF for leaf and737

canopy chlorophyll content estimation from CHRIS data. Finally, (Rivera-Caicedo et al,738

2017) analyzed ensembles of regression algorithms with dimensionality reduction meth-739

ods to consolidate the most ideal PROSAIL-based (2101 bands) hybrid regression model.740

This study concluded that compressing PROSAIL data into CCA or OPLS components led741

to highest accuracies when trained with a GPR model. Altogether, although these studies742

have only been developed in experimental settings – similar as the operational multispectral743

hybrid algorithms (e.g. Bacour et al, 2006; Baret et al, 2013) – the hybrid structures can be744

perfectly implemented into global mapping schemes. When combined with a dimensionality745

reduction method to suppress collinearity, hybrid methods have a great potential to advance746

towards operational spectroscopy-based processing schemes.747

6 Discussion748

The mapping of spatially continuous biophysical variables from imaging spectroscopy data749

is a progressively expanding field of research and development thanks to advances in spec-750

trometer technology and in specialized methods interpreting the acquired spectral data. As751

a follow-up of an earlier, more general review on retrieval methods applicable to optical752

remote sensing (Verrelst et al, 2015), here a summary on retrieval methods specifically ap-753

plied to spectroscopic data has been compiled. Four categories have been summarized: (1)754

parametric, (2) non-parametric, (3) RTM inversion, and (4) hybrid methods. The first two755

categories are statistical methods commonly used with experimental (field) data, whereas756

the latter two rely on RTM simulations. A schematic flowchart of the main retrieval meth-757

ods and their hierarchy is provided in Figure 9.758

While pros and cons of each of these methodological categories have been earlier discussed759

(Verrelst et al, 2015), here we discuss these categories from the perspective of forthcoming760

routinely-acquired and standardized (e.g., atmospherically-corrected) imaging spectroscopy761

data streams. First of all, the choice of a method bears implications; not only on the re-762

trievability and processing time of mappable vegetation properties, but also on the purpose763

of the retrieval. Parametric and non-parametric methods rely on ground data for training,764

which obviously need to be available in order to apply these methods. If they are available,765
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Fig. 9 Schematic overview main retrieval methods.

they are the ’shortest’ way to the variables of interest, because especially the non-parametric766

methods do no impose any limitation on the relationship between the spectrum and the vari-767

able of interest. In contrast, RTMs describe radiative transfer processes, i.e. they use existing768

knowledge (as materialized in the models) rather than ground measured data. Retrieval from769

an RTM through inversion is most useful if one is more interested in the underlying radiative770

transfer processes (scattering, sun- and shade foliage fractions, light distribution within veg-771

etation canopies, relationships between canopy structure and photosynthesis), rather than in772

merely extracting a specific variable. However, strategies relying on RTM simulations are773

inherently limited by the input variables of the RTM and, as discussed in section 4, ancillary774

data and regularization methods may be required to optimize their inversions.775

Statistical approaches, on the other hand, possess the flexibility to relate reflectance data776

with any measured biophysical variable – state variable or not. As has been demonstrated in777

sections 2 and 3, this can be any quantifiable attribute, typically in the domains of leaf bio-778

chemical constituents (e.g., nitrogen, phosphorus), pigments (e.g., chlorophyll, cartenoids,779

xanthophylls) or higher-level structural variables (e.g., above-ground biomass, grain yield).780

The strength of the correlation with validation data typically determines the validity and781

transferrability of the statistical model. While this ’seeking for best correlations’ can be782

criticized, because of the absence of a physical basis (Knyazikhin et al, 2013), statistical783

approaches are becoming increasingly powerful to extract biochemical variables through784

complex and often indirect relationships. Particularly, machine learning models are power-785

ful in extracting information from subtle variations in spectroscopic data through adaptive,786

nonlinear relationships. The advantage of these statistical models is that not only variable-787

specific absorption features can be used for information extraction, but also secondary rela-788

tionships with variables related to other absorption features that co-vary with the variable of789

interest can be exploited (Ollinger, 2011; Verrelst et al, 2012b). Since high accuracies are790

often obtained with these methods, they are gaining popularity, not only for quantification of791
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a diversity of vegetation properties, but also in mapping of floristic composition (Feilhauer792

et al, 2017; Harris et al, 2015; Neumann et al, 2016; Roth et al, 2015).793

Regardless of the nature of retrieval method, in view of mapping larger areas, and especially794

in an operational and global context, what matters is the possibility to provide associated795

information on the retrieval quality. The characterization of uncertainty is a fundamental796

requirement for postulating correct scientific conclusions from results and for assimilating797

results into statistical or mechanistic higher-level models (Cressie et al, 2009). As addressed798

in section 2, parametric regression methods, i.e. spectral transformation methods in combi-799

nation with a fitting function, do not provide uncertainty estimates, which undermine their800

applicability to other images in space and time. Subsequently, while valid when locally cal-801

ibrated and validated, parametric methods are of little use in an operational context. With802

regard to inversion routines, uncertainties can be provided as spectral residuals (Rivera et al,803

2013) or standard deviations when mapping multiple solution means (Verrelst et al, 2014).804

Lately, inversion approaches were proposed in a Bayesian framework (Shiklomanov et al,805

2016), whereby uncertainties are delivered along with the retrievals. In case of traditional806

statistical models, uncertainty estimation has been a complex exercise. Statistical models de-807

veloped within a Bayesian framework, such as GPR, provide uncertainties together with the808

predictions (Camps-Valls et al, 2016; Verrelst et al, 2013b), which indicate the probability809

interval of an estimation relative to the samples used during the training phase. These un-810

certainties can be used to evaluate GPR model transferability. For example, by mapping the811

uncertainties (Verrelst et al, 2013b) demonstrated that a locally developed regression model812

can be successfully transported to other images in space and time for the large majority813

of pixels (i.e., the uncertainty maps were not systematically worse). Similarly, uncertainties814

can inform about the model performance. It was demonstrated that dimensionality reduction815

methods applied in GPR models for LAI mapping not only largely sped up the processing,816

but they also led to lower per-pixel uncertainties as opposed to mapping using all bands817

(Rivera-Caicedo et al, 2017). In conclusion, in the view of an operational processing need,818

just as important as the variable retrieval itself is the provision of an associated uncertainty819

estimate. Uncertainty estimates allow evaluating the method’s per-pixel performance, and820

consequently allow evaluating the method’s capability to process routinely acquired imag-821

ing data. They thus provide a measure of the retrieval fidelity, which can be used to identify822

and mask out the highly uncertain and non-reliable results.823

Another important aspect for operational production of vegetation properties from typically824

bulky imaging spectroscopy data streams implies computational speed. Generally, the lower825

the complexity of a model the faster it will be able to produce maps. This highly favors826

the application of parametric regression approaches since they consist of only few trans-827

formations and equations. Also non-parametric regression algorithms, once trained, can be828

applied to process an images almost instantaneously. Training of machine learning mod-829

els is frequently related to the tuning of several free variables with costly cross-validation830

approaches. These scale poorly with the number of samples (such as in kernel machines)831

or with the data dimensions (such as in ANNs). Although a trained ANN converts an im-832

age into a map quasi-instantly, kernel-based methods require more processing time, be-833

cause the similarity between each test pixel in the image and those used to train the model834

has to be estimated. Training can be computationally costly, especially when using a big835

training dataset, e.g. as in hybrid strategies. A solution to shorten training time could be in836

size reduction of the training data in a way that maximal relevant information is preserved.837

This can be achieved by means of dimensionality reduction methods in the spectral domain838

(Rivera-Caicedo et al, 2017), or by means of intelligent sampling in the sampling domain,839

e.g. through active learning (Verrelst et al, 2016a).840
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Considerably longer run-time is expected in case of inversion routines. Since RTMs take841

some time to generate simulations, especially for computationally expensive models, and842

also the evaluation takes place on a per-pixel basis, the iterative inversion routines are com-843

putationally expensive leading to relatively slow mapping speeds. In an attempt to acceler-844

ate their mapping speed, it has been proposed to approximate the functioning of the original845

RTM by means of statistical learning called emulation (Gómez-Dans et al, 2016; Rivera846

et al, 2015). Initial experiments to emulate leaf, canopy and atmospheric RTMs demon-847

strated that emulators can successfully generate spectral output from a limited set of input848

variable almost instantly, thereby preserving sufficient accuracy as compared to the origi-849

nal RTM (Verrelst et al, 2016c, 2017). Although an emulator reproduces RTM simulations850

instantly, application of a per-pixel spectral fitting requires many repetitions, which implies851

that these methods still do not reach the speed of statistical methods.852

All in all, having the purpose of advancing towards operational imaging spectroscopy data853

processing in mind, i.e., reaching globally-applicable, accurate and fast estimates, we end854

up with the following recommendations:855

– To enable model transferability to routinely-acquired images, retrieval methods must856

provide associated per-pixel uncertainties as a quality indicator whether the model can857

perform adequately in another space and time.858

– Regarding the computational speed, e.g. in case of repetitive image processing, statis-859

tical (i.e. regression) methods are multiple times faster than physically-based methods,860

capable to process full images in the order of minutes or even seconds.861

– In case of regression methods (experimental or hybrid), multicollinearity of spectro-862

scopic data complicates the development of powerful models. Physically-based methods863

using spectral fitting do not suffer from this problem.864

– To mitigate the problem of multicollinearity in regression methods, either band selec-865

tion or dimensionality reduction methods can be applied before entering the regression.866

Although band selection is a common practice, likely more powerful regression models867

can be obtained when using a dimensionality reduction method.868

7 Conclusions869

With forthcoming imaging spectrometer satellite missions, an unprecedented stream of datasets870

on the terrestrial biosphere will become available. This will require powerful processing871

techniques enabling quantification of vegetation variables in an operational and global set-872

ting. Four categories of retrieval methods have been discussed in this review paper: (1) para-873

metric regression; (2) non-parametric regression; (3) physically-based RTM inversion; and,874

(4) hybrid methods. For each of these categories, a diversity of methodological approaches875

are increasingly applied to imaging spectroscopy data. This literature review synthesized the876

current state-of-the-art in the field of spectroscopy-based vegetation properties mapping.877

Although parametric methods, such as shape indices or spectral transformation, deal well878

with extracting relevant information embedded in spectroscopic data, their lack of uncer-879

tainty estimates makes them unsuitable for operational use. Higher accuracies can be reached880

with nonlinear non-parametric methods; especially those in the field of machine learning that881

generate probabilistic outputs, e.g. Gaussian process regression. However, an additional step882

to mitigate their spectral multicollinearity is deemed necessary. A popular strategy in this883

respect is selecting a set of vegetation indices or applying spectral transformation before884

training the machine learning algorithm. It remains nevertheless questionable whether such885

band selection approaches fully capture all relevant information. Instead, dimensionality re-886
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duction methods that enable compressing the large majority of spectral variability into a few887

components tend to lead to more accurate predictions.888

On the other hand, the inversion of physically-based RTMs against spectroscopic data is889

generally applicable and physically sound, but optimizing their inversion strategies is more890

challenging compared to the regression methods. RTM-based inversion is computationally891

demanding and ancillary information is usually required as an input or to regulate the in-892

version algorithm. Hybrid regression methods, based on the coupling of an RTM with a893

machine learning regression algorithm, overcome the problem of processing speed. Partic-894

ularly Bayesian kernel-based hybrid strategies possess promising features, as they combine895

speed, flexibility and the provision of uncertainty estimates. Their accuracies and processing896

speed can be further improved in combination with dimensionality reduction. Altogether,897

and in the interest of operational spectroscopy-based mapping of vegetation properties, we898

recommend to further explore the feasibility and implementation of hybrid strategies into899

the next-generation data processing chains.900
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