1 2 3	CUGC for Syndromic Microphthalmia Including Next-Generation Sequencing Based Approaches
4 5	Authors:
6 7 8	Jonathan Eintracht1, Marta Corton2, David FitzPatrick3, Mariya Moosajee1,4,5
9 10 11	Institution (Institute, University, City, Country):
12 13	1UCL Institute of Ophthalmology, London, UK
14 15 16	2Department of Genetics, IIS – University Hospital Fundación Jiménez Díaz - CIBERER, Madrid, Spain
17 18	3MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
19 20	4Moorfields Eye Hospital NHS Foundation Trust, London, UK
20 21 22	5Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
23 24 25 26 27 28 29 30 31	Corresponding author: Dr Mariya Moosajee MBBS PhD FRCOphth Institution, Address, Telephone, Fax and Email: UCL Institute of Ophthalmology 11-43 Bath Street London UK EC1V 9EL Tel: +44 207 608 6971
32 33 34	Fax: +44 207 608 6830 Email: m.moosajee@ucl.ac.uk
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	

1. Disease characteristics

- **1.1 Name of the Disease (Synonyms):**
- 47 See Table 1 column 1 for 'Name of the Disease'

1.2 OMIM# of the Disease:

49 See Table 1 – column 2 for 'OMIM# of the Disease'

Table 1: Overview of diseases associated with syndromic microphthalmia

Name of the Disease	OMIM# of	Cytogenetic	Associated gene(s)	OMIM# of	Inheritance
	disease	location		associated gene(s)	
Aicardi Syndrome; AIC	304050	Xp22			XLD
Alkuraya-Kucinskas Syndrome;	617822	4q27	KIAA1109	611565	AR
ALKKCUS					
Ayme-Gripp Syndrome; AYGRP	601088	16q23.2	MAF	177075	AD
Baraitser-Winter Syndrome 1; BRWS1	243310	7p22.1	ACTB	102630	AD
Baraitser-Winter Syndrome 2; BRWS2	614583	17q25.3	ACTG1	102560	AD
Biemond Syndrome II	210350				Unknown
Blepharophimosis, Ptosis and	110100	3q22.3	FOXL2*	605597	AD
Epicanthus Inversus; BPES					
Bosma Arhinia Microphthalmia	603457	18p11.32	SMCHD1	614982	AD
Syndrome; BAMS					
Brain Small Vessel Disease; BSVD	607595	13q34	COL4A1	120130	AD
Branchiooculofacial syndrome; BOFS	113620	6p24.3	TFAP2A	107580	AD
Cataract 11, Multiple Types; CTRCT11	610623	10q24.32	PITX3	602669	AD, AR
Cataract 23, Multiple Types; CTRCT23	610425	22q12.1	CRYBA4	123631	AD
Cerebrooculofacioskeletal syndrome 1;	214150	10q11.23	ERCC6*	609413	AR
COFS1					
Cerebrooculofacioskeletal syndrome 3;	616570	13q33.1	ERCC5*	133530	AR
COFS3					
Cerebrooculofacioskeletal syndrome 4;	610758	19q13.32	ERCC1	126380	AR
COFS4					
CHARGE syndrome	214800	8q12.2	CHD7	608892	AD
Chondrodysplasia with platyspondyly,	300863	Xp11.23	HDAC6*	300272	XLD
distinctive brachydactyly, hydrocephaly					
and microphthalmia					
Coloboma-Obesity-Hypogenitalism-	601794				Unknown
Mental Retardation Syndrome					
Coloboma, Ocular, with or without	120433	11q22.1	YAP1	606608	AD
Hearing Impairment, Cleft Lip/Palate					
and/or Mental Retardation; COB1					
Colobomatous microphthalmia, ptosis,		4q35.2	FAT1	600976	AR
nephropathy and syndactyly					
COMMAD Syndrome	617306	3p13	MITF	156845	AR
Congenital Disorder of Glycosylation,	612379	4q12	SRD5A3	611715	AR
Type 1q; CDG1q					
Curry-Jones Syndrome; CRJS	601707	7q32.1	SMO	601500	Unknown
Dextrocardia with unusual facies and	221950				AD
microphthalmia					
Duane-Radial Ray Syndrome; DRRS	607323	20q13.2	SALL4	607343	AR
Fanconi Anemia, Complementation	227650	16q24.3	FANCA*	607139	AR
Group A; FA					
Fanconi Anemia, Complementation	227646	3p25.3	FANCD2*	613984	AR
Group D2; FANCD2					
Fanconi Anemia, Complementation	600901	6p21.31	FANCE*	613976	AR
Group E; FANCE					

Fanconi Anemia, Complementation Group I; FANCI	609053	15q26.1	FANCI*	611360	AR
Fanconi Anemia, Complementation	614083	2p16.1	PHF9*	608111	AR
Group L; FANCL			50501/	000054	\// D
Focal Dermal Hypoplasia; FDH	305600	Xp11.23	PORCN	300651	XLD
Fraser Syndrome 1; FRASRS1	219000	4q21.21	FRAS1	607830	AR
Fraser Syndrome 2; FRASRS2	617666	13q13.3	FREM2	608945	AR
Fraser Syndrome 3; FRASRS3	617667	12q14.3	GRIP1	604597	AR
Frontofacionasal Dysplasia	229400				AR
Frontonasal Dysplasia 1; FND1	136760	1p13.3	ALX3*	606014	AR
Frontonasal Dysplasia 3; FND3	613456	12q21.31	ALX1	601527	AR
Fryns Microphthalmia Syndrome	600776				AR
GOMBO Syndrome	233270				IC
Gorlin-Chaudhry-Moss Syndrome; GCMS	612289	1p13.3	SLC25A24	608744	AD
	602361	110101	FAM111A	615292	AD
Gracile Bone Dysplasia; GCLEB		11q12.1 	FAMITTA 		
Hallermann-Streiff Syndrome; HSS	234100				Unknown
Heart and Brain Malformation Syndrome: HBMS	616920	19q13.31	SMG9	613176	AR
Hemifacial Microsomia; HFM	164210	14q32			AD
Holoprosencephaly 1; HPE1	236100	21q22.3			AD, IC
Holoprosencephaly 2; HPE2	157170	2p21	SIX3	603714	AD
Holoprosencephaly 3; HPE3	142945	7q36.3	SHH	600725	AD
Holoprosencephaly 7; HPE7	610828	9q22.32	PTCH1	601309	AD
Holoprosencephaly 9; HPE9	610829	2q14.2	GLI2	165230	AD
Incontinentia pigmenti; IP	308300	Xq28	IKBKG*	300248	XLD
Joubert Syndrome 22; JBTS22	615665	2q37.1	PDE6D	602676	AR
Kapur-Toriello Syndrome	244300				IC
Kabuki Syndrome 1; KABUK1	147920	12q13.12	KMT2D	602113	AD
-		Xp11.3	KDM6A		XLD
Kabuki Syndrome 2; KABUK2	300867			300128	
Kenny-Caffey Syndrome, Type 2; KCS	127000	11q12.1	FAM111A	615292	AD
Klippel-Feil Syndrome 1, Autosomal Dominant; KFS1	118100	8q22.1	GDF6	601147	AD
Klippel-Feil Syndrome 3. Autosomal	613702	12p13.31	GDF3	606522	AD
Dominant; KFS3					
Macrosomia with Microphthalmia,					
Lethal	248110				XLD
Manitoba Oculotrichoanal					
Syndrome;MOTA	248450	9p22.3	FREM1	608944	AR
Meckel Syndrome, Type 1; MKS1	210100	0922.0		000011	7.0.0
Meckel Syndrome, Type 2; MKS2	249000	17q22	MKS1*	609883	AR
Meckel Syndrome, Type 3; MKS3	603194	11q12.2	TMEM216	613277	AR
Meckel Syndrome, Type 4; MKS4	607361	8q22.1	TMEM67	609884	AR
Meckel Syndrome, Type 5; MKS5	611134	12q21.32	CEP290	610142	AR
Microcephaly and chorioretinopathy,	611561	16q12.2	RPGRIP1L	610937	AR
	616335	-	TUBGCP4		AR
autosomal recessive, 3, MCCRP3		15q15.3		609610	
Microcephaly with or without	152950	10q23.33	KIF11	148760	AD
Chorioretinopathy, Lymphedema or					
Mental Retardation; MCLMR	054700				
Microphthalmia with Hyperopia, Retinal	251700				Unknown
Degeneration, Macrophakia and Dental Anomalies					
Microphthalmia, Syndromic 1;	309800	Xq28	NAA10	300013	XL
MCOPS1	303000	ΛΥΖΟ	IVAAIU	300013	
Microphthalmia, Syndromic 2;	300166	Xp11.4	BCOR	300485	XLD
MCOPS2	200000	2~20.00	00/2	404000	A D
Microphthalmia, Syndromic 3; MCOPS3	206900	3q26.33	SOX2	184229	AD

Microphthalmia, Syndromic 4; MCOPS4	301590	Xq27-q28			XLR
Microphthalmia, Syndromic 5; MCOPS5	610125	14q22.3	OTX2	600037	AD
Microphthalmia, Syndromic 6; MCOPS6	617932	14q22.2	BMP4	112262	AD
Microphthalmia, Syndromic 7; MCOPS7	309801	Xp22.2	HCCS	300056	XLD
Microphthalmia, Syndromic 8; MCOPS8	601349	6q21	SNX3*	601349	AD
Microphthalmia, Syndromic 9; MCOPS9	601186	15q24.1	STRA6	610745	AR
Microphthalmia, Syndromic 10;MCOPS10	611222				IC
Microphthalmia, Syndromic 11; MCOPS11	614402	10q25.3	VAX1	604294	AR
Microphthalmia, Syndromic 12; MCOPS12	615524	3p24.2	RARB	180220	AD, AR
Microphthalmia, Syndromic 13; MCOPS13	300915	Xp28	HMGB3	300193	XL
Microphthalmia, Syndromic 14; MCOPS14	615877	4q31.3	MAB21L2	604357	AD, AR
Microphthalmia with Cyst, Bilateral Face Clefts and Limb Abnormalities	607597				IC
Microphthalmia with Limb	206920	14q24.2,11p11.2	SMOC1,FNBP4*	608488, 615265	AR
Abnormalities; MLA					
MOMO Syndrome	157980				Most likely AD
Mowat-Wilson Sydrome; MOWS	235730	2q22.3	ZEB2	605802	AR
Muscular Dystrophy-	236670	9q34.13	POMT1	607423	AD
Dystroglycanopathy, Type A; MDDGA1					
Muscular Dystrophy-	613150	14q24.3	POMT2	607439	AR
Dystroglycanopathy, Type A, 2; MDDGA2					
Muscular Dystrophy-	253280	1p34.1	POMGNT1	606822	AR
Dystroglycanopathy, Type A, 3;					
MDDGA3					
Muscular Dystrophy-	253800	9q31.2	FKTN	607440	AR
Dystroglycanopathy, Type A, 4; MDDGA4					
Muscular Dystrophy-	613153	19q13.32	FKRP	606596	AR
Dystroglycanopathy, Type A, 5; MDDGA5					
Muscular Dystrophy-	614643	7p21.2-p21.1	ISPD	614631	AR
Dystroglycanopathy, Type A, 7; MDDGA7					
Muscular Dystrophy-	614830	3p22.1	POMGNT2	614828	AR
Dystroglycanopathy, Type A, 8; MDDGA8					
Muscular Dystrophy- Dystroglycanopathy, Type A, 9;	616538	3p21.31	DAG1	128239	AR
MDDGA9					
Muscular Dystrophy-	615041	12q14.2	RXYLT1*	605862	AR
Dystroglycanopathy, Type A, 10;	010041	12417.2		000002	
MDDGA10					
Muscular Dystrophy-	615181	1q42.3	B3GALNT2	610194	AR
Dystroglycanopathy, Type A, 11;	010101	1442.3	DJGALIVIZ	010194	АЛ
MDDGA11					
Nance-Horan Syndrome; NHS	302350	Xp22.13	NHS	300457	XLD
	002000	, yp_2, ro		000107	

Neurodevelopment Disorder with	616975	1p36.23	RERE	605226	AD
anomalies of the Brain, Eye and/or					
Heart; NEDBEH					
Norrie Disease; ND	310600	Xp11.3	NDP	300658	XLR
Oculoauricular Syndrome; OCACS	612109	4p16.1	HMX1	142992	AR
Oculocerebrocutaneous Syndrome	164180				Isolated Cases
Oculodentodigital Dysplasia; ODDD	164200	6q22.31	GJA1	121014	AD
Oculodentodigital Dysplasia,	257850	6q22.31	GJA1	121014	AR
autosomal recessive					
Optic disc anomalies with retinal and/or	212550	14q23.1	SIX6	606326	AR
macular dystrophy					
Orofaciodigital Syndrome 6; OFD6	277170	5p13.2	C5orf42*	614571	AR
Osteoporosis-Pseudoglioma	259770	11q13.2	LRP5	603506	AR
syndrome; OPPG					
Papillorenal Syndrome; PAPRS	120330	10q24.31	PAX2	167409	AD
Persistent hyperplasitc primary	221900	10q21.3	ATOH7	609875	AR
vitreous, autosomal recessive		•			
Popliteal Pterygium Syndrome	263650	21q22.3	RIPK4	605706	AR
Renpenning Syndrome; RENS1	309500	Xp11.23	PQBP1	300463	XLR
Retinal dystrophy, iris coloboma and	615147	10q23.33	RBP4		
comedogenic acne syndrome;				180250	AR
RDCCAS					
Rodrigues Blindness	268320				Most likely AR
Steinfeld Syndrome	184705				AD
Single Median Maxillary Central	147250	7q36.3	SHH	600725	Most likely AD
Incisor, SMMCI		•			
Short Stature, Mental Retardation,	605856				Isolated cases
Callosal Agenesis, Heminasal					
Hypoplasia, Microphthalmia and					
Atypical Clefting					
Skin Creases, Congenital Symmetric	616734,	18q21.1-q12.2,	MAPRE2,	605789,	AD
Circumferential, Kunze type;	156610	6p21.33	TUBB	191130	
CSCSC1/2					
Split-Hand/Foot Malformation; SHFM5	606708	2q31			AD
Temtamy Syndrome; TEMTYS	218340	12p13.31	C120RF57	615140	AR
Tetraamelia Syndrome 1; TETAMS1	273395	17q21.31-32	WNT3*		
Townes-Brock Syndrome	107480	16q12.1	SALL1	602218	AD
Verheij Syndrome; VRJS	615583	8q24.3	PUF60	604819	AD
Waardenburg syndrome, type 2a;	193510	3p13	MITF	156845	AD
WS2A		,			
Warburg Microsyndrome 1; WARBM1	600118	2q21.3	RAB3GAP1	602536	AR
Warburg Microsyndrome 2; WARBM2	614225	1q41	RAB3GAP2	609275	AR
Warburg Microsyndrome 3; WARBM3	614222	10p12.1	RAB18	602207	AR
Warburg Microsyndrome 4; WARBM4	615663	20p13	TBC1D20	611663	AR
5, , , , , , , , , ,			-		

Legend: AD-Autosomal dominant, AR-Autosomal recessive, XL – X-linked, XLD – X-linked dominant, XLR – X-linked recessive, IC – Isolated Cases, * little evidence suggesting association with microphthalmia

1.3 Name of the Analysed Genes or DNA/Chromosome Segments and OMIM# of the Gene(s):

54 **1.3.1 Core genes (irrespective if being tested by Sanger sequencing or next generation**

55 See Table 1, column 4—'Associated gene(s)' and column 5—'OMIM# of associated gene(s)

56 for all genes and related syndromes

57 **1.3.2** Additional genes (if tested by next generation sequencing, including Whole

- 58 exome/genome sequencing and panel sequencing)
- 59 See Table 2, column 1—'Gene' and column 3—'OMIM# of gene'.

60 61 Table 2: Additional genes associated with syndromic and non-syndromic microphthalmia tested with next-

generation sequencing

62

ABCB6 2q35 605452 Microphthalmia, isolated with coloboma 7; MCOPCB7 614497 ADAMTS18 607513 16q23.1 Microphthalmia, isolated with arrophy and telecanthus 615458 ALDH1A3 15q26.3 600463 Microphthalmia, isolated 8; MCOP8 615113 ATOH7 10q21.3 609875 Persistent hyperplasitc primary utireous, autosomal recessive 221900 BEST1 11q12.3 607854 Microcornea, rod-cone dystrophy, cataract and posterior staphyloma, included; MRCS 193220 CRYAA 2qq12.1 123580 Cataract 9, multiple types; CTRCT9 604219 CRYBB1 600929 Cataract 1, multiple types; CTRCT9 604219 CRYBE2 2q33.3 123620 Cataract 3, multiple types; CTRCT3 601547 CRYGC 2p22.2 123680 Cataract 3, multiple types; CTRCT3 601547 CRYGC 2p22.2 123680 Cataract 4; multiple types; CTRCT3 601547 CRYGC 2p22.2 123680 Cataract 4; multiple types; CTRCT3 601547 CRYGC 2p22.2 12360 Cataract 4; multiple types; CTRCT	Gene	Cytogenetic Location	OMIM# of gene	Associated disease acronym	OMIM# of disease where applicable
ADAMTS18 607513 16q23.1 Microcorrea, myopic chorioretinal atrophy and telecanthus 615458 ALDH1A3 15q26.3 600463 Microphthalmia, isolated 8; MCOP8 615113 ATOH7 10q21.3 609875 Persistent hyperplasitc primary vitreous, autosomal recessive 221900 BEST1 11q12.3 607854 Microcornea, rod-cone dystrophy, cataract and posterior staphyloma, included; MRCS 193220 BMP7 21q22.3 112267 Various ocular abnormalities	ABCB6			Microphthalmia isolated with	
atrophy and telecanthus ALDH1A3 15q26.3 600463 Microphthalmia, isolated 8; MCOP8 615113 ATOH7 10q21.3 609875 Persistent hyperplasitc primary 221900 Witreous, autosomal recessive 0 193220 cataract and posterior staphyloma, included; MRCS 193220 BMP7 21q22.3 112267 Various ocular abnormalities				coloboma 7; MCOPCB7	
ATOH7 10q21.3 609875 Persistent hyperplasitc primary vitreous, autosomal recessive 221900 BEST1 11q12.3 607854 Microcornea, rod-cone dystrophy, cataract and posterior staphyloma, included; MRCS 193220 BMP7 21q22.3 112267 Various ocular abnormalities	ADAMTS18	607513	16q23.1		615458
BEST1 11q12.3 607854 Microcornea, rod-cone dystrophy, cataract and posterior staphyloma, included; MRCS BMP7 21q22.3 112267 Various ocular abnormalities CRYAA 22q12.1 12350 Cataract 3, multiple types; CTRCT9 604219 CRYBB1 600929 Cataract 17, multiple 611544 CRYBB2 2q33.3 123620 Cataract 3, multiple types; CTRCT17 604517 CRYBB2 2q33.3 123620 Cataract 3, multiple types; CTRCT2 604307 CYP1B1 601771 Anterior segment dysgenesis 6, for 17315 6117315 Bp21.1 multiple subtypes 269000 5q35.1 FBXW11 605651 Diverse developmental phenotype 1p33 11q22.3 610411 Ocular coloboma, microphthalmia IPO13 11q23.3 610411 Ocular coloboma, microphthalmia IPO13 11q23.6 606227 Microphthalmia, isolated 5; MCOP5 611040 MFRP 10913.2 607108 Ocular coloboma, microphthalmia DLFM2	ALDH1A3	15q26.3	600463	Microphthalmia, isolated 8; MCOP8	615113
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ATOH7	10q21.3	609875		221900
BMP7 21q22.3 112267 Various ocular abnormalities CRYAA 22q12.1 123580 Cataract 9, multiple types; CTRCT9 604219 CRYBB1 600929 Cataract 3, multiple types; CTRCT3 601547 CRYBB2 2q33.3 123620 Cataract 3, multiple types; CTRCT3 601547 CRYGC 2p22.2 123680 Cataract 2, multiple types; CTRCT2 604307 CYPB1 601771 Anterior segment dysgenesis 6, 617315 617315 Bp21.1 601771 Anterior segment dysgenesis 6, 617315 610256 ESCO2 603533 SC Phocomelia Syndrome 269000 Sq35.1 605651 Diverse developmental phenotype 1p33 including brain, eye and digit anomalies FOXE3 1q21.2 601094 Anterior Segment Dysgenesis 2; 610256 1p34.1 ASD2 116200 IPO13 11q23.3 610411 Ocular coloboma, microphthalmia 0LFMP 19p13.2 6	BEST1	11q12.3	607854		193220
CRYAA 22q12.1 123580 Cataract 9, multiple types; CTRCT9 604219 CRYBB1 600929 Cataract 17, multiple 611544 22q11.23 types; CTRCT17 601547 CRYB2 2q33.3 123620 Cataract 3, multiple types; CTRCT3 601547 CRYGC 2p2.2 123680 Cataract 2, multiple types; CTRCT2 604307 CYP1B1 601771 Anterior segment dysgenesis 6, multiple types; CTRCT2 604307 Bp21.1 multiple subtypes 5 609353 SC Phocomelia Syndrome 269000 5q35.1 fb2W11 605651 Diverse developmental phenotype including brain, eye and digit anomalies FDXE3 1q21.2 601094 Anterior Segment Dysgenesis 2; fol10256 610256 GJA8 600897 Cataract 1, Muttiple Types; CTRCT1 116200 IPO13 11q23.3 610411 Ocular coloboma, microphthalmia 0LFM2 11p13 617492 Bilateral microphthalmia, short 0LFM2 11p13 617492 Nanoph		20q13.31		included; MRCS	
CRYBB1 600929 Cataract 17, multiple types; CTRCT17 611544 CRYBB2 2q3.3 123620 Cataract 3, multiple types; CTRCT3 601547 CRYGC 2p2.2 123680 Cataract 2, multiple types; CTRCT3 601547 CYPIB1 601771 Anterior segment dysgenesis 6, 8p21.1 617315 601371 ESC02 609353 SC Phocomelia Syndrome 269000 5q35.1 605651 Diverse developmental phenotype including brain, eye and digit anomalies FOXE3 1q21.2 601094 Anterior Segment Dysgenesis 2; 610256 GJA8 600897 Cataract 1, Mutiple Types; CTRCT1 116200 IPO13 11q23.3 610411 Ocular coloboma, microphthalmia 11q12.2 and cataract MFRP 19913.2 606227 Microphthalmos OLFM2 11p13 617492 Bilateral microphthalmos PAX6 2q37.1 607108 Ocular malformations within the	BMP7	21q22.3	112267	Various ocular abnormalities	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CRYAA	22q12.1	123580	Cataract 9, multiple types;CTRCT9	604219
CRYBB2 2q33.3 123620 Cataract 3, multiple types; CTRCT3 601547 CRYGC 2p22.2 123680 Cataract 2, multiple types; CTRCT2 604307 CYP1B1 601771 Anterior segment dysgenesis 6, formuttiple subtypes 6017315 Bp21.1 muttiple subtypes 269000 5q35.1 609353 SC Phocomelia Syndrome 269000 FBXW11 605651 Diverse developmental phenotype anomalies 269000 FOXE3 1q21.2 601094 Anterior Segment Dysgenesis 2; 610256 GJA8 600897 Cataract 1, Mutiple Types; CTRCT1 116200 IPO13 11q23.3 610411 Ocular coloboma, microphthalmaina MFRP 19p13.2 606227 Microphthalmia, isolated 5; MCOP5 611040 MYRF 608329 Nanophthalmos OLFM2 11p13 617492 Bilateral microphthalmia, short 2p25.3 Colar malformations within the PAX6 2q37.1 607108 Ocular malformatio	CRYBB1	22a11.23	600929		611544
CRYGC 2p22.2 123680 Cataract 2, multiple types; CTRCT2 604307 CYP1B1 601771 Anterior segment dysgenesis 6, multiple subtypes 617315 Bp21.1 multiple subtypes 269000 FBXW11 605651 Diverse developmental phenotype including brain, eye and digit anomalies 269000 FOXE3 1q21.2 601094 Anterior Segment Dysgenesis 2; for CTRCT1 610256 GJA8 600897 Cataract 1, Mutiple Types; CTRCT1 116200 10256 IPO13 11q23.3 610411 Ocular coloboma, microphthalmia MFRP 19p13.2 606227 Microphthalmia, isolated 5; MCOP5 611040 MYRF 608329 Nanophthalmia, short OLFM2 11p13 617492 Bilateral microphthalmia, short PXS56 613858 Microphthalmia, isolated 6; MCOP 613517 PXDN 18q21.32 605158 Anterior Segment Dysgenesis 7; 269400 Atteria ASD7 A 4q28.2 ASD7 RAX 16q23	CRYBB2		123620		601547
CYP1B1 601771 Anterior segment dysgenesis 6, multiple subtypes 617315 ESC02 609353 SC Phocomelia Syndrome 269000 5q35.1 605651 Diverse developmental phenotype including brain, eye and digit anomalies FBXW11 605651 Diverse developmental phenotype including brain, eye and digit anomalies FOXE3 1q21.2 601094 Anterior Segment Dysgenesis 2; 1p34.1 610256 GJA8 600897 Cataract 1, Multiple Types; CTRCT1 116200 IPO13 11q23.3 610411 Ocular coloboma, microphthalmia					
ESC02 609353 SC Phocomelia Syndrome 269000 FBXW11 605651 Diverse developmental phenotype including brain, eye and digit anomalies FOXE3 1q21.2 601094 Anterior Segment Dysgenesis 2; 1p34.1 610256 GJA8 600897 Cataract 1, Mutiple Types; CTRCT1 116200 IPO13 11q23.3 610411 Ocular coloboma, microphthalmia 11q12.2 and cataract MFRP 19p13.2 606227 Microphthalmia, isolated 5; MCOP5 611040 MYRF 608329 Nanophthalmos OLFM2 11p13 617492 Bilateral microphthalmia, short PAX6 2q37.1 607108 Ocular malformations within the 2p25.3 MAC spectrum 269400 PRSS56 613858 Microphthalmia, isolated 6; MCOP 613517 PXDN 18q21.32 605158 Anterior Segment Dysgenesis 7; 269400 SCLT1 6q22.31 611389 Ori		-		Anterior segment dysgenesis 6,	
FBXW11 605651 Diverse developmental phenotype including brain, eye and digit anomalies FOXE3 1q21.2 601094 Anterior Segment Dysgenesis 2; 1p34.1 610256 GJA8 600897 Cataract 1, Mutiple Types; CTRCT1 116200 IPO13 11q23.3 610411 Ocular coloboma, microphthalmia	ESC:02	002111	609353		269000
FBXW11 605651 Diverse developmental phenotype including brain, eye and digit anomalies	20002	5a35 1	000000		200000
1p33 including brain, eye and digit anomalies FOXE3 1q21.2 601094 Anterior Segment Dysgenesis 2; 610256 1g34.1 600897 Cataract 1, Mutiple Types; CTRCT1 116200 IP013 11q23.3 610411 Ocular coloboma, microphthalmia 11q12.2 and cataract 610400 MFRP 19p13.2 606227 Microphthalmia, isolated 5; MCOP5 611040 MYRF 608329 Nanophthalmos OLFM2 11p13 617492 Bilateral microphthalmia, short PAX6 2q37.1 607108 Ocular malformations within the 2p25.3 MAC spectrum 2p25.3 MAC spectrum PRSS56 613858 Anterior Segment Dysgenesis 7; 269400 4q28.2 4q28.2 ASD7 2p25.3 605158 Anterior Segment Dysgenesis 7; 269400 269400 428.2 2p25.3 605158	FRXW/11	0400.1	605651	Diverse developmental phenotype	
FOXE3 1q21.2 1p34.1 601094 600897 Anterior Segment Dysgenesis 2; ASD2 610256 GJA8 600897 Cataract 1, Mutiple Types; CTRCT1 116200 IPO13 11q23.3 610411 Ocular coloboma, microphthalmia 11q12.2 and cataract MFRP 19p13.2 606227 Microphthalmia, isolated 5; MCOP5 611040 MYRF 608329 Nanophthalmos OLFM2 11p13 617492 Bilateral microphthalmia, short stature and facial dysmorphism stature and facial dysmorphism PAX6 2q37.1 607108 Ocular malformations within the stature and facial dysmorphism PRSS56 613858 Microphthalmia, isolated 6; MCOP 613517 PXDN 18q21.32 605158 Anterior Segment Dysgenesis 7; 269400 4q28.2 RAX 16q23.3 601881 Microphthalmia, isolated 3; MCOP3 611038 SCL71 6q22.31 611399 Oriofaciodigital Syndrome IX; OFD9 <td>I DAWII</td> <td>1p33</td> <td>000001</td> <td>including brain, eye and digit</td> <td></td>	I DAWII	1p33	000001	including brain, eye and digit	
GJA8 600897 Cataract 1, Mutiple Types; CTRCT1 116200 IPO13 11q23.3 610411 Ocular coloboma, microphthalmia 11q12.2 and cataract and cataract MFRP 19p13.2 606227 Microphthalmia, isolated 5; MCOP5 611040 MYRF 608329 Nanophthalmos OLFM2 11p13 617492 Bilateral microphthalmia, short Stature and facial dysmorphism stature and facial dysmorphism PAX6 2q37.1 607108 Ocular malformations within the 2p25.3 MAC spectrum 2p25.3 PRSS56 613858 Microphthalmia, isolated 6; MCOP 613517 PXDN 18q21.32 605158 Anterior Segment Dysgenesis 7; 269400 4q28.2 ASD7 258865 5 ScL71 6q22.31 611399 Oriofaciodigital Syndrome IX; OFD9 258865 SLC38A8	FOXE3	•	601094	Anterior Segment Dysgenesis 2;	610256
IPO13 11q23.3 610411 Ocular coloboma, microphthalmia	GJA8		600897	_	116200
MFRP 19p13.2 606227 Microphthalmia, isolated 5; MCOP5 611040 MYRF 608329 Nanophthalmos OLFM2 11p13 617492 Bilateral microphthalmia, short Stature and facial dysmorphism stature and facial dysmorphism PAX6 2q37.1 607108 Ocular malformations within the 2p25.3 MAC spectrum 269400 PRSS56 613858 Microphthalmia, isolated 6; MCOP 613517 PXDN 18q21.32 605158 Anterior Segment Dysgenesis 7; 269400 4q28.2 ASD7 ASD7 RAX 16q23.3 601881 Microphthalmia, isolated 3; MCOP3 611038 SCLT1 6q22.31 61585 Foveal Hypoplasia 2; FVH2 609218 TBC1D32 17q11.2 615867 Oriofaciodigital Syndrome IX; OFD9 258865 TENM3 18q22.1 610083 Microphthalmia, isolated with 615145 TMEM98 </td <td></td> <td></td> <td></td> <td>Ocular coloboma, microphthalmia</td> <td></td>				Ocular coloboma, microphthalmia	
MYRF 608329 Nanophthalmos OLFM2 11p13 617492 Bilateral microphthalmia, short stature and facial dysmorphism stature and facial dysmorphism PAX6 2q37.1 607108 Ocular malformations within the 2p25.3 MAC spectrum 613517 PRSS56 613858 Microphthalmia, isolated 6; MCOP 613517 PXDN 18q21.32 605158 Anterior Segment Dysgenesis 7; 269400 4q28.2 ASD7 258865 SCLT1 6q22.31 611399 Oriofaciodigital Syndrome IX; OFD9 258865 SLC38A8 4q34.3-35.1 615855 Foveal Hypoplasia 2; FVH2 609218 TBC1D32 17q11.2 615867 Oriofaciodigital Syndrome IX; OFD9 258865 TENM3 18q22.1 610083 Microphthalmia, isolated with 615145 TMEM98 14q24.3 615949 coloboma 7; MCOPCB7 VSX2 142993 <td>MERP</td> <td></td> <td>606227</td> <td></td> <td>611040</td>	MERP		606227		611040
OLFM2 11p13 617492 Bilateral microphthalmia, short stature and facial dysmorphism		10010.2		-	
PAX6 2q37.1 2p25.3 607108 607108 Ocular malformations within the MAC spectrum		11p13		Bilateral microphthalmia, short	
PRSS56 613858 Microphthalmia, isolated 6; MCOP 613517 PXDN 18q21.32 605158 Anterior Segment Dysgenesis 7; 269400 4q28.2 ASD7 ASD7 ASD7 611038 SCLT1 6q22.31 611399 Oriofaciodigital Syndrome IX; OFD9 258865 SLC38A8 4q34.3-35.1 615585 Foveal Hypoplasia 2; FVH2 609218 TBC1D32 17q11.2 615867 Oriofaciodigital Syndrome IX; OFD9 258865 TENM3 18q22.1 610083 Microphthalmia, isolated with 615145 TMEM98 14q24.3 615949 coloboma 7; MCOPCB7 7 TMX3 616102 Nanophthalmos 4 615972 VSX2 142993	PAX6		607108	Ocular malformations within the	
PXDN 18q21.32 4q28.2 605158 Anterior Segment Dysgenesis 7; ASD7 269400 RAX 16q23.3 601881 Microphthalmia, isolated 3; MCOP3 611038 SCLT1 6q22.31 611399 Oriofaciodigital Syndrome IX; OFD9 258865 SLC38A8 4q34.3-35.1 615585 Foveal Hypoplasia 2; FVH2 609218 TBC1D32 17q11.2 615867 Oriofaciodigital Syndrome IX; OFD9 258865 TENM3 18q22.1 610083 Microphthalmia, isolated with 615145 TMEM98 14q24.3 615949 coloboma 7; MCOPCB7 7 VSX2 142993	PRSS56		613858	-	613517
RAX 16q23.3 601881 Microphthalmia, isolated 3; MCOP3 611038 SCLT1 6q22.31 611399 Oriofaciodigital Syndrome IX; OFD9 258865 SLC38A8 4q34.3-35.1 615585 Foveal Hypoplasia 2; FVH2 609218 TBC1D32 17q11.2 615867 Oriofaciodigital Syndrome IX; OFD9 258865 TENM3 18q22.1 610083 Microphthalmia, isolated with 615145 TMEM98 14q24.3 615949 coloboma 7; MCOPCB7 7 TMX3 616102 Nanophthalmos 4 615972 VSX2 142993				Anterior Segment Dysgenesis 7;	
SCLT1 6q22.31 611399 Oriofaciodigital Syndrome IX; OFD9 258865 SLC38A8 4q34.3-35.1 615585 Foveal Hypoplasia 2; FVH2 609218 TBC1D32 17q11.2 615867 Oriofaciodigital Syndrome IX; OFD9 258865 TENM3 18q22.1 610083 Microphthalmia, isolated with 615145 TMEM98 14q24.3 615949 coloboma 7; MCOPCB7 TMX3 616102 Nanophthalmos 4 615972 VSX2 142993	RAX	•	601881	_	611038
SLC38A8 4q34.3-35.1 615585 Foveal Hypoplasia 2; FVH2 609218 TBC1D32 17q11.2 615867 Oriofaciodigital Syndrome IX; OFD9 258865 TENM3 18q22.1 610083 Microphthalmia, isolated with 615145 TMEM98 14q24.3 615949 coloboma 7; MCOPCB7 615972 VSX2 142993				-	
TBC1D32 17q11.2 615867 Oriofaciodigital Syndrome IX; OFD9 258865 TENM3 18q22.1 610083 Microphthalmia, isolated with 615145 TMEM98 14q24.3 615949 coloboma 7; MCOPCB7 615972 TMX3 616102 Nanophthalmos 4 615972 VSX2 142993					
TENM3 18q22.1 610083 Microphthalmia, isolated with 615145 TMEM98 14q24.3 615949 coloboma 7; MCOPCB7 615972 TMX3 616102 Nanophthalmos 4 615972 VSX2 142993					
TMEM98 14q24.3 615949 coloboma 7; MCOPCB7 TMX3 616102 Nanophthalmos 4 615972 VSX2 142993					
TMX3 616102 Nanophthalmos 4 615972 VSX2 142993					010140
	TMX3	14424.3	616102		615972
	VSXZ		142993	Microphthalmia, isolated 2; MCOP2	610093

1.4 Mutational Spectrum: 63

An estimated 33-95% of anophthalmia and microphthalmia cases are observed alongside 64 additional non-ocular systemic malformations, with 20-45% of patients diagnosed with a 65 recognised syndrome 2 66

67 Syndromic microphthalmia may be initially difficult to diagnose from birth dependent on the severity of the phenotype and evolution of other signs and symptoms.³ Only syndromic 68 microphthalmia will be discussed here, but it is important to note for clarity that severe 69 microphthalmia can be used interchangeably with clinical anophthalmia in the literature (see 70 71 Clinical Utility Gene Card: Non-Syndromic Microphthalmia1 and Clinical Utility Gene Card: 72 Anophthalmia 4). Variants in genes such as ALDH1A3, STRA6, GDF6 and GDF3 may cause 73 either syndromic or apparent non-syndromic microphthalmia and clear distinctions are hard to 74 make when classifying these genes.

75

76 The disease has a complex aetiology with chromosomal, monogenic and environmental causes previously reported.5,6 Inheritance patterns include autosomal dominant, autosomal 77 recessive, X-linked dominant, X-linked recessive, de novo sporadic and mosaicism. 78 79 Mitochondrial disease caused by HCCS variants, has also been identified as a cause of syndromic microphthalmia, although inheritance is not mitochondrial but rather X-linked 80 81 dominant 6. Similar mitochondrial disorders are caused by NDUFB11 and COX7B variants but 82 microphthalmia was not observed in these patients. 7,8 Precise genetic screening of patients with syndromes historically linked to microphthalmia and now associated with multiple genes. 83 84 such as mitochondrial disease or CHARGE, will prevent false positives arising where microphthalmia is only associated with one gene. 8.9 The mutational spectrum spans missense. 85 nonsense, deletions, insertions, splice-site variants and chromosomal deletions, duplications 86 and translocations. The more frequently detected variants are described below as syndromic 87 88 microphthalmia covers a wide range of diseases, some of which are ultra-rare.

89

SOX2 variants account for 20-40% of autosomal dominant cases and the majority of SOX2 90 variants are monoallelic loss-of-function de novo sporadic.10-15 SOX2 is often screened with 91 92 OTX2 in genetic screening of microphthalmia, anophthalmia and coloboma (MAC) and these variants are jointly causal for 60% of all severe bilateral phenotypes 10. The deletion 93 (NM_003106.3: c.70_89del, p.(Asp24Argfs*65)) is the most frequently detected variant.11,16 94 The SOX2 polyglycine tract between Gly-19 to Gly-23 is a commonly mutated region found in 95 20% of SOX2 familial variants.11 Whole gene deletions have also been found at a rate of 28% 96 97 in a French patient cohort.16

98

99 Eve-field transcription factors (EFTFs) are essential for early eve development and account for a large proportion of syndromic microphthalmia cases. All identified OTX2 variants are 100 heterozygous, with approximately 40% of these *de novo* sporadic.11, 17-21 The duplication 101 102 (NM 172337.3:c.106dup, p.(Arg36Profs*52)) and nonsense variants (NM_172337.1:c.289C>T p.(Gln97*) and NM_172377.1:c.295C>T p.(Gln99*)) have been 103 104 most frequently reported.21 OTX2 whole gene deletions need to be considered when no point 105 variant is found after screening. 3,21 It is important to consider the large phenoptypic variability 106 resulting from OTX2 variants as these have also been associated with pattern dystrophy of the 107 retinal pigment epithelium, otocephaly-dysgnathia complex, early-onset retinal dystrophy and 108 pituitary dysfunction. 22-24 OTX2 missense variants are also associated with extreme intrafamilial variability, where observed phenotypes ranged from severe multiple congenital 109 110 defects including microphthalmia to complete non-pentrance. 20,25

111

112 Contiguous gene deletions mapped to the locus 14q22-q23 are variable in size and result in 113 a phenotype comparing to MCOPS5 _{26,27}. These deletions span *OTX2* and can include 114 important non-EFTF genes like *BMP4* ₂₇. It is important to also consider the large intrafamilial 115 phenotypical variaiblity linked to 14q22 microdeletions during genetic screening. ₂₅ Whole gene 116 deletion of *BMP4*, and missense and frameshift variants within the gene causes syndromic 117 microphthalmia with complex phenotypes including hypopituitarism and digital anomalies. 118 5,17,18

119

PAX6 is a master regulator of ocular development, and variants can result in complex
 phenotypes. Although most PAX6 variants have been identified in aniridia patients, multiple

cases of *PAX6* heterozygous variants have been identified in syndromic bilateral
 microphthalmia.11 *PAX6* variants are primarily missense (NM_000280.4:c.767T>C;
 p.(Val256Ala); c.474C>T p.(Arg38Trp); c.418G>C p.(Arg19Pro)) or compound heterozygous
 (NM_000280.4, c.[718C>T]; [112C>T] p.[(Arg240*)];[(Arg38Trp)] although biallelic variants are
 extremely rare and associated with severe microphthalmia, microcephaly and profound CNS
 defects.16,28-31

128

Biallelic heterozygous variants in *MITF* can cause COMMAD syndrome (**c**oloboma, **o**steopetrosis, **m**icrophthalmia, **m**acrocephaly, **a**lbinism, **d**eafness). An autosomal recessive biallelic combination involving at least one dominant-negative variant (NM_000248.3, c.952A>G, p.(Arg318*)) was associated with the disease. 32

133

Other transcription factor variants are responsible for syndromic microphthalmia phenotypes. Variants in *FOXE3* can cause autosomal recessive Anterior Segment Dysgenesis 2 (ASGD2) with bilateral microphthalmia and extraocular manifestations. 11,33 Associated variants are primarily truncations and biallelic, with the most common variant a homozygous nonsense variant (NM012186.3, c.[720C>A]; p.(Cys240*)) 34

139

PITX3 variants associated with CTRCT11 are most commonly heterozygous and homozygous
 deletions and duplications. 35,36 Autosomal dominant heterozygous nonsense, frameshift and
 missense SALL4 variants have been most frequently identified, while compound heterozygous
 and *de novo* variants are less common. 37-40

144

145 Two genes in the retionic acid signalling pathway are associated with syndromic

146 microphthalmia. STRA6 biallelic variants have a higher incidence of syndromic rather than

147 isolated microphthalmia.41 Most frequently, homozygous or compound heterozygous

148 nonsense and missense variants have been identified in patients with autosomal recessive

149 inheritance.42-45 Variants in *RARB* can cause both autosomal dominant and recessive

150 MCOPS12. Compound heterozygous nonsense (NM_000965.4, c.355C>T, p.(Arg119*)),

151 indel frameshift (NM_000965.4:c.1205_1206dupp.(lle403Serfs*15)) and *de novo* missense

152 variants (NM_000965.4:c.1159C>T, p.(Arg387Cys) and NM_000965.4:c.1159C>A,

- 153 p.[Arg387Ser]) have been identified. 46
- 154

Variants in NAA10 cause MCOPS1, also known as Lenz Microphthalmia Syndrome, which is 155 an X-linked recessive disorder. An intronic splice-site variant (NG 0.31987.1 [NM 003491.3]: 156 c.471+2T>A, NC 000023.11 [NM 003491.3]: c.471+2T>A) has been identified in an affected 157 family, but missense variants are more frequently detected, 47, 48 MCOPS2, also known as 158 Oculo-facial-cardio-dental disorder, is an X-linked dominant disorder associated with deletions, 159 160 insertions, duplications and missense (NM 017745.5:c.254C>T, p.[Pro85Leu]) variants in the BCOR gene. 49-51 MCOPS14 is associated with MAB21L2 heterozygous de novo and inherited 161 162 missense variants. 52-54

163

ASGD7 is associated with homozygous frameshift, missense and nonsense *PXDN* variants.55
 Heterozygosity for a missense variant (NM_000394.3:c.346C>Tp.(Arg116Cys)) at a highly
 conserved residue in *CRYAA* was described in multiple cases of CTRCT9. 56,57

Variants in *CHD7* and *SEMA3E* can cause CHARGE syndrome although microphthalmia is
 only associated with *CHD7* variants. 58-60 *CHD7 de novo* nonsense and frameshift variants
 have been identified.60,61-62 *SALL4* variants are linked with Duane-Ray Radial Syndrome.

170

All data were mined from primary literature or curated genomic and phenotype databases,
including GeneReviews (http://www.ncbi.nlm.nih.gov/books/NBK1116/), Online Mendelian
Inheritance in Man, OMIM (http://omim.org/) and Human Gene Mutation Database
(http://www.hgmd.cf.ac.uk/ac/gene.php?). Novel data should be shared through these
databases. They were last accessed on 14th November 2019

176

177

178 **1.5 Analytical Validation**

179

180 The oculome exome gene panel contains a sub panel for microphthalmia, anophthalmia and 181 ocular coloboma which covers the genes involved in syndromic microphthalmia:

ACTB, ACTG1, ALX1, ALX3, ATOH7, B3GALNT2, BCOR, BMP4, CPLANE1, C12ORF57, 182 CHD7, COL4A1, CRYBA4, DAG1, DPYD, ERCC1, ERCC5, ERCC6, ESCO2, FAM111A, 183 184 FANCA, FANCD2, FANCE, FANCI, FKRP, FKTN, FNBP4, FOXE3, FOXL2, FRAS1, FREM1, FREM2, GDF3, GDF6, GJA1, GLI2, GRIP1, HCCS, HDAC6, HMGB3, HMX1, IKBKG, ISPD, 185 KIF11, KDM6A, KMT2D, LRP5, MAB21L2, MAF, MAPRE2, MCOLN1, MITF, MKS1, NAA10, 186 NDP, NHS, OLFM2, OTX2, PAX2, PAX6, PDE6D, PHF9, PITX3, POMGNT1, POMGNT2, 187 POMT1, POMT2, PORCN, PQBP1, PTCH1, PXDN, RAB3GAP1, RAB3GAP2, RAB18, RARB, 188 RBP4, RERE, RIPK4, RPGRIP1L, RXYLT1, SALL1, SALL4, SCLT1, SEMA3E, SHH, SIX3, 189 SLC38A8, SMCHD1, SMG9, SMOC1, SMO, SNX3, SRD5A3, SOX2, STRA6, 190 SIX6. TBC1D20, TBC1D32, TFAP2A, TMEM216, TMEM67, TMX, TUBB, VAX1, WNT3, 191 192 ZEB2 (http://www.labs.gosh.nhs.uk/media/764794/oculome_v8.pdf).

193

The oculome exome gene panel is important as it compensates for the standard exome capture kits that often miss G-C rich genes including those associated with microphthalmia such as *SIX3*, *PITX3* and *SHH*.

197

Sanger sequencing is less frequently used to screen genes but is used for validation of
 identified variants using genomic DNA from a new extraction. This is because different sample
 collection and processing methodologies, sequencing chemistries, instruments, enrichment
 techniques and data analysis methods between labs can affect NGS assay results. 63

202

It is important to look for segregation to determine whether the variant is *de novo* in isolated cases, providing a higher likelihood it affects function . In clinical practice, array comparative genomic hybridisation (aCGH) or multiplex ligation-dependent probe amplification (MLPA) assay may be performed initially to detect copy-number variations (CNVs), such as deletions or duplications. Some molecular service labs also offer fluorescence in situ hybridisation (FISH) to identify or validate structutral variants such as rearrangements or CNV.

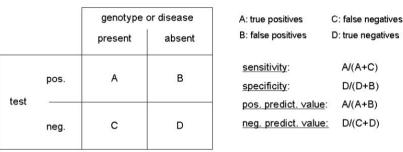
209

210 **1.6 Estimated Frequency of the Disease**

211 (Incidence at birth ("birth prevalence") or population prevalence. If known to be variable
 212 between ethnic groups, please report):

A range of studies have estimated the prevalence of microphthalmia between 2-23 per 100,000 births._{11,64-67} An Israeli study investigating early and late onset foetal microphthalmia in caucasian women, reported a prevalence of 41 per 100,000 pregnancies. ₆₈ Microphthalmia accounts for approximately 3-11% of all blind children born globally and there is little evidence of higher prevalence in ethinic group populations. _{69,70} However, one prospective study in the UK reported that children of Pakistani descent were at a 3.7 times higher risk of developing a disease on the MAC spectrum than children of white British descent. _{70,71}

- 219 disease on the MAC spectrum than children of while Bhilsh descent. 70,71
- Between 60-80% of cases of microphthalmia are syndromic, however, lower incidences were
 found in a Japanese population with only 31% found with systemic features. 66,72,73-74
- Syndromic involvement is expected at 2.7 times higher in bilateral cases of microphthalmia
 rather then unilateral cases. 73 Epidemiological data suggest risk factors for microphthalmia
 are maternal age over 40, multiple births, infants of low birthweight and low gestational age.
 67.75.76


	01,10,10		
226		Yes.	No.
227	A. (Differential) diagnostics		_
228	B. Predictive Testing	_	
229	C. Risk assessment in Relatives		_
230	D. Prenatal		_

231

Comment: Because of time constraints such as pregnancy, panel diagnostic, whole-exome
 sequencing or whole-genome sequencing (WES/WGS) filtering is preferred if there is a
 request for prenatal diagnosis (which is rare).

235

236 2. Test characteristics

237 238

239 **2.1 Analytical Sensitivity**

240 (proportion of positive tests if the genotype is present in the analyte)

241 2.1.1 if tested by conventional Sanger sequencing

Less than 100%. The proportion is likely ≤100%, because primers may be localised on sequences containing SNVs or rare variants, which results in a preferential amplification of one allele (allele dropout). A supplementary deletion/duplication diagnostic test should be performed for genes with a known proportion of large genomic deletions/duplications as outlined in the section 'Analytical validation'.

247 2.1.2 if tested by Next-generation sequencing

Less than 100%. The proportion is likely $\leq 100\%$, because there might be disease-causing 248 249 variants in regions that could not be enriched and/ or sequenced owing to suboptimal coverage of some regions of interest depending on enrichment or sequencing strategy. If amplicon-250 251 based enrichment strategies are being used, primers may be localised on SNVs or rare 252 variants, which results in preferential amplification of one allele. In patients with a highly suggestive phenotype in whom testing for specific gene alterations proves negative, a 253 supplementary deletion/duplication diagnostic test should be performed for genes with a 254 known proportion of large genomic deletions/duplications as outlined in the section 'Analytical 255 validation'. 256

257

258 2.2 Analytical Specificity

259 (proportion of negative tests if the genotype is not present)

260 2.2.1 if tested by conventional Sanger sequencing

Nearly 100%. False positives may at the most arise owing to misinterpretation of rare polymorphic variants.

263 2.2.2 if tested by Next-generation sequencing

Less than 100%. The risk of false positives owing to misinterpretation of rare polymorphic variants may be higher compared with Sanger sequencing because of greater number of analysed genes.

267 2.3 Clinical Sensitivity

268 (proportion of positive tests if the disease is present)

269 2.3.1 if tested by conventional Sanger sequencing

270 Of those patients that undergo genetic testing of known causative genes with Sanger 271 sequencing, those with bilateral severe cases will have a 75% diagnostic rate if aCGH and the

- coding regions of the following genes are screened; SOX2, OTX2, STRA6, , ALDH1A3, PAX6,
- 273 BMP4. 77

274

275 2.3.2 if tested by Next-generation sequencing

Variant detection rates are higher when combined WES with aCGH and high-resolution analysis of intragenic microdeletions and microduplications are performed. WGS may aid in the detection of variants affecting function in the promotor region, introns and other non-coding regulatory elements, and provide better coverage than exome sequencing. Regulatory element

280 disruption in microphthalmia remains largely uncharacterised.

281 2.4 Clinical Specificity

- 282 (proportion of negative tests if the disease is not present)
- 283 The clinical specificity can be dependent on variable factors such as age or family history. In
- such cases a general statement should be given, even if a quantification can only be made
- case by case.

286 2.4.1 if tested by conventional Sanger sequencing

- Unknown, however, if microphthalmia is not present, it is unlikely that a positive test will be detected.
- 289 2.4.2 if tested by Next-generation sequencing
- 290 See section 'If tested by conventional Sanger sequencing'.

291 **2.5 Positive clinical predictive value**

- 292 (life time risk to develop the disease if the test is positive)
- 293 This is a congenital anomaly of the eye, therefore patients will be born with this defect,
- therefore nearly 100%, however variable expressivity has been noted and the severity of the phenotype may lead to a delay in clinical diagnosis. Visual acuity may be unaffected, or only slightly affected in patients with less severe forms of disease.
- 297

298 2.6 Negative clinical predictive value

- 299 (Probability not to develop the disease if the test is negative).
- Assume an increased risk based on family history for a non-affected person. Allelic and locus
 heterogeneity may need to be considered.
- 302 Index case in that family had been tested: Nearly 100%. If the non-affected relative is not a
- 303 carrier of an identified disease-causing variant, they have no increased risk, except a small
- risk related to the prevalence in the general population.
- 305
- 306 Index case in that family had not been tested: Unknown

307 3. Clinical Utility

- 308 3.1 (Differential) diagnostics: The tested person is clinically affected
- 309 (To be answered if in 1.9 "A" was marked)

310 **3.1.1** Can a diagnosis be made other than through a genetic test?

311	No.	— (continue with 3.1.4)
-----	-----	-------------------------

- 312 Yes, -
- 313 clinically.
- 314 imaging
- 315 endoscopy.316 biochemistry.
- 317 electrophysiology.
- 318 other (please describe):
- 319

320 **3.1.2 Describe the burden of alternative diagnostic methods to the patient**

The definition of microphthalmia is heterogenous, however, an axial length (AL) of <21mm in adults and <19mm in a 1-year-old is most widely accepted as it represents a reduction of 2 SD or more below normal. Microphthalmia can be detected using ultrasound, or less frequently through fetal MRI, during the second trimester, or after birth in conjunction with clinical examination. Microphthalmia can be associated with microcornea, which is defined as a horizontal diameter <9mm in a newborn and <10mm in children 2 years and older.

This diagnosis can depend on the phenotypic severity, but it can be made relatively easily and 328 329 cost-effectively, confirmed by axial length measures through ultrasound biomicroscopy. MRI 330 brain and orbit imaging is recommended to delineate severe microphthalmia from clinical anophthalmia, determine integrity of the globe, optic nerve, optic chiasm and any associated 331 332 brain anomalies. 69,78 If this anomaly is found, children should be investigated within a multidisciplinary team, including paediatricians and clinical geneticists, to ensure it is not 333 syndromic. Further monitoring may be required as systemic manifestations may present later 334 335 in childhood.

336

339

327

337 **3.1.3** How is the cost effectiveness of alternative diagnostic methods to be judged?

338 Clinical examination and ultrasound imaging provides a cost-effective diagnosis.

340 **3.1.4 Will disease management be influenced by the result of a genetic test?**

341 No. 342 Yes. 343 344 Therapy (please describe) 345 Prognosis (please describe) Yes, if a variant in a gene is associated with a syndrome, it may lead to a search for systemic involvement to 346 347 prevent co-morbidity and maximise function, for example, patients with CHARGE syndrome (CHD7) 348 suffer from a range of multisystem abnormalities 349 350 including heart defects, endocrine deficiencies and sensorineural deafness, hence early diagnosis will lead 351 to prompt supportive treatment, having longterm health 352 economic benefits. 353 354 Management (please describe) Microphthalmia should be managed by specialists with expertise in this condition. If visual function is present, 355 356 this must be maximised by correcting refractive error and preventing amblyopia. Those with poor vision must be 357 358 supported by low visual aids and training. MRI imaging of the brain is required to rule out any associated midline 359 neurological or pituitary defects. Referral to neurology 360 and endocrinology may be indicated. If a child has a non-361 seeing eye, cosmesis can be addressed by fitting 362 cosmetic shells or contact lenses. Socket expansion in 363 severe microphthalmia may be indicated using enlarging 364 conformers. Although genetic counselling can be 365 challenging owing to the extensive range of disease-366 associated genes and variable expressivity, appropriate 367

- 368counselling can be applied if the mode of inheritance is369identified and should be offered to the family
- 370 **3.2 Predictive Setting: The tested person is clinically unaffected but carries an**
- 371 increased risk based on family history
- 372 (To be answered if in 1.9 "B" was marked)

373 **3.2.1** Will the result of a genetic test influence lifestyle and prevention?

- 374 If the test result is **positive** (please describe): Microphthalmia is a congenital eye anomaly,
- therefore if it is not clinically present at birth then this will not develop later in life. However, if
- 376 an individual is clinically unaffected but is a carrier, this information will inform family planning 377 if the mode of inheritance can be identified
- If the test result is **negative** (please describe): If the clinically unaffected person has a negative
 test result, no further follow-up is required. The result will inform family planning

380 3.2.2 Which options in view of lifestyle and prevention does a person at-risk have if no 381 genetic test has been done (please describe)?

- Vision can be variably affected in microphthalmic patients depending on the severity of the anomaly and other complex ocular features. This may limit schooling and professions that require perfect vision. Hence, a clinically confirmed diagnosis can help to provide guidance on career choice.
- 386
- Syndromic microphthalmia is phenotypically heterogenous yet can affect almost all systems in the human body. As such, this may severely impact the quality of life of a patient and their ability to participate in society without the need for both physical and medical assistance. These syndromes can impact on education and career choice, personal relationship development and participation in many activities, including basic human functions. Infant mortality is also an unfortunate circumstance of many syndromes.
- 393

394 **3.3 Genetic risk assessment in family members of a diseased person**

395 (To be answered if in 1.9 "C" was marked)

396 **3.3.1** Does the result of a genetic test resolve the genetic situation in that family?

Yes, although there may be variable expressivity, non-penetrance and germline mosaicism,which will complicate the advice that can be given.

399 3.3.2 Can a genetic test in the index patient save genetic or other tests in family 400 members?

If a disease-causing variant is identified in the index patient, family members can be tested,
 but complete clinical examination is also helpful. Test negative family members, who are
 clinically unaffected, do not need any further investigation or monitoring.

404 3.3.3 Does a positive genetic test result in the index patient enable a predictive test in 405 a family member?

- 406 Yes, if the variant is known.
- 407 **3.4 Prenatal diagnosis**
- 408 (To be answered if in 1.9 "D" was marked)

3.4.1 Does a positive genetic test result in the index patient enable a prenatal diagnosis?

411 Yes. Germline mosaicism and/or variable penetrance render the prediction of recurrence risk 412 difficult in monogenic microphthalmic individuals, however, molecular genetic studies for 413 known variants are possible on amniotic fluid foetal cells withdrawn after 14 weeks of gestation 414 or on chronic villus sampling at 10–12 weeks gestation, and can facilitate the diagnosis of 415 microphthalmia. In addition, transvaginal ultrasonography enables the detection of

- 416 microphthalmia from 12 weeks gestation₇₉; the maximal coronal or axial planes of the orbit are 417 measured, and compared with established eye growth charts. ₆₈
- 418

Non-invasive prenatal diagnosis of aneuploidies and some monogenic disorders can be
achieved by molecular testing of cell-free foetal DNA (cffDNA) from maternal plasma 80-85.
While non-invasive prenatal diagnosis of microphthalmia is not currently available, the reduced
risk of non-invasive, early screening (7-9 weeks), makes cffDNA a valuable emerging tool for
diagnosis of genetic disorders, particularly for patients with known risk. 83,85

424

425 **4. If applicable, further consequences of testing**

- 426 Please assume that the result of a genetic test has no immediate medical consequences. Is
- 427 there any evidence that a genetic test is nevertheless useful for the patient or his/her
- 428 relatives? (Please describe)

Beyond potentially defining recurrence risk information dependent on the cause and mode of inheritance, identifying the genetic aetiology may guide genetic counselling. It also contributes to the classification of syndromic or non-syndromic microphthalmia, thereby guiding any subsequent investigations for affected patients. Preimplantation diagnosis may be an option for bilateral severe microphthalmia.

434

435 Acknowledgement

436 This work was supported by EuroGentest2 (Unit 2: "Genetic testing as part of health care"), a

- 437 Coordination Action under FP7 (Grant Agreement Number 261469) and the European Society
- 438 of Human Genetics. MM gratefully acknowledges the support of the Wellcome Trust and
- 439 National Institute for Health Research (NIHR) Biomedical Research Centre based at
 440 Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology.
- 441 MC acknowledges the support of the Spanish Institute of Health Carlos III (ISCIII)
- 442 (PI17/01164 and CPII17_00006), the Regional Government of Madrid (CAM,
- B2017/BMD3721), and the Spanish Foundations of Rare Diseases (FEDER) and Ramon
 Areces.

445 **Conflict of Interest**

446 The authors declare no conflict of interest

447 References

- 4481.Richardson, R., Sowden, J., Gerth-Kahlert, C., Moore, A.T. & Moosajee, M. Clinical utility449gene card for: Non-Syndromic Microphthalmia Including Next-Generation Sequencing-Based450Approaches. European Journal of Human Genetics 25(2017).
- 451 2. Harding, P. & Moosajee, M. The Molecular Basis of Human Anophthalmia and 452 Microphthalmia. *Journal of developmental biology* **7**, 16 (2019).
- 453 3. Bardakjian, T.M. & Schneider, A. The genetics of anophthalmia and microphthalmia. *Curr* 454 *Opin Ophthalmol* **22**, 309-13 (2011).
- 455 4. Harding, P., Brooks, B.P., FitzPatrick, D. & Moosajee, M. Anophthalmia including next-456 generation sequencing-based approaches. *European Journal of Human Genetics* (2019).
- 457 5. Škalicky, S.E. *et al.* Microphthalmia, anophthalmia, and coloboma and associated ocular and 458 systemic features: understanding the spectrum. *JAMA ophthalmology* **131**, 1517-1524 (2013).
- 459 6. Slavotinek, A.M. Eye development genes and known syndromes. *Mol Genet Metab* **104**, 448-460 56 (2011).
- 461 7. Indrieri, A. *et al.* Mutations in COX7B Cause Microphthalmia with Linear Skin Lesions, an
 462 Unconventional Mitochondrial Disease. *The American Journal of Human Genetics* **91**, 942463 949 (2012).
- 464 8. van Rahden, Vanessa A. *et al.* Mutations in NDUFB11, Encoding a Complex I Component of
 465 the Mitochondrial Respiratory Chain, Cause Microphthalmia with Linear Skin Defects
 466 Syndrome. *The American Journal of Human Genetics* **96**, 640-650 (2015).
- 467 9. Bardakjian, T., Weiss, A. & Schneider, A. Microphthalmia/anophthalmia/coloboma spectrum.
 468 in *GeneReviews®*[Internet] (University of Washington, Seattle, 2015).

469	10.	Williamson, K.A. & FitzPatrick, D.R. The genetic architecture of microphthalmia, anophthalmia
470		and coloboma. European journal of medical genetics 57, 369-380 (2014).
471	11.	Williamson, K.A. & FitzPatrick, D.R. The genetic architecture of microphthalmia, anophthalmia
472		and coloboma. Eur J Med Genet 57, 369-80 (2014).
473	12.	Williamson, K.A. et al. Mutations in SOX2 cause anophthalmia-esophageal-genital (AEG)
	12.	
474		syndrome. Human Molecular Genetics 15, 1413-1422 (2006).
475	13.	K., R.N. et al. SOX2 anophthalmia syndrome. American Journal of Medical Genetics Part A
476		135A , 1-7 (2005).
477	14.	Kelberman, D. et al. Mutations within Sox2/SOX2 are associated with abnormalities in the
478		hypothalamo-pituitary-gonadal axis in mice and humans. The Journal of Clinical Investigation
479		116, 2442-2455 (2006).
480	15.	Chikahiko, N. et al. Supernumerary impacted teeth in a patient with SOX2 anophthalmia
481	10.	syndrome. American Journal of Medical Genetics Part A 152A , 2355-2359 (2010).
482	16	Chassaing, N. <i>et al.</i> Molecular findings and clinical data in a cohort of 150 patients with
	16.	
483		anophthalmia/microphthalmia. Clinical genetics 86, 326-334 (2014).
484	17.	Patat, O. et al. Otocephaly-Dysgnathia Complex: Description of Four Cases and Confirmation
485		of the Role of <i>OTX2</i> . <i>Molecular Syndromology</i> 4 , 302-305 (2013).
486	18.	Dateki, S. et al. OTX2 Mutation in a Patient with Anophthalmia, Short Stature, and Partial
487		Growth Hormone Deficiency: Functional Studies Using the IRBP, HESX1, and POU1F1
488		Promoters. The Journal of Clinical Endocrinology & Metabolism 93, 3697-3702 (2008).
489	19.	Ashkenazi-Hoffnung, L. <i>et al.</i> A novel loss-of-function mutation in OTX2 in a patient with
	19.	
490		anophthalmia and isolated growth hormone deficiency. <i>Human Genetics</i> 127 , 721-729 (2010).
491	20.	Somashekar, P.H., Shukla, A. & Girisha, K.M. Intrafamilial variability in syndromic
492		microphthalmia type 5 caused by a novel variation in OTX2. Ophthalmic Genet 38, 533-536
493		(2017).
494	21.	Schilter, K. et al. OTX2 microphthalmia syndrome: four novel mutations and delineation of a
495		phenotype. Clinical genetics 79, 158-168 (2011).
496	22.	Chassaing, N. <i>et al.</i> OTX2 mutations contribute to the otocephaly-dysgnathia complex.
497	~~.	Journal of medical genetics 49 , 373-379 (2012).
498	23.	
	23.	Henderson, R.H. et al. A rare de novo nonsense mutation in OTX2 causes early onset retinal
499		dystrophy and pituitary dysfunction. <i>Molecular vision</i> 15 , 2442 (2009).
500	24.	Vincent, A. et al. OTX2 mutations cause autosomal dominant pattern dystrophy of
501		the retinal pigment epithelium. Journal of Medical Genetics 51, 797-805 (2014).
502	25.	Lumaka, A. et al. Variability in expression of a familial 2.79 Mb microdeletion in
503		chromosome14q22.1–22.2. American Journal of Medical Genetics Part A 158A , 1381-1387
504		(2012).
505	26.	Bakrania, P. <i>et al.</i> Mutations in BMP4 cause eye, brain, and digit developmental anomalies:
506	20.	overlap between the BMP4 and hedgehog signaling pathways. Am J Hum Genet 82, 304-19
507	07	(2008).
508	27.	Pichiecchio, A. et al. New insights into the phenotypic spectrum of 14q22q23 deletions: a case
509		report and literature review. 11, 87 (2018).
510	28.	D., S.B. <i>et al.</i> Compound heterozygosity for mutations in PAX6 in a patient with complex brain
511		anomaly, neonatal diabetes mellitus, and microophthalmia. American Journal of Medical
512		Genetics Part A 149A, 2543-2546 (2009).
513	29.	Henderson, R.A. et al. Inherited PAX6, NF1 and OTX2 mutations in a child with
514	20.	microphthalmia and aniridia. European Journal of Human Genetics 15 , 898 (2007).
	20	
515	30.	Deml, B. <i>et al.</i> Novel mutations in PAX6, OTX2 and NDP in anophthalmia, microphthalmia and
516		coloboma. European Journal Of Human Genetics 24, 535 (2015).
517	31.	Slavotinek, A. Genetics of anophthalmia and microphthalmia. Part 2: Syndromes associated
518		with anophthalmia-microphthalmia. Hum Genet (2018).
519	32.	George, A. et al. Biallelic Mutations in MITF Cause Coloboma, Osteopetrosis, Microphthalmia,
520		Macrocephaly, Albinism, and Deafness. The American Journal of Human Genetics 99, 1388-
521		1394 (2016).
522	33.	Iseri, S.U. <i>et al.</i> Seeing clearly: the dominant and recessive nature of FOXE3 in eye
523	50.	developmental anomalies. Hum Mutat 30 , 1378-86 (2009).
	24	
524	34.	Plaisancie, J. <i>et al.</i> FOXE3 mutations: genotype-phenotype correlations. <i>Clin Genet</i> 93 , 837-
525	65	845 (2018).
526	35.	Zazo Seco, C. et al. Identification of PITX3 mutations in individuals with various ocular
527		developmental defects. Ophthalmic genetics 39, 314-320 (2018).

528 Bidinost, C. et al. Heterozygous and Homozygous Mutations in PITX3 in a Large Lebanese 36. 529 Family with Posterior Polar Cataracts and Neurodevelopmental Abnormalities. Investigative Ophthalmology & Visual Science 47, 1274-1280 (2006). 530 531 37. Miertus, J. et al. A SALL4 zinc finger missense mutation predicted to result in increased DNA 532 binding affinity is associated with cranial midline defects and mild features of Okihiro 533 syndrome. Human Genetics 119, 154-161 (2006). 534 38. Ullah, E. et al. Two missense mutations in SALL4 in a patient with microphthalmia, coloboma, 535 and optic nerve hypoplasia. Ophthalmic genetics 38, 371-375 (2017). 536 39. Al-Baradie, R. et al. Duane Radial Ray Syndrome (Okihiro Syndrome) Maps to 20q13 and 537 Results from Mutations in SALL4, a New Member of the SAL Family. The American Journal of Human Genetics 71, 1195-1199 (2002). 538 Borozdin, W. et al. SALL4 deletions are a common cause of Okihiro and acro-539 40. renal-ocular syndromes and confirm haploinsufficiency as the pathogenic mechanism. Journal 540 541 of Medical Genetics 41, e113-e113 (2004). Chassaing, N. et al. Mutation analysis of the STRA6 gene in isolated and non-isolated 542 41. 543 anophthalmia/microphthalmia. Clinical genetics 83, 244-250 (2013). 544 42. Pasutto, F. et al. Mutations in STRA6 cause a broad spectrum of malformations including 545 anophthalmia, congenital heart defects, diaphragmatic hernia, alveolar capillary dysplasia, lung hypoplasia, and mental retardation. The American Journal of Human Genetics 80, 550-546 547 560 (2007). 548 43. Jillian, C. et al. First implication of STRA6 mutations in isolated anophthalmia, microphthalmia, 549 and coloboma: A new dimension to the STRA6 phenotype. Human Mutation 32, 1417-1426 550 (2011). 551 44. White, T. et al. Identification of STRA6 and SKI sequence variants in patients with 552 anophthalmia/microphthalmia. Mol Vis 14, 2458-65 (2008). 553 45. Stenson, P.D. et al. Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 21, 554 577-81 (2003). 555 46. Srour, M. et al. Recessive and Dominant Mutations in Retinoic Acid Receptor Beta in Cases 556 with Microphthalmia and Diaphragmatic Hernia. The American Journal of Human Genetics 93, 557 765-772 (2013). 558 47. Rope, A.F. et al. Using VAAST to identify an X-linked disorder resulting in lethality in male infants due to N-terminal acetyltransferase deficiency. Am J Hum Genet 89, 28-43 (2011). 559 560 Esmailpour, T. et al. A splice donor mutation in NAA10 results in the dysregulation 48. of the retinoic acid signalling pathway and causes Lenz microphthalmia syndrome. Journal of 561 562 Medical Genetics 51, 185-196 (2014). 563 49. Horn, D. et al. Novel mutations in BCOR in three patients with oculo-facio-cardio-dental 564 syndrome, but none in Lenz microphthalmia syndrome. European Journal Of Human Genetics 565 13. 563 (2005). 566 Hilton, E. et al. BCOR analysis in patients with OFCD and Lenz microphthalmia syndromes, 50. mental retardation with ocular anomalies, and cardiac laterality defects. Eur J Hum Genet 17, 567 568 1325-35 (2009). 569 51. Nobuhiro, S. et al. Prenatal diagnosis of X-linked recessive Lenz microphthalmia syndrome. Journal of Obstetrics and Gynaecology Research 39, 1545-1547 (2013). 570 Horn, D. et al. A Novel Oculo-Skeletal syndrome with intellectual disability caused by a 571 52. 572 particular MAB21L2 mutation. European Journal of Medical Genetics 58, 387-391 (2015). 573 53. Rainger, J. et al. Monoallelic and Biallelic Mutations in MAB21L2 Cause a Spectrum of Major 574 Eye Malformations. The American Journal of Human Genetics 94, 915-923 (2014). 575 54. Deml, B. et al. Mutations in MAB21L2 Result in Ocular Coloboma, Microcornea and Cataracts. PLOS Genetics 11, e1005002 (2015). 576 Choi, A. et al. Novel mutations in PXDN cause microphthalmia and anterior segment 577 55. 578 dysgenesis. Eur J Hum Genet 23, 337-41 (2015). 579 Litt, M. et al. Autosomal dominant congenital cataract associated with a missense mutation in 56. the human alpha crystallin gene CRYAA. Hum Mol Genet 7, 471-4 (1998). 580 581 57. Beby, F. et al. New phenotype associated with an Arg116Cys mutation in the CRYAA gene: nuclear cataract, iris coloboma, and microphthalmia. Arch Ophthalmol 125, 213-6 (2007). 582 Vissers, L.E.L.M. et al. Mutations in a new member of the chromodomain gene family cause 583 58. 584 CHARGE syndrome. Nature Genetics 36, 955 (2004). Jongmans, M.C. et al. CHARGE syndrome: the phenotypic spectrum of mutations in the 585 59. 586 CHD7 gene. J Med Genet 43, 306-14 (2006).

587 60. Lalani, S.R. et al. SEMA3E mutation in a patient with CHARGE syndrome. Journal 588 of Medical Genetics 41, e94-e94 (2004). 589 61. Lalani, S.R. et al. Spectrum of CHD7 Mutations in 110 Individuals with CHARGE Syndrome 590 and Genotype-Phenotype Correlation. The American Journal of Human Genetics 78, 303-314 591 (2006). 592 62. Villate, O. et al. Functional Analyses of a Novel Splice Variant in the CHD7 Gene, Found by 593 Next Generation Sequencing, Confirm Its Pathogenicity in a Spanish Patient and Diagnose 594 Him with CHARGE Syndrome. Frontiers in Genetics 9(2018). 595 63. Lih, C.-J. et al. Analytical validation of the next-generation sequencing assay for a nationwide 596 signal-finding clinical trial: molecular analysis for therapy choice clinical trial. The Journal of Molecular Diagnostics 19, 313-327 (2017). 597 Brady, P.D. et al. Expanding the phenotypic spectrum of PORCN variants in two males with 598 64. syndromic microphthalmia. European Journal of Human Genetics 23, 551-554 (2015). 599 600 Morrison, D. et al. National study of microphthalmia, anophthalmia, and coloboma (MAC) in 65. 601 Scotland: investigation of genetic aetiology. Journal of medical genetics 39, 16-22 (2002). 602 66. Bermejo, E. & Martinez-Frias, M.L. Congenital eye malformations: clinical-epidemiological 603 analysis of 1.124.654 consecutive births in Spain. Am J Med Genet 75, 497-504 (1998). 604 67. Shaw, G.M. et al. Epidemiologic characteristics of anophthalmia and bilateral microphthalmia 605 among 2.5 million births in California, 1989–1997. American journal of medical genetics Part A 606 137, 36-40 (2005). 607 68. Blazer, S., Zimmer, E.Z., Mezer, E. & Bronshtein, M. Early and late onset fetal 608 microphthalmia. American Journal of Obstetrics and Gynecology 194, 1354-1359 (2006). 609 69. Verma Amit, S. & Fitzpatrick David, R. Anophthalmia and microphthalmia. Orphanet Journal of Rare Diseases 2, 47 (2007). 610 611 70. Yu, C. et al. Clinical and genetic features of a dominantly-inherited microphthalmia pedigree 612 from China. Molecular Vision 15, 949-954 (2009). 613 71. Shah, S.P. et al. Anophthalmos, Microphthalmos, and Typical Coloboma in the United 614 Kingdom: A Prospective Study of Incidence and Risk. Investigative Ophthalmology & Visual 615 Science 52, 558-564 (2011). 616 72. Bar-Yosef, U. et al. CHX10 mutations cause non-syndromic microphthalmia/anophthalmia in 617 Arab and Jewish kindreds. Human Genetics 115, 302-309 (2004). 618 73. Shah, S.P. et al. Anophthalmos, Microphthalmos, and Coloboma in the United Kingdom: Clinical Features, Results of Investigations, and Early Management. Ophthalmology 119, 362-619 620 368 (2012). 621 74. Nishina, S. et al. Survey of microphthalmia in Japan. Japanese journal of ophthalmology 56, 622 198-202 (2012). 623 75. Forrester, M.B. & Merz, R.D. Descriptive epidemiology of anophthalmia and microphthalmia, 624 Hawaii, 1986–2001. Birth Defects Research Part A: Clinical and Molecular Teratology 76, 187-625 192 (2006). 626 KÄLLÉN, B., Robert, E. & Harris, J. The descriptive epidemiology of anophthalmia and 76. 627 microphthalmia. International journal of epidemiology 25, 1009-1016 (1996). 628 77. Gerth-Kahlert, C. et al. Clinical and mutation analysis of 51 probands with anophthalmia 629 and/or severe microphthalmia from a single center. Mol Genet Genomic Med 1, 15-31 (2013). Mashiach, R., Vardimon, D., Kaplan, B., Shalev, J. & Meizner, I. Early sonographic detection 630 78. of recurrent fetal eye anomalies. Ultrasound Obstet Gynecol 24, 640-3 (2004). 631 632 79. Chen, C.P. et al. Prenatal diagnosis of otocephaly with microphthalmia/anophthalmia using 633 ultrasound and magnetic resonance imaging. Ultrasound Obstet Gynecol 22, 214-5 (2003). Hill, M., Karunaratna, M., Lewis, C., Forya, F. & Chitty, L. Views and preferences for the 634 80. 635 implementation of non-invasive prenatal diagnosis for single gene disorders from health professionals in the United Kingdom. Am J Med Genet A 161a, 1612-8 (2013). 636 Drury, S. et al. A novel homozygous ERCC5 truncating mutation in a family with prenatal 637 81. 638 arthrogryposis—Further evidence of genotype-phenotype correlation. American Journal of 639 Medical Genetics Part A 164, 1777-1783 (2014). 640 82. Chitty, L.S. & Bianchi, D.W. Noninvasive prenatal testing: the paradigm is shifting rapidly. Prenat Diagn 33, 511-3 (2013). 641 Chitty, L.S. & Lo, Y.M. Noninvasive Prenatal Screening for Genetic Diseases Using Massively 642 83. Parallel Sequencing of Maternal Plasma DNA. Cold Spring Harb Perspect Med 5, a023085 643 644 (2015). 645 84. Hill, M. et al. Non-invasive prenatal determination of fetal sex: translating research into clinical 646 practice. Clin Genet 80, 68-75 (2011).

647 648 640	85.	Lench, N. <i>et al.</i> The clinical implementation of non-invasive prenatal diagnosis for single-gene disorders: challenges and progress made. <i>Prenat Diagn</i> 33 , 555-62 (2013).
649 650	ABST	RACT:
651 652 653	CUGC	c for Syndromic Microphthalmia
654 655	Autho	rs:
656 657 658	Jonat	han Eintracht1, Marta Corton2, David FitzPatrick3, Mariya Moosajee1,4,5
659 660	Institu	tion (Institute, University, City, Country):
661 662	1UCL	Institute of Ophthalmology, London, UK
663 664 665		rtment of Genetics, IIS – University Hospital Fundación Jiménez Díaz - CIBERER, d, Spain
666 667	зMRC	Human Genetics Unit, University of Edinburgh, Edinburgh, UK
668 669	4Moor	fields Eye Hospital NHS Foundation Trust, London, UK
670 671	₅Great	t Ormond Street Hospital for Children NHS Foundation Trust, London, UK
672 673 674 675 676 677 678	Dr Ma Institu UCL II	sponding author: riya Moosajee MBBS PhD FRCOphth tion, Address, Telephone, Fax and Email: nstitute of Ophthalmology Bath Street n
679 680 681 682	EC1V Tel: +4 Fax: +	9EL 44 207 608 6971 -44 207 608 6830 : m.moosajee@ucl.ac.uk
683	1. Nar	ne of the Disease (Synonyms):
684 685	See T	able 1 – column 1 for 'Name of the Disease'
686	2. OM	IM# of the Disease:
687 688	See T	able 1 – column 2 for 'OMIM# of the Disease'
689	3. Nar	ne of the Analysed Genes or DNA/Chromosome Segments:
690 691	See T	able 1, column 4—'Associated gene(s)' for all genes and related syndromes
692	4. OM	IM# of the Gene(s):
693 694	See T	able 1, column 5—'OMIM# of associated gene(s) for all genes and related syndromes
695 696 697 698		w of the analytical and clinical validity as well as of the clinical utility of DNA-based g for variants in the gene(s) in diagnostic, predictive and prenatal settings and for

_ risk assessment in relatives