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Abstract

We construct a structural model of on-the-job search in which workers differ in
skills along several dimensions and sort themselves into jobs with heterogeneous skill
requirements along those same dimensions. Skills are accumulated when used, and
depreciate when not used. We estimate the model combining data from O*NET with
the NLSY79. We use the model to shed light on the origins and costs of mismatch
along heterogeneous skill dimensions. We highlight the deficiencies of relying on a
unidimensional model of skill when decomposing the sources of variation in the value
of lifetime output between initial conditions and career shocks.
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1 Introduction

The traditional approach to studying wage and employment inequality, as emphasized by
Acemoglu and Autor (2011), relies on a view of labor markets where each worker is endowed
with a certain level of “human capital” that rigidly dictates the type of job they are able to
hold. This view has gradually evolved into one of labor markets as institutions mediating
the endogenous allocation of workers with heterogeneous skills into tasks with heterogeneous
skill requirements: any worker can now potentially perform any job, with their skills deter-
mining how good they are at any given job, while the market determines the assignment of
skills to tasks. This more general view of labor markets has afforded great progress in our
understanding of wage and employment inequality.1

A subsisting limitation of this approach, however, is that it routinely models skill and
task heterogeneity as one-dimensional: workers have more or less of one catch-all “skill”, and
jobs differ in their requirements for that skill. This representation is at odds with intuition:
if one worker is very good at abstract problem-solving but inept at manual work, while
another excels in manual tasks but struggles with abstract reasoning, how does one decide
which worker is more “skilled”? It is also at odds with the perception of statistical agencies
and practitioners of human resources, which maintain and use data describing workers and
occupations along many different and imperfectly correlated dimensions such as years and
field of education, training, health, aptitude and psychometric test scores, etc., or the occu-
pational skill requirements descriptors available from the O*NET program discussed below.
Moreover, it is likely that workers improve the skills that they use regularly and lose some
of those they do not use so much, a pattern that a scalar representation of human capital is
bound to miss altogether.

The alternative view that workers are endowed with bundles of different skills used in
different proportions depending on the task they perform has some history in labor economics
(see Sanders and Taber, 2012, for a review). But at present, few quantitative modeling
tools exist that fully exploit the wealth of information on heterogeneous, multidimensional
worker skills and job skill requirements available in the data in a description of labor market
equilibrium.

In this paper, we contribute to filling this gap: we extend an otherwise standard and
1It shed light on secular trends such as the “polarization” of wages and employment (the simultaneous

growth in wages and employment shares of both high-and low-skill workers, at the expense of the middle part
of the skill distribution - Acemoglu and Autor, 2011). It contributed to explaining business-cycle fluctuations
in aggregate output and employment (Lise and Robin, 2017). It gave substance to the intuitive notion of “skill
mismatch” and helped make sense of patterns of worker turnover (Shimer and Smith, 2000; Lise, Meghir,
and Robin, 2016). It helped clarify the informational content of wage data (Eeckhout and Kircher, 2011;
Hagedorn, Law, and Manovskii, 2017).
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well-tested search-theoretic model of individual careers to allow for multidimensional skills
and on-the-job learning. We estimate the model using occupation-level measures of skill
requirements based on O*NET data, combined with a worker-level panel (NLSY79). We
use the estimated model to shed light on the origins and costs of mismatch along three
dimensions of skills: cognitive, manual, and interpersonal,2 and the sources of variation in
lifetime output.

Our main findings are the following. The model sees cognitive, manual and interpersonal
skills as very different productive attributes. Manual skills have moderate returns and ad-
just quickly (i.e., they are easily accumulated on the job, and relatively easily lost when left
unused). Cognitive skills have much higher returns, but are much slower to adjust. Inter-
personal skills have only slightly higher returns than manual skills, and are essentially fixed
over a worker’s lifetime. Next, the cost of skill mismatch (modeled as the sum of an output
loss and a loss of worker utility caused by skill mismatch) is very high for cognitive skills,
an order of magnitude greater than for manual or interpersonal skills. Moreover, this cost is
asymmetric: employing a worker who is under-qualified in cognitive skills (i.e. has a level
of skills that falls short of the job’s skill requirements) is more than twice as costly in terms
of lost surplus as employing an over-qualified worker. Those important differences between
various skill dimensions are missed when subsuming worker productive heterogeneity into
one single scalar index. Indeed, when we consider a decomposition of lifetime output, and
compare our multidimensional model to a version of the model with a only a single skill,
the single skill version overestimates the importance of unobserved heterogeneity (relative
to observed initial skills) by a factor of two, and underestimates the contribution of career
shocks relative to initial observed skills by one half.

The paper is organized as follows. Section 2 provides a brief discussion of some of the
related literature. Section 3 lays out the formal model. Section 4 describes the data used for
estimation, with some emphasis on O*NET. Section 5 explains the simulation/estimation
protocol. Section 6 presents the estimation results and discusses some of the model’s pre-
dictions on skill mismatch and sorting. Section 7 presents some results on the determinants
of social output, and decomposes the variance of expected lifetime output into components
due to initial endowments of worker skills and randomness during workers’ careers. Finally,
Section 8 concludes.

2What we term interpersonal skills are sometimes referred to as non-cognitive or personality traits (Heck-
man, Stixrud, and Urzua, 2006; Borghans, Duckworth, Heckman, and ter Weel, 2008)
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2 Related Literature

This paper is related to the vast empirical literature on the returns to firm and occupation
tenure and to more recent work on task-specific human capital (see, for example, Poletaev
and Robinson, 2008; Gathmann and Schonberg, 2010, among others). Those literatures, and
the connections between them are covered in the excellent survey paper by Sanders and Taber
(2012). As a preamble to their review of the empirical literature, Sanders and Taber (2012)
offer an elegant theoretical model of job search and investment in multi-dimensional skills
which, on many aspects, can be seen as a special case of the model in this paper.3 However,
they only use their model to provide intuition and highlight key qualitative predictions of
the theory, and do not bring it to the data.

In a more structural vein, attempts to model the allocation and pricing of heteroge-
neous supply and demand of indivisible and multi-dimensional bundles dates back at least
to Tinbergen (1956) and the hedonic model of Rosen (1974). Generic non-parametric iden-
tification of the hedonic model is established in Ekeland, Heckman, and Nesheim (2004)
and Heckman, Matzkin, and Nesheim (2010). In a more recent contribution, Lindenlaub
(2014) estimates the static quadratic-normal assignment model of Tinbergen (1956) along
two dimensions of skills (manual and cognitive) for two different cohorts using the same
combination of O*NET and NLSY data as we do in this paper. She finds an interesting pat-
tern of technological change: the complementarity between her measures of cognitive worker
skills and cognitive job skill requirements increased substantially during the 1990s, while the
complementarity between manual job and worker attributes decreased. She then analyzes
the consequences of that technological shift for sorting and wage inequality.

While Lindenlaub’s analysis brings about many valuable new insights, it assumes away
market imperfections which limits its applicability to empirical and quantitative policy anal-
ysis. First, it is difficult to define a meaningful notion of unemployment or of skill mismatch
in a Walrasian (frictionless) world where, given the economy’s primitives (i.e. the production
technology and the distributions of job and worker attributes), equilibrium is by construction
efficient. By contrast, allowing for market imperfections creates scope for welfare-improving
policy intervention, the extent of the imperfections is an empirical question. Second, fric-
tionless matching and assignment models, including Rosen’s hedonic model, are static.4 As
such, they are largely silent on questions relating to a worker’s life cycle, such as the cost of

3Sanders and Taber (2012) model individual skill accumulation as the outcome of endogenous investment
decisions (in the spirit of Ben-Porath (1967)), whereas we consider (occupation-specific) learning-by-doing.
While the conceptual differences between those two models are important, they are notoriously difficult to
tell apart empirically.

4See Chiappori and Salanié (2016) for a recent survey of the econometrics of static, frictionless matching
models.
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skill mismatch throughout a worker’s career, the way in which individual skills evolve over
a career, how this skill accumulation is priced in the market, or the reasons why workers
switch occupations as often as they do.5

Next, following in the tradition of Heckman and Sedlacek (1985), Keane and Wolpin
(1997), and Lee and Wolpin (2006), the important contribution by Yamaguchi (2012) pro-
vides the first estimation of a Roy-type model of task-specific human capital accumulation
and occupation choices over the life cycle based on the combination of the NLSY with data
on occupation-level attributes, interpreted as “task complexity”, from the Dictionary of Oc-
cupational Titles (DOT, the predecessor of O*NET). The broad approach is the same as in
the present paper: each occupation is characterized by the vector of weights (the degree of
task complexity) it places on a limited number of different skill dimensions, as in Lazear’s
(2009) skill-weights approach. Worker skills are not directly observed, but their accumu-
lation is modeled as a hidden Markov chain, the parameters of which are identified from
observed choices of occupations with different task contents (observed from the DOT data),
using the model’s structure. Yamaguchi’s findings suggest that higher task complexity is
associated with higher wage returns to, and faster growth of the skills relevant to the task.
A wage variance decomposition further suggests that both cognitive and motor skills (the
two skill dimensions considered by Yamaguchi) are important determinants of cross-sectional
log wage variance. A decomposition of wage growth shows that cognitive skills account for
all of the wage growth of high-school and college graduates, while motor skills account for
about half of the wage growth of high-school dropouts.

While clearly related in spirit, our model differs from Yamaguchi (2012) in several impor-
tant ways. First, Yamaguchi (2012) is a frictionless model in which occupation mobility is
largely governed by unobserved shocks to an exogenously posited wage function, unobserved
shocks to workers’ skills, and unobserved shocks to workers’ preferences for any given type
of job.6 We propose a more parsimonious random search model, in which the only shocks

5Models of experimentation and learning following on from Jovanovic (1979) such as Neal (1999); Pavan
(2011); Golan and Antonovics (2012) have been useful to make sense of the patterns of between and within
occupation switches in the NLSY. They cannot, however, easily rationalize the frequent transitions in and
out of unemployment observed in the same data. Lindenlaub and Postel-Vinay (2016) extend Lindenlaub’s
frictionless model to a frictional environment using a basic framework that has much in common with our
model. However, Lindenlaub and Postel-Vinay (2016) is a theoretical exercise focusing on conditions under
which specific sorting patterns emerge in steady-state equilibrium, and their model does not feature human
capital accumulation. Anderson and Smith (2010) develop a matching model with evolving one-dimensional
types in a frictionless environment. They characterize the conditions for assortative matching in this context,
as well as implications for life-cycle dynamics of wages.

6One immediately apparent drawback of this frictionless approach is that, taken literally, it predicts that
workers should change occupations continuously (or in every period, in Yamaguchi’s discrete-time model),
which is obviously at odds with observation. Note that any dynamic model that aims to replicate the
empirical job mobility patterns will need to incorporate some type of mobility friction (for example a mobility
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are the receipt of job offers by workers. Wages and mobility decisions are then endogenously
determined through between-employer competition for labor services. Our less flexible, but
more transparent and readily interpretable specification offers a remarkably good fit to the
data. Second, the only engine of wage growth in Yamaguchi’s model is skill accumulation.
Other sources of wage growth, such as job-shopping or learning, are therefore partly picked
up by skills in that model, which may lead to an overstatement of the role of skills. Our
model also ignores learning, but explicitly models job-shopping as an additional source of
wage dynamics.7 Adding search frictions allows us to address issues related to unemployment
and skill mismatch.8

Two recent papers are particularly related. Taber and Vejlin (2016) estimate a model
which allows for search, Roy-type selection, human capital accumulation and non wage
amenities. Workers are modeled as having a time invariant relative ability at each job-type
in the economy. In the absence of frictions they would choose a single job-type and re-
main indefinitely. Human capital is assumed to be general and accumulated while working.
Job mobility is informative about the degree of search frictions, and wage cuts are infor-
mative about non wage amenities. Taber and Vejlin (2016) model relative ability between
jobs/occupations as an unobserved vector with dimension equal to the number of job-types
in the economy. We take a substantially more parsimonious approach: a worker’s relative
productivity across jobs/occupations depends on the amount of skills (cognitive, manual,
interpersonal. . . ) they currently possess and whether or not they are a good fit for the de-
mands of a particular job. Rather than treating these skills as unobserved, we use a large
set of premarket measurements to estimate a worker’s initial endowment, and a similar large
set of measurements on occupations to estimate the skill requirements of jobs. A second
notable modeling difference is that we allow these skills to evolve differentially depending on
the extent to which they are being used in a particular job/occupation. We are particularly
interested in the the differential returns to these skills, and the extent to which each type of
skill can be learned on the job.

From an empirical perspective, perhaps the closest paper is Guvenen, Kuruscu, Tanaka,
and Wiczer (2018). They use the same combination of NLSY and O*NET data as we
do to construct a summary index of multidimensional skill mismatch which they use to

cost) to prevent workers from continuously reallocating in the face of new shocks or new information. For
example, Guvenen, Kuruscu, Tanaka, and Wiczer (2018), which we discuss below, rely on a combination of
information and mobility frictions to generate the empirical implications of their learning model.

7Sanders (2012) considers learning in a model otherwise similar to Yamaguchi’s.
8Moscarini (2001) combines a two-sector Roy model into an equilibrium matching model and analyzes the

partially directed search patterns arising in equilibrium and governing equilibrium selection of skill bundles
into sectors. His setup has great descriptive appeal, but remains far too stylized to be taken directly to the
data.
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assess the impact of skill mismatch on wages and patterns of occupational switching. They
produce a rich set of empirical results, a rough summary of which is that both current and
past mismatch strongly impact wages (negatively), the probability of switching occupations
(positively), and the direction of said switching.

Their index of skill mismatch is derived from a model of occupation choice with workers
learning about their own ability. Mismatch arises in this model, not because of search
frictions, but because workers have imperfect information about their own skills and sort
into occupations that are optimal for their perceived skill bundle (which differs from their
true one). As they gradually learn about their true skills (about which they observe a
sequence of noisy signals over time), workers switch occupations. This model gives rise to
an intuitive summary mismatch measure that is based on the distance between a worker’s
skill bundle and the set of skills required by their occupation, which the authors then use as
a regressor in Mincer-type wage equations and in statistical models of occupation switching.

While our paper shares some of its basic objectives with Guvenen et al. (2016) (chiefly,
an assessment of the production/wage cost of skill mismatch in various dimensions), the two
contributions differ in terms of both approach and focus. Aside from substantive differences
in modeling choices, Guvenen et al. use their theory as a guide for intuition and specification
of reduced-form statistical models rather than as an actual structure for estimation. More
importantly, they provide detailed results on the impact of mismatch on the probability
and direction of occupational switching, whereas we focus (1) on differences between skill
categories in the speed of human capital accumulation or decay and (2) on the social cost of
various forms of mismatch. Our structural approach is especially useful to address the latter
broad question, which we do by means of counterfactual simulations.

3 Job Search with Multi-dimensional Job and Worker

Attributes

3.1 The Model

The Environment. Workers are characterized by general and specialized skills. The
market productivity of specialized skills depends on the technology of a particular firm,
while general skills have a common effect on output, independent of the particular firm
technology a worker is currently matched with. Match output is f(x,y), where x ∈ X ⊂ RK

describes the worker’s set of skills, and y ∈ Y ⊂ RL describes the firm’s technology, with
L ≤ K. The first L worker skills are specialized with the remaining K − L being general
skills. Time is continuous. The firm’s technology is fixed, but the worker’s skills gradually

6



adjust to the firm’s technology as follows:

ẋ = g(x,y),

where g : RK × RL → RK is a continuous function. Just as in production, the adjustment
of specialized skills differs depending on the firm technology, while the adjustment of general
skills depends only on experience.

Upon entering the labor market, workers draw their initial skill vectors from an exogenous
distribution N(x), with density ν(x). Workers can be matched to a firm or unemployed. If
matched, they lose their job at rate δ, and they sample alternate job offers from the fixed
sampling distribution Υ(y), with density υ(y), at rate λ1. Unemployed workers sample job
offers from the same sampling distribution at rate λ0. Workers exit the market at rate µ.
All four transition rates (λ0, λ1, δ, µ) are exogenous.

All agents have linear preferences over income and discount the future at rate r. A type-x
worker’s flow utility from working in a type-y job for a wage w is w−c(x,y), where c(x,y) is
disutility from work, which depends on the type of the match, (x,y). A type-x unemployed
worker receives a flow income b(x) and has no disutility of being unemployed.

Firm, worker, and match values. We denote the total private value (i.e. the value to
the firm-worker pair) of a match between a type-x worker and a type-y firm by P (x,y).
Under linear preferences over wages, this value is independent of the way in which it is
shared between the two parties, and only depends on match attributes (x,y). We further
denote the value of unemployment by U(x), and the worker’s value of their current wage
contract by W , which we discuss in detail below. Admissible worker values imply W ≥ U(x)
(otherwise the worker would quit into unemployment), andW ≤ P (x,y) (otherwise the firm
would fire the worker). Assuming that the employer’s value of a job vacancy is zero (which
would arise under free entry and exit of vacancies on the search market), the total surplus
generated by a type-(x,y) match is P (x,y)− U(x), and the worker’s share of that surplus
is (W − U(x)) / (P (x,y)− U(x)).

Rent sharing and wages. Wage contracts are renegotiated sequentially by mutual agree-
ment, as in the sequential auction model of Postel-Vinay and Robin (2002). Workers have
the possibility of playing off their current employer against any firm from which they receive
an outside offer. If they do so, the current and outside employers Bertrand-compete over the
worker’s services.9

9Obviously, renegotiation only takes place if P (x,y′) > W , as otherwise the type-y′ employer is unable to
make a (profitable) offer that improves on the worker’s initial value W , and the worker’s threat of accepting
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Consider a type-x worker employed at a type-y firm and assume that the worker receives
an outside offer from a firm of type y′. Bertrand competition between the type-y and type-y′

employers implies that the worker ends up in the match that has higher total value — that
is, they stay in their initial job if P (x,y) ≥ P (x,y′) and moves to the type-y′ job otherwise
— with a new wage contract worth W ′ = min {P (x,y),max {P (x,y′),W}}.

Suppose, for the sake of argument, that P (x,y) ≥ P (x,y′) > W . In this case, the
outcome of the renegotiation is such that the worker stays with their initial type-y employer
under a new contract with value W ′ = P (x,y′). The worker’s renegotiated share of the
match surplus, denoted σ(x,y,y′), is therefore:

σ(x,y,y′) =
P (x,y′)− U(x)

P (x,y)− U(x)
∈ [0, 1]. (1)

To pin down the way in which the value W ′ = P (x,y′) = U(x)+σ(x,y,y′) [P (x,y)− U(x)]

is delivered over time by the firm to the worker, we assume that the surplus share σ, nego-
tiated at the time the worker receives an outside offer from the type-y′ job, stays constant
until the following renegotiation. Put differently, while the worker’s skill bundle x and, as a
consequence, the match surplus P (x,y)−U(x) evolve over the course of their tenure in the
type-y job, the share of that surplus transferred to the worker stays constant between nego-
tiations and is determined as per equation (1) by the best outside offer previously received
by the worker. The particular way in which the type-y employer delivers the value P (x,y′)

to the worker only affects the time profile of wage payments and the timing of renegotiation.
It makes no difference to the allocation of workers into jobs, as mobility decisions are only
based on comparisons of total match values, which, under linear preferences, are independent
of the time profile of wage payments.10

an offer from that employer is not credible.
10Common alternative assumptions about the way in which firms deliver value to workers include a constant

wage or a constant share of match output (a piece rate). Our assumption of a constant surplus share has
the merit of simplifying computations considerably. Note that the wages produced by the constant wage,
constant piece rate or constant surplus share assumptions are exactly identical if the worker’s skills stay
constant over time (ẋ ≡ 0).
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Value functions and wage equation. The total private value of a match between a
type-x worker and a type-y firm, P (x,y), solves:11

(r + µ+ δ)P (x,y) = f(x,y)− c (x,y) + δU(x) + g(x,y) · ∇xP (x,y)

+λ1E [W (x,y′, σ)− P (x,y)|P (x,y′) > P (x,y)]

= f(x,y)− c (x,y) + δU(x) + g(x,y) · ∇xP (x,y). (2)

Note that Bertrand competition implies that the frequency at which the worker collects
offers, λ1, does not affect P (x,y). Upon receiving an outside offer, the worker either stays
in his initial match, in which case the continuation value for that match is P (x,y), or they
accept the offer, in which case they extract a value of P (x,y) from the poacher (as a result
of Bertrand competition) and leave their initial employer with a vacant job worth 0. Either
way, the joint continuation value for the partners in the initial match equals P (x,y). This
is a key implication of Bertrand competition between employers. From a social perspective,
cases where the worker accepts the outside offer and moves to a match with higher value
P (x,y′) are associated with a net surplus gain of P (x,y′)− P (x,y). Yet none of the social
gains associated with future job mobility are internalized by private agents, as those gains
accrue to a third party (the worker’s future employer).12

The value of unemployment, U(x), solves:

(r + µ)U(x) = b(x) + g(x,0) · ∇U(x), (3)

where the employer type is set to y = 0L for an unemployed worker. For reasons similar
to those just discussed about P (x,y), the worker fails to internalize the gain in surplus
associated with accepting a job offer, and the private value of unemployment is independent
of the frequency at which those offers arrive.

The worker receives an endogenous share σ of the match surplus P (x,y)− U(x), which
they value at W (x,y, σ) = (1− σ)U(x) + σP (x,y). The wage w(x,y, σ) implementing that
value solves:

(r + δ + µ)W (x,y, σ) = w(x,y, σ)− c(x,y) + δU(x)

+ λ1E max {0,min {P (x,y), P (x,y′)} −W (x,y, σ)}+ g(x,y) · ∇xW (x,y, σ), (4)

where the expectation is taken over the sampling distribution, y′ ∼ Υ.
11The dot (“·”) denotes the outer product, ∇ denotes the gradient, and ∇x denotes the gradient with

respect to the subset x of the function’s arguments.
12We discuss some of the consequences of this property in Section 6.4 and Web Appendix B.1.
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Combining (2), (3) and (4) (using W (x,y, σ) = (1 − σ)U(x) + σP (x,y)) yields the
following wage equation:

w(x,y, σ) = σf(x,y) + (1− σ) [b(x) + c(x,y)]

− λ1E
[
max

{
0,min

{
P (x,y′)− P (x,y), 0

}
+ (1− σ) (P (x,y)− U(x))

}]
− (1− σ) (g(x,y)− g(x,0)) · ∇U(x). (5)

The first term σf(x,y) + (1− σ) [b(x) + c(x,y)] reflects static sharing of the match surplus
flow, in shares (σ, 1− σ) resulting from the worker’s history of outside job offers. Note that
the worker always has to be compensated for a share (1−σ) of their forgone home production
and disutility of work c(x,y). The next (expectation) term reflects value of future outside
offers, which the worker pays for by accepting a lower starting wage. The final term reflects
the fact that an employed worker’s skill bundle evolves towards the job’s skill requirements
y, whereas those skills would erode towards 0L if the worker was unemployed. This, in
general, benefits the worker in the event they become unemployed, and therefore affects the
wage negatively.13

3.2 Model Analysis

A fully closed-form case. Full closed-form solutions can be obtained under specific func-
tional form assumptions. We now give an example, which we will use in our empirical
specification below.

We first restrict the dimensionality of worker and job attributes, both for simplicity of
exposition and because those restrictions are relevant to the empirical application below
(nothing in the theory depends on those particular restrictions). We think of a typical
worker’s skill bundle x = (xC , xM , xI , xT ) as capturing (i) the worker’s cognitive skills xC ,
(ii) the worker’s manual skills xM , (ii) the worker’s interpersonal skills xI , and (iv) the
worker’s “general efficiency” xT . Jobs are likewise characterized by a three-dimensional bun-
dle y = (yC , yM , yI) capturing measures of the job’s requirements in cognitive, manual, and
interpersonal skills. All three job attributes are fixed over time, whereas a worker’s cog-
nitive, manual, and interpersonal skills (xC , xM , xI) are allowed to adjust over time to the
requirements of the particular job the worker holds (learning by doing).

13As mentioned in Section 2, the model in Sanders and Taber (2012) is close to a special case of our model
where f(x,y) = x · y and where workers always receive a fixed share of the match surplus (i.e. σ is a fixed
constant). Predicted wages differ between our model and theirs, but the worker-job allocation for given
distributions of x and y is identical. As already mentioned, the two models further differ in the specific
assumption regarding skill accumulation (endogenous investment decisions vs. learning-by-doing).
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The key functional form assumption is to assume a linear adjustment for skills. In
particular, we assume that a worker’s specialized (i.e. cognitive, manual, and interpersonal)
skills adjust linearly to their job’s skill requirements:

g(x,y) =


ẋC

ẋM

ẋI

ẋT

 =


γuC max {yC − xC , 0}+ γoC min {yC − xC , 0}
γuM max {yM − xM , 0}+ γoM min {yM − xM , 0}
γuI max {yI − xI , 0}+ γoI min {yI − xI , 0}

gxT

 , (6)

where the γu/ok ’s are all positive constants governing the speed at which worker skills adjust to
a job’s requirements. Note that we allow that speed to differ between upward and downward
adjustments (γuk vs γok for k = C,M, I, where “u” stands for “under-qualified” and “o” stands
for “over-qualified”), and between skill types (γu/oC vs γu/oM vs γu/oI ). In this case a worker’s
skills relate to job tenure s− t as follows:

xk(s) = yk − e−γ
u/o
k (s−t) (yk − xk(t)) , (7)

where the adjustment speed γ
u/o
k that applies depends on whether k = C,M or I and

whether xk(t) ≷ yk (see Appendix A.1 for details). Over time a worker’s specialized skills
will adjust to the requirements of the job. Finally, a worker’s general efficiency simply grows
at a constant rate: xT (t) = xT (0)×egt, independently of the worker’s cognitive/manual skills
or of the worker’s employment status. This simple specification will help the model capture
the wage/experience trend observed in the data.

The production function is then specified as follows:

f(x,y) = xT ×

[
αT +

∑
k=C,M,I

(
αkyk − κuk min {xk − yk, 0}2 + αkkxkyk

)]
. (8)

In this specification of f(x,y), the linear terms αkyk capture the possibility that jobs with
different requirements in any of cognitive, manual or interpersonal skills have inherently
different productivity levels, regardless of the worker they are matched with. The next three
terms, −κuk min {xk − yk, 0}2, k = C,M, I capture the idea that a worker with a shortage of
skills x compared to the job’s skill requirement level y in any dimension (cognitive, manual,
or interpersonal) causes a loss of output (assuming that all κuk ’s are non-negative). We
allow for the output loss caused by skill mismatch to differ depending on which skills the
worker is deficient in. The last three terms, αkkxkyk, k = C,M, I, are added to provide
additional flexibility in the modeling of complementarity between worker skills and job skill
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Figure 1: The production function
Note: f(x, y) and c(x, y) are plotted using the estimated parameter values from Table 4 below.

requirements within all three skill categories. In particular, assuming that αkk ≥ 0, those
last terms imply that an over-qualified worker (with xk > yk) produces more output than
a worker with xk = yk, whose skills are an exact match for the job’s requirements in skill
dimension k. Finally, general efficiency, xT , merely scales output up or down, conditional
on x and y. In the estimation we will allow xT to be correlated with initial skill bundles
x0, allowing for the possibility that workers with, for example, high cognitive skills also have
high general skills.

Figure 1 provides a visual impression of the way in which the production function f(x,y)

varies with its various inputs. The solid lines on the six panels on Figure 1 show the response
of f(x,y) to variations in each of the three components of x (top row) and of y (bottom
row), holding all other components of x and y fixed at 0.5. All graphs are put on a common
scale, with f(x,y) normalized to 1 at the point where x = y, and constructed using our
parameter estimates, presented below.

The next object we need to specify is the flow disutility of work:

c(x,y) = xT ×
∑

k=C,M,I

κok max {xk − yk, 0}2 . (9)

According to this specification, disutility of work is only positive if the worker is over-
qualified for their job in some skill dimension. We interpret this as a utility cost of being
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under-matched. Note that our specification of c (x,y) is formally identical to the one we use
to capture the output loss caused by a shortage of worker cognitive, manual, or interpersonal
skills compared to the job’s requirements in the production function (8). The utility cost of
being under-matched further allows for an excess of skills to cause a loss of match value, albeit
without causing a loss of output. An appealing implication of this specification is that over-
qualified workers will have to be compensated for that utility cost, and will therefore have to
be paid more in a given job than workers whose skills exactly match the job’s requirements.
Again, a visual impression of the flow surplus from a match, f (x,y)− c (x,y), is is given by
the dotted lines on Figure 1, which are constructed in the same way as the corresponding
production function lines discussed above. The relatively small vertical distance between
the solid and dotted lines in regions of the graphs where the worker is overqualified suggests
that the utility cost of over-qualification is quantitatively relatively small - a point to which
we will return when we discuss estimation results.

Finally, for simplicity, we specify unemployment income as depending on general skill
only, b(x) = bxT , with b a positive constant, so that U(x) = bxT/(r + µ− g) is independent
of the specialized skills (xC , xM , xI).

With those specifications, equations (2) and (3) imply (see Appendix A.1):

P (x(t),y)− U(x(t)) = xT (t)×

{
αT +

∑
k=C,M,I (αkyk + αkky

2
k)− b

r + δ + µ− g

−
∑

k=C,M,I

(
κuk min {xk(t)− yk, 0}2

r + δ + µ− g + 2γuk
+
κok max {xk(t)− yk, 0}2

r + δ + µ− g + 2γok

)

+
∑

k=C,M,I

αkkyk ×
(

min {xk(t)− yk, 0}
r + δ + µ− g + γuk

+
max {xk(t)− yk, 0}
r + δ + µ− g + γok

)}
. (10)

The first term in the equation defining match surplus P (x(t),y) − U(x(t)) is the surplus
achieved if the worker’s skills are perfectly matched to the job’s requirements - i.e. if
(xC(t), xM(t), xI(t)) = (yC , yM , yI). The remaining terms reflect the net private surplus
cost of initial cognitive, manual, and interpersonal skill mismatch. This cost obviously de-
pends on the weights of cognitive, manual and interpersonal mismatch in the technology
and utility function, and on their degree of complementarity between worker skills and job
skill requirements. But it also depends on the speed of skill adjustment: if adjustment is
instantaneous (γu/ok → +∞), the cost of mismatch becomes negligible.

13



4 Data

Our estimation sample is a panel of worker-level data from the 1979 National Longitudinal
Survey of Youth (NLSY79) combined with occupation-level data on skill requirements from
the O*NET program (www.onetcenter.org). We describe both data sets and the way we
combine them before turning to a description of the estimation sample itself.14 Additional
details can be found in Appendix A.2.

4.1 Construction of the Estimation Sample

Data sources. The NLSY79 is well known and requires little description. Our extract
from that data set is a weekly unbalanced panel of workers whom we follow from first entry
into the labor market. For each worker in the panel, time is set to zero at the first week
they cease to be in full-time education. We focus on males from the main sample who
were never in the military,15 and retain all individual histories until the first occurrence
of a non-employment spell of 18 months or more: we consider individuals experiencing
such a long spell of non-employment as losing their attachment to the labor force, which
we treat as attrition from the sample. We retain information on labor force status and
transitions, weekly earnings, occupation of current job (Census codes), education (highest
grade completed), performance in a battery of ten aptitude tests called the Armed Services
Vocational Aptitude Battery (ASVAB), measures of anti-social behavior, measures of health,
and scores in two psychometric tests measuring social skills. Education, ASVAB scores, and
measures of social skills and health will be used as measures of the initial skill bundles x0 of
those workers (more below).

To obtain measures of the skill requirements y attached to the occupations observed in
the NLSY sample, we combine the latter with data from the O*NET program. O*NET,
a.k.a. the Occupational Information Network, is a database describing occupations in terms
of skill and knowledge requirements, work practices, and work settings.16 It comes as a list of
277 descriptors, with ratings of importance, level, relevance or extent, for over 970 different
occupations. O*NET descriptors are organized into nine broad categories: skills, abilities,

14We are not the first authors to combine these data sources. A non-exhaustive list includes Autor, Levy,
and Murnane (2003), Acemoglu and Autor (2011), Autor and Dorn (2013), Yamaguchi (2012), Sanders
(2012), Lindenlaub (2014), and Guvenen et al. (2016), who all use combinations of the NLSY with occupation
data from O*NET or from its predecessor, the Dictionary of Occupational Titles.

15The NLSY over-samples ethnic minorities, people in the military, and the poor. We drop all such
over-sampled observations.

16O*NET is developed by the North Carolina Department of Commerce and sponsored by the US
Department of Labor. Its initial purpose was to replace the old Dictionary of Occupational Titles.
More information is available on www.onetcenter.org, or on the related Department of Labor site
www.doleta.gov/programs/onet/eta_default.cfm.
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knowledge, work activities, work context, experience/education levels required, job interests,
work values, and work styles. O*NET ratings come from two different sources: a survey of
workers, who are asked to rate their own occupation in terms of a subset of the O*NET
descriptors, and a survey of “occupation analysts” who are asked to rate other descriptors in
the O*NET set.

We retain descriptors from the skills, abilities, knowledge, work activities, and work
context O*NET files, as descriptors contained in the other files (job interests, work values,
and work styles) are less directly interpretable in terms of skill requirements, and merge
those files with our NLSY sample, based on occupation codes.17,18

Job skill requirements. Our selection from the O*NET database leaves us with over 200
different descriptors, which we take as measures of the underlying skill requirements. We
reduce this large set of descriptors to three dimensions, which we interpret as “cognitive”,
“manual”, and “interpersonal” skill requirements, using the following procedure.19 First, we
run Principal Component Analysis (PCA) on our large set of O*NET measures and keep the
first three principal components. We then recover our cognitive, manual, and interpersonal
skill requirement indices by recombining those three principal components (which by default
are constructed to be orthonormal) in such a way that they satisfy the following three
exclusion restrictions: (1) the mathematics score only reflects cognitive skill requirements;
(2) the mechanical knowledge score only reflects manual skill requirements; (3) the social
perceptiveness score only reflects interpersonal skill requirements). Interpretation of the
three skill requirement indices thus obtained as cognitive, manual and interpersonal therefore
relies on those exclusion restrictions. Finally, we rescale our skill requirement indices so that
they lie in [0, 1].20

17The NLSY79 uses 1970, 1980 and 2000 Census codes for occupation, whereas O*NET uses 2009 SOC
codes. Crosswalks exists between those different nomenclatures. The crosswalks we use were kindly provided
to us by Carl Sanders, whose help is gratefully acknowledged. Using those, over 92% of occupation codes
records in the NLSY sample have a match in the O*NET data.

18In our data sample we define a job change as a change of employer. In some cases, individuals are
observed changing occupations within an employer spell. The typical pattern in those cases is that workers
are oscillating between two or three “similar-looking” occupations (for example, an individual in our sample
has a spell of employment starting with 10 weeks as an Electrical Engineer, continuing with 132 weeks as
an Aerospace Engineer, followed by 50 weeks as a Mechanical Engineer, and ending with 9 weeks as an
Aerospace Engineer again). This is strongly suggestive of classification error. To address that, we average
the skill requirements of those occupations within an employer spell.

19Technical details of the construction of our job skill requirement and worker skill bundles are given in
Appendix A.3.

20We do this using linear transforms (rather than by converting the initial indices to ranks, as has been
done elsewhere in the literature), because we expect there to be useful information in the distance between
two different occupations in terms of cognitive, manual, or interpersonal skill requirements. Linear rescaling
preserves relative distances, whereas conversion into ranks renders all adjacent occupations equidistant.
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Worker skill bundles. Finally, we need to construct a distribution of initial worker skill
bundles, i.e. the distribution N(x) of cognitive, interpersonal and manual skills among
labor market entrants. For this we follow a similar procedure as for the distribution of skill
requirements, using PCA and exclusion restrictions. We use the following sets of measures:
the ten ASVAB scores that are directly available from the NLSY sample, individual scores on
the Rotter locus-of-control scale and the Rosenberg self-esteem scale tests,21 three measures
of criminal and anti-social behavior, two measures of health (BMI and weight), and an
O*NET-based measure of cognitive, manual, and interpersonal skills attached to the level
of education attained by each NLSY sample member. The latter is constructed using the
“experience/education requirements” file from O*NET, which informs about the education
requirements of each occupation in O*NET, and from which we take the average value, for
each education level, of the cognitive, manual and interpersonal scores constructed above.
As exclusion restriction we assume that (1) the ASVAB mathematics knowledge score only
reflects cognitive skills; (2) the ASVAB automotive and shop information score only reflects
manual skills; (3) the Rosenberg self-esteem score only reflects interpersonal skills. Those
particular exclusion restrictions were chosen for their intuitive consistency with the exclusion
restrictions used in the construction of job skill requirements, so as to ensure that worker skill
indices are reasonably well “aligned” with the corresponding skill requirement indices in all
three dimensions. Yet in the estimation, we will allow for the possibility of less-than-perfect
alignment between worker skill and job skill requirement scores (see below).

4.2 Empirical content of skill and skill requirement bundles

In this sub-section we present reduced form evidence that our measures of worker skills and
job skill requirements have predictive power for wages in the current job. We also present
evidence that our measure of a worker’s skills, deviation from their job’s skill requirements,
and duration in their first job have predictive power for the skill requirements of the job
they move to next. We also compare our measure to some common alternatives from the
literature.

Skills, skill requirements, and wages. Our measures of occupational skill requirements
and initial worker skill bundles are not particularly sensitive to our choice of exclusion re-
strictions (see Appendix A.4 for details on robustness). Additionally, because our skill re-
quirement measures make maximal use of the variation contained in the O*NET, they out
perform the abstract-, manual- and routine-task measures proposed by Autor and Dorn

21See https://www.nlsinfo.org/content/cohorts/nlsy79/topical-guide/attitudes for a descrip-
tion of those two tests.
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Table 1: Empirical content of skill and task measures

log wage (1) (2) (3) (4) (5) (6)
xC0 0.339 0.483 0.316 -0.054 0.318 -0.076

(0.115) (0.117) (0.115) (0.152) (0.129) (0.153)
xM0 -0.088 -0.093 -0.070 0.064 -0.122 0.024

(0.087) (0.089) (0.087) (0.168) (0.099) (0.169)
xI0 0.268 0.311 0.262 0.234 0.394 0.305

(0.053) (0.054) (0.053) (0.101) (0.095) (0.141)
ỹC 0.657 0.704 0.048 0.197

(0.071) (0.082) (0.165) (0.185)
ỹM 0.259 0.170 0.418 0.402

(0.058) (0.066) (0.165) (0.178)
ỹI 0.389 0.285 0.411 0.361

(0.063) (0.066) (0.142) (0.147)
τADabstract 0.483 0.121 0.191 -0.052

(0.032) (0.034) (0.104) (0.115)
τADmanual 0.251 0.194 -0.017 -0.291

(0.048) (0.050) (0.177) (0.179)
τADroutine 0.171 -0.012 0.273 0.071

(0.028) (0.030) (0.088) (0.089)
xC0 × ỹC 0.902 0.691

(0.221) (0.250)
xM0 × ỹM -0.172 -0.267

(0.249) (0.266)
xI0 × ỹI 0.084 0.026

(0.233) (0.239)
xC0 × τADabstract 0.466 0.264

(0.158) (0.173)
xM0 × τADmanual 0.419 0.730

(0.282) (0.285)
xI0 × τADroutine -0.199 -0.130

(0.162) (0.163)
tenure 0.238 0.239 0.234 0.235 0.240 0.233

(0.025) (0.026) (0.025) (0.025) (0.026) (0.025)
experience 0.268 0.299 0.266 0.269 0.300 0.267

(0.014) (0.014) (0.014) (0.014) (0.014) (0.014)
years of education 0.270 0.336 0.274 0.271 0.329 0.266

(0.082) (0.084) (0.081) (0.081) (0.083) (0.080)
constant 4.436 4.524 4.448 4.552 4.600 4.562

(0.094) (0.095) (0.094) (0.145) (0.110) (0.149)
N 224,417 224,417 224,417 224,417 224,417 224,417
adjusted R2 0.373 0.339 0.375 0.376 0.340 0.378
Standard errors clustered at the individual level.
τADare the task measures from Autor and Dorn (2013).
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(2013, AD) in terms of explanatory power in a descriptive wage regression. This can be
seen in Table 1, which presents the results from regressions of log wages on various sets of
skill and skill requirement measures. The regressors include our measures of initial cogni-
tive, manual and interpersonal skills (xC0, xM0, xI0), our measures of cognitive-, manual-
and interpersonal-skill requirements for the current occupation (ỹC , ỹM , ỹI), and the AD
measures of the abstract-, manual- and routine-task intensity of the current occupation
(τADabstract,τADmanual, τADroutine). The adjusted R2 when including our skill requirement measures is
higher than when including the AD task measures (0.37 compared to 0.34). When both sets
of measures are included in the regression, the adjusted R2 barely increases relative to the
specification using only our measures, and many of the coefficient estimates on the AD task
measures become small and statistically insignificant, while our measures continue to have
the same statistically significant coefficients as when entered alone. These results hold both
when we include only level effects and interactions between initial worker skills and job skill
requirement (columns 1–3 compared to 4–6). We interpret the results from this descriptive
regression as indicating that our measures contain predictive power for wages and that they
contain all the information in the AD task measures, and more.22

In our model we represent an occupation by a vector of three skill requirements: cogni-
tive, manual and interpersonal. This is a parsimonious representation with a natural measure
of how similar occupations are to each other. We represent how good an individual is at
an occupation by how close their own skill vector is to the occupation skill vector. This
representation provides, for each worker, a complete ranking of how good they are at each
occupation, and assumes they will be similarly good at occupations that have similar skill
requirements. An alternative would be to directly represent how good each worker is at
each occupation, without imposing any structure on similar occupations (see, for example,
Kambourov and Manovskii, 2009a,b). This is very much in the spirit of a generalized Roy
model. This would be more flexible from a purely empirical vantage point, but substantially
more demanding to model, as it would imply that the worker’s state space has at least the
dimension of the number of occupations. Additionally, it would require the identification
and estimation of the latent stochastic processes for each occupation specific skill, and the
correlation structure. Authors who have pursued this modeling strategy have typically re-
stricted attention to a small number (3 to 5) of very coarse occupation groups such as, white,
blue and pink collar, service, professional, etc, and assumed independence of ability across
occupations (see, for example, Keane and Wolpin, 1997; Lee and Wolpin, 2006; Sullivan,
2010).

22We are able to create consistent occupational classifications for both our measures and the AD measures
for 97% of our observations.
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ỹ I

0.
39

5
0.
38
8

(0
.1
43

)
(0
.1
48

)
x
C

0
×
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In Table 2 we consider the empirical content of our skill measures relative to occupation
fixed effects, again in terms of the descriptive wage regression. Column 1 regresses log wages
on our vector of skill measures for workers, the skill requirements of their occupation and the
interactions. These coefficients are all used as moments in our estimation.23 In column 2 we
drop our occupation skill demand measures and replace them with occupation fixed effects at
the one-digit level24. In column 3 we include the occupation fixed effects and the interactions
between our worker skill measures and our occupation skill requirement measures. There
are several things to note. First, the adjusted R2 is higher when we use our measures than
when we use the one-digit occupation fixed effects. Second, adding both the interaction of
worker skills with occupation skill requirements and occupation fixed effect improves the fit
substantially over the fixed effects regression and only marginally over the skill requirement
regression. Additionally, the coefficients on the interaction terms are all significantly different
from zero, even when occupation fixed effects are included.

In terms of explaining wage variation, our representation with three worker skills and
three skill requirements provides a better fit than including one-digit occupation fixed effects.
One-digit occupations are arguably too coarse. Columns 4 and 5 replicate the regressions
in columns 2 and 3 with three-digit occupation fixed effects. In this case the adjusted
R2 from the fixed effects regression is higher than using only our skill measures, but the
coefficient on the interaction of workers cognitive skills and the cognitive skill requirements
of an occupation are still highly statistically significant. There is clearly additional content
in our measure of skills and skills requirements. That said, a Roy model of occupation
choice at the three digit level would require over 700 additional state variables, each with
a latent stochastic process to be estimated. This is well beyond what we consider feasible.
An alternative would be to consider a Lucas and Prescott (1974) type islands model (see
Kambourov and Manovskii, 2009a). This has some attraction, but comes at the cost of
giving up any notion of workers being more likely to move to similar occupations.

In columns 6–10 we repeat this exercise including worker fixed effects. Our structural
model has unobserved worker heterogeneity that affects the wage multiplicatively, so the
fixed effect regression is coherent here too. The main takeaway from these regressions is
that even after we include worker fixed effects and three-digit occupation fixed effects, the
coefficients on the interaction of worker skills and occupation skill requirements are statisti-

23The coefficient estimates differ slightly from 1 column 4 due to the fact that we loose some observations
in 1 when matching our occupations to the AD task measures.

24These are the 1970 Census codes used by the NLSY79, corresponding to the 12 categories: Professional,
Technical, and Kindred Workers; Managers and Administrators, except Farm; Sales Workers; Clerical and
Unskilled Workers; Craftsmen and Kindred Workers; Operatives, except Transport; Transport Equipment
Operatives; Laborers, except Farm; Farmers and Farm Managers; Farm Laborers and Farm Foremen; Service
Workers, except Private Household; Private Household Workers.
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cally significant, with the exception of interpersonal skills (we will return to this point when
interpreting the structural estimates in Section 6.2).

Skill gaps and worker mobility. In Table 3 we present reduced form evidence on how
skill gaps affect mobility between a worker’s first and second jobs. What we mean by “skill
gap” is the gap between measured worker skills and measured job requirements in a worker’s
first job. We examine how the first-job skill gap, interacted with the amount of time the
worker spends in that first job, affects the type of job the worker moves to next. Columns
1–3 present results from a set of regressions where the dependent variable is the cognitive,
manual, or interpersonal skill requirement at a worker’s second job (denoted ỹ+

k ). The right
hand side variables are the same in each regression and consist of the worker’s initial skill
bundle; the squared difference between worker’s initial skills and the skill requirements in
the worker’s first job, interacted with an indicator for whether the worker is under- or over-
qualified (i.e. the skill gaps in all three skill dimensions); the duration of the first job spell;
and the duration of the first job spell interacted with each skill gap. We exclude from this
sample workers who have a period of unemployment between the measurement of x0 and
their first job.

The coefficients of interest in each regression are on the interactions between the skill
gaps in all three skill dimensions interacted with the duration of the first job spell. This
tells us how the average skill-k requirement at the second job is affected by the duration of
exposure to the same skill requirement at the first job. Take, for example, two workers who
have identical initial skill vectors x0, who both have a first job with identical skill demands
ỹ. Assume that these workers are under-qualified for their initial job, ỹC − xC0 > 0. The
positive coefficient on duration× (ỹC − xC0) in column 1 implies that between two identical
workers who have identical first jobs for which they are under-qualified on the cognitive skill
dimension, the worker who is exposed to the first job for a longer duration will, on average,
move to a second job with a higher cognitive skill demand than the shorter duration worker.
Similarly, if the workers are over-qualified in the cognitive dimension in their first job, the one
who is exposed to this job for a longer duration will, on average, move to a second job with a
lower cognitive skill requirement than the short duration worker. Under- or over-qualification
on the manual or interpersonal skills in the first job has no effect on the expected cognitive
skill demand in the second job. We see the same pattern for manual and interpersonal skills
in columns 2 and 3, with the exception that the cognitive and manual gaps also influence
the interpersonal skill requirements of the second job, although with opposite signs.25

25Groes, Kircher, and Manovskii (2015) find that the probability of occupational mobility is U-shaped
in terms of a worker’s occupation-specific wage ranking. In columns 4, 5 and 6 we control for a workers’
occupation-specific wage decile (see Appendix A.2.3 for details). This has essentially no effect on the results
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Table 3: Effect of quality and duration of first job on quality of second job

(1) (2) (3) (4) (5) (6)
ỹ+
C ỹ+

M ỹ+
I ỹ+

C ỹ+
M ỹ+

I

xC0 0.650 -0.300 0.460 0.659 -0.303 0.472
(0.062) (0.074) (0.061) (0.062) (0.074) (0.061)

xM0 -0.117 0.687 -0.409 -0.124 0.677 -0.401
(0.062) (0.074) (0.061) (0.063) (0.075) (0.062)

xI0 0.054 0.013 0.395 0.062 0.032 0.385
(0.065) (0.077) (0.064) (0.065) (0.078) (0.064)

max {ỹC − xC0, 0}2 3.044 0.998 1.102 3.321 0.932 1.379
(0.694) (0.827) (0.686) (0.696) (0.836) (0.690)

min {ỹC − xC0, 0}2 -0.677 -0.164 -0.096 -0.678 -0.168 -0.098
(0.106) (0.126) (0.104) (0.105) (0.126) (0.104)

max {ỹM − xM0, 0}2 -0.171 0.682 -0.450 -0.230 0.630 -0.484
(0.227) (0.270) (0.224) (0.228) (0.274) (0.226)

min {ỹM − xM0, 0}2 0.226 -0.420 0.190 0.213 -0.431 0.178
(0.123) (0.146) (0.121) (0.123) (0.148) (0.122)

max {ỹI − xI0, 0}2 -0.049 0.011 0.980 -0.058 0.008 0.981
(0.312) (0.371) (0.308) (0.312) (0.375) (0.309)

min {ỹI − xI0, 0}2 0.104 0.026 -0.399 0.121 0.019 -0.381
(0.109) (0.129) (0.107) (0.109) (0.130) (0.108)

duration 0.014 -0.001 0.017 0.016 -0.001 0.018
(0.005) (0.005) (0.005) (0.005) (0.006) (0.005)

duration× (ỹC − xC0) 0.050 -0.038 0.035 0.050 -0.036 0.036
(0.020) (0.023) (0.019) (0.020) (0.024) (0.020)

duration× (ỹM − xM0) -0.003 0.078 -0.025 -0.006 0.078 -0.028
(0.016) (0.019) (0.016) (0.016) (0.019) (0.016)

duration× (ỹI − xI0) 0.002 -0.001 0.031 0.002 0.001 0.029
(0.013) (0.015) (0.012) (0.013) (0.015) (0.012)

constant 0.091 0.327 0.161 0.083 0.332 0.159
(0.040) (0.047) (0.039) (0.043) (0.052) (0.043)

controls for occupation-specific X X X
wage decile
N 528 528 528 528 528 528
adjusted R2 0.376 0.276 0.497 0.385 0.274 0.502
Standard errors in parentheses
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Taking stock. There are clear patterns in the raw data: the interaction between worker
skills and skill requirements affect wages, and how long a worker spends at an initial job
where she/he is under- or over-qualified affects the set of jobs she will move to. We next
turn to estimation of the structural model to provide a coherent interpretation of these
patterns.

5 Estimation

We estimate the model by indirect inference. To this end, the first step is to simulate a panel
that mimics our estimation sample. We first describe the simulation protocol, then discuss
the moments we choose to match in the estimation as well as identification of the model.

5.1 Simulation

Solution method. The model has a convenient recursive structure. Equations (2) and (3)
can be solved jointly for U(x) and P (x,y) in a first step. Wages are then obtained from the
combination of (4) and the assumption of Bertrand competition: the surplus share σ(x,y,y′)

obtained by a type-x worker playing off employers y and y′ (with P (x,y) > P (x,y′)) against
each other solves (1), and the wages that follow from that renegotiation solve (5). Finally,
given those value functions, a cohort of workers can be simulated as we now describe.

Simulation protocol. We simulate a cohort of N workers (indexed by i = 1, · · · , N)
over T = 300 months (indexed t = 0, · · · , T − 1) using a discrete-time approximation of
our model. All workers start out in period t = 0 endowed with an initial skill bundle
xi0 = (xC,i0, xM,i0, xI,i0, xT,i0) drawn from the distribution ν(·), and in an initial labor market
state (unemployed or employed in a job with attributes yi1 under some initial labor contract
giving him a share σi1 of the surplus associated with his job) determined as described below.
In each subsequent period t = 1, · · · , T − 1, we update each worker’s skill bundle iteratively
using the solution to ẋis = g(xis,yi,t−1) over s ∈ [t − 1, t] given the initial condition xi,t−1,
and where yi,t−1 is the skill requirement vector of the worker’s current job (normalized to
zero for unemployed workers). We then let any employed worker be randomly hit by a job
destruction shock (probability δ) or an outside offer (probability λ1). Any employed worker
hit by a job destruction shock starts the following period as unemployed. Any employed
worker receiving an outside offer draws job attributes y′ from the sampling distribution
Υ(·) and, depending on the comparison between the value of their current job P (xit,yi,t−1)

for the effect of the quality and duration of a match and mobility.
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and that of their outside offer P (xit,y
′), either accepts the offer (in which case their job

attribute vector gets updated to yit = y′), or stays in their job, with or without a contract
renegotiation. In each case, the worker’s period-t wage wi,t is updated according to equation
(5). Symmetrically, we let any unemployed worker draw a job offer (probability λ0) with job
attributes y′ ∼ Υ(·), which the worker accepts if and only if P (xit,y

′) ≥ U(xit). Again, the
worker’s wage is updated.26

To set the initial (t = 0) condition, we simulate the model over a “pre-sampling” period,
starting from a situation where all workers are unemployed. We then run the simulation
as described above, shutting down skill updating and layoffs. We stop the pre-sampling
simulation when the simulated non-employment rate reaches a value of 35% (the observed
non-employment rate on labor market entry in our NLSY sample), and take the current state
of the sample at that point as the initial condition. This pre-sampling period is necessary
to generate a latent outside option for each worker who is already employed at the time of
the survey.

Each simulation produces an N×T (balanced) panel of worker data with the same format
as our estimation sample. The simulated sample keeps track of each worker’s employment
status, labor market transitions, wages wit, skill bundle xit, and job attributes yit.

Model parameterization. We use the specification introduced in Subsection 3.2 which,
because it affords closed-form solutions, considerably reduces the computational burden.
The skill adjustment, production, and disutility of work functions are specified as in (6), (8),
and (9) respectively.

We interpret (xC , xM , xI) and (yC , yM , yI) as the model counterparts of the cognitive and
manual skill indices we constructed from our combination of O*NET and NLSY data as
explained in the previous section. The joint distribution of initial cognitive, manual, and
interpersonal worker skills (xC(0), xM(0), xI(0)) is fully observed in the data, and requires
no parameterization. General worker efficiency grows along with potential experience t at a
constant rate g. In addition, we allow it to be correlated in an unrestricted way with initial
cognitive, manual and interpersonal skills (xC(0), xM(0), xI(0)), as well as education:

xT (t) = exp (g · t+ ζS · YEARS_OF_EDUCATION + ζCxC(0) + ζMxM(0) + ζIxI(0) + ε0) ,

(11)
where the ζ’s are coefficients and ε0 is an uncorrelated unobserved heterogeneity term such
that the mean of eε0 is normalized to 1. Given the model’s structure, this makes eε0 an

26Note that, in the simulation, we shut down sample attrition (which in the model occurs at rate µ).
Attrition is random in the model, the only impact would be to reduce the simulated sample size, which we
can usefully avoid.
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uncorrelated mixing variable that multiplies all individual wages and values. In particular,
observed log-wages lnw are such that lnw

d
= ln w|ε0=0 + ε0, where

d
= denotes equality in

distributions, and w|ε0=0 denote simulated wages under the assumption that all workers
have ε0 = 0. We can thus estimate the model abstracting from this particular heterogeneity
(i.e. assuming ε0 = 0 for all workers), then retrieve the distribution of ε0 by deconvolution.

Finally, we specify the skill requirements (yC , yM , yI) as simple transforms of the skill
requirement indices (ỹC , ỹM , ỹI) constructed from the O*NET data as described in Section
4. This is to allow for the possibility that our constructed ỹ’s might not be exactly aligned
with our measured worker skills x (see the discussion in Section 4). Specifically, we assume
that yk = ỹξkk , with ξk > 0, thus ensuring that yk is an increasing transformation of ỹk
that stays in the unit interval. We then approximate the joint sampling distributions of job
attributes Υ(y) using a Gaussian copula and Beta marginals with skill-specific parameters
(η1
k, η

2
k), k = C,M, I. The rank correlation parameters (ρCM , ρCI , ρMI) of the Gaussian

copula are to be estimated, together with the parameters of the three marginals.

5.2 Targeted Moments

The specification of our model laid out in Subsection 5.1 involves the parameter vector de-
scribed earlier in this paper and summarized in Table A.1 in the Appendix. Among those
parameters, we fix the discount rate r and the sample attrition rate µ to “standard” val-
ues (the monthly equivalent of 10% per annum for r, and 0.002 for µ, implying an average
working life of 42 years). As explained before, the joint distribution of initial cognitive,
manual, and interpersonal worker skills (xC(0), xM(0), xI(0)) is observed in the initial cross-
section of our estimation panel. Finally, the job destruction rate δ has a direct empirical
counterpart, namely the sample average job loss (“E2U”) rate.27 With this subset of param-
eters estimated – or calibrated – in a preliminary step, we are left with a 39-dimensional
parameter vector to estimate (summarized in Table A.1 in the Appendix). We estimate
these parameters by matching the following set of moments: (i) sample mean U2E rate, (ii)
mean E2E rate profile (summarized by average E2E rates over six consecutive equal-length
subsets of the observation window), (iii) mean and standard deviation of the marginal cross-
sectional distributions of current job attributes ỹit among employed workers at a selection
of sampling dates,28 (iv) pairwise correlations of skill requirements, corr(ỹk,it, ỹk′,it), k′ 6= k,
(k, k′) ∈ {C,M, I}2 among jobs held by employed workers at a selection of sampling dates

27Figure A.1 suggests that the job loss rate is not exactly constant over a worker’s life cycle. We abstract
from this feature of the data.

28In practice, we compute those moments at six dates corresponding to 2.5, 5, 7.5, 10, 12.5 and 15 years
into the sample.
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(v) correlations of initial worker cognitive, manual and interpersonal skills and the skill re-
quirements of jobs held, corr(xk,i0, ỹk,it), k = C,M, I at a selection of sampling dates (vi)
coefficients of a regression of log wages lnwit on initial skills xi0, current job attributes ỹit,
interactions xk,i0 × yk,it for k = C,M, I, tenure, experience, and years of education (i.e. the
regression in Table 2 column 1). We drop the first simulated wage out of unemployment for
the wage regression.29 The model-based moments are computed from simulated samples of
N = 18, 400 workers – ten replicas of the initial NLSY cross-section.

5.3 Identification

Appendix A.5 formally discusses identification of the model laid out in Section 3 (given the
parameterization described in 3.2) from a data set with the structure and contents described
in Section 4. In this Subsection we summarize the main sources of information that identify
the various components of our model.

The levels of wages conditional on education, experience, initial skills and (observed)
job skill requirements identify the returns to education and initial skills (the parameters ζk,
k = C,M, I), the wage trend (parameter g), and the baseline returns to job skill require-
ments (parameters αk and αkk, ). The (production/utility) costs of mismatch and the speed
of human capital accumulation or decay (parameters κu/ok and γu/ok ) are identified from com-
parisons of the sets of job types y that are acceptable to workers with equal initial skills
x(0), but have experienced different employment histories. Knowledge of any worker’s initial
skill bundle x(0) and full labor market spell history, combined with the knowledge of the
skill adjustment process (parameters γu/ok ) then enables us to construct the full path of skill
bundles x(t) for all workers in the sample. The set of job offers accepted by unemployed
workers with given skill bundle x then identifies the sampling distribution Υ(y) over the
set {y :P (x,y) ≥ U}, so that Υ(y) is identified over the union of all such sets for all skill
bundles x observed in the sample (that is, Υ(y) is identified at all skill requirement levels y

that are acceptable by at least some worker types). Finally, the offer arrival rates λ0 and λ1

are identified, conditionally on the rest of the model, from sample U2E and E2E transition
probabilities.

Although the exact arguments used in Appendix A.5 to establish identification are not
literally taken up in the practical estimation protocol, the information contained in the
moments we use for estimation (listed in Subsection 5.2) does echo those arguments. In

29In this version of the sequential auction model, in which workers are risk-neutral and have no bargaining
power, workers tend to accept very low wages upon exiting unemployment, to “buy their way” onto the job
ladder. As soon as a worker receives her/his first outside offer the wage will jump. We drop the initial wage
out of unemployment so as not to bias our estimate of human capital accumulation due to the large wage
change at the very beginning of an employment spell. We return to this issue in Section B.1.
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particular, the cross-section wage regression coefficients that we seek to replicate contain the
information needed to identify the parameters αk, αkk, ζk, and g. Moreover, the various
moments of the joint distribution of initial worker skills and current job skill requirements
convey information about the set of matches that are acceptable to a given worker type,
which is used to identify κu/ok , γu/ok , and ultimately the sampling distribution Υ(·).

The descriptive wage regression in Table 1 provides some reduced form evidence of which
skills requirements are most important in production, and illustrates where some of the
identification of the production function is coming from. In column 1, log wage is regressed
on our measures of initial worker skill bundles and the skill requirements of the job they are
currently in. When entered linearly, both cognitive and interpersonal skills of the workers
affect the wage positively, as do the cognitive, manual and interpersonal skill requirements
of the job. A worker’s initial level of manual skills does not have a statistically significant
effect on wages. In column 4 we add to this regression interaction terms between a worker’s
measured skill and the skill requirement of the job (xk0 × ỹk), for k ∈ {C,M, I}. An
informative pattern emerges. The coefficient on the interaction of a worker’s initial cognitive
skills and the cognitive skill requirement of the job is strongly positive, while the coefficients
on xC0 and ỹC entered separately become small and statistically insignificant. Interestingly,
the coefficient on the interaction of worker skills and job skill requirements for manual and
for interpersonal dimensions are small and statistically insignificant, and the coefficient on
these skills and skill requirements entered individually remain essentially unchanged from
column 1. In terms of identification of our model, these moments will imply a production
function in which employing a worker who meets the cognitive skill requirements for a job is
very important, much more so than meeting the manual or interpersonal skill requirements.

Identification of the human capital accumulation process for each skill type comes from
how past jobs affect future opportunities. We presented some direct evidence on this in
Table 3. Workers who are employed at a job in which they are initially under-qualified in
a particular skill dimension move, on average, to jobs that require even higher levels of this
skill requirement, and this is increasing in duration of the first match. We see clearly that the
initial gap between a worker’s skill and the job skill requirements, interacted with duration
of the first job affects the set of jobs the worker accepts in the future. This dependence of
accepted jobs in the future on early career skill gaps is informative on the extent to which
workers learn different skills depending on the skill requirements of the job they are in, and
how long they stay at the job.

In practice, our chosen moments ensure precise “local” identification of the model’s pa-
rameters, in the sense that the distance between data-based model-predicted moments has
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a clear local minimum at the estimated parameter value.30

Several caveats on identification are worth mentioning here. First, our model implies
that unobserved heterogeneity ε0 affects wages, but does not affect a worker’s decision to
accept or reject a job offer. To the extent that workers do select jobs based on unobserved
characteristics, our model will tend to overestimate the extent of mismatch and overstate the
implied role of search frictions. Second, identification is parametric. For example, it requires
that the shape of the production function estimated at the boundary of the acceptance set
is informative about the shape of the production function in the interior.

6 Results

6.1 Model Fit

Figure 2 illustrates various aspects of the fit. All time series in Figure 2 are plotted over a
period of 15 years (180 months, i.e. the sample window used for estimation), together with
95% confidence bands (based on 1,500 bootstrap replications) around the data series. Figure
2h further shows the fit in terms of the descriptive wage regression discussed in Section 4.

The model fits both the non-employment exit rate (U2E, Figure 2a) and the job-to-job
transition rate (E2E, Figure 2b) reasonably well, considering the restriction to constant job
contact rates λ0 and λ1 over the life cycle. The decline of E2E rates with experience is
correctly captured by the model (it occurs as a consequence of workers gradually settling
into jobs to which their skills are better suited, both because they sort into better matches
over time and because their skills adjust to whatever job they are in at any given time), even
though the model overstates both the initial speed of that decline and the level of the E2E
rate at high levels of experience. All of the discrepancies between data and model in Figures
2a,b are largely due to our restriction to experience-invariant contact rates, λ0 and λ1.

The sample average wage/experience profile is shown in Figure 2c. We do not directly
target that particular profile in the estimation, yet the model captures it reasonably well,
despite a tendency to overstate its concavity.

Figures 2d through g show the time-profiles of various fitted cross-sectional moments of
the joint distribution of workers’ initial skills (xC,i0, xM,i0, xI,i0) and current job attributes
(ỹC,it, ỹM,it, ỹI,it) in the population of employed workers, at a selection of experience levels.
The model gets the levels and experience profiles of those cross-sectional moments roughly
right. In particular, the model captures the rise in average cognitive and interpersonal

30We present additional measures of the local sensitivity of the parameter estimates to the data moment
in Web Appendix B.2.
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(a) U2E rate (b) E2E rate

(c) Log wage/experience profile (d) Cross-sectional mean job attributes

(e) Cross-sectional st.d. of job attributes (f) Correlation of job attributes

(g) Corr. of job and worker attributes (h) Descriptive (log) wage regression

Figure 2: Model fit29



job attributes, although it tends to overstate the concavity of the experience profiles of
those two job attributes at low levels of experience. It also replicates the near constancy
of average manual job attributes. The model further captures the experience profiles of
correlations between the various job attributes (Figure 2f), and between job requirements in
each skill category and the corresponding initial worker skill (Figures 2g), again despite slight
discrepancies between data and simulation at low levels of experience. Finally, while the
model correctly predicts a flat experience profile for the standard deviations of all three job
attributes, it does a little less well fitting the levels of those standard deviations, overstating
the standard deviations of cognitive skill requirements and understating that of interpersonal
skill requirements by about 10% at all levels of experience.

We finally turn to the model’s ability to replicate the pooled cross-section wage regression
shown in Table 2 column 1. Figure 2h shows, for each coefficient of the regression, the
bootstrap 95% confidence interval of the empirical estimate, together with the structural
model-based point estimate (the large dots). The structural estimates are all well within
the empirical confidence bounds, with the exception of the returns to job tenure which the
model has a tendency to overstate.

6.2 Parameter Estimates

Table 4 shows point estimates of the model parameters with asymptotic standard errors in
parentheses below each estimate.31 There is little to say about the offer arrival and job
destruction rates, which are within the range of standard estimates on US data, even though
the ratio λ1/λ0 ' 0.42 is on the high end of that range. Overall job productivity is increasing
in all cognitive, manual and interpersonal skill requirements, with the loading on cognitive
skills between 1.5 and two times as large as the ones on manual and interpersonal skills. Job
skill requirements are complementary to the corresponding worker skills (αCC , αMM and αII
are all positive), although complementarity is an order of magnitude stronger in the cognitive
than in the other two skill dimensions.

Overall worker efficiency xT is positively associated with a high initial endowment in
cognitive and interpersonal skills (ζC , ζI > 0), while initial manual skills are negatively
correlated with xT (ζM < 0). One additional year of education increases efficiency by 2.4
percent (ζS). However, one should bear in mind that education is positively correlated
with initial cognitive and interpersonal skills and (weakly) negatively correlated with initial

31The covariance matrix of the parameter vector Θ is estimated as
(
G>G

)−1
G>ΩG

(
G>G

)−1, where
G = E

[
∂m/∂Θ>

]
, the (expectation of the) Jacobian matrix of the moment function m(Θ), is obtained

by numerical differentiation and where Ω, the covariance matrix of the moment function, is estimated by
resampling the data 1,500 times.
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manual skills in the sample. The value of ζS taken in isolation therefore understates the
overall returns to education. Also note that the parameters (ζS, ζC , ζM , ζI) are imprecisely
estimated.

The employment of an under-qualified worker in any skill dimension is costly in terms
of output, yet the output loss caused by this type of mismatch is by far most severe in the
cognitive dimension and least severe in the interpersonal dimension. The utility cost of being
under-matched – i.e. the surplus cost of the worker being over -qualified – is positive in all
dimensions, but generally much smaller than the corresponding surplus (production) cost
of under -qualification. To give a sense of the orders of magnitude involved, the numbers in
italics below the estimates of the various κ’s give the percentage flow-surplus cost of deviating
by one standard deviation of the sampling distribution Υ from the output-maximizing match
for a worker with the mean skill level in the distribution of initial skills x0.32

The correlation patterns between skill requirements in the sampling distribution (ρCM >

0, ρCI > 0, ρIM < 0) suggests that jobs requiring high levels of cognitive skills also tend
to require high levels of skills in at least one of the other two dimensions, particularly
interpersonal. Jobs with a high manual content, however, tend to have low interpersonal
requirements. The next section offers a more complete view of the sampling distribution.

All three types of skills are accumulated faster (by an under-qualified worker) than they
are lost (by an over-qualified worker), i.e. γuk > γok for k = C,M, I. Yet apart from that
common property, patterns of skill adjustment differ vastly between skill dimensions. Manual
skills adjust much faster than cognitive skills. Cognitive skills are very persistent (i.e. not
easily accumulated or lost) with a half-life of 7.5 years to learn and 27.3 years to forget.
The half-life of manual skills is much shorter, about 20 months to acquire and 7.5 years to
lose. Interpersonal skills essentially do not adjust over a worker’s typical horizon and can, to
a good approximation, be treated as fixed worker traits, determined prior to labor market
entry.

Perhaps the clearest message from those estimates is that the model sees cognitive, man-
ual and interpersonal skills as very different productive attributes. Manual skills have rel-
atively low returns and adjust quickly in both directions, cognitive skills have much higher
returns, but are much slower to adjust, especially upwards. Interpersonal skills have lower
returns than cognitive skills, but higher than manual skills (including through their effect
on overall worker efficiency), and are essentially fixed over a worker’s lifetime. Finally, skill
mismatch is most costly in the cognitive dimension and in the “under-skilled” direction (i.e.

32Denoting the mean of N as xm = (xmC , x
m
M , x

m
I ), the output-maximizing match is with y? =

argmaxyf (xm,y). Then, denoting the standard deviations of the marginals of Υ as (σC , σM , σI), the

percentage reported in italics below the estimate of κuC in Table 4 is 100×
[
1− P (xm,y?+(σC ,0,0))−U(xm)

P (xm,y?)−U(xm)

]
.
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when the worker has lower skills than the job requires).

6.3 Skill Mismatch, Skill Changes, and Sorting

Distributions of skills and skill requirements. The broad question of skill mismatch
can be understood in many different ways. One aspect of that question is the alignment (or
lack thereof) between the skills that workers are equipped with when they leave education –
the distribution N(·) of initial worker skill bundles x(0), in the parlance of the model – and
the firms’ skill requirements – the model counterpart of which is the sampling distribution
Υ(y).

The top row of Figure 3 (Panels a, b and c) show the marginal sampling distributions
of pairs of job attributes, integrating out one skill dimension at a time.33 The second row
of Figure 3 (Panels d, e and f) do the same for the distribution of initial skills among labor
market entrants, N(·). Plots of the sampling distribution suggest that labor demand is
concentrated around jobs with intermediate to high manual skill requirements (yM around
0.5 to 0.6), and modest levels of cognitive and interpersonal skill requirements (yC and yI

around 0.2). A visual comparison of the top two rows of Figure 3 further suggests that labor
market entrants are, on average, endowed with levels of manual skills that roughly coincide
with what the sampling distribution suggests employers are looking for, but also seem to
have much higher levels of cognitive and interpersonal skills than is required in most jobs.

Of course, there are narrow limits to the amount of information conveyed by a visual
comparison of the sampling and initial skill distributions. First, discrepancies between those
two distributions are not entirely surprising: the population of workers whose skills are
represented in Figures 3d-f is a cohort of relatively young workers. As such, their skills
may not be representative of those in the entire active workforce. By contrast, at least
under random search, the sampling distribution addresses all workers, the majority of which
are from older cohorts among which the skill distribution may be quite different. Second,
work skills and job attributes are combined into the surplus function (10), and what relative
shapes of Υ and N constitute a “good fit” in the sense of surplus maximization is not
visually obvious. For example, as discussed above, parameter estimates show that being
over-qualified in the manual dimension is costly relative to being over-qualified in any of
the other two skill dimensions, while being under-qualified in the cognitive dimension is very
costly. The apparent excess of cognitive skills in the population of labor market entrants may
be a sensible response to those features of the technology. We consider specific surplus-based
measures of mismatch in the next section. Third, matching occurs gradually over time, with

33For example, Figure 3a is a plot of
´
υ(yC , yM , yI)dyI against (yC , yM ).
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(a) Sampling density, CM (b) Sampling density, CI (c) Sampling density, MI

(d) Initial worker skill dist., CM (e) Initial worker skill dist., CI (f) Initial worker skill dist., MI

(g) 5 years of experience, CM (h) 5 years of experience, CI (i) 5 years of experience, MI

(j) 15 years of experience, CM (k) 15 years of experience, CI (l) 15 years of experience, MI

Figure 3: Distribution of skill requirements and evolution of worker skills with experience
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(a) Cognitive, 1 year of exp. (b) Manual, 1 year of exp. (c) Interpersonal, 1 year of exp.

(d) Cognitive, 15 years of exp. (e) Manual, 15 years of exp. (f) Interpersonal, 15 years of
exp.

Figure 4: Sorting

workers sampling repeatedly from Υ, while their skills evolve over time.
We now investigate this last point. Figures 3g–l show how the distribution of worker

skills in the model changes as the cohort of workers accumulates experience. The evolution
is clearly towards workers gaining cognitive skills and maintaining their manual skills on
average (while, as we saw earlier, interpersonal skills hardly adjust at all over a worker’s
lifetime). This can be explained by the fact that jobs with high cognitive skill requirements
are intrinsically more productive (the estimated weights on yC and xC · yC in the production
function, αC and αCC , are an order of magnitude larger than their manual and interpersonal
counterparts), inducing workers to accept jobs with the highest cognitive content compatible
with their level of cognitive skills, while at the same time avoiding costly over-qualification
in manual skills. By following this strategy workers tend to maintain or gradually acquire
cognitive skills. A second striking feature of Figures 3 is that the already limited degree of
specialization apparent in the initial skill distribution (Figure 3a) regresses even further as
workers gain experience: the skill distribution becomes increasingly unimodal.

Skill sorting and mismatch. We next examine the joint distribution of worker skill
bundles and job skill requirements among ongoing matches. Figure 4 shows two examples of
those joint distributions, among workers who are one year into their careers (Panels a, b and
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c), and among workers with fifteen years of experience (Panels d, e and f). Simply eyeballing
these histograms gives a distinct impression of positive sorting in all skill dimensions, even
at early stages of the working life. Moreover, the “strength” of this positive sorting - as
measured by the (inverse of the) conditional dispersion in worker skills for a given level of
skill requirement - clearly increases as workers accumulate experience. This results from
the combination of workers gradually sorting themselves into jobs for which their skills are
better suited, and adjusting their initial skills to their job’s requirements: as can be seen
from Figure 4, sorting at 15 years of experience is strongest in the manual dimension (as
manual skills adjust quickly), and weakest in the interpersonal dimension (as interpersonal
skills do not adjust).

A final feature of Figure 4 is that, while there is largely positive sorting in all skill dimen-
sions, a substantial mass of workers appear “under-matched” in the cognitive dimension, in
the sense that their job’s cognitive skill requirement is lower than their own cognitive skill
level. By contrast, very few workers are “over-matched” in cognitive skills (and those who are
are so by a small margin). The tradeoff from the perspective of a worker contemplating a job
is between the job’s overall productivity (the αCyC and αCCxC · yC terms in the production
function), and any cost of being mismatched. In the case of cognitive skills, the cost of being
“over-matched” (or “under-skilled”), measured by κuC , is prohibitively high, even accounting
for the fact that output increases much more steeply with yC than with yM or yI (Table 4).

6.4 Worker Bargaining Power

Our baseline model relies on the sequential auction rent-sharing protocol of Postel-Vinay
and Robin (2002), in which the only source of worker rent is Bertrand competition between
employers. Upon receiving a job offer, a worker compares the total private values of his/her
current labor market state (employment in a given type-y job or unemployment) with that
of accepting the job offer (employment in an alternative type-y′ job), and never extracts
more than the minimum of those two values. This assumption has the implication that
workers tend to accept very low wages upon exiting unemployment, to “buy their way”
onto the job ladder, after which wages tend to increase very steeply as soon as they receive
their first outside offer on their new job. The model thus tends to overstate returns to
tenure, as well as returns to experience early on in a worker’s career. The sequential auction
protocol further implies that private firm-worker pairs fail to internalize the extra surplus
that is created when the worker moves to a competing job for which her/his skills are better
suited, as that extra surplus is entirely captured by a third party, namely the worker’s future
employer. For the same reason, unemployed workers fail to internalize the surplus associated
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with them finding a job. Both of those features of the sequential auction model can be
mitigated by extending the model to give workers some additional bargaining power that
enables them to capture a share β ∈ [0, 1] of the match rent over and above what they receive
from sheer Bertrand competition between employers (Cahuc, Postel-Vinay, and Robin, 2006;
Dey and Flinn, 2005). In Web Appendix B.1 we investigate this extension and show that,
while endowing workers with positive bargaining power is theoretically straightforward in
the context of our model, it has a very high cost in terms of computational tractability.

7 The Determinants of Social Output

We now analyze the determinants of the social value of output in our model economy.
Specifically, we focus on the expected present discounted sum of future output produced by
a worker from experience t onwards (the “experience-t expected career output”). Consider
a worker i with experience t, who is either unemployed (denoted by `it = 0) or employed
(`it = 1) in a job with attributes yit. The worker has education (years of education) edi,
initial skill bundle xi0, unobserved ability ε0i and current skills xit. Their experience-t
expected career output is then defined as:

Qit = E

[ˆ +∞

t

(`is [f (xis,yis)− c (xis,yis)] + (1− `is) b (xis)) e
−(r+µ)(s−t)ds

| xi0, edi, ε0i,xit, `it,yit

]
. (12)

Dispersion in initial skill bundles xi0, years of education edi, and unobserved ability ε0i,
along with the random career shocks faced by workers (job mobility, job destruction and
attrition) up to experience t in our cohort of workers induces a cross-section distribution
of experience-t career output within the cohort, for any experience level t. We now seek
to assess the contributions of those different sources of randomness to the variance of (the
natural logarithm of) Qit for a fixed experience level t.34

To that end, note that, with our specification assumptions, all three functions f(·), c(·)
and b(·) are multiplicatively separable in the worker’s initial general efficiency, xT,i0. This
implies that Qit can be decomposed as lnQit = lnxT,i0 + ln Q̃it. Recalling the definition (11)
of xT,i0, we see that dispersion in lnxT,i0 is induced by dispersion in xi0, years of education edi,
and ε0i, while dispersion in ln Q̃it is induced by dispersion in xi0 and by random career shocks.
Indeed, ln Q̃it is independent of years of education and ε0i conditional on xi0. The variance of

34See Appendix A.7 for details on the computation of Qit.
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Table 5: Decomposition of Var lnQit

Share of Var lnQit due to. . .
initial skills x0 shocks heterogeneity ε0 education | x0

(term 1) (term 2) (term 3) (term 4)
Whole sample 65.0% 16.4% 18.9% 0.0%
College + 17.2% 48.3% 35.5% 0.0%
Some college 27.5% 34.2% 38.9% 0.0%
Non-college 37.9% 22.4% 40.1% 0.0%
Level of experience: t = 10 years.

career output Var lnQit can therefore be decomposed in the following interpretable manner:

Var lnQit = Var[E(lnQit | xi0)] + E [Var(lnQit | xi0)]

= Var[E(lnQit | xi0)] + E[Var(ln Q̃it | xi0)] + E [Var(lnxT,i0 | xi0)]

= Var[E(lnQit | xi0)]︸ ︷︷ ︸
1: between x0

+ E[Var(ln Q̃it | xi0)]︸ ︷︷ ︸
2: shocks

+ Var εi0︸ ︷︷ ︸
3: heterogeneity

+ ζ2
SE[Var(edi | xi0)]︸ ︷︷ ︸
4: schooling given x0

where the last equality uses (11) to further decompose the conditional variance of lnxT,i0.
The first term is the between-x0 variance, i.e. the part of the cross-section variance in
experience-t career output that is explained by dispersion in initial skill endowments, xi0.
The second term is the part of the cross-section variance in Qit that is attributable to the
randomness in a worker’s employment history. The third term is the variance attributable
to dispersion in unobserved ability ε0i (which, by construction of the model, is uncorrelated
to any other source of dispersion). Finally, the fourth term is the residual variance, due to
the dispersion in education that is not explained by dispersion in initial skills xi0. Results
from this variance decomposition are gathered in Table 5 for t = 10 years of experience.
For practical interpretability, we perform our variance decomposition on three sub-samples,
stratified by education: College and above (16+ years of education, 30.7% of the sample),
Some college (13-15 years of education. 19.3% of the sample), and Non-college (12 years of
education or less, 50.0% of the sample).

For our entire cohort, almost two thirds (65%) of the variance is accounted for by the
vector of initial skill endowments x0, and an additional 19% is explained by unobserved het-
erogeneity ε0. The additional information brought about by education given x0 is negligible.
Taken together, those numbers mean that about 84% of the variance in expected career
output at 10 years of experience is explained by dispersion in initial conditions. The rest –
a little over 16% – is due to the randomness associated with job offers and job displacement
during the first 10 years in the labor market, and the differential skill accumulation that
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Table 6: Further decomposition of Var lnQit

Share of Var lnQit due to . . .
x0 x0C x0M x0I

Whole sample 65.0% 58.9% 11.9% 19.3%
College + 17.2% 9.4% 2.8% 3.6%
Some college 27.5% 22.2% 10.6% 8.0%
Non-college 37.9% 33.9% 27.7% 10.5%

Note: Level of experience: t = 10 years. The share of the variance explained by the individual skills x0k

do not sum to the share explained by x0 due to the fact that (x0C , x0M , x0I) are not mutually independent,
and to non-linearities.

results from this randomness.35 Conditioning on broad levels of education reduces the share
of variance explained by initial skill bundles, as those are correlated with education.36 Yet
comparison of the bottom three rows of Table 5 suggests that the importance of labor market
shocks increases with education, while, vice versa, the importance of initial conditions (the
sum of x0 and ε0) decreases with education.

To get a sense of which type(s) of skills generate the most variance in career output,
Table 6 reports the shares of Var lnQit explained by each separate skill dimension of x0

taken in isolation, Var [E (lnQit | x0k)] for k ∈ {C,M, I}. We see that cognitive skills alone
can account for almost 60% of the variance, much more than what either manual skills
(12%) or interpersonal skills (19%) can account for on their own. Cognitive skills are the
most important dimension of initial skills for all education groups, however their relative
importance is much smaller for the low-educated: initial cognitive skills explain more than
three times as much variance as initial manual skills for the top education group, but only
account for 22% more variance than initial manual skills for the Non-college group.

Given the dominant role of cognitive skills illustrated in Table 6, a natural question to
ask is: What would a model with only a single dimension for skill miss? Table 7 reports

35Keane and Wolpin (1997) provide a similar decomposition in which they conclude that 90% of the
variation is due to initial conditions and 10% is due to shocks. The main difference with our approach is that
they assume workers are always employed at their best job. From the point of view of our model, this would
be equivalent to labelling all of the variation due to mismatch as due to initial skills. Cunha, Heckman,
and Navarro (2005) and Cunha and Heckman (2016) use observations on individuals’ decision of whether
or not to attend college to help disentangle heterogeneity (known to individuals at the time of making the
college attendance choice) from uncertainty (realized and observed later on in the life cycle). They estimate
that 50% of the variation in lifetime earnings is due to heterogeneity. We consider lifetime earnings post
schooling choice and estimate that between 65% and 84% is due to heterogeneity, depending on when in the
life cycle we assume ε0 to be observed by agents. Indeed, even though so far we have implicitly interpreted
ε0 as heterogeneity realized upon or before entry into the labor market, since ε0 affects wages but does not
affect any labor market decisions in our model, the exact timing of the realization of ε0 is largely a matter
of assumption. We would need to model additional choices, such as consumption/savings decisions, in order
to parse out how much is heterogeneity known ex-ante vs how much is uncertainty realized later in the life
cycle.

36See Web Appendix B.3 for a formal presentation of this statement.
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Table 7: Decomposition of Var lnQit: one-dimensional model

Share of Var lnQit due to. . .
initial skills x0 shocks heterogeneity ε0 education | x0

(term 1) (term 2) (term 3) (term 4)
Whole sample 32.5% 3.94% 60.4% 3.16%
College + 10.6% 6.01% 81.3% 2.08%
Some college 28.0% 3.94% 67.6% 0.43%
Non-college 24.6% 3.73% 71.6% 0.13%
Note: Level of experience: t = 10 years.

the decomposition of Var lnQit as obtained from a version of our model with a scalar
(one-dimensional) measure of job skill requirements. Specifically, instead of allowing for a
three-dimensional job attribute y = (yC , yM , yI), we only allow for a scalar y, constructed as
the first principal component of our initial large set of O*NET measures.37 Symmetrically,
we only allow for one dimension of specific worker skills x instead of the three-dimensional
x = (xC , xM , xI) considered so far. We estimate the resulting “one-dimensional” version of
our model and produce the decomposition of Var lnQit in exactly the same way as we did
for our full, three-dimensional model.38

A comparison of Tables 7 and 5 immediately shows that, as might have been expected,
the single-dimensional skill index model is capable of explaining substantially less of the
variance of career output based on observables than our original model, which allows for
three-dimensional skill bundles. This reduced explanatory power of the single-dimensional
skill index manifests itself in two different ways. First, and most directly, the share of variance
explained by observed initial worker skills (first column in Tables 7 and 5) tends to be smaller
in the scalar case than in the three-dimensional case. Second, the share explained by labor
market shocks (second column in Tables 7 and 5) is markedly smaller in the scalar case than
in the three-dimensional case. Intuitively, two occupations that look similar in terms of the
single-dimensional attribute y (which is constructed as the first principal component of our
set of O*NET descriptors) may look rather different in terms of the three-dimensional bundle
y (which is based on the first three principal components), along dimensions of y that are
not captured by the single-dimensional index y.

37Note that, unlike in the three-dimensional case, where we further transformed the first three principal
components based on exclusion restrictions for interpretability, here we keep the first principal component
as it is produced by the PCA, and remain agnostic as to the label of the “skill” that this captured by this
scalar measure. Details of this construction, and detailed estimation results for this one-dimensional version
of our model are available on request.

38In the notation of Section 3, we re-do the entire estimation exercise replacing L = 3 by L = 1. This
results in a reduction in the number of data moments to be calculated (for example, the covariance terms
involving yC and yM disappear), as well as a reduction in the number of parameters to be estimated (for
example, there are fewer parameters describing the production function and the distribution of y).
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Table 8: Elasticities of Qit

Elasticity of Qit Whole College + Some Non-
with respect to: sample college college
x0C 0.31 0.33 0.32 0.28
x0M −0.11 −0.10 –0.13 −0.11
x0I 0.07 0.07 0.06 0.06
EΥyC 0.08 0.13 0.09 0.04
EΥyM 0.07 0.06 0.07 0.07
EΥyI 0.06 0.05 0.06 0.06
λ0 0.02 0.03 0.02 0.02
λ1 0.01 0.01 0.04 0.02
mismatch 0.26 0.31 0.26 0.22
Level of experience: t = 10 years.

What labor market shocks do is move workers between occupations with different pro-
ductive attributes. If two occupations have a similar single-dimensional attribute y, but
different three-dimensional bundles y, then moving a worker between those two occupations
will not cause a lot of variation in that worker’s career output in the single-dimensional
model, which fails to pick up the differences between the two occupations, but will do so
in the three-dimensional world where the two occupations do look different. Similarly, two
workers may look similar in terms on the single-dimensional attribute x, but very different
along dimensions of x that are not captured by x. When these workers are confronted with
the opportunity of a job with skill requirements summarized by y, the scalar model will not
generate any wage variation. The multidimensional model will generate substantial wage
variation between these workers if one is much better suited than the other in terms of the
vector of requirements y.

While the model with unidimensional skill underestimates the share of the variance ex-
plained by both initial skills and shocks during working life, it underestimates the effect due
to shocks more. Comparing the first rows of Tables 5 and 7, we see that the model with mul-
tidimensional skills implies initial skills explain 3.96 times as much of the variance as career
shocks when looking at the entire sample. The corresponding ratio for the unidimensional
model is 8.25, reducing the relative role of shocks by more than half. This same relative
reduction of the role for shocks occurs within each education group.

Next we compute the cohort-wide average elasticities of expected career output (at ten
years of experience) with respect to the subset of model parameters listed in the first column
of Table 8. The way in which we construct some of those elasticities requires some explana-
tion. The first three rows of Table 8 aim to measure the impact on average career output
of a marginal proportional change in initial workforce skills. What we mean by that is the
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following. For each separate skill dimension k, we can multiply the initial endowment x0k

of every worker in the sample by a common scale 1 + ∆ and compute their career output
Qit(∆) under this modified distribution of initial skills. The numbers reported in the first
three rows of Table 8 are E [∂ lnQit(∆)/∂∆], evaluated at ∆ = 0.

The following three rows turn to the labor demand side and assess the impact on average
career output of a marginal change in the skill requirements demanded by employers. We
measure that by the average elasticity of Qit with respect to the mean skill requirement in
each separate dimension.39

The next three rows are about the matching technology, starting with the (self-explanatory)
elasticities of Qit with respect to the frequencies of job contacts, λ0 and λ1, followed by a row
that we label “mismatch”. Numbers in this last row are based on counterfactual simulations
where we reassign employed workers as follows. If a worker with current skills x is employed
in a job with attributes y by the time they reach ten years of experience, we reassign them
to a job of type y′ = (1 − ∆)y + ∆y?(x), where ∆ is a small, positive number and where
y?(x) is the output-maximizing job type for a worker with skills x. We can compute that
worker’s career output Qit(∆) following this reassignment for any value of ∆. The numbers
reported in the “mismatch” row of Table 8 E [∂ lnQit(∆)/∂∆], evaluated at ∆ = 0.

Comparing the elasticities for the whole sample we see that the largest effect on output
is associated with a marginal improvement in the cognitive skills of the entering workforce.
Interestingly, a marginal increase in the interpersonal skill endowment of entrants only has
a comparatively small effect and an increase in their manual skills would have a negative
effect, the latter being a result of the small effect of manual skills on output and the large
effect on disutility of work.

The (quantitatively close) second largest effect on output is associated with a marginal
reduction in the mismatch between worker skill and job requirements. This one-time reduc-
tion in mismatch has a direct effect on increasing current output, but also an effect on future
output through improved skill accumulation of workers. The output loss due to mismatch
dwarves the losses associated with the sheer frequency of worker-firm contacts, λ0 and λ1,
which our model estimates to be an order of magnitude smaller in comparison.

Finally, increasing the mean skill requirement in the sampling distribution has moderately
positive effects on output, which are roughly equal across skill types.

Looking across the education groups the same broad pattern holds as in the full sample.
Reductions in mismatch and increases in the cognitive ability of the entering workforce have

39The marginal sampling distribution of skill requirement k is parameterized as a Beta distribution with
parameters

(
η1
k, η

2
k

)
. Those parameters obviously map 1:1 into the mean and variance of that marginal

distribution. To compute the elasticity ofQit with respect to the mean sampled skill requirement in dimension
k, EΥyk, we vary

(
η1
k, η

2
k

)
to induce a marginal change in the mean, keeping the variance constant.
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the largest effects on output. The magnitudes of both effects increase somewhat in education.

8 Conclusion

We extend a standard and well-tested search-theoretic model of individual careers to allow
for multidimensional skills and on-the-job learning. We estimate the model using occupation-
level measures of skill requirements based on O*NET data, combined with a worker-level
panel (NLSY79). We use the estimated model to shed light on the origins and costs of
mismatch along three dimensions of skills: cognitive, manual, and interpersonal.

Our main findings are the following. The model sees cognitive, manual and interpersonal
skills as very different productive attributes. Manual skills have moderate returns and ad-
just quickly (i.e., they are easily accumulated on the job, and relatively easily lost when left
unused). Cognitive skills have much higher returns, but are much slower to adjust. The
returns on interpersonal skills are similar to (slightly higher than) those on manual skills.
Yet interpersonal skills are all but fixed over a worker’s lifetime. Next, the cost of skill
mismatch (modeled as the combination of an output loss and a loss of worker utility caused
by skill mismatch) is very high for cognitive skills, an order of magnitude greater than for
manual or interpersonal skills. Moreover, this cost is asymmetric: employing a worker who
is under-qualified in cognitive skills (i.e. has a level of skills that falls short of the job’s skill
requirements) is several orders of magnitude more costly than employing an over-qualified
worker. Those important differences between various skill dimensions are missed when sub-
suming worker productive heterogeneity into one single scalar index. This is highlighted
when we decompose the variance of lifetime output between initial skills (observed and un-
observed) and shocks over the career. The use of a unidimensional model of skill rather than
a multidimensional model underestimates the explained share of the variance (of the present
value of output) by half and, additionally, underestimates the contribution of shocks relative
to initial skills by half.
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A Appendix

Table A.1: Summary of Model Parameters

Structural object Symbol How is is estimated

Offer arrival rates: (λ0, λ1) Estimated within the model

Job destruction rate: δ Pre-estimated as sample
mean E2U rate

Unemployment income: b Estimated within the model

Production function f : (αT , αC , αM , αI , αCC , Estimated within the model
αMM , αII , κ

u
C , κ

u
M , κ

u
I )

Utility cost of (κoC , κ
o
M , κ

o
I) Estimated within the model

over-qualification c:

Skill accumulation (γuC , γ
u
M , γ

u
I Estimated within the model

function g: γoC , γ
o
M , γ

o
I , g)

Joint distribution of Directly observed from initial
initial worker skills: sample cross section

General worker (ζS, ζC , ζM , ζI , ε0) Distribution of ε0 estimated
efficiency xT : by deconvolution in final step

Sampling distribution (ξC , ξM , ξI , ρCM , ρCI , ρMI , Estimated within the model,
of job attributes Υ: η1

C , η
2
C , η

1
M , η

2
M , η

1
I , η

2
I ) specified as Gaussian Copula

with Beta marginals

Attrition and discount rates: (r, µ) Calibrated outside model

A.1 Solving for the Value Functions.

The value functions can be solved for in quasi-closed form. We first focus on the match
value P (x,y), taking the value of unemployment U(x) as given. To solve for P (x,y), it is
convenient to parameterize P and x as a function of the worker’s tenure, say t, in the job
under consideration. The solution to the first-order linear PDE (2) is then characterized by
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the following system of K + 1 ODEs:

dxk
dt

= gk (x(t),y) k = 1, · · · , K (13)

dz

dt
= (r + µ+ δ)z − [f (x(t),y)− c (x(t),y)]− δU (x(t)) (14)

which are indeed the characteristic equations of (2). Match value is then the solution to
P (x(t),y) = z(t). Initial conditions for the first K equations (13) are given by the worker’s
skill vector x(0) at the point of hire. The last initial condition, z(0), is unknown, but we
can impose the boundary condition z(t) exp [− (r + µ+ δ) t]→ 0 as t→ +∞ to pin down a
unique solution to (14).

To be more explicit, let us denote by X (t; y,x0) the solution to (13) given initial condition
x0 and job type y (possibly equal to 0L if the worker is unemployed). The date-t value of a
match between a job with attributes y and a worker with current skill bundle x(t) is then
given by the solution to (14):

P (x(t),y)

=

ˆ +∞

t

[f (X (s; y,x(t)) ,y)− c (X (s; y,x(t)) ,y) + δU (X (s; y,x(t)))] e−(r+µ+δ)(s−t)ds.

The value of unemployment U (x(t)) =
´ +∞
t

b (X (s; 0,x(t))) e−(r+µ)(s−t)ds is solved for in a
similar fashion, and the surplus associated with a typical match is obtained by subtraction:

P (x(t),y)− U (x(t)) =

=

ˆ +∞

t

[f (X (s; y,x(t)) ,y)− c (X (s; y,x(t)) ,y)− b (X (s; y,x(t)))] e−(r+µ+δ)(s−t)ds.

(15)

Using the functional forms assumptions (8) and (9) in the above formula produces (10).

A.2 Data Details

Our final estimation sample consists of an initial cross-section of 1,840 males whom we follow
over up to 30 years. There is, however, a substantial amount of attrition, which we comment
on in the next paragraph.

A.2.1 Flows, stocks, and wages over time.

Figure A.1 describes our sample in terms of a set of times series about worker stocks, la-
bor market transition rates, and average wages over the full 30-year sample window. The
horizontal-axis variable is time, measured in months since labor market entry.
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Figure A.1: Sample description

Figure A.1a shows the pattern of attrition from our sample. Attrition is initially very
gradual, with the sample cross-section size declining by about 30 percent over the initial
twenty years. Past that point, attrition accelerates considerably. This is partly a consequence
of the fact that we follow a cohort of individuals from the date they leave full-time education,
resetting time to zero on the week they enter the labor market. Individuals having spent
more time at school enter the labor market later, and are therefore observed for fewer years
than less educated individuals. This causes the composition of the sample to shift toward less
educated individuals as one approaches the end of the observation window. To circumvent
this problem, we restrict our estimation sample to the first 15 years (180 months) of the
initial sample. This 180-month cutoff is materialized by a thick vertical black line on all
panels of Figure A.1.

Figure A.1b shows the non-employment rate among sample members. As one would
expect, this rate declines monotonically over time, until it reaches a steady level slightly
under 5 percent. It rises again slightly after about 20/25 years, likely as a result of the
compositional shift discussed above. Perhaps slightly more surprising is the long time it
takes for the non-employment rate to reach this steady state (roughly ten years). Figure
A.1c shows the rates of transition between labor market states. The non-employment exit
rate is roughly stable at around 25 percent per month, while the transition rates from job
to job and into non-employment decline smoothly over the sample window. Finally, Figure
A.1d plots average log wages among employed sample members which, again as one would
expect, increase monotonically over time until they reach a point where, mirroring the non-
employment rate, they start declining, again a likely consequence of non-random attrition
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Table A.2: Examples of skill requirement scores

Skill requirements:
Occupation title Cognitive Manual Interpersonal

Physicists 1 0.755 0.692
Graders and Sorters, Agricultural Products 0 0.138 0.058
Aircraft Mechanics and Service Technicians 0.613 1 0.318
Telemarketers 0.147 0 0.330
Preventive Medicine Physicians 0.658 0.410 1
Molding, Coremaking, and Casting Machine 0.302 0.641 0Setters, Operators, and Tenders, Metal and Plastic
Source: O*NET and authors’ calculations

from the sample.

A.2.2 Worker skills and job skill requirements.

Table A.2 lists some examples of the cognitive, manual and interpersonal skill requirement
scores we constructed for a few occupations. We denote those scores by ỹ = (ỹC , ỹM , ỹI)
and will use them as empirical measures of the model’s job attributes y. Examples in
Table A.2 include the occupations with the highest cognitive (Physicist), manual (Aircraft
Mechanics and Service Technicians), and interpersonal (Preventive Medicine Physicians)
skill requirements in the sample, and the occupations with the lowest cognitive (Graders
and Sorters, Agricultural Products), manual (Telemarketers), and interpersonal (Molding,
Coremaking, and Casting Machine Setters, Operators, and Tenders, Metal and Plastic) skill
requirements.

The correlation pattern of workers’ initial skills and the skill requirements of the first
jobs they are observed in is described in Table A.3, where workers’ initial cognitive, manual,
and interpersonal skill indices are denoted by (xC0, xM0, xI0) , while (ỹC , ỹM , ỹI) refer to
the empirical measures of job skill requirements in a worker’s first job. This correlation
pattern reveals several features of the data. First, (xC0, xM0, xI0) are positively correlated
in our cross-section of workers. Even though those correlation coefficients are far below one,
they suggest that workers with high skills in one dimension tend to have high skills in the
other two. Cognitive and manual skills appear slightly more strongly associated with each
other than either is with interpersonal skills. Second, ỹC is positively correlated with both
ỹM and ỹI in the cross section of workers’ first jobs. Even though there is obviously some
selection here (as the set of jobs a worker will take up depends on their own skill bundle x),
this suggests that jobs requiring high levels of cognitive skills also tend to require high skill
levels in one of the manual or interpersonal dimensions. While manual and interpersonal
skill requirements are both positively correlated with cognitive skill requirements, they are
negatively correlated with each other. Third, (xC0, ỹC), (xM0, ỹM), and (xI0, ỹI) are positively
correlated (as expected), and so are (xC0, ỹI), (xM0, ỹC), (xI0, ỹM), (xI0, ỹC). By contrast,
(xC0, ỹM) and (xM0, ỹI) are negatively correlated, suggesting that workers select themselves
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into either manual or non-manual jobs, as fits their skill bundles.

Table A.3: Correlation pattern of initial skills and skill requirements in first job

xC0 xM0 xI0 ỹC ỹM ỹI
xC0 1
xM0 0.46 1
xI0 0.39 0.31 1
ỹC 0.48 0.15 0.23 1
ỹM −0.18 0.18 0.01 0.32 1
ỹI 0.55 −0.01 0.27 0.64 −0.34 1

A.2.3 Occupation-specific Wage Deciles

In columns 4–6 of Table 3 we control for a worker’s position within their occupation-specific
wage distribution. Specifically, we include an indicator variable for which decile of the
occupation-specific distribution each worker belongs to. We construct the cutoffs for the
deciles using the 1980 Census. From the Census, we restrict the sample to include men, aged
16 to 65 who worked at least 26 weeks in the year. We convert weekly earnings to real 1982
dollars using the CPI to be comparable with the NLSY data. We map the 1980 occupation
codes to the 1970 occupation using Table 1 from Census Bureau (1989).

A.3 Construction of Skill Measures

The data sets from which we construct worker skill and job skill requirement scores both
consist of a set of P different measures observed for N individuals (workers in the case
of the NLSY, and occupations in the case of O*NET). We denote the N × P matrix of all
observations by M. PCA decomposes the matrix M as M = FL, where F is the orthonormal
N ×P matrix of principal eigenvectors of M>M and L is a P ×P matrix of factor loadings.
We consider the first 3 principal components only, i.e. we consider the decomposition M =
F3L3 + U, where F3 is the N × 3 matrix formed by taking the first 3 columns of F and L3

is the 3× P matrix formed by taking the first 3 rows of L.
For any invertible 3 × 3 matrix T, the above decomposition of M can be rewritten as

M = (F3T) (T−1L3) + U, which is an alternative decomposition of M into new (linearly
recombined) factors F3T with loadings T−1L3. We choose T such that our decomposition of
M satisfies our chosen exclusion restrictions. Taking the case of O*NET as an example, we
order the measures such that measure 1 (the first column of M) is the score on mathematics
knowledge, measure 2 is the score on mechanical knowledge, and measure 3 is the score on
social perceptiveness, then define T = L3,3 where L3,3 is the 3 × 3 matrix made up of the
first three columns of L3.
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It should be emphasized that our method of constructing worker skill and job skill re-
quirement scores differs slightly from the approach usually taken in the related literature.
The conventional approach consists of assigning each of the P data measures (of skills or skill
requirements, as the case may be) to one of K different bins, where K is the number of skill
dimensions relevant to the model (three, in our case), and set the score in skill dimension k
as the average of all measures in bin k.

The conventional method therefore assumes that any given measure is only relevant to
one single skill dimension. Which skill dimension a measure is relevant to must be decided
a priori. In our case, this would mean deciding for every NLSY or O*NET descriptor
whether it relates to cognitive, manual, or interpersonal skills. While this decision may seem
relatively straightforward, at least on an intuitive level, for some measures (for instance the
six measures on which we impose exclusion restrictions), it is far from clear-cut for most
measures, which can easily be argued to be relevant for two or more skill dimensions. We
therefore choose to minimize the number of exclusion restrictions we impose on the data. We
believe that our approach offers a good compromise between interpretability, parsimony, and
ability to capture the covariance patterns between skills and skill requirement dimensions.

A.4 Robustness to Alternative Exclusion Restrictions in O*NET

In Table A.4 we present the correlation between our preferred skill requirement measures
and skill requirement measures constructed using four alternative exclusion restrictions for
each of the cognitive, manual and interpersonal dimensions. Specifically, we consider Math-
ematical Reasoning, Fluency of Ideas, Written Comprehension, and Oral Comprehension as
alternative exclusion restrictions to Mathematics Knowledge to anchor the cognitive skill
requirements. We consider Finger Dexterity, Repairing and Maintaining Mechanical Equip-
ment, Arm-Hand Steadiness, and Manual Dexterity as alternatives to Mechanics Knowledge
to anchor the manual skill requirements. We consider Selling or Influencing Others, Negotia-
tion, Persuasion, and Speaking as alternative exclusion restrictions to Social Perceptiveness
to anchor interpersonal skill requirements. The correlations are all very high, especially for
the alternatives we consider for cognitive and interpersonal anchors. For the manual anchor,
the correlation is very high for the Finger Dexterity and Repairing and Maintaining Mechan-
ical Equipment alternatives, but somewhat weaker for both the Arm-hand Steadiness and
Manual Dexterity alternatives. As a result it is important to keep in mind that our notion
of manual skill requirements has more to do with the ability to fix machines than the ability
to do very physical labor. This aligns well with our exclusion for the worker skill side in the
NLSY79 which measures auto mechanics and machine shop knowledge.
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Table A.4: Alternative Exclusion Restrictions in O*NET

Cognitive Skill Requirements Mathematics Knowledge
Mathematical Reasoning 0.983

(0.009)
Fluency of Ideas 0.930

(0.017)
Written Comprehension 0.918

(0.019)
Oral Comprehension 0.902

(0.020)

Manual Skill Requirements Mechanics Knowledge
Finger Dexterity 0.973

(0.011)
Repairing and Maintaining Mechanical Equipment 0.940

(0.016)
Arm-Hand Steadiness 0.717

(0.033)
Manual Dexterity 0.657

(0.036)

Interpersonal Skill Requirements Social Perceptiveness
Selling or Influencing Others 0.997

(0.004)
Negotiation 0.991

(0.006)
Persuasion 0.979

(0.010)
Speaking 0.965

(0.012)
Notes: Correlation with alternative exclusion restrictions. Standard error in parenthesis.
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A.5 Identification

This appendix contains a formal discussion of identification. Identification is, in large part,
parametric, in that many of the arguments below make use of the specific functional forms
assumed in the main text.

The job loss rate δ is directly observed in the data. We assume that so is the popula-
tion distribution of initial skill bundles. Moreover, we discuss identification conditional on
knowledge of the discount rate r and the sample attrition rate µ.

The wage equation (5) can be written as:

w(x,y, σ) = σf(x,y) + (1− σ)b(x) + (1− σ)c(x,y)

− λ1(1− σ) [P (x,y)− U ]

ˆ
Y

1 {P (x,y′) ≥ P (x,y)} dΥ(y′)

− λ1

ˆ
Y

[1 {P (x,y′) ≥ σP (x,y) + (1− σ)U} − 1 {P (x,y′) ≥ P (x,y)}]×

[P (x,y′)− σP (x,y)− (1− σ)U ] dΥ(y′). (16)

A first important implication of (16) is that the maximum wage given (x,y) is f(x,y), imply-
ing in turn that the maximum wage given y is f (y,y) = xT ·

(
αT +

∑
k=C,M,I(αkyk + αkkxk · yk)

)
.

Because y is observed for all employed workers,40 and because xT is also a function of observ-
ables (up to the uncorrelated heterogeneity term ε0), namely the worker’s education, initial
skill bundle and experience, this proves identification of the parameters αT , αC , αM , αI , ,
αCC , αMM , αII , g, ζS, ζC , ζM , ζI .

Next, consider the set of workers with initial skill bundle x exiting non-employment at
any experience level. The (observed) set of job types y that those workers accept is the
set {y :P (x,y) ≥ U}, and its boundary is the set {y :P (x,y) = U}. This latter set is
therefore identified, conditional on knowledge of x. We now show that this latter fact allows
identification of the parameters of the match value function P (x,y) = U .

First, from the expression of the match surplus (10), one can show that joint obser-
vation of x and the set {y :P (x,y) = U} allows separate identification of the parameters
of P (x,y), i.e. the composite parameters κu/ok /

(
r + δ + µ− g + 2γ

u/o
k

)
, k = C,M, I.41

Now, the issue is that we do not directly observe worker skills at all levels of experience:
rather, we only observe workers’ initial skill bundles. However, consider a worker with
(observed) initial skill bundle x(0) starting his working life in unemployment, and who
finds a job after an initial unemployment spell of duration d(1). From the human capi-
tal accumulation function (6), we know that this worker’s skill bundle by the time s/he

40What is, in fact, observed, is not directly y but rather its empirical counterpart ỹ. With our functional
form assumptions on f(y,y) and yk = ỹξkk , k = C,M, I, the maximum wage given y jointly identifies the
α’s and the ξ’s.

41One way to see this is to realize from (10) that the set {y :P (x,y) = U} is the union of four quarter-
ellipses, the centers and axes of which can be expressed as simple functions of x and the parameter com-
binations κu/ok /

(
r + δ + µ− g + 2γ

u/o
k

)
. Observation of x and y for this set identifies these centers and

axes.
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finds a job is x
(
d(1)
)

=
(
xC(0)e−γ

o
Cd

(1)
, xM(0)e−γ

o
Md(1) , xI(0)e−γ

o
I d

(1)
)
. Identification of the

parameters of P (x,y), κu/ok /
(
r + δ + µ− g + 2γ

u/o
k

)
, is thus obtained from the set of ini-

tially unemployed workers whose initial unemployment spell duration d(1) → 0. Further-
more, once the parameters of P (x,y) are known, observation of the set {y :P (x,y) = U}
given x =

(
xC(0)e−γ

o
Cd

(1)
, xM(0)e−γ

o
Md(1) , xI(0)e−γ

o
I d

(1)
)

with x(0) observed identifies γok for
k = C,M, I. Combining those results, we now have separate identification of γok, κok, and
κuk/ (r + δ + µ− g + 2γuk ), and still need to separate κuk from γuk in the latter composite pa-
rameter. This can be done by repeating the latter argument for workers who are initially
employed in matches with skill requirements y(1) for which they are under -qualified, i.e. such
that xk(0) < y

(1)
k for k = C,M, I, become unemployed after an initial spell duration of d(1),

then find a job again after an unemployment spell of duration d(2). From the human capital
accumulation function (6), those workers’ skill bundles when they find their second job (at
experience d(1) + d(2) is given by xk

(
d(1) + d(2)

)
= e−γ

o
kd

(2)
[
y

(1)
k − e−γ

u
k d

(1)
(
y

(1)
k − xk(0)

)]
.

The only unknown parameter in this expression is γuk , which is then again identified from
the set {y : P (x,y) = U}.

The full set of production, utility, and human capital accumulation parameters is thus
identified. Note that, while the arguments laid out above rely on the specific functional forms
assumed in the main text, the background source of identification for the cost of mismatch
and the speed of human capital accumulation (or decay) is a comparison of the set of job
types y that are acceptable to workers with equal initial skills x(0), but have experienced
different employment histories.

Once the parameters of the human capital accumulation function g(x,y) are known, we
can construct any worker’s full path of skill bundles x: consider a worker in his nth spell
(which could be a spell of unemployment). Denote the skill requirements in that spell by
y(n) =

(
y

(n)
C , y

(n)
M , y

(n)
I

)
(both equal to 0 if the spell is one of unemployment), the worker’s

skill bundle at the beginning of that spell by x(n) =
(
x

(n)
C , x

(n)
M , x

(n)
I

)
, and the duration of

that spell by d(n). Spell duration d(n) and the vector y(n) are observed in all spells, while
x(n) is only observed in the initial spell, n = 1, where it equals x(0). Then, using the skill
accumulation equation ẋ = g (x,y), we have that x(n+1) = X

(
d(n); y(n+1),x(n)

)
, where X(·)

denotes the solution to (13) as explained in the main text. Using backward substitution,
we can then construct x(n) for any spell as a function of the history of durations and skill
requirements of past spells and the worker’s initial skill level x(1) = x(0).

Next, the set of job offers accepted by unemployed workers with skills x identifies the
sampling distribution Υ(y) over the set {y :P (x,y) ≥ U}. Υ(y) is thus (non-parametrically,
conditionally on the rest of the model) identified over the union of all such sets for all skill
bundles x observed in the sample. That is, Υ(y) is identified at all skill requirement levels
y that are acceptable by at least some worker types.

Finally, the offer arrival rates λ0 and λ1 are identified, conditionally on the rest of
the model, from sample U2E and E2E transition probabilities, and the flow value of non-
employment, b(x), is identified from the wage of workers exiting non-employment: applying
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(16) to workers just exiting non-employment (σ = 0) yields:

w(x,y, 0) = b(x) + c(x,y) + λ1

ˆ
Y

1 {P (x,y′) ≥ P (x,y)} [P (x,y′)− P (x,y)] dΥ(y′)

− λ1

ˆ
Y

1 {P (x,y′) ≥ U} [P (x,y′)− U ] dΥ(y′),

which equals b(x) + c(x,y) on the (known) set of y’s such that P (x,y) = U .

A.6 Unobserved Heterogeneity ε0

The distribution of unobserved permanent worker heterogeneity ε0 can be identified from the
comparison of the simulated cross-section distribution of log wages assuming away unobserved
worker heterogeneity (i.e. setting ε0 = 0 for all workers) with the empirical distribution of
log wages. For example, the variance of ε0 can be estimated as the difference between the
empirical wage variance and the variance of the simulated log-wage distribution without
unobserved worker heterogeneity. We apply this strategy and compare the variances of
the cross-section distributions of individual-level mean wages. By taking individual-level
averages over time, we hope to minimize pollution of our estimate of Varε0 by potential
measurement error in the empirical wage data. The variance of ln ε0 thus estimated is 0.104

and accounts for 4.5% of the overall variance of individual-level mean wages.

A.7 Computation of Expected Career Output

The expected career output of a worker with current skills x, employed in a job with re-
quirements y defined in (12) can be equivalently defined in the following recursive way:

(r + δ + µ)Q(x,y) = f(x,y)− c(x,y) + δV (x) + g(x,y) · ∇xQ(x,y)

+ λ1

ˆ
1 {P (x,y′) ≥ P (x,y)} [Q(x,y′)−Q(x,y)] dΥ(y′), (17)

where the dependence of Q on fixed attributes (x0, education, ε0) is omitted and where
V (x) is the expected career output of an unemployed worker with current skill bundle x.
The latter is in turn defined by:

(r + µ)V (x) = b(x) + g(x,0) · ∇V (x) + λ0

ˆ
1 {P (x,y′) ≥ U(x)} [Q(x,y′)− V (x)] dΥ(y′).

(18)
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In those two formulas, P (x,y) and U(x) denote the equilibrium (private) values of, respec-
tively, a match between a type-x worker and a type-y job, and an unemployed type-x worker.
In both 17 and 18, the last (expectation) term captures the expected continuation value of
the worker’s career in his future matches. The social values Q(x,y) and V (x) differ from
the private values P (x,y) and U(x) precisely because of those expectation terms: under
our rent-sharing protocol, existing firm-worker pairs fail to internalize the value generated
by the worker in future matches because all of said value is captured by the worker’s future
employer when he switches jobs. While the economic interpretation of those expectation
terms is clear enough, mathematically their impact is to add a non-linear term to the PDEs
defining Q (x,y) and V (x), which rules out any closed-form solution. Those equations must
therefore be solved numerically, using the following procedure.

We choose a grid {x1, · · · ,xn}×{y1, · · · ,ym} of n worker skill andm job skill requirement
vectors. For any point (xi,yj) on that grid, we approximate Q (xi,yj) = Π (xi) · φQ (yj)

and V (xi) = Π (xi) · φV , where Π (·) is a basis of complete polynomials of some chosen
order, and where φV and φQ (·) are a set of m+ 1 vectors of coefficients that are computed
by minimizing the distance between the left- and right-hand sides of (17) and (18) over the
grid. Then, for a generic pair (x,y) that is not on the grid, we use the approximations
V (x) = Π (x) · φV and Q (x,y) = Π (x) · φ̃Q (y), where φ̃Q (y) is a linear interpolation of
φQ (ỹj1 (y)) and φQ (ỹj2 (y)), ỹj1 (y) and ỹj2 (y) being the nearest two neighbors of y on
the grid.

Solving for φV and φQ (·) involves repeated calculations of three-dimensional integrals
like
´

1 {P (x,y′) ≥ P (x,y)} [Q(x,y′)−Q(x,y)] dΥ(y′), the computational cost of which
increases very quickly as one increases the order of the polynomial basis Π(·) or the size
(n,m) of the grid of points upon which the approximation is based. Fortunately, we only need
to perform those calculations a limited number of times. In practice, we choose m = n = 15

and an approximation order of 3. We find that increasing the fineness of the approximation
beyond those values makes little difference to the results.
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B Web Appendix (not for publication)

B.1 Extension: Worker Bargaining Power

When workers have bargaining power β ∈ [0, 1] , the dynamic equations (2) and (3) charac-
terizing, respectively, the value of a match and the value of unemployment, must be amended
as follows:

(r + δ + µ)P (x,y) = f(x,y)− c(x,y) + δU(x) + g(x,y) · ∇xP (x,y)

+ λ1βE max {P (x,y′)− P (x,y), 0} (19)

and:
(r + µ)U(x) = b(x) + g(x,0) · ∇U(x) + λ0βE max {P (x,y′)− U(x), 0} . (20)

where, in both cases, the last (expectation) term captures the expected surplus share that the
worker will extract from future matches thanks to her/his bargaining power.42 The values
defined by those two equations differ from the baseline case (which coincides with β = 0)
precisely because of those expectation terms. While the economic interpretation of those
expectation terms is clear enough, mathematically their impact is to add a non-linear term
to the PDEs defining P (x,y) and U (x), which rules out any closed-form solution. Those
equations must therefore be solved numerically, using the following procedure.

We choose a grid {x1, · · · ,xn}×{y1, · · · ,ym} of n worker skill andm job skill requirement
vectors. For any point (xi,yj) on that grid, we approximate P (xi,yj) = Π (xi) · φP (yj)

and U (xi) = Π (xi) · φU , where Π (·) is a basis of complete polynomials of some chosen
order, and where φU and φP (·) are a set of m+ 1 vectors of coefficients that are computed
by minimizing the distance between the left- and right-hand sides of (19) and (20) over the
grid. Then, for a generic pair (x,y) that is not on the grid, we use the approximations
U (x) = Π (x) · φU and P (x,y) = Π (x) · φ̃P (y), where φ̃P (y) is a linear interpolation of
φP (ỹj1 (y)) and φP (ỹj2 (y)), ỹj1 (y) and ỹj2 (y) being the nearest two neighbors of y on
the grid.

Solving for φU and φP (·) involves repeated calculations of E max {P (x,y′)− P (x,y), 0},
a three-dimensional integral. Unfortunately, the computational cost of that simulation step
quickly becomes prohibitive as one increases the order of the polynomial basis Π(·) or the
size (n,m) of the grid of points upon which the approximation is based. This forces us to

42With β > 0, worker-firm pairs thus partly internalize the surplus supplement from the worker’s future
matches, as the worker now captures a share β of that extra surplus. In the limit β → 1, the extra surplus
from the worker’s future matches is fully internalized by current match partners, and the private match and
unemployment values (19) and (20) coincide with the corresponding Planner’s values.
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limit ourselves to a very sparse grid (in practice, we choose n = 10 and m = 6) and a low
approximation order (in practice: 3), resulting in a very coarse approximation of our two
value functions.43 The results reported in this section should therefore be taken with the
appropriate amount of caution. Yet we think it useful to provide an indication of what is
likely to change and what isn’t, compared to the baseline case β = 0, when workers are
endowed with positive bargaining power. To that end, we re-estimate our model under the
assumption that β = 0.5, using the approximation procedure just described.

Estimated parameters under the assumption β = 0.5 are reported in Table B.1, alongside
our baseline estimates, copied from Table 4 for comparison. Point estimates of the flow
surplus parameters (the α’s and the κ’s) tend to be slightly smaller with β = 0.5 than
in the baseline case β = 0. Smaller values of the α parameters can be explained by the
fact that those parameters are mainly identified off of the levels of wages (see Sub-section
5.3 and Appendix A.5).44 With positive bargaining power, workers appropriate an extra
share of match productivity, which therefore needs to be estimated lower than in the β = 0

case in order to match the wages observed in the data. Those lower estimated α’s have a
knock-on effect on the estimated cost of mismatch (the κ’s): the cost of mismatch must stay
commensurate with the returns on job attributes to rationalize observed mobility patterns.

Having said that, those differences are statistically small: point estimate differences be-
tween the two models are generally well within two standard deviations of our baseline
estimates (see Table 4). Moreover, the relative values of the various parameters are very
close between the β = 0.5 and β = 0 cases. As a result, none of the implications discussed
above in the context of our baseline β = 0 case are substantially changed.

Figure B.1 echoes Figure 2 and shows the main aspect of the model’s fit in the β = 0.5

case. A visual comparison of Figures B.1 and 2 suggests that the fit of the β = 0.5 model is
very similar to that of the baseline β = 0 model, with two main differences. First, the model
with bargaining power tends better to capture the wage/experience profile, in particular at
low levels of experience (Figure B.1c). As discussed before, this was expected, as positive
bargaining power mitigates the tendency of unemployed workers to exit unemployment on
very low entry wages by bringing wages closer to match productivity. Second, the model with

43Even with those coarse approximation settings, a single evaluation of the β > 0 version of the model
takes about three times as long as a single evaluation of the baseline (β = 0) model, which involves no
approximation. Moreover, estimation of the β > 0 model takes substantially more iterations to converge
than estimation of the baseline model does. Although we cannot prove it, we suspect this is due to the extra
noise caused by approximation error in the β > 0 case.

44In this version of the model, the wage equation is obtained, as before, by apply-
ing the rule W (x,y, σ) = (1 − σ)U(x) + σP (x,y), with the worker’s value function now
solving: (r + δ + µ)W (x,y, σ) = w(x,y, σ) − c(x,y) + δU(x) + g(x,y) · ∇xW (x,y, σ) +
λ1Emax {0, βmax {P (x,y), P (x,y′)}+ (1− β) min {P (x,y), P (x,y′)} −W (x,y, σ)}.
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(a) U2E rate (b) E2E rate

(c) Log wage/experience profile (d) Cross-sectional mean job attributes

(e) Cross-sectional st.d. of job attributes (f) Correlation of job attributes

(g) Corr. of job and worker attributes (h) Descriptive (log) wage regression

Figure B.1: Model fit (with worker bargaining power)61



bargaining power no longer overstates the estimated returns to tenure to the extent that the
baseline model did (Figure B.1h). This is again a consequence of bargaining power shifting
weight away from workers’ outside options and towards match productivity in the wage
bargain, which affects entry wages (for which workers’ outside option is low) proportionately
more than the wages of longer-tenure workers (whose outside option is on average higher,
closer to match productivity).

B.2 Sensitivity of Parameter Estimates to Data Moments

In Table B.2 we present a measure of the local sensitivity of the parameter estimates to the
data moments (see Andrews, Gentzkow, and Shapiro, 2017). Specifically, we calculate and
report the matrix Λ, defined as follows. Let Θ denote the parameter vector and m(Θ) denote
the vector of model-based moments we are matching. Next, let G = E

[
∂m/∂Θ>

]
denote

the (expectation of the) Jacobian matrix of the moment function m(Θ). Let Ω denote the
covariance matrix of the data moments. Define Λ̃ =

(
G>G

)−1
G>. The Λ matrix is then the

matrix whose ij-th element is given by Λij =
√

Ωjj × Λ̃ij. The ij-th element of Λ can be
interpreted as the local approximation to the effect of a one standard deviation change in
moment j on parameter θi.

For the sake of brevity we omit from the table the five rows for the parameters [ζS, ζC , ζM , ζI , αT ]

and the five columns for the moments corresponding to the wage regression coefficients on
[years of education, xC0, xM0, xI0, constant] since there is a one-to-one mapping between
these parameters and moments.
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B.3 Comparing the unconditional and the conditional variance de-

compositions (Table 5)

Conditioning on broad levels of education reduces the share of variance explained by initial
skill bundles, as those are correlated with education. The basic reason is that education
explains a fair share of the variance in x0, and a smaller share of the overall variance in lnQ.
Therefore, once one conditions on education, the residual variation in x0 explains a smaller
share of the (conditional) variance of lnQ.

This can be expressed formally, taking up the notation from Section 7 in the paper (and
dropping indices to de-clutter the notation):

Varx0 [E(lnQ | x0)]

Var lnQ
>

Eed {Varx0 [E(lnQ | x0) | ed]}
Eed {Var [lnQ | ed]}

where our results in Section 7 say that the l.h.s. is about 0.65 while the r.h.s. is slightly
below 0.3. Now, the l.h.s. can be further decomposed as:

Varx0 [E(lnQ | x0)]

Var lnQ
=

Eed {Varx0 [E(lnQ | x0) | ed]}+ Vared {Ex0 [E(lnQ | x0) | ed]}
Eed {Var [lnQ | ed]}+ Vared {E [lnQ | ed]}

(21)
Applying our estimates to those decompositions of the numerator and denominator of the
fraction above, we find that:

Vared {E [lnQ | ed]} ' 0.507×Var lnQ

Vared {Ex0 [E(lnQ | x0) | ed]} ' 0.779×Varx0 [E(lnQ | x0)]
(22)

i.e. education explains much more of the variance of lnQ conditional on x0 than in the whole
sample. Substitution of (22) into (21) implies:

Varx0 [E(lnQ | x0)]

Var lnQ
'

Eed {Varx0 [E(lnQ | x0) | ed]} ×
(
1 + 0.779

1−0.779

)
Eed {Var [lnQ | ed]} ×

(
1 + 0.507

1−0.507

)
' Eed {Varx0 [E(lnQ | x0) | ed]}

Eed {Var [lnQ | ed]}
× 2.23

which is roughly the ratio found in Table 5.
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