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A New Pathology in the Simulation of Chaotic Dynamical
Systems on Digital Computers

Bruce M. Boghosian, Peter V. Coveney,* and Hongyan Wang

Systematic distortions are uncovered in the statistical properties of chaotic
dynamical systems when represented and simulated on digital computers
using standard IEEE floating-point numbers. This is done by studying a model
chaotic dynamical system with a single free parameter 𝜷, known as the
generalized Bernoulli map, many of whose exact properties are known. Much
of the structure of the dynamical system is lost in the floating-point
representation. For even integer values of the parameter, the long time
behaviour is completely wrong, subsuming the known anomalous behaviour
for 𝜷 = 2. For non-integer 𝜷, relative errors in observables can reach 14%. For
odd integer values of 𝜷, floating-point results are more accurate, but still
produce relative errors two orders of magnitude larger than those attributable
to roundoff. The analysis indicates that the pathology described, which cannot
be mitigated by increasing the precision of the floating point numbers, is a
representative example of a deeper problem in the computation of expectation
values for chaotic systems. The findings sound a warning about the uncritical
application of numerical methods in studies of the statistical properties of
chaotic dynamical systems, such as are routinely performed throughout
computational science, including turbulence and molecular dynamics.

Extreme sensitivity to initial conditions is a defining feature
of chaotic dynamical systems. Since the first usage of digi-
tal computers for computational science, it has been known
that loss of precision due to the discrete approximation of
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real numbers can dramatically alter the dy-
namics of chaotic systems after a short
amount of simulation time. This was ob-
served for the Fermi–Pasta–Ulam–Tsingou
problem in the 1950s,[1] for the Lorenz sys-
tem and the Hénon-Heiles problem in the
1960s,[2,3] for the Chirikov–Taylor map in
the 1970s,[4] and for too many systems to
enumerate thereafter. It has long been rec-
ognized that extreme sensitivity to initial
conditions precludes accuracy of orbits af-
ter too long a time, both in the computa-
tional and experimental domains. It is well
known in turbulence[5] and in molecular
dynamics.[6]

To overcome this problem and restore the
predictive power of the scientific method
to such systems, dynamicists retreated to
the position that, while accuracy for indi-
vidual orbits may not be possible, accuracy
in an averaged sense may still be possi-
ble, for some variables of interest in some
systems of interest. For example, if the de-
pendent variables of the Lorenz system are

denoted by (x, y, z), and if the initial conditions are uniformly dis-
tributed in a sphere of unit radius centered at the origin, it may
be true that one hundred different computer programs will yield
one hundred different answers for (x, y, z) at time 100, but there
is hope that the average value of x2 ismore robust, and that it may
be calculated and compared with empirical results. The averag-
ing here may be a time average, an ensemble average, or both.
The entire statistical theory of turbulence is built upon the

above supposition. For driven, incompressible Navier–Stokes
flow in the turbulent regime, for example, it may be impossible
to know the hydrodynamic velocity and the pressure at a partic-
ular point in space at a late time, but fluid dynamicists are con-
vinced that it ought to be possible to know, say, the average of
the fourth power of the x component of velocity divided by its
variance squared—a dimensionless number—to very high preci-
sion. Lacking any way to compute this number analytically, they
routinely resort to digital computer simulation for this purpose.
Because the quantity in question is an average over a long time or
a large ensemble, they are less concerned about the detrimental
effects of floating-point truncation on individual orbits. There is
a vaguely articulated but nonetheless widespread hope that any
such errors will not lead to systematic deviations in the statistical
quantities of interest. The methods of Direct Numerical Simu-
lation (DNS) and Large–Eddy Simulation (LES) for the Navier–
Stokes equations are predicated on this hope, and are routinely
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used to predict everything from the weather, to the drag past air-
planes and automobiles, to the flow of air through ducts and to
the flow of blood through our arteries.
Here, we demonstrate that, for at least one simple-but-

prototypical driven, dissipative dynamical system, namely the
generalized Bernoulli Map, the abovementioned hopes are
dashed. While it has long been known that individual orbits of
this map are chaotic in nature, and that even statistical averages
are problematic for the particular case of the system parameter
𝛽 = 2,[7–9] our present work demonstrates a more serious prob-
lem. Even assuming generic values of 𝛽, and even assuming
idealized statistical averages over infinite evolution time and infi-
nite ensemble size, the results of such averages will be inaccurate
by factors of order unity. Unlike other sources of error associated
with floating-point numbers, such as loss-of-significance errors,
noise in function evaluation, and underflow and overflow,[10]

the problem we describe in this work is due to the discrete and
finite nature of the floating-point numbers and the extremely
delicate structure of the attracting set of chaotic dynamical
systems. Though the root of this problem resides in the use of
finite-precision floating-point arithmetic, it cannot be mitigated
by increasing the precision of the floating-point representation.
Our analysis strongly suggests that the pathology we describe
will exhibit for mantissa and exponent fields of any finite length
whatsoever, and for floating-point numbers encoded in any radix
whatsoever. Indeed, there is every reason to anticipate that this
anomalous behaviour is generic in dissipative chaotic systems
of the kind encountered in turbulence and molecular dynamics,
and that it is entirely possible that many published results of
numerical simulation are substantially inaccurate for this reason.
Single-precision IEEE floating-point numbers consist of 32

bits, of the form

(𝜎, e1,… , e8, m1,… , m23)

where 𝜎 is the sign bit, the ej for j = 1,… , 8 are the exponent bits,
and themj for j = 1,… , 23 are themantissa bits. The nonzero real
number x thereby represented is

x = (−1)𝜎 (1.m1,… , m23)2 2
(e1 ,…,e8)2−127

where the subscript 2 indicates that the enclosed bits are to be in-
terpreted as base-2 numbers. For 𝜎 = 0, as the integer (e1,… , e8)2
ranges from 1 to 254,[11] the format is capable of representing
numbers in [1,2) times exponentials ranging between 2−126 and
2+127. In each interval [2j, 2j+1), there are 223 equally spaced single-
precision floating point numbers, distinguished by their man-
tissa bits. This means that there are as many floating-point num-
bers in [1,2) as there are in [ 1

2
, 1), as there are in [ 1

4
, 1
2
), as there

are in [ 1
8
, 1
4
), etc. It is this discrete and uneven distribution of

floating-point numbers, superposed upon the delicate distribu-
tion of chaotic attracting sets, that causes the pathology studied
in this work. Double-precision IEEE floating-point numbers are
constructed in similar fashion, but using 52 mantissa bits and 11
exponent bits.
A typical problem in the numerical simulation of chaotic dy-

namical systems is the estimation of expectation values of observ-
ables that depend on the state of the system in a long-time aver-
age, an ensemble average, or both. The effects of the pathologywe

describe fall into one of three categories, depending on a model
parameter: i) observable expectation values that are nearly cor-
rect, ii) observable expectation values that are obviously wrong,
or, iii) last and most insidiously, observable expectation values
that are wrong, but not obviously so. In the last situation, we will
demonstrate relative errors of order unity, even though the results
might superficially seem accurate.
The model dynamical system that we examine to reveal this

new pathology is the generalized Bernoulli map, sometimes called
the beta shift.[12] Mathematically, this is a dynamical systemwhose
state space is in correspondence with real numbers in the inter-
val [0,1). The initial condition is denoted by x0. The state of the
system at time j + 1, denoted by xj+1, is given by

xj+1 = f𝛽 (xj) := 𝛽xj mod 1

For the original Bernoulli map, 𝛽 was taken to be two, but in this
study we examine many different values of 𝛽 > 1. We chose this
systembecause it has a dense and complex attracting set, it is sim-
ple enough to examine analytically, an exact expression is known
for its invariant measure, and it (or straightforward variants or
generalizations of it) is topologically conjugate to many dynam-
ical systems of interest to engineers, biologists, chemists, physi-
cists, andmathematicians. Owing to these properties, we are able
to calculate exact expectation values of observables on this set us-
ing term-by-term integration over the known invariant measure.
We refer to the exact value of an observableO(x) calculated in this
way as Oex.
We compare Oex with the result that would be obtained by an

ideal floating-point simulation, in which the initial conditions
comprise an infinite ensemble randomly sampled from the in-
terval [0,1), each of which is allowed to run for an infinite length
of time. To obtain such an idealized result in a finite amount of
time using single-precision floating-point numbers, we must

1. enumerate all of the limit cycles of the dynamics,
2. identify the basins of attraction of each of those limit cycles in

the set of all floating-point numbers in [0,1),
3. compute the probability that the random number generator

will select an initial condition in the basin of attraction of each
limit cycle, and

4. average the observable over each of the limit cycles, weighted
by their respective probabilities.

In order to do (2) correctly, one has to pay careful attention to
the non-uniform distribution of the floating-point numbers. The
223 floating point numbers in [2−j−1, 2−j) must each be assigned
a weight 2−j−24 so that the total probability of selecting an initial
condition in this interval is 223 × 2−j−24 = 2−j−1 = 2−j − 2−j−1, the
length of the interval. This may involve combining probabilities
of very differentmagnitudes, and so it is computed by first sorting
the list of contributing probabilities and then adding them from
smallest to largest, using double-precision arithmetic, to avoid
loss of significance.
We can work this out using single-precision floating-point

numbers by enumerating all of the asymptotic limit cycles of the
dynamics, as well as the fraction of initial states that lie in the
basins of attraction of those limit cycles. By computing averages
over the limit cycles, and then weighting those averages by the
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Figure 1. Invariant measures of the generalized Bernoulli map f𝛽 for 𝛽 = 6
5
, 5

4
, 4

3
, 3

2
. These are normalized so that h𝛽 (1) = 1 (which corresponds to

C = 1 in Equation (1)). They are not as smooth as these graphs make them appear.

fractional sizes of the corresponding basins of attraction in [0,1),
we obtain the result that one would obtain if one could perform
an ideal floating-point simulation of the system, for an infinite
period of time and using an infinite number of ensemble ele-
ments. We are able to compute this result, which is the best that
one can hope for from any floating-point calculation, only be-
cause there are just about a billion[13] single-precision floating-
point numbers in [0,1). The structure of the limit cycles thus
found permits us to infer how the result would behave for
floating-point numbers of arbitrarily high accuracy, and we
call this result Ofp. The relative error between Oex and Ofp is at-
tributable to the newfound pathology.
If 𝛽 is a positive integer greater than or equal to two, it is easy

to understand the effect of the generalized Bernoulli map on the
base-𝛽 representation of the state. The action of the map sim-
ply eliminates the first digit of xj, and shifts the remaining digits
one place to the left to obtain xj+1. This makes clear that all ratio-
nal numbers lie on periodic or eventually periodic orbits, since
their base-𝛽 digit representations will either repeat or eventually
repeat. It likewise makes clear that all irrational numbers lie on
chaotic orbits. The state space therefore consists of a dense set
of unstable periodic orbits. This set of orbits, and similar sets
in more complicated dynamical systems, have been termed “the
skeleton of chaos”[14] because a knowledge of these orbits, includ-
ing observable averages over them, is sufficient to calculate exact
observable averages over the system’s invariant measure using
the dynamical zeta function formalism.[15] Unfortunately, as we
shall demonstrate, the exquisite complexity of these dynamics is
badly damaged by casting it into floating-point arithmetic.
In spite of the complexity of the generalized Bernoulli map,

much is known about it. For any integer value of 𝛽 ≥ 2, the

Perron–Frobenius equation (see, e.g., ref. [16]) can be used to
demonstrate that the invariant measure of the dynamics is uni-
form on [0,1). For non-integer 𝛽, the invariant measure is much
more complicated, but an exact expression for it is given by the
following series due to Hofbauer[17]

h𝛽 (x) := C
∞∑
j=0

𝛽−j 𝜃(1j − x) (1)

where xj := f j
𝛽
(x) (so that, in particular, 1j denotes f

j
𝛽
(1)), 𝜃 is the

Heaviside function,[18] andC is a normalization constant. Assum-
ing that the orbit {1j}

∞
j=0 is ergodic, the above series makes man-

ifest that the invariant measure has discontinuities at a dense
set of points in [0,1). Examples of this invariant measure are
shown in Figure 1 for three non-integer values of 𝛽, though the
reader should be cautioned that these graphs are not as smooth
as they appear.
In this study, we use observables of the formO(x) = xq for q =

1,… , 100. From Equation (1), it is evident that

Oex =
∫ 1
0 dx h𝛽 (x)x

q

∫ 1
0 dx h𝛽 (x)

=
∑∞

j=0 𝛽
−j ∫ 1

0 dx 𝜃(1j − x)xq

∑∞
j=0 𝛽

−j ∫ 1
0 dx 𝜃(1j − x)

=
∑∞

j=0 𝛽
−j ∫

1j
0 dx xq

∑∞
j=0 𝛽

−j ∫
1j
0 dx

=
(

1
q + 1

)∑∞
j=0 𝛽

−j(1j)
q+1

∑∞
j=0 𝛽

−j(1j)

Because 1j ∈ [0, 1), the error incurred by truncating the above
sums can be bounded by a geometric series, allowing us to com-
pute the result to desired accuracy.
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The damage that floating-point arithmetic does to these dy-
namics is most easily appreciated for the case 𝛽 = 2. Because
computer arithmetic is done in base two, and because the binary
digits shift one place to the left with each iteration, one bit of pre-
cision is lost with each application of the map. Since there are
23 bits of mantissa for single-precision numbers, the result will
be zero after 23 iterations. The use of double precision with 52
bits of mantissa just delays the final result. Either way, the invari-
ant measure will be a Kronecker delta at x = 0. If it were possi-
ble to let the number of bits of mantissa approach infinity, that
Kronecker delta would effectively approach a delta distribution
at x = 0. The exact time-asymptotic result for the floating-point
dynamics would never be a uniformmeasure, the correct answer
for the real-valued dynamics. It is straightforward to demonstrate
that exactly the same thing happens for any even integer value of
𝛽. Lest the above-described pathological behavior be dismissed as
a consequence of the fact that 𝛽 is amultiple of two and computer
arithmetic is carried out in base two, it may be noted that a com-
puter based on ternary arithmetic would have the same problem
if 𝛽 were any multiple of three, and so on.
It is worthwhile to pause and ask why the spectrum of peri-

odic orbits is damaged to the extent described above. The real
Bernoulli map with 𝛽 = 2, for example, has a periodic orbit of
period two, wherein 1

3
maps to 2

3
, which maps back to 1

3
. Un-

fortunately, the binary expansion of 1
3
is 0.010101…, and that

of 2
3
is 0.101010…, neither of which terminate. Therefore, no

matter how large the number of bits of mantissa, these quanti-
ties are not exactly representable as floating-point numbers, and
neither is the periodic orbit that they comprise. Beginning close
to a point on this periodic orbit is insufficient because all these
orbits are demonstrably unstable. Any roundoff error in the ini-
tial condition will inevitably grow. For 𝛽 = 2, this eliminates all
orbits except that consisting of the single point {0}. Hence, the
time-asymptotic average of an observable function O(x) will be
Ofp = O(0), instead of the exact value, which is Oex = ∫ 1

0 dx O(x)
because the invariant measure is uniform.
The next line of inquiry that suggests itself is the examination

of odd integer values of 𝛽. By doing a thorough examination of the
periodic orbit spectrum of these dynamical systems for single-
precision arithmetic, we have managed to classify all the periodic
orbits of such systems, for any odd integer 𝛽. The collection of
sets  = ∪∞

i=2{S
+
i , S

−
i }, where S±

i := {(2k + 1)2i ± 1}∞k=0, partition
the set of odd integers greater than or equal to three, and thereby
define an equivalence relation∼ on the odd numbers greater than
or equal to three. It is possible to show that equivalent odd val-
ues of 𝛽 have the same periodic orbit spectrum. For odd values
of 𝛽 from 3 to 17, Table 1 provides these details. It is seen, for
example, that 3 ∼ 11 (both in equivalence class S−

2 ), and there-
fore beta shifts with 𝛽 = 3 and 𝛽 = 11 have the same periodic
orbit spectrum. Likewise 5 ∼ 13 (both in equivalence class S+

2 ),
and therefore beta shifts with 𝛽 = 5 and 𝛽 = 13 have the same
periodic orbit spectrum.
Table 1 makes clear that the periodic orbit spectrum for single-

precision floating-point numbers obtained for odd integer 𝛽 is
very different from that of the real continuum dynamical system.
Only orbits consisting of dyadic fractions[19] can be represented
precisely, and these have periods that are restricted to powers of
two. The density of orbits as a function of period thus decays ex-

Table 1.Orbit statistics for odd values of 𝛽 from 3 to 17, including the class
S±i ∈  to which it belongs, the value of k within that set, the number of
orbits of various periods, the length Tmax of the longest orbit, and the total
number of orbits Norb.

Equivalence class Periods
Orbit

characteristics

𝛽 S±i k 20 21 22 23 ⋯ Tmax Norb

3 S−2 0 2 3 2 2 2 222 47

5 S+2 0 4 2 2 2 2 222 48

7 S−3 0 2 7 4 4 4 221 89

9 S+3 0 8 4 4 4 4 221 92

11 S−2 1 2 3 2 2 2 222 47

13 S+2 1 4 2 2 2 2 222 48

15 S−4 0 2 15 8 8 8 220 169

17 S+4 0 16 8 8 8 8 220 176

ponentially, indicating a negative topological entropy, but the ac-
tual topological entropy is easily shown to be ln 𝛽 > 0. Because
knowledge of periodic orbits and their properties is sufficient
to work out time-asymptotic expectation values of observables,
one might be concerned that this badly damaged orbit spectrum
would lead to correspondingly badly damaged observables.
The exact invariant measure for odd integer 𝛽 should also

be uniform, so that for the observable O(x) = xq the exact ex-
pectation value is Oex =

1
q+1

. Figure 2 plots the relative error,

(Oex −Ofp)∕Oex versus q, where 1 ≤ q ≤ 100, for three different
odd integer values of 𝛽. While the magnitude of this relative er-
ror may be regarded as small, it is nonetheless about two orders
of magnitude larger than machine precision, and clearly trends
upward with q.
In the more general case of fractional 𝛽, the invariant measure

has the interesting structure shown in Figure 1. Floating-point
roundoff properties figure necessarily into the calculation of the
orbits, and floating-point orbit periods are no longer restricted
to powers of two. The floating-point orbits themselves are fewer
and further between, and orbit periods tend to be much smaller
than they are for (odd) integer 𝛽. In the case 𝛽 = 3

2
, for exam-

ple, while there are exact prime periodic orbits for all periods
≥ 3, there are a total of only ten floating-point periodic orbits.
Beyond the trivial period-one orbit {0}, the next one has period
186, followed by periods 243, 270, 404, 540, 960, 1800, 3479, and
11050, the last of these being the longest orbit present. It is in
such cases that the most serious problems are encountered – se-
rious in that the answers obtained are not obviously wrong, but
wrong nonetheless. For observable xq, Figure 3 plots the relative
error, (Oex −Ofp)∕Oex versus q, where 1 ≤ q ≤ 100, for three dif-
ferent fractional values of 𝛽. It is seen that the error incurred can
be substantial indeed; for 1 ≤ q ≤ 100, it can reach approximately
2.5% for 𝛽 = 5

4
, 14% for 𝛽 = 4

3
, and 7.5% for 𝛽 = 3

2
. These errors

are far greater than those encountered for odd integer 𝛽.
Thus far, we have restricted attention to observables of the

form xq. To see that similar problems will be encountered for
more general functions of x, we can examine the invariant mea-
sure itself. The theoretical invariant measure was presented
in Figure 1, but we can also compute a “numerical invariant
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Figure 2. Relative error of the floating-point calculation of the expectation value of xq for the generalized Bernoulli map f𝛽 for the odd values 𝛽 = 3, 5, 7,
simulating the average we would obtain if we could run over both an infinite length of time and an infinite ensemble size.

Figure 3. Relative error of the floating-point calculation of the expectation value of xq for the generalized Bernoulli map f𝛽 for 𝛽 = 6
5
, 5

4
, 4

3
, 3

2
, simulating

the average we would obtain if we could run over both an infinite length of time and an infinite ensemble size.

measure.” This is done by taking the collection of all points
on periodic orbits, weighting each by the fractional size of the
basin of attraction of its orbit, and constructing a weighted his-
togram accordingly. For even integer 𝛽, this would result in a delta
distribution at x = 0. The histograms for 𝛽 = 3, 5, 7, 9, and for
𝛽 = 3

2
, 4
3
, 5
4
, 6
5
are presented in Figure 4, along with the invariant

measures of the corresponding continuum systems, calculated
using Equation (1). It is seen that while the invariant measures
coincide, at least on the scale illustrated in the figure, for odd inte-
ger 𝛽, they differ by order unity for non-integer 𝛽. This egregious
discrepancy in the invariant measure is the origin of the order
unity differences observed between the theoretical and numer-
ical expectation values of xq. The above argument makes mani-
fest that similar differences would be observed for the expectation
value of almost any function of x.
The suggestion that the error is due to short maximum or-

bit periods is confirmed by Figure 5, which plots the maximum
fractional error observed for 1 ≤ q ≤ 100 versus the period of the
longest orbit present in the floating-point dynamics. For the val-
ues of 𝛽 considered, the smallest errors observed were those for
𝛽 = 6

5
for which the longest orbit period is 36,897. The largest

were those for 𝛽 = 4
3
for which the longest orbit period is only

3,567. The downward trend is clear from the figure. It should be
noted that all the maximum periods observed for fractional 𝛽 are

several orders of magnitude smaller than those for (odd) integer
𝛽, as recorded in Table 1. This is consistent with the observed
discrepancies for fractional 𝛽 being much higher than those for
(odd) integer 𝛽. For that matter, it is also consistent with the ob-
served discrepancies for even integer 𝛽 being highest of all, since
those cases have only one orbit of length one, namely {0}.
The grossly truncated nature of the periodic orbit spectrum

and the shortness of the orbits for fractional beta strongly sug-
gest that these problems will not be mitigated by increasing the
mantissa length. Nomatter how long themantissa, floating-point
numbers will always be dyadic rational numbers. The periodic
orbit spectrum will always be limited to orbits all of whose states
are dyadic rationals. The topological entropy will still be negative,
rather than positive. The period of the kth floating-point periodic
orbit, ordered by period, is likely to be far smaller than the period
of that of the continuum system. In short, simply throwing more
bits of precision at this problem is unlikely to make it go away.
Efforts to justify the validity of using floating-point arithmetic

for chaotic dynamical systems often appeal to the Shadowing
Lemma.[20] For a discrete hyperbolic map xn+1 = f (xn), this states
that for any 𝛿 > 0, however small, there exists an 𝜖 > 0 such that a
sequence of computer-generated points {yn}

∞
n=0 for which yn+1 is

within an epsilon ball of f (yn) will itself lie within a 𝛿 neighbour-
hood of some true orbit. If 𝜖 is taken to bemachine precision, this
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Figure 4. Discrepancy between the exact (blue) and numerical (histogram) invariant measures for the generalized Bernoulli map f𝛽 for 𝛽 = 3, 5, 7, 9

and for 𝛽 = 3
2
, 4
3
, 5
4
, 6
5
, simulating the average we would obtain if we could run over both an infinite length of time and an infinite ensemble size. While

agreement is good for odd integer 𝛽 (though still greater than roundoff), it is seen to be very poor for non-integer 𝛽.

suggests that a computer-generated orbit will always be close to
an actual orbit. Lest one derive undue comfort from this observa-
tion, however, it is important to note that the Shadowing Lemma
provides no guarantee that the statistics of the subset of contin-
uum orbits that are shadowed by computer-generated orbits will
be at all similar to those of the entire collection of true orbits of
the system.
As an illustration, consider the example of 𝛽 = 2, where the

most egregious errors in floating point arithmetic arise. For 𝛽 =
2, the only roundoff error that takes place is when we represent

the initial conditions. After that, there is no roundoff error at
all. Suppose that we could somehow sample the initial condition
x0 from the true invariant measure on [0,1). The computer will
round x0 to a dyadic fraction y0, and dyadic fractions all even-
tually reach the orbit {0} under the action of the map. The se-
quence reported by the computer, {yn}, is an actual orbit; hence it
is shadowed by itself. It neither shadows nor is shadowed by the
orbit {xn}. The sequence {yn} will not remain in any reasonable
neighborhood of the sequence {xn} and vice versa.

[21] In the end,
the sequence {xn} will sample the invariant measure precisely
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Figure 5. Maximum relative error of the floating-point calculation of the expectation value of xq for the generalized Bernoulli map for 1 ≤ q ≤ 100, for
various values of 𝛽, versus the period of the longest orbit present in the floating-point dynamics.

for almost all initial conditions x0, but the computable sequence
{yn} will do nothing of the sort. There is nothing here that is in
contradiction with the Shadowing Lemma; the lemma just has
nothing to say about the origins of the floating point pathologies
we have described.
In conclusion, we have demonstrated a serious systematic er-

ror in the numerical calculation of the statistical properties of
a very representative chaotic nonlinear dynamical system. This
error is distinct from previously studied numerical errors re-
lated to rounding and loss of precision, in that it would persist
for any finite-precision mantissa, however large. It arises from
the discreteness of floating-point numbers, their non-uniform
distribution along the real axis, and their inability to represent
points on periodic orbits of the dynamics in a precise way, giv-
ing rise to a dramatically truncated periodic orbit spectrum. It
cannot be mitigated by the use of fixed-point arithmetic or other
recently proposed adjustments to the floating-point system of
representation[22,23] owing to the discrete nature of any finite-state
digital computer.
It is true that many chaotic dynamical systems of interest

in the natural sciences are far more complex than the gener-
alized Bernoulli map presented here. The chaos of turbulent
fluid flow, for example, is subtly correlated in ways that have
no analogue in the model considered in this paper. We do not
believe, however, that practitioners should draw any comfort
from the fact that their models are more complex than this
one. Rather, we would suggest that if so simple a system ex-
hibits such egregious pathologies, a more complex system will
probably exhibit even more devilish ones. Hence we see no rea-
son to doubt that substantial errors of this sort will be present
in numerical simulations of chaotic dynamical systems of
widespread interest in science and engineering, including com-
puter simulations of thermostatted molecular dynamics,[6] tur-
bulent fluid dynamics, and reaction–diffusion dynamics, about

which until now computational scientists have been completely
unaware.
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