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The long-wave potential-vorticity dynamics
of coastal fronts
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This paper studies the propagation of free, long waves on a potential vorticity front in
the presence of a vertical coast, using a 1%-layer, quasi-geostrophic model with piecewise-
constant potential vorticity. The coastal boundary induces flow through image vorticity
and a Kelvin wave, either of which can reinforce or oppose the Rossby wave dynamics at
the front. The behaviour of the front depends strongly on the relative strengths of these
three mechanisms, which are explicit in our model. The richest behaviour, which includes
kink solitons (under-compressive shocks) and compound-wave structures, occurs in the
regime where vortical effects are dominant. The evolution of the front is described by
a fully nonlinear finite-amplitude equation including first-order dispersive effects, which
is related to the modified KdV equation. The different behaviours are classified using
the canonical example of the Riemann problem, which we analyse using El’s technique
of ‘dispersive shock-fitting’. Contour-dynamic simulations show that the dispersive long-
wave theory captures the behaviour of the full quasi-geostrophic system to a high degree

of accuracy.
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1. Introduction

Coastal or boundary currents are an integral part of global ocean circulation. For
example, currents may respond to external forcing or intrinsic instability by expelling
vortex filaments or larger eddies into the ocean, with implications for the mixing of coastal
and ocean waters; and currents driven by outflows are important for the transport of
fresh water, pollutants and land-derived nutrients. Theoretical studies of coastal currents
often employ idealised models in which the current and the upper ocean have uniform
potential vorticity (PV), a simplification that allows the dynamics to be understood by
following the evolution of the PV front separating the ocean from the current. Stern
& Pratt (1985) use this model to study the nonlinear evolution of a coastal front in a
non-rotating environment, Pratt & Stern (1986) develop a general model for a PV front
in the quasi-geostrophic (QG) limit, and Grimshaw & Yi (1990) discuss long waves on
a PV front, including the effects of bottom topography. There is also much interest in
the behaviour of ‘free’ fronts, i.e. those that are far from the coast, which can be used to
model Western boundary currents such as the Gulf Stream or the Kuroshio Extension
(Pratt 1988; Cushman-Roisin et al. 1993; Nycander et al. 1993; Tracey et al. 2012).

The present work is concerned with unforced long waves on a coastal front. We employ
a 1%-1ayer, quasi-geostrophic model introduced by Pratt & Stern (1986), where the coast
is a vertical boundary and the front separates two regions of constant PV. Although the
model is developed in a general form by Pratt & Stern (1986), their specific calculations
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are mostly concerned with free fronts, in which the only wave is the Rossby wave. Rossby
waves are driven by vortex induction, which is a local effect acting at the front. Pratt
& Stern (1986) show that long waves on a free front are stationary at leading order,
and at next order the curvature of the front obeys the modified KdV equation (Pratt
1988; Nycander et al. 1993). The picture is dramatically different in the presence of a
coastal boundary, and the purpose of this work is to provide an initial exploration of
the regime in which the front is sufficiently close to the boundary to be influenced by
two additional effects; namely Kelvin wave-driven flow, and flow due to the image of
the vortical current in the boundary. The Kelvin-wave flow drives fluid to the right (in
the Northern hemisphere), while the direction of the image effect depends on the sign
of the PV anomaly in the current. The combination of the two coastal effects and the
Rossby wave leads to a rich set of dynamics, with the behaviour of the front depending
strongly on the relative strengths of the three mechanisms. In the present model this
is made explicit by introducing the non-dimensional Rossby radius, denoted a, as a key
parameter (following Johnson et al. (2017)). When a < 1 the dynamics are dominated by
the Kelvin-wave flow, and perturbations to the front travel faster when they are closer
to the coast. However when a > 1 and the dynamics are dominated by vorticity, there is
a critical off-shore distance at which perturbations travel fastest, the long-wave speed is
non-monotonic, and compound-wave structures are possible.

When first-order dispersive effects are included in the model, the governing equation
belongs to a class of ‘weakly-dispersive’ equations and is somewhat similar to the modified
KdV. The technique of ‘dispersive shock-fitting’ developed by El (2005) can be used to
analyse the initial-value problem where the initial condition consists of a step-change
in frontal displacement (the Riemann problem), and to describe the propagation of
dispersive shock waves (DSWs) on the front. DSWs are expanding, modulated wave-
trains that connect two slowly-varying far-field states, and are a generic structure in
conservation laws modified by weak dispersion only (as opposed to systems modified
by dispersion and dissipation). El et al. (2006, 2007) analyse DSWs in the context of
gravity waves (see also Esler & Pearce (2011) for a two-layer example). DSWs that arise
from more general initial conditions may also be described using El’s technique, following
Kamchatnov (2019).

This remainder of this work is organised as follows: §2 develops the mathematical model
and the governing equations in the long-wave limit; §§3, 4 discuss the leading-order and
first-order long-wave equations respectively, including the application of El’s technique
in §4; §5 presents numerical results to both the long-wave and full quasi-geostrophic
equations, and considers how El’s technique can be applied to compound-wave structures,
and §6 discusses applications of the present model, and compares results with previous
studies.

2. Mathematical formulation

Consider flow in the half-space y > 0, with a vertical, impermeable wall at y = 0. The
flow is described by a Cartesian co-ordinate system Oxzyz, which is fixed in a frame of
reference that rotates at speed f/2 > 0 about the vertical axis Oz. The flow consists of
an upper layer of density pp, lying below a rigid top at z = 0 and above an inactive,
infinitely-deep layer of density po, with p; < po and the difference sufficiently small that
the Boussinesq approximation applies. The perturbation of the interface about the mean
depth H is denoted h(x,y,t). A schematic of this set-up is shown in figure 1. If h < H,
then the flow can be described by the quasi-geostrophic equation for the conservation of
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Figure 1: A coastal current occupies the region 0 < y < Y (x,t). The current has uniform
potential vorticity, ¢ = II, and the ambient upper layer has uniform potential vorticity
q = 0. Both the current and the upper layer lie above a deep, inactive, denser layer.

potential vorticity:

D (., 1 )\_
Dt<v 1/;*?%{ )0. (2.1)

Here, Lr = +/(¢’H)/f is the Rossby radius of deformation for the upper layer, ¢’ is
the reduced gravity, and the streamfunction ¢ = ¢g'h/f is related to the velocity by
(u,v) = (—1y,"¥,) (subscripts denote partial derivatives). The conserved quantity in
(2.1) is g, the quasi-geostrophic PV (technically ¢ is the perturbation potential vorticity
due to the departure from the mean value f/H, multiplied by H, but as is commonplace
we will refer to ¢ as the PV directly). In the present work ¢ is taken to be piecewise
constant, with ¢ = Iy in the coastal current and ¢ = 0 in the ambient fluid. The front
that separates the coastal current from the ambient is a material contour I'(t), knowledge
of which is sufficient to determine the entire flow-field at that time.
The no-flux boundary condition at y = 0 requires that

w(xa07t> = QO (22@)
is constant, while in the far-field the fluid is stationary:
1 —0as y — oo. (2.20)

Thus the net flux in the upper layer is Qo H. If Q¢ > 0, the net flux is rightwards (facing
seawards) and the interface is deeper at the coast than at infinity. This is usually the case
when the coastal current is driven by a river outflow (Pimenta et al. 2011; Horner-Devine
et al. 2015; Johnson et al. 2017). Although in the remainder of this work we assume that
Qo > 0, the alternative setting with a net leftward flux and a shallower interface at the
coast may be obtained through the transformation

Y — =, x—-—x, I — —II (2.3)

Thus the results derived below apply directly to the study of, for example, a Western
Boundary current, in which the flow is predominantly to the left. The third possibility
with Qo = 0 is not considered here but is discussed briefly in Pratt & Stern (1986). The
boundary condition (2.2a) with Q¢ > 0 also represents the signature of the Kelvin wave
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in the QG limit. When the Rossby number is finite, the Kelvin wave propagates along
the coast ahead of any frontal waves and sets the boundary condition for the vortical
flow behind it (Jamshidi & Johnson 2019). In the QG limit, the Kelvin wave travels at
effectively infinite speed, setting the boundary condition (2.2a) at t = 0T and for all time
(Hermann et al. 1989). Thus the role of the coastal Kelvin wave is to set up a steady
geostrophic background flow that interacts with vortical effects. Below, for brevity, we
will often refer to this simply as the ‘Kelvin-wave flow’.

2.1. Scaling of horizontal lengths

As pictured in figure 1, the problem of a coastal PV front has four relevant horizontal
length-scales. These are: Ly, the Rossby radius of deformation; Y., the mean distance
of the PV front from the coast; A, the typical wavelength of a frontal meander; and
Ly = (Qo/|IIo|)*/?, which is the so-called vortical length-scale. The latter of these
is the appropriate scaling for a current of flux @y and relative vorticity |IIp| in two-
dimensional flow (Johnson & McDonald 2006). The quasi-geostrophic model used for
numerical simulations below assumes that all four lengths are of order unity, while the
long-wave limit in which the analysis is performed formally requires

A> (Yoo, Ly, Ly), (2.4)

with Y., Ly and L+, all of the same order. By contrast, the free-front problem considered
by Pratt (1988) and Nycander et al. (1993) assumes that

Yoo > A > (L, Ly). (2.5)

Thus the present work explores a different asymptotic regime to that considered by Pratt
(1988) and Nycander et al. (1993), one in which Y, ~ Ly and boundary effects may be
important. Some examples of PV fronts in the real oceans that may fall into this regime
include the flow down Barrow Canyon (Pickart et al. 2005), the Kuroshio south of Japan
(Tsujino et al. 2006), and the Western Arctic shelfbreak jet (Spall et al. 2008). Further
discussion of the oceanographic context for this work is given in §6.

We follow Johnson et al. (2017) and non-dimensionalise horizontal lengths on L. This
introduces the non-dimensional Rossby radius a = Lg /L., which measures the relative
strengths of the Kelvin-wave flow and image vorticity and plays an important role in
what follows. When a < 1 the flow is Kelvin-wave dominated, while a > 1 corresponds
to vorticity-dominated flow. Further physical interpretation of @ is given in the context
of a coastal outflow by Johnson et al. (2017). The parameter (g, which represents the
net flux in the upper layer, can be scaled out by replacing ¥ with Q. Speeds are
non-dimensionalised by Qo/Ly, and time ¢ on the advective scale L2/Qq. With these
choices, the natural scaling for Ty is Qo/L2 = |II| so that the non-dimensional PV in
the coastal current is ¢ = sgn (IIp), which we will denote II. We therefore categorise the
coastal current according to the sign of its PV anomaly (PVa), with IT = 1 (positive PVa)
meaning that the coastal current is of higher PV than the ambient and IT = —1 (negative
PVa) meaning that the coastal current has lower PV. In currents with positive PVa, the
image effect reinforces the Kelvin-wave driven flow, while in currents with negative PVa
the two effects oppose each other. In the analysis below we assume that I'(¢) does not
overturn, and so we may introduce y = Y (z,t) as the location of the PV front. With
these scalings and this assumption, the governing equation is:

0 y > Y(x,t),

I 0<y<Y(at). (2:6)

V2 —pfa® = {
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Thus the model contains two free parameters: the non-dimensional Rossby radius a,
which is assumed to be O(1), and IT = 41 which indicates the sign of the PV gradient.
The system (2.6) is closed by the kinematic boundary condition,

D
—(y—-Y)=0 2.7
S y-v)=0, (27a)
or, using the fact that ¢ is a streamfunction,
Yy = [(z,Y(z,1))],, (2.70)

so that all of the dynamics can be described by a scalar equation (2.7b) for Y (z,t).

2.2. The long-wave limit

The fully nonlinear, free-boundary problem (2.1) can be solved numerically using the
method of contour dynamics (Dritschel 1988). This is done below in §5.4, where DSWs
and compound-wave structures are shown to occur in simulations where the initial frontal
displacement Y (x,0) is a smoothed step (although DSWs can arise from a wide variety
of initial conditions — see figure 5 of Pratt (1988)). In order to analyse these structures,
we will now assume that the flow is slowly-varying in the along-shore direction. That is,
we formally re-scale x and t by ¢ = A~ where A > 1 is a typical wavelength for the
front. As we will see later, the long-wave theory accurately predicts the behaviour of the
full system even for the most extreme case of the Riemann problem, where the initial
condition is discontinuous. We expand 1) as a power-series in €:

O(X,y,T) = 4° + ' + O(e*), (2.8)
where X = ex and T = et are the long-wave variables. The field equation for the leading-
order term ¥° is

0 y>Y(X,T)
0 2y,/,0 ) )
(1 -
v~ (1/a)v {H 0<y<Y(X,T),

which is to be solved subject to the boundary conditions (2.2) and the requirement that
1 and u are continuous at the front y = Y. The solution is

(2.9)

(14 a?IT)e /e — ajne(Y*y)/a _ ajne*(yﬂ’)/a y>Y,
7/10(Xa y, 1) = 2 a2 2 a2
—a?IT + (14 a?M)e v/ + ?He(y_y)/“ - 7He_(y+y)/“ 0<y<Y.
(2.10)
The ratio y/a that appears in (2.10) and elsewhere is, in dimensional terms, y*/ Ly where
y* is the dimensional co-ordinate. Thus as usual the Rossby radius Ly is the intrinsic
decay scale in the problem. At Y(X,T) we have

2 2
VXY, T) = Qu(X,T) = — 1T + (1 + a2M)e Y/ — L [1e-2Y/a, 2.11
2 2

where Q.(X,T) gives the net transport of ocean fluid at any station X, and thus 1 — Q.
is the transport in the coastal current. Note that (2.7b) is written in flux form so that,
in the language of scalar conservation laws, —(@Q). is the flux function for the long-wave
equation.

The evolution of the front is governed by the kinematic boundary condition (2.7) which,
using (2.11), is:

1
Yr + K + aH> e Yo _qlle™2Y/a| Yy = 0. (2.12)
a
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Equation (2.12) is an unforced nonlinear wave equation that governs the leading-order
behaviour of long waves on a coastal PV front. By analogy with open-channel flow, we call
this the ‘hydraulic limit’ (Pratt & Whitehead 2008). In general, smooth initial conditions
may develop shocks at finite time, so that the long-wave assumption no longer holds. This
is resolved by introducing a next-order, dispersive correction to the field equation (2.9).
The hydraulic limit is discussed further in §3.

2.3. Dispersive effects

At the next order in €, the field equation is

gy — (L)@t = —¢kx. (2.13)

The solution to (2.13) that satisfies the far-field condition (2.2b) and the boundary
condition ¥!(X,0,T) = 0 may be written

1 (% [QeeY/a] X + A) e*y/a y> Yv?
w (XJJ?T) = a3y ~Y/a y/a —y/a i
=[] o (e +e7v/%) + Bsinh (y/a)  0<y<Y.

(2.14)
where A(X,T) and B(X,T) are determined by continuity of ¢! and u! at y =Y to be

2 4
B(X, T) — a/i [QeeY/a:| e—QY/a + iH 1 + g + e—QY/a |:e—Y/a:|
2 XX 4 a XX
- %He_y/a (YYZ —a(a+Y)Yxx), (2.15)
AX,T) = %H (aY Y x cosh (Y/a) + (YYZ — a®Yx x) sinh (Y/a)) . (2.16)

Thus the dispersive correction to (2.11) is (c.f. §2.2.2 in Johnson et al. (2017)):

PH(X YT)—_—“SHY a—QHYY ﬁJt[Y _AyyE)e /e 2.17
L) == Xx+2 Xx+4 XX 5 x]e , o (217)

and the kinematic boundary condition governing the evolution of the PV front is

a3
Y+ [(1/a+all)exp (—Y/a) — all exp (—2Y/a)] Y, + ZHYIW

a a? a? v
— 11 ((Y - 5) (Y:E)g + ZYa:a:z + ?Yya:a:m - QGYYzYzw> 6_2 /e = 0, (218)

where for convenience we have returned to the original variables x and t. The study
of the third-order, dispersive, nonlinear wave equation (2.18) is the main focus of this
paper. The fact that € does not appear explicitly in these equations is typical (Johnson &
Clarke 1999), although formally (2.18) requires that variations in z are slow. In practice,
however, we find that the dispersive long-wave equation captures much of the behaviour
of the full problem (2.1). This is shown below in §5.4.

Multiplying (2.18) through by Y, one obtains the following conservation law, which
will be necessary later for the treatment of the Riemann problem:

a1l

V2 a*Il —2Y/a 2 -Y/a 2
- + T(2Y—l—a)e — Y +a)(1+a“l)e + |- (Y; —2YY.s)
t T

I
+% (AY?Y? + a* (Y7 — 2YY,,) + 2aY (Y — 2YY,,)) e—QY/a] =0. (2.19)

xT
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Note that the square-bracketed terms in (2.19) are grouped according to whether they
are derived from 9° or ¥'— that is, according to their asymptotic order in e.

3. The hydraulic equation

Here, we discuss solutions to the hydraulic equation (2.12) using the specific example
of the Riemann problem. The classification and description of the range of behaviours
should be viewed as a paradigm for the evolution of the front from more general initial
conditions.

In the hydraulic limit, the evolution of the front is governed by the nonlinear wave equa-
tion (2.12). Values of Y are conserved on characteristic curves satisfying dz/dt = C(Y),
where the long-wave speed C(Y) is given by

1
cy) = ( + aU) e Yo _qIle2Y/e, (3.1)
a
Note that C(Y) is negative if
a2
Y < Yl = alog (M)’ (32)

where Y7 > 0 only if @ > 1 and IT = —1. Thus disturbances can only propagate to the
left if the current has negative PVa and image vorticity dominates the Kelvin-wave flow.

As in Pratt & Stern (1986), long-wave disturbances to a free front are stationary
(C(Y) = 0 as Y — o0). Therefore C(Y) has no contribution from vortex induction,
and in the hydraulic limit the only relevant effects are the Kelvin-wave flow and image
vorticity. When a > 1 the long-wave speed C(Y') is non-monotonic, with a turning point

at
24>
Y2 = alog (M)7 (33)

which is thus also the inflection point for the flux function Q.. Compound wave structures
(shock-rarefactions) are therefore possible when a > 1, and the vortically-dominated
regime contains the richest behaviour.

3.1. The Riemann problem for the hydraulic equation

In the Riemann problem, the initial conditions are given by the step

Y_ x <0,

3.4

Y(z,0) = {
If C(Yy) > C(Y_), characteristic curves separate and the space between them in the
(z,t)-plane is filled by an expansion fan or rarefaction. The rarefaction is given by

% =C(Y) for C_< % <Oy, (3.5)

where we have defined Cy = C(Y4). The rarefaction connects smoothly to the far-field
solution Y = Y;.

If the initial step (3.4) has Cy < C_, characteristic curves collide and a shock forms.
The speed of the shock, Vi, is given by the Rankin-Hugoniot condition for (2.7b):

_ Qe(Y—) — QE(Y+)
7

‘/S(Y+7Y*) (3'6)
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Figure 2: Compound-wave solution to the Riemann problem in the hydraulic limit. The
parameters are a = 1.25, IT = —1, and the initial step goes from Y_ = 0.8 to Y, = 4.5.
(a): The flux function Q.(Y"). Open dots show Y4, and the filled dot is Y3;. The dashed
line is the chord joining Y_ to Y, and the dotted line is the chord joining Y_ to Y,
which intersects the curve and does not satisfy the entropy condition (3.7). (b): The
width of the current, Y, at ¢t = 1000 (solid curve) and the initial condition (dashed
curve) translated in x for ease of comparison.

Characteristic curves must transfer information into the shock from both sides, so that
V4 is required to satisfy the ‘entropy’ condition

Cr<Vs<C. (3.7)

The geometric interpretation of this restriction is that Vg is the slope of the chord
connecting Q.(Yy) and, since C(Y) = —QL(Y), the entropy condition requires that
the chord does not intersect the graph of .. The entropy condition is satisfied if Q. is
convex over the interval containing Y7, i.e. the interval does not contain Y5. If the entropy
condition is not satisfied, then the initial step is resolved through a compound shock-
rarefaction in which the two far-field states Y. are connected through an intermediate
value Yjs. The details of this depend on which of the inequalities in (3.7) fails to hold.
(1) If Vo > C_, a shock connects Y, to Yjs, where Yj; is chosen so that
Va(Y4, YY) = C(Yar). Since C(Yar) > C_, these two levels may be connected by
a rarefaction.
(i) If Vi < C4, the shock connects Y_ to Y, where Vi(Ya,Y_) = C(Yu). A
rarefaction connects Yy, and Y, .
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Figure 3: Diagram showing the resolution of the Riemann problem for (a) a =2, IT =1
and (b) a = 1.25, IT = —1. In both cases, the dashed lines mark Y5. Shaded regions
show where the initial step is resolved by a shock, white regions correspond to a
rarefaction, and striped regions to a shock-rarefaction.

Figure 2 shows a numerical simulation of the hydraulic equation (2.12) with a = 1.25,
IT = —1 and an initial step chosen so that the entropy condition (3.7) is not satisfied.
Starting from a smoothed step, the equation is integrated from ¢ = 0 using the Lax—
Wendroff method with Neumann boundary conditions at either end of the computational
domain. The solution Y is plotted at ¢ = 1000 as the solid curve in figure 2(b). The dashed
curve shows the initial step, translated in « by 1000V; for ease of comparison. The shock-
rarefaction structure is clear, with the front steepening for Y < Yj; and relaxing to a
rarefaction for Y > Yj;, where Y3, = 3.85 is given by the horizontal dotted line. The
geometric viewpoint is illustrated in figure 2(a), which shows the flux function Q.(Y).
The dotted line represents a shock propagating at Vs(Yy,Y_), and intersects the curve
Q.(Y) at Y & 3.5. This shock would therefore fail to satisfy the entropy condition (3.7).
Instead the solution develops a shock that joins Y_ with the intermediate value Yy,
chosen so that the shock speed Vi(Yar,Y_) (dashed line in (a)) is tangential to Q. at
Y. Thus, Yy, is the maximum off-shore distance of a front that can connect to Y_ = 0.8
via a shock.

Figure 3 shows the classification diagram for the resolution of an initial step in terms
of the parameters Y, and Y_. Shaded regions of the diagram correspond to initial steps
that are resolved by a shock, white regions to steps that are resolved by a rarefaction, and
striped regions to a shock-rarefaction. Dashed lines show Y5, the inflection point for Q.,
which divides the classification diagram into four quadrants. Note that the quadrant with
Y, < Y; displays the opposite behaviour to the quadrant with Y. > Y5. The qualitative
structure of the classification diagram is the same for any a > 1, although we note that as
a— 17, Yy > ooif Il = —1, but Yo — 0 if Il = 1. If a < 1 the flow is dominated by the
Kelvin wave, which is stronger at the coast and so shocks occur when Y, > Y_. Figure 3
also shows that shock-rarefactions require |Y; — Y_| to be finite. Indeed if one takes the
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weakly nonlinear limit of (2.18), with Y = Y, + A and |4| < 1, the resulting equation
is the KdV equation unless Y5, = Y2, in which case (at next order in A) one obtains the
modified KdV. Thus compound-wave structures are necessarily a finite-amplitude effect.

Although we have focused on the Riemann problem, the classification diagrams in
figure 3 can be used to interpret a wide range of initial conditions Y (z,0). By considering
the sign of 9Y/0x, one may place the initial condition just above or below the line
Y, = Y_ and then, by considering the value of Y, identify which regions of the front will
steepen into a shock, and which regions will lengthen into a rarefaction. Any front that
crosses Y = Y5 will form a compound-wave structure. If the flow remains smooth and @),
is convex, then adding higher-order terms to the hydraulic equation (2.12) makes little
difference, and so figure 3 is also useful for understanding the behaviour of some fronts
in the full QG system (2.1). However in the case of a front that steepens, the gradient
0Y /0z increases and so higher-order dispersive terms become important.

4. The dispersive equation

Here, we consider the dispersive equation (2.18). We first discuss travelling wave
solutions, including the special cases of solitons, kinks and intrusions. These serve as
a preliminary to applying El’s technique of ‘dispersive shock-fitting’ (El 2005), which
allows the Riemann problem to be classified.

4.1. Travelling-wave solutions to the dispersive equation

When higher-order dispersive terms are added to the hydraulic equation (2.12), shocks
no longer form. Instead, wave-steepening leads to ‘dispersive shock waves’ (DSWs; also
called undular bores in the context of water waves) which are a canonical and important
structure in nonlinear dispersive wave dynamics (Hoefer & Ablowitz 2009). For the
purposes of this work we need only note that a DSW is an expanding, slowly-modulated
waveform, with a linear wave-train at one end and a solitary wave at the other. Thus to
understand shock resolution in the dispersive equation it is necessary to understand the
behaviour of both linear waves and solitary waves, which motivates the following, more
general, discussion of travelling-wave solutions to (2.18).

First, we write (2.18) in potential form:

2 aPe 2Y/e —4a(Il + a®)e™Y/* + 2IIsY?> + oY + F
a— (a+2Y)e2Y/a ’
_ % V(Y,s,a,E). (4.1)

a g(y)

Here, primes () denote differentiation with respect to the moving co-ordinate £ = = — st,
s is the speed of the travelling wave and « and E are constants of integration (with E the
‘energy’ of the orbit). Note that G > 0, so that travelling wave solutions exist whenever
VY > 0 and we may often ignore G in our analysis.

Figure 4 shows four representative examples of (4.1). Figure 4(a) shows the general
case, where the numerator V has four roots. Double roots of V at Y = Y, correspond to
linear or solitary waves propagating on the background Y., depending on whether they
are maxima or minima of V respectively. Figure 4(b) shows a solitary wave of depression
propagating on the background Y., = 1.5. There are two special configurations of V: if
V has two double roots then the travelling wave is a so-called kink soliton, as in figure
4(c), while if V(0) > 0 and there exists a double root in Y > 0, as in figure 4(d), then the

(Y')?
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Figure 4: Configurations of the potential function (4.1). (a) The general case, (b)
Solitary wave case with a local minimum, (c¢) Kink with two double roots, (d) Intrusion.
In each case, travelling waves exist in the shaded region.

solution is a model for a coastal intrusion (i.e. a constant-width current with a ‘nose’).
These special cases are discussed below in §4.1.3.

4.1.1. Linear waves

Consider a small disturbance proportional to exp [i(kx — wt)], propagating on a back-
ground Y,,. By making this ansatz in (2.18) we obtain the dispersion relation

2
w = O (Yoo )k — %HQ(YOO)k?’, (4.2a)

and the phase speed

w a? 9

L= = C(Ys) — ZHQ(YOO)]C , (4.2b)
which corresponds to advection by the background flow and a dispersive term with
sign —II. In §6, we compare (4.2) with other dispersion relations that have previously

been derived for long frontal waves.

4.1.2. Solitary waves

The potential equation (4.1) admits solitary-wave solutions for certain values of the
parameters s, a and E. It is convenient to ignore G, and seek the range of speeds s for
which solitary waves exist.

Thus, consider a solitary wave propagating on the background Y,,. Then V(Y) =0
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and V'(Ys) = 0, which sets E and « as functions of Yo, and s in (4.1). Further, V(Yy)

must be a local minimum. This requires

s> C(Yy) when IT =1,

s < C(Ys) when II =—1, (4.3)
which, as expected, sets the minimum (maximum) speed for solitary waves on a current
with positive (negative) PVa to be the long-wave speed C(Y,,). A solitary wave of
depression occurs if V has a root, say Yg, in [0,Y,). Thus a depression wave occurs
if, in addition to (4.3), V(0) < 0 or

s < sy when Il =1,
s> sy when Il = —1, (4.4a)

where we have introduced the critical speed

3a311

2
s0=Y3? |2a+ —2(1 4 a*M)(a+ Yoo )e Y/ + GT(a + 2Yoo)e2Y°°/“]

(4.40)
The amplitude of the wave is Yo, — Ys. A solitary wave that travels close to speed sg
extends from Y, to Y = 0T. For s beyond sg, V(0) > 0 and, provided there is no other
root in [0, Y5, ), the corresponding travelling-wave solution extends to the coast and can
be used to model a coastal intrusion, as in figure 4(d).

Next, note that a solitary wave of elevation occurs if V has a root Ys in (Y, 00). As
Y — o0, V ~ sIIY?, so that a sufficient condition for an elevation wave is IIs < 0.
However elevation waves may also exist for IIs > 0, provided Yg exists. The limiting
case for the existence of the additional root occurs when V'(Ys) = 0, so that V has two
double roots and the corresponding travelling-wave solution is a kink soliton. Given a,
IT and Y, we seek a pair (sg, Yi) such that V(Yx) = V/(Yik) = 0, with Y > Y. The
kink soliton connects the equilibria Y, and Y, and travels at speed sk . Since the kink
is the limiting case of an elevation wave, Yy is an upper bound on the soliton amplitude
and sk is the maximum (minimum) speed for a solitary wave of elevation on a current
with positive (negative) PVa.

By combining all of the above, we may determine the range of allowed solitary wave-
speeds s as a function of I7, a and the background state Y,,. We find that there are four
regimes, depending on the value of IT and a. An example of each regime is shown in figure
5, where the limiting values C, sy and sk are plotted as functions of Y., as the solid,
dashed and dotted curves respectively. Depression waves exist in regions of the (s, Yy)-
plane marked D, and elevation waves exist in regions marked E. The solitary waves are
of vanishing amplitude close to the solid curve C (Y, ), and reach maximum amplitude at
the dashed or dotted curve (or at s = 0 in the case of figure 5(c), where the solitary wave
has infinite amplitude). For small a, the curves sy and C' do not intersect and only one
type of solitary wave is possible (figure 5 (a) and (c)). For a sufficiently large, the two
curves intersect and so both elevation and depression waves (as well as kinks) exist, with
depression waves existing for Yoo > Y2 (figure 5 (b) or (d)). The intersection between sg
and C occurs for the first time when ¢ = 1 if IT = 1, and when a = 2//3 if I = —1.
(The critical value of @ when IT = —1 can be determined by considering the sign of so—C
for large Y.)

4.1.3. Special cases

We now discuss the two special cases mentioned above: the kink soliton and the coastal
intrusion. Kink solitons require that V has two double roots, say Y. and Yy, which
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Figure 5: Possible solitary wave speeds s, as a function of the background Y. The
solid, dashed and dotted curves are C, s and sk respectively. Waves of elevation exist
in regions marked E, and waves of depression exist in regions marked D. The
parameters a and IT are chosen so that each plot shows a different regime. (a) IT =1,
a=05(b)lI=1,a=15(¢c)I=-1,a=05,(d) I =-1,a=15.

correspond to the two far-field states connected by the travelling wave. It turns out that
this configuration is only possible if a is sufficiently large (¢ > 1 when II = 1, and
a > 2/4/3 when II = —1). The propagation speed sk (Ys) is plotted as a dotted curve
in figure 5(b) and (d). We find that sx (Y ) has a turning point at Ya, the turning point
for the long-wave speed C(Y). Each sk is associated with two background states, one
on either side of Y5, and the kink soliton connects these two states. Thus the kink is a
result of the non-convexity of the flux function @, as in the modified KdV equation.
Kink solitons are of particular interest because they are travelling-wave solutions that
connect two different far-field states, and thus are analogous to shock-wave solutions
to the hydraulic equation. However, sx does not lie between C(Yy) and C(Yk), so
the propagation speed does not satisfy the entropy condition (3.7). The kink soliton is
therefore sometimes referred to as a non-classical or under-compressive shock wave (El
et al. 2017). Kinks will later be shown to play an important role in the Riemann problem
when the initial step crosses Y5.

Figure 6 shows the kink soliton solution propagating on the background Y, = 0.7
with IT = —1 and a = 1.5, which are the values used for the potential function in figure
4(c). The phase portrait for travelling-wave solutions propagating at speed sx = —0.076
is shown in figure 6(a). There are saddle points at Y., and Yx = 4.37, and a centre
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Figure 6: Kink soliton connecting Y, = 0.7 with Yx = 4.41, with a = 1.5, I = —1. (a)
The phase portrait with s = sg = —0.076. The dashed curve is the kink orbit, with
curves inside corresponding to periodic waves. (b) Propagation of the kink soliton in
the equation (2.18). The solid, dashed and dash-dotted curves show the solution at

t =0, 500, 1 000 respectively.

at Y = 2. The kink soliton is represented by the heteroclinic orbit connecting the two
saddle points, which is shown dashed. Closed orbits inside the dashed curve correspond
to lower-energy periodic waves. Figure 6(b) shows a numerical solution to the equation
(2.18) when the kink soliton is used as an initial condition (solid curve). The dashed and
dash-dotted curves show the solution at ¢ = 500 and ¢ = 1 000 respectively, and confirm
that the kink propagates at constant speed sg.

Here and elsewhere, numerical results are obtained using a pseudo-spectral method,
where the equation is Fourier-transformed in z and then advanced in time using an
adaptive fourth-order Runge-Kutta scheme. The domain is truncated at some large
value of x, and a corresponding step down from Yk to Y, is introduced to enforce
the periodicity required by the spectral method. The domain is taken large enough so
that the two steps do not interfere with each other. The equation is solved using the
long-wave co-ordinates X and 7', but results are plotted in the original co-ordinates x
and t. In all results shown, the long-wave parameter € = 0.1.

If the condition (4.4) is not satisfied, the corresponding travelling-wave solution reaches
Y = 0 and may be joined to a constant-width current to give a model for a coastal
intrusion of permanent form. Letting Y — 0 in (4.1) we see that the nose of the intrusion
meets the coast at right angles unless V has a double root at zero; that is, unless the
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Figure 7: Coastal intrusion of permanent form, with a = 1.05 and II = 1. (a) The phase
portrait with s = s = 0.95. The dashed curve is the intrusion orbit, with the curve
inside corresponding to a periodic travelling wave. (b) Propagation of the intrusion,
with the solution shown at ¢ = 0,500, 1 000 (solid, dashed and dash-dotted curves
respectively).

intrusion is a kink soliton with background Y,, = 0. In this case, the front meets the
coast with

201 (askg — 1

(Y')? = Mask —1) " ). (4.5)
Such an intrusion is shown in figure 7, for Il = 1 and a = 1.05, which are the values
used for figure 4(d). The phase portrait in figure 7(a) has a saddle point at Yx = 0.101,
but since G(0) is infinite, the double root in V does not lead to a saddle point at Y = 0.
Figure 7(b) shows the evolution of the intrusion at ¢ = 0, 500, 1 000 (solid, dashed
and dash-dotted curves respectively). We performed other numerical experiments (not
shown) using a solitary wave intrusion that meets the coast at right-angles. The infinite
gradient at Y = 0 led to a build-up of spurious short waves, which quickly grew and
disturbed the intrusion.

The intrusion of a PV front is discussed at length for a dam-break scenario in Stern
& Helfrich (2002). The authors seek similarity solutions to the long-wave equations and
find that the nose is always a rarefying intrusion, a result that is supported by numerical
and laboratory experiments. Johnson et al. (2017) also find that PV intrusions driven
by a uniform source either rarefy or form shocks. Thus although intrusions of permanent
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form are valid solutions to the equations, at least in the QG limit, it is not clear what
initial conditions would give rise to one.

4.2. The Riemann problem for the dispersive equation

El’s technique of dispersive shock-fitting is based on the GP (Gurevich & Pitaevskii
1973) approach to solving the Riemann problem for the KdV equation, but generalised
to deal with a wider class of (non-integrable) equations. The key idea in the GP
approach is that the Whitham equations (i.e. the period-averaged equations) governing
the modulation of the DSW can be matched naturally to the hydraulic equation in the
far field. Provided that the equation under consideration satisfies certain conditions,
El’'s technique allows one to obtain the propagation speeds of the DSW edges, the
wavenumber at the linear edge and the conjugate wavenumber (i.e. the inverse half-
width) and amplitude at the soliton edge. El (2005) gives a full explanation of the theory
and the derivation of the necessary conditions, and Kamchatnov (2019) and Maiden et al.
(2019) adapt El’s technique to other initial conditions.

4.2.1. Applicability of El’s technique

For El’s technique to apply, the dispersive equation (2.18) must satisfy the following
conditions:

(1) It admits a dispersionless (hydraulic) limit obtained by introducing the slow
variables X = ex and T = et. By construction, this is true.

(i)  The linear dispersion relation w(k) is real-valued. This was shown in (4.2a).

(ili) Tt possesses at least two conservation laws. This is required so that the Whitham
system of averaged conservation laws can be formulated in principal, although
El’s technique is designed to avoid this. These may be taken as the kinematic
boundary condition (2.7b) and equation (2.19).

(iv) It supports periodic travelling-wave solutions, parameterised by three independent
variables. These can be taken to be the constants of integration s, a and F in
the potential (4.1). The potential function must have at least three real zeros (in
general (4.1) has four, as in figure 4(a)), and must exhibit quadratic behaviour in
the linear and solitary-wave limits. This condition allows the Whitham equations
to be matched with the hydraulic equation at the edges of the DSW. The necessary
quadratic behaviour is shown below.

(v) The Whitham system corresponding to the two averaged conservation laws plus
the wavenumber conservation law k; +w, = 0 is hyperbolic. Hyperbolicity cannot
be checked without directly solving the Whitham system so this condition should
be verified by, for example, comparison of theoretical results with numerical
simulations. However, non-convexity of the flux function @, implies that (2.18) is
not genuinely nonlinear (the characteristic velocity C' is not monotonic), and in
many cases this leads to non-strict hyperbolicity (El et al. 2017). The compound-
wave structures discussed in §3.1 carry over to the Whitham equations, and lead
to richer behaviour than in the simple-wave case, where the solution is a DSW.
El’s technique should therefore only be applied to initial steps that do not straddle
Y5, so that the flux function is convex. The effects of non-convexity are discussed
in §5.2.

It remains to show that the potential function (4.1) displays quadratic behaviour in
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the linear and solitary-wave limits. Essentially, we would like to show that in these limits

2 VY;s,a,E)
a2 G(Y)

where Y, is the solitary or linear-wave background, and #(Y) = O(1) for |V — Y| < 1.
In both limits, @ and E may be written as functions of s and Y., so may be taken as
fixed. Unless Yo < 1 and the front is close to the coast, G = O(1) and it is sufficient
to check the behaviour of V(Y;s,Y). Since Y, is a double root of V, the potential
function displays the quadratic behaviour (4.6) provided V”(Y.,) is non-zero, i.e. by
(4.3) s is sufficiently far from the long-wave speed C(Y4).

~ (Y - Yoo)zé(y)’ (46)

4.2.2. Dispersive shock-fitting

With these caveats about non-convexity and distance from the coast in mind, El’s
technique proceeds as follows. The wavenumber and conjugate wavenumber at the linear
and solitary-wave edges of the DSW are found by solving the ordinary differential-
equations (ODEs)

dk Ow/0Y
dy — C(Y) - 0w/ok’
dk 9i/dY
LA 752 S (4.7)
dY  CO) - ow/ok
Here, k is the conjugate wavenumber and @ = —iw(Y, 1l~c) is the conjugate dispersion

relation for solitary waves. The fact that the solitary-wave propagation speed can be
described by linear-wave dynamics can be seen by considering the exponential tail. If
the tail is proportional to exp (kx — &t) then it obeys a linear dispersion relation & as
defined above, with propagation speed s = @/k (Kamchatnov 2019). The ODEs (4.7)
are derived in El (2005) using the ansatz k = k(Y") in the wavenumber conservation law,
combined with the hydraulic equation (2.12) which is assumed to apply at the edge of
the DSW. The general solutions to (4.7) are

kQ(Y) 3a2g 2/3 / g g
- —81T ' 5
k‘Q(Y) 3a2g 2/3 / g (

To connect (4.8) with the far-field solution, we apply the boundary conditions k& = 0 at
the soliton edge of the DSW, and k = 0 at the linear-wave end. Then we may obtain
k4 and l~€¢, the wavenumber and conjugate wavenumber at the leading/trailing edge of
the DSW, by evaluating (4.8) at Y. Bearing in mind the form of the dispersion relation
(4.2a) and the restriction on soliton speed (4.3) it is clear that DSWs have solitary waves
on the right when IT =1, and on the left when IT = —1. Thus if I = 1 we have

23 d,
) g

(4.8)

8 Y- oY)

2

kZ = 3a2G(Y_)2/3 Y, G(Y)1/3 dy,
- 8 Y- oY)

dy, (4.9a)

ki = 3a2G(Y;)23 [y, G(Y)1/3
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for the trailing linear and leading solitary wavenumbers, while if IT = —1 we have
Y_ l
Y
ki 3 2g§/ 2/3 gcy( 133 dy,
a?G(Yy) Yy (Y)
- 8 Y- oYy
k2 = (¥) dy, (4.9b)

_3a2g(y_)2/3 Y, g(y)1/3

for the trailing solitary and leading linear wavenumbers. Note that since El’'s method

is restricted to initial steps that do not cross Yz, C'(Y) is single-signed and (4.9) is

real provided Y1 are taken from the shaded region in figure 3, i.e. provided that the

corresponding step in the hydraulic equation leads to a shock rather than a rarefaction.
The propagation speeds of the solitary and linear-wave ends of the DSW are

- L:J(Yi,];‘i) o 8w

54 = = , St = , (4.10)
ky Ok |y e
when IT = £1. Finally, the following inequalities must be verified:
s_ < C,, Sy > C+, Sy > S5_. (411)

The first two of these conditions are analogous to the entropy condition (3.7), and ensure
that characteristics from the external, hydraulic solution transfer information into the
DSW. In fact, they are trivially satisfied by (4.9). The third condition checks that the
DSW has positive width. We must also check that the solitary wave speed given by El’s
technique is valid according to the discussion of §4.1.2, where we identify the background
Yoo with Y4 when IT = +1.

5. Numerical results

Here, we present numerical solutions to the dispersive long-wave equation (2.18) and
the full QG equation (2.1). The former are compared with predictions for propagation
speed and solitary-wave amplitude that were derived in §4.2.2 using El’s technique, while
the QG equations are used to test the validity of the long-wave approximation.

5.1. Verification of El’s technique

We begin with numerical simulations of the dispersive equation. All computations are
carried out using the pseudo-spectral method described in §4.1.3.

Figure 8 shows the result for a current with positive PVa and a = 0.9. The Riemann
problem is initialised with a smoothed step from Y_ = 3.5 to Y} = 4, and the solution
is shown at t = 30 000. Since a < 1 and II = 1, from figure 5 we know that only solitary
waves of depression exist. Further, from §4.2.2 we know that currents with positive PVa
are led by a solitary wave. This is clearly visible in figure 8, along with the internal
structure of the DSW. Dotted lines show predictions from El’s technique. The horizontal
line at Y = Yg and the vertical line at = 54t show good agreement between theory
and numerics at the solitary-wave edge of the DSW. The left two vertical lines are at
x = s_t £ w/k_ and therefore span one wavelength at the trailing edge of the DSW.
The numerical solution has a small-amplitude wave of the correct wavelength at x = s_t
but, as is typical in simulations of such problems, the amplitude is clearly non-zero for
x < s_t. The amplitude discrepancy is likely due to higher order (numerical) dispersive
effects (Congy et al. 2019). The integration in figure 8 was continued until ¢ = 50 000.
At the point at which the integration was halted, the minimum value of Y was still
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Figure 8: Numerical solution to the Riemann problem for the dispersive equation
(2.18). The parameters are a = 0.9, IT = 1 and the smoothed initial step is from

Y_ = 3.5 to Y} = 4. The solution is shown at ¢ = 30 000. Dotted lines correspond to
theoretical predictions from §4.2.2.

decreasing, but at a rate of O(107%) so that the DSW was, for all intents and purposes,
fully developed. The minimum value of Y and the mean propagation speed of the leading
solitary wave agree with the theoretical predictions for Yg and s to three decimal places.

Figure 9 shows a current with negative PVa and a = 2, with the initial step connecting
Y_ = 1.5 and Y; = 1.8. As predicted for currents with negative PVa, the DSW has a
solitary wave on the left. Only elevation waves exist for the background Yo, = Y_ < Y5.
The solution is shown at ¢ = 30 000, and the integration was continued until ¢ = 50 000.
Again, the solitary-wave amplitude and propagation speed agree with theoretical predic-
tions to three decimal places while at the linear end of the DSW there is good agreement
in wavenumber k4 and, as above, small waves in x > syt.

5.2. Effects of non-convezxity

If the initial step crosses the inflection point Y5 the flux function @. is non-convex,
so the hydraulic limit is not genuinely nonlinear and El’s technique cannot be directly
applied. In this case, numerical results show that the Riemann problem is resolved by a
compound-wave structure, as discussed for the modified KAV equation in El et al. (2017)
and the Miyata—Camassa—Choi equations in Esler & Pearce (2011).

Figure 10 shows two examples of compound-wave structures in a current with a = 2
and IT = 1. In both cases, the initial step is resolved by a combination of a kink soliton
and a simple wave (DSW or rarefaction), with an expanding constant-width region that
connects the two. For currents with positive PVa, the kink is faster than any solitary
wave or rarefaction and so must be on the right. Thus in both cases the kink connects
Y, to the (uniquely determined) intermediate value Y. The right-most vertical line
gives the predicted location of the kink, x = sit. As in Esler & Pearce (2011), it seems
that the simple-wave structure can be understood by applying El’s technique to the
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Figure 9: As figure 8, but for a current with negative PVa and a = 1.25. The initial step
is from Y_ = 1.5 to Y = 1.8 and the solution is shown at ¢ = 30 000.

‘secondary’ Riemann problem with an initial step from Y_ to Y. In figure 10(a), where
Y > Y_ > Ys, we would expect this secondary step to be resolved by a DSW, led by
a solitary wave of depression. This is indeed the case, and El’s technique captures the
amplitude and speed at the leading edge of the DSW, as well as the wavenumber at the
trailing edge. In figure 10(b), Y_ < Y < Y3 so that the secondary step is resolved by a
rarefaction over the region C(Y_) < z/t < C(Yk).

Note that, in both cases shown in figure 10, the step ‘splits’ into a steadily-propagating
kink, which crosses the inflection point, and a secondary, simple-wave structure that
lies within the convex region of the flux function. Thus the kink can be thought of
as removing the non-convexity from the initial step. For the present equation the kink
soliton exists provided the background state (here Y, ) is less than some critical value
(see the termination of the dotted curve s in figure 5(b) and (d)). It is not clear how
the initial step should be resolved if Y, is greater than the critical value. Numerical
simulations suggest that the solution passes through Y = 0, which is clearly unphysical.
El et al. (2017) introduce a new type of DSW, the so-called contact DSW, to resolve
the Riemann problem in the modified KdV for steps where the kink does not exist, but
the treatment of this case appears to involve solving the Whitham system and so is not
pursued here. It is notable that, unlike for the modified KdV, the existence of the kink
in the present model does not depend on the sign of the dispersion. Finally we note that
for the initial step in figure 10(b), C+ > C_. Thus in the hydraulic limit the Riemann
problem would be resolved by a simple-wave rarefaction, and so the dispersive terms can
dramatically modify even a smooth solution when the flux function is non-convex (see El
et al. (2017), comparing §4 and figure 5.3). The classification diagram for the dispersive
Riemann problem is therefore quite different to that for the hydraulic problem shown in
figure 3.
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Figure 10: As figure 8, but for an initial step that crosses the inflection point Y5. The
parameters are a = 2, IT = 1 and the solution is shown at ¢ = 50 000. (a) Initial step
down from Y_ = 1.2 to Y} = 0.6, (b) initial step up from Y_ = 0.6 to Y, = 1.2. In both
cases, the step is resolved by a compound-wave structure involving a kink soliton (see
text).

5.3. Classification of the dispersive Riemann problem

Figure 11 classifies the resolution of the initial step YL for the particular choice of
parameters a = 2, IT =1 (figure 11(a)) and a = 1.5, IT = —1 (figure 11(b)). Hatched re-
gions of the diagram show where the initial step cannot be classified using El’s technique.
We have labelled the diagram following the notation of El et al. (2017), whereby K, R and
DSW# correspond to kinks, rarefactions and DSWs of elevation/depression respectively.
Compound wave structures are denoted by a vertical bar (|) and should be read from left
to right so that, for example, K|[DSW™ means that the initial step is resolved by a kink
from Y_ to Yk, and a DSW with a solitary wave of elevation connecting Yx to Y. As
discussed in §4.2.2, DSWs that form on currents with positive PVa have solitary waves
on the right, while those on negative-PVa currents have solitary waves on the left.

As in the hydraulic classification diagram in figure 3, for vortically-dominated currents
with a > 1 the Y. parameter space is split into four quadrants by the inflection point Y5.
Kelvin-wave dominated flows with a < 1 behave like the top-right (bottom-left) quadrant
when the current has positive (negative) PVa, and so in both cases the step is resolved
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Figure 11: Diagram showing the resolution of the dispersive Riemann problem for (a)

a=2,1 =1, and (b) a = 1.5, I = —1. Labels correspond to kinks, rarefactions and
dispersive shock waves, with the superscript DSW* signifying elevation or depression
solitary waves. The hatched regions of the diagram cannot be classified using El’s

technique.
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by a DSW when Y, > Y_. Steps that cross Y5 are resolved by compound-wave structures
like those in figure 10. If the step is such that a kink soliton exists then this leads (trails)
the transition region for currents with positive (negative) PVa and connects the far-field
states via the intermediate level Y. The kink creates a secondary step, which is resolved
by a simple-wave structure connecting Yx to Y_ when II = 1, and Yx to Y, when
IT = —1. For example, consider a step in the upper-left quadrant of figure 11(a). The
kink soliton connects Y, < Ys to a unique Yx > Y5, and then the secondary step from
Yk to Y_ > Y; is resolved by a rarefaction if Y_ > Y (the region labelled R|K) or by a
depression DSW if Y_ < Y (the region labelled DSW~|K). Thus the dividing line in the
upper-left quadrant is Y_ = Y (Y,). If the kink soliton does not exist then numerical
simulations suggest that Y tries to pass through the coast. We did not investigate the
behaviour of the front any further in this case, and so this region has not been classified
(rectangular hatched region with Y, > 2.2 in figure 11(a)). Finally, we note that El’s
technique does not always produce a valid solution. That is, the value of s predicted by
(4.10) can lie outside the permitted range of solitary-wave speeds. This seems to only
occur for larger initial steps (or secondary steps) that result in a depression DSW, and
these regions are hatched in figure 11. Numerical simulations show that the step is still
resolved by an expanding modulated wave-train.

5.4. The full problem

The fully nonlinear free-boundary QG system (2.1) can be solved numerically to a high
level of accuracy using the method of contour dynamics with surgery (Dritschel 1988).
We performed several simulations based on an adaptation of Dritschel’s algorithm. The
appropriate Green’s function for (2.1) is the modified Bessel function K,(y/ (z? + y?) /a),
and the wall is accounted for by including image contours with opposite-signed vorticity
at y = =Y (x,t).

Figure 12 shows three contour dynamic simulations initialised using a smoothed step.
Figure 12(a) shows a run using the same parameters as figure 8, with the solution plotted
at t = 650. The initial step has clearly begun to evolve into a DSW ™, with the leading edge
located at approximately st (vertical dotted line). The dashed curves give the envelope
of the solution to the dispersive equation at t = 650, and show that agreement with the
long-wave theory is better at the solitary-wave end than at the linear end, supporting
the hypothesis that higher-order dispersive effects are important here. The lateral extent
of the DSW is also much greater than predicted by the long-wave theory, where El’s
technique gives s_t = 4. The contour dynamics algorithm places more resolution in
regions of higher curvature, so that the presence of many small-amplitude waves (and
the longer extent of the DSW) means that integrating the full QG equations for the same
length of time as the dispersive equations is prohibitively expensive. As the long-wave
theory predicts that the DSW develops over tens of thousands of time units, we were not
able to continue any of our simulations for long enough to observe whether the leading
solitary wave reaches the predicted amplitude Ys. However, the amplitude of the wave
was still increasing when integration was stopped.

Figure 12(b) shows a run with a = 2 and IT = 1, with the solution plotted at ¢ = 1150.
As predicted by the long-wave theory the initial step evolves into a DSWT|K, where the
kink soliton connects Yx = 0.46 to Y, = 1.5. Both the kink and solitary-wave amplitude
are captured well by the long-wave theory (horizontal dotted lines), as is the propagation
speed sk (vertical dotted line). The DSW envelope from the dispersive equation again
shows better agreement at the solitary wave end, and the kink profile computed by
solving the potential form (4.1) matches the QG solution almost perfectly (right-most
dashed curve). Thus the long-wave theory accurately predicts the existence and form of
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Figure 12: Contour dynamic simulations of the Riemann problem in the full QG
equations (2.1). Dotted lines show predictions of DSW parameters from El’s technique,
and heavy dashed curves show the DSW envelope from the numerical solution of the
dispersive long-wave equation in (a) and (b), and kink and rarefaction profiles in (b)
and (c). The parameters in (a) are the same as in figure 8 (DSW™), with the solution
shown at ¢ = 650. In (b), @ = 2 and II = 1 with the initial step from Y_ = 0.6 to

Y, = 1.5 (DSWT|K). The solution is shown at ¢ = 1150. In (c¢), a = 2 and IT = —1 with
the initial step from Y_ =4 to Y} = 0.3 (K|R). The solution is shown at ¢ = 750.
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steadily-propagating kink solitons in the full QG system. Note that the small-amplitude
ripples in & > 900 are a numerical artefact that arises due to the finite length of the
computational domain.

Figure 12(c) shows an example of a kink-rarefaction with a = 2 and IT = —1, with the
solution plotted at t = 750. Again there is excellent agreement between contour dynamics
and the long-wave predictions for the shape and speed of the kink and rarefaction (dashed
curves above and below Yx = 0.7 respectively). The effect of higher-order terms that
are absent from the dispersive equation (2.18) is to smooth the transition between the
two simple-wave structures, as can be seen at the trailing end of the rarefaction near
x = —50. The wave-train in x > 150 is a transient remnant of the initial start-up and
does not affect the kink-rarefaction.

In all of the cases presented here, the long-time behaviour of the full QG system
closely follows the long-wave theory. That this holds for the most stringent test of the
Riemann problem, where the initial condition violates the long-wave assumption, reflects
the fact that the initial tendency of the frontal displacement—whether to lengthen or
steepen—is due to the interaction between Kelvin-wave flow and vorticity dynamics,
which does not rely on the assumption of a slowly-varying current. Once a disturbance has
begun to develop, its intrinsic length-scale increases and the long-wave theory becomes
an appropriate model (Esler & Pearce 2011, p. 5).

6. Discussion and oceanographic context

A fully nonlinear, dispersive, long-wave model has been used to study the dynamics
of PV fronts near a vertical coast in the QG limit. The model is the same as that
developed by Pratt & Stern (1986), but the focus here is on fronts that are sufficiently
close to the coast that they feel the effects of the Kelvin-wave flow and image vorticity.
When vortical effects are dominant, the flux function in the leading-order long-wave
(hydraulic) equation is non-convex and compound-wave structures (shock-rarefactions)
exist. An example of this is shown in figure 2, and the qualitative behaviour of unforced
long waves is completely described in figure 3. When higher-order dispersive terms are
added to the hydraulic equation, shocks are replaced by dispersive shock waves. We have
used El’s technique of dispersive shock-fitting (El 2005) to find certain key parameters of
DSWs that arise from an initial step, namely the propagation speed and wavenumber at
either end of the DSW. El’s technique is valid only for initial steps that do not cross the
inflection point Y3, but we find that in fact it can also be used to describe ‘secondary’
DSWs arising as part of a compound-wave structure (see figure 10). In the dispersive
equation, these compound-wave structures combine either DSWs or rarefactions with a
kink soliton. The Riemann problem for the dispersive equation is partially classified in
figure 11. Section 5.4 compares the dispersive long-wave theory with contour dynamic
simulations of the full QG system, and shows that the long-wave theory describes the
long-time evolution of the Riemann problem well. The experiments of Pratt & Stern
(1986) show that DSW formation depends strongly on the form of the initial conditions,
and that for other initial-value problems folding and eddy pinch-off can occur. However
in the present model boundary effects dominate curvature-driven induction and seem to
have a stabilising effect, in many cases preventing the front from folding.

The influence of the coastal boundary on the propagation of long waves becomes
apparent on considering the linear wave-speed (4.2). In general, the propagation speed
of a linear long wave on a PV front is

s = Ak? - B, (6.1)
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for some dimensional constants A and B. In the present model, these are

L3IyH L2IIH
Ay = — R40 + R4O (LR+2YOO)B_2Y°°/LR,

BW:JQHM¥@7”@MR764%ﬂ®>fgk{y@MW (6.2)

R

A similar equation for a free front in the full shallow-water equations has been derived
separately by Cushman-Roisin et al. (1993) and Nycander et al. (1993), but with A and
B given by

1 V)~ )
F — b
6f5
g% (h1 + ha)f
By = 272 . (6.3)

Here, the Coriolis parameter f = fo + By is allowed to vary with latitude, and the front
connects two far-field states of depth hy; and hs. In the quasi-geostrophic limit hy — ho,
A reduces to the constant term in Ay,. Comparing (6.2) and (6.3) shows the effect of the
coastal boundary on frontal waves, and the difference between the asymptotic regimes
(2.4) and (2.5). When the ratio Y., /Ly is order unity, the coastal boundary decreases the
magnitude of the dispersive term A significantly through the addition of the exponential
term in Ay, due to the image effect. The boundary also gives rise to a background flow
B that is otherwise absent when 8 = 0, and contains contributions from both the Kelvin-
wave driven flow and image vorticity. The treatment of boundary-influenced PV fronts
in the full shallow-water equations is an important avenue for future work.

As discussed in §4.2.2; the dispersion relation w(k) for linear waves can be transformed
into a conjugate dispersion relation JJ(lNc) for solitary waves by assuming that the solitary
wave has an exponential tail. In (6.1), this amounts to replacing

A— —A, k—k, (6.4)

where k is the conjugate wavenumber, or inverse half-width, of the solitary wave.
The propagation of finite-amplitude waves can therefore be understood using the same
framework as linear dynamics. This result may be of interest to researchers who wish to
obtain dispersion relations for meanders in a Western boundary current, as was done for
the Gulf Stream in Lee & Cornillon (1996) and for the Kuroshio Extension in Tracey
et al. (2012). We also note that Pratt & Stern (1986) model the evolution of Gulf Stream
meanders starting from a ‘top-hat’ frontal profile, which in the present model could be
treated analytically using the adaptation of El’s technique described in Maiden et al.
(2019).

Another application of the ideas discussed here is the topographic arresting of coastal-
trapped waves. Zhang & Lentz (2017) have recently shown that strong on-shore flow in
the Hudson Valley is due to a standing meander formed when the background wind-driven
alongshore flow is in the opposite sense to coastal-trapped wave propagation. As they
point out, the resulting flow is similar to the dispersive supercritical leaps of topographic
Rossby waves discussed in Johnson & Clarke (1999), as the coastal-trapped wave is
controlled by the topographic perturbation (figure 15 of Zhang & Lentz (2017)). The basic
dynamics do not depend on the background flow being wind-driven, and indeed figure 5
shows that free, stationary solitary waves exist in the present model when IT = —1 and
the Kelvin-wave flow opposes the image vorticity. The extension of this work to include
topographic forcing is ongoing and follows the procedure laid out in El et al. (2009).
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