
On the Learnability of Software Router Performance
via CPU Measurements

Charles Shelbourne
University College London

charles.shelbourne.18@ucl.ac.uk

Leonardo Linguaglossa
Telecom ParisTech

leonardo.linguaglossa@gmail.com

Aldo Lipani
University College London

aldo.lipani@ucl.ac.uk

Tianzhu Zhang
Telecom ParisTech

tianzhu.zhang@nokia.com

Fabien Geyer
Technical University of Munich

fgeyer@net.in.tum.de

ABSTRACT
In the last decade the ICT community observed a growing popular-
ity of software networking paradigms. This trend consists in moving
network applications from static, expensive, hardware equipment
(e.g. router, switches, firewalls) towards flexible, cheap pieces of
software that are executed on a commodity server. In this context, a
server owner may provide the server resources (CPUs, NICs, RAM)
for customers, following a Service-Level Agreement (SLA) about
clients’ requirements. The problem of resource allocation is typi-
cally solved by overprovisioning, as the clients’ application is opaque
to the server owner, and the resource required by clients’ appli-
cations are often unclear or very difficult to quantify. This paper
shows a novel approach that exploits machine learning techniques
in order to infer the input traffic load (i.e., the expected network
traffic condition) by solely looking at the runtime CPU footprint.

1 CONTEXT
The need for replacing complex network hardware components
with simpler (yet less performing) software equivalents has fueled
a novel research area: this has brought several advances in the
state-of-the-art high-speed packet processing engines, by bringing
line-rate capabilities to commodity off-the-shelf servers. Alongside
with the growing popularity of networking paradigms such as
Software-Defined Networking [10] (SDN) and Network Function
Virtualization [15] (NFV), we witness the rise of several network
applications relying solely on software components, but capable of
performance comparable to legacy hardware equipment [4, 6, 12].

Scheduling

Monitoring

CPU

Server

Input traffic

Network interface
cards (NICs)

RSS Load balancer

VNF
- eth
- IPv4
...

Figure 1: System architecture.

The typical structure of a modern software networking applica-
tion is shown in Fig. 1. In this scenario, a server owner may provide
one (or more) CPU(s) to her tenants. A SLA is signed between the
owner and the tenants, which defines the usage of the resources
such as bandwidth, or CPUs. Tenants can deploy the desired applica-
tion in the form of Virtual Network Functions (VNFs). Receive-side

scaling (RSS) [9] is the scheduling technique commonly used to
assign one (or more) CPU(s) to each tenant, and to steer the incom-
ing traffic to the respective CPU. Monitoring can be performed at
NIC level (by the tenants), or at CPU level (by the OS, therefore
by the server owner). In this context, the server owner is not al-
lowed to access the deployed VNFs. Furthermore, the input traffic
is also opaque to the owner as NICs usually adopt a kernel-bypass
approach to reach high speed (cfr. Sec.III of [11]). As such, after
resource allocation no optimization is possible on the owner’s side:
for example, the CPUs must be always active even in the case of
zero traffic.

With machine learning (ML) techniques becoming more and
more popular in the network community [14], we believe that it
is possible to learn which traffic is related to the measurable CPU
behavior (which is in turn indirectly related to the input traffic).
In fact, differently from NICs, CPUs are still under the control of
the operating system, which can monitor the underlying behavior
and export the data by using standard tools. The server owner
can exploit this knowledge to optimize the usage of resources, and
keeping at the same time this process transparent to the tenants.

The main contribution of this paper is a novel approach for
detecting network traffic conditions via indirect measurements: that
is, we infer the network load by watching the CPU behavior. Rather
than collecting network-related measurements, our methodology
can be used to infer the network behavior by solely looking at the
CPU patterns of the host machine, as different load conditions will
produce different effects on several features of the CPU, such as
the number of instructions issued per time unit, or the number of
cache misses due to the processing. In particular, (i) we collect the
CPU measurements using perf tools; (ii) we use the collected data
to train some ML models and (iii) we validate our results with a
variety of traffic typologies and rates. We target the simple case
of one server with a single CPU handling the traffic coming from
one input NIC to one output NIC). We show that, in this way, it is
possible to infer the observed input rate with an accuracy value
greater than 0.9 with a variety of neural networks. We observe that
the input traffic (especially the size of the received packets) can
alter the learning process and highly reduce the accuracy.

2 TRAFFIC LOAD INFERENCE VIA ML
Problem statement. Given an unknown traffic source, is it pos-

sible to infer the traffic load by considering only the CPU pattern
that the VNF code is producing?We formulate this problem as a clas-
sification task. The input is a series of measurements (e.g., number

Table 1: ROC and Accuracy scores (trained on rows, tested on columns).

of instructions, branches, accesses to the CPU caches, etc.) collected
at CPU level using the Linux perf tools. For a complete list of all the
features, refer to the URL of the GitHub repository [3]. The output is
one of three classes reflecting the input load: {low,medium,hiдh}.
The values are 0.5 Gbps, 5 Gbps and 9 Gbps respectively. We use
three different neural networks architecture for our evaluations:
multi-layer perceptron (MLP), convolutional neural network (CNN)
and long short term memory (LSTM).

Experimental setup. All the data are collected from a multi-
core commodity server, mounting two processors (each with 12
physical cores) and two Intel 82599ES dual-port 10-Gbps NICs [3].
A group of CPU cores is specifically isolated from the kernel and
reserved for our experiments. We chose VPP v19.04 [4, 5], a high-
speed software router under Linux Foundation’s fd.io project, as
VNF router. VPP executes a simple L2 forwarding VNF. Moon-
Gen [8], a high-speed software traffic generator, is used to render
network traffic with varied rates/patterns. We run perf [2] to pro-
file and collect the CPU features connected to the packet processing
performed by the VNF router.

Data collection. This step consists of two phases. In the first
half, we start VPP in polling mode and link its process ID to perf.
As no traffic is present, the measurements refer to the idle state
of the CPU. In the second half of the experiment, MoonGen starts
transmitting packets to VPP with a preassigned traffic rate. The
measurements of this phase are stored with the preassigned traffic
rates as labels.

Traffic types. We configure MoonGen to generate synthetic
constant bit rate (CBR) as well as Poisson traffic [13]. We con-
sider two extreme cases with small (64B) and large (1438B) packet
sizes. The former represents the most stressful scenario in terms
of packets per second, while the latter aims to detect VPP’s be-
havior dealing with large packet payloads. In addition, we choose
four different real traffic traces. Two traces come from a packet
injection scenario (one mostly filled with small packets, while the
other with mixed packet sizes) [1]. We finally select two data-center
traces from the work of Benson et al. [7]. Both synthetic and real
packet traces are used to create the training, validation and test
datasets. For each traffic type we created a dataset that consists of
5 sequences of 2,910 instances with evenly distributed class labels,
where each instance consists of 50 data-points sampled every 100
ms, and each pair of instances overlap by 40 data-points. We used

3 sequences for the training set, 1 sequence for the validation set
and 1 sequence for the test set.

3 DISCUSSION
Table 1 shows the evaluation results for LSTM models trained on
data from traffic types listed as rows, tested on different traffic types
listed as columns. The traffic types are: CBR with small packets (fx),
CBRwith large packets (fxL), Poissonwith small packets (ps), packet
injection traces (pcpPINJ1 and pcpPINJ2) and data center traces
(pcpDC1 and pcpDC2). We report the ROC score and the accuracy
as performance metrics. The color shading shows dark blue as high
score and dark red as low scores. Due to lack of space, we omit the
results related to the CNN and the MLP models. We show strong
evidence of learning, which however is affected by the packet sizes
of the generated packets. In fact, our LSTM model trained with
fx traffic can easily predict the same category of traffic, as well as
the ps traffic, but struggles with the other traffic types. When the
model is trained with ps traffic, it can as well predict well the traffic
coming from the pcpPINJ1 trace (consisting ofmostly small packets).
This is because the Poisson process is able to generate some new
information that the model can use to make better predictions. The
fxL can only be predicted when the model is trained with the same
traffic category, or the pcpPINJ2. This is due to the fact that the
CPU behavior is different when large packets are sent (as with
the same bitrate, the packet rate differs). Both data center traces
show good results with a training performed on another data center
dataset. Finally, the pcpPINJ2 traffic cannot be predicted by any of
our training sets: since it represents a complex traffic pattern (with
many different packet sizes), we plan to provide additional training
with a more diverse synthetic traffic as future work.

REFERENCES
[1] 2012. Capture files from Mid-Atlantic CCDC. https://www.netresec.com/?page=

MACCDC. (2012).
[2] 2019. Performance Counters for Linux, PCL. https://perf.wiki.kernel.org/index.

php/Main_Page(version 4.15.18). (2019).
[3] 2019. Repository of the Project. https://github.com/CharlieShelbourne/

/master-thesis-project-tpt-ai4perf//blob/master/features.info. (2019).
[4] 2019. VPP - fd.io. https://wiki.fd.io/view/VPP. (2019).
[5] D. Barach, L. Linguaglossa, D. Marion, P. Pfister, S. Pontarelli, and D. Rossi.

2018. High-Speed Software Data Plane via Vectorized Packet Processing. IEEE
Communications Magazine 56, 12 (December 2018), 97–103. https://doi.org/10.
1109/MCOM.2018.1800069

[6] Tom Barbette, Cyril Soldani, and Laurent Mathy. 2015. Fast userspace packet
processing. In 2015 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS). IEEE, 5–16.

2

https://www.netresec.com/?page=MACCDC
https://www.netresec.com/?page=MACCDC
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://github.com/CharlieShelbourne//master-thesis-project-tpt-ai4perf//blob/master/features.info
https://github.com/CharlieShelbourne//master-thesis-project-tpt-ai4perf//blob/master/features.info
https://wiki.fd.io/view/VPP
https://doi.org/10.1109/MCOM.2018.1800069
https://doi.org/10.1109/MCOM.2018.1800069

[7] Theophilus Benson, Aditya Akella, and David a. Maltz. 2010. Network traffic
characteristics of data centers in the wild. In IMC. 267. https://doi.org/10.1145/
1879141.1879175

[8] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and
Georg Carle. 2015. MoonGen, a scriptable high-speed packet generator. In IMC.
275–287. https://doi.org/10.1145/2815675.2815692

[9] Tom Herbert and Willem de Bruijn. 2011. Scaling in the linux networking stack.
https://www.kernel.org/doc/Documentation/networking/scaling.txt. (2011).

[10] Diego Kreutz, Fernando Ramos, Paulo Verissimo, Christian Esteve Rothenberg,
Siamak Azodolmolky, and Steve Uhlig. 2014. Software-defined networking: A
comprehensive survey. arXiv preprint arXiv:1406.0440 (2014).

[11] Leonardo Linguaglossa, Stanislav Lange, Salvatore Pontarelli, Gábor Rétvári,
Dario Rossi, Thomas Zinner, Roberto Bifulco, Michael Jarschel, and Giuseppe
Bianchi. 2019. Survey of Performance Acceleration Techniques for Network
Function Virtualization [45pt]. Proc. IEEE (2019).

[12] Luigi Rizzo. 2012. Netmap: a novel framework for fast packet I/O. In 21st USENIX
Security Symposium (USENIX Security 12). 101–112.

[13] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren. 2015.
Inside the social network’s (datacenter) network. In ACM SIGCOMM Computer
Communication Review, Vol. 45. ACM, 123–137.

[14] Junfeng Xie, F. Richard Yu, Tao Huang, Renchao Xie, Jiang Liu, Chenmeng Wang,
and Yunjie Liu. 2019. A survey of machine learning techniques applied to software
defined networking (SDN): Research issues and challenges. IEEE Communications
Surveys and Tutorials 21, 1 (2019), 393–430. https://doi.org/10.1109/COMST.2018.
2866942

[15] Bo Yi, Xingwei Wang, Keqin Li, Min Huang, et al. 2018. A comprehensive survey
of network function virtualization. Computer Networks 133 (2018), 212–262.

3

https://doi.org/10.1145/1879141.1879175
https://doi.org/10.1145/1879141.1879175
https://doi.org/10.1145/2815675.2815692
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://doi.org/10.1109/COMST.2018.2866942
https://doi.org/10.1109/COMST.2018.2866942

	Abstract
	1 Context
	2 Traffic load inference via ML
	3 Discussion
	References

