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Key Points (max 150 words/5 dot-points) 

 We measured fractal (self-similar) fluctuations in ongoing spiking activity in subcortical 

(lateral geniculate nucleus, LGN) and cortical (area MT) visual areas in anaesthetised 

marmosets. 

 Cells in the evolutionary ancient koniocellular LGN pathway and in area MT show high-

amplitude fractal fluctuations, whereas evolutionary newer parvocellular and magnocellular 

LGN cells do not. 

 Spiking activity in koniocellular cells and MT cells shows substantial correlation to the local 

population activity, whereas activity in parvocellular and magnocellular cells is less 

correlated with local activity.  

 We develop a model consisting of a fractal process and a global rate modulation which can 

reproduce and explain the fundamental relation between fractal fluctuations and population 

coupling in LGN and MT. 

 The model provides a unified account of apparently disparate aspects of neural spiking 

activity and can improve our understanding of information processing in evolutionary 

ancient and modern visual pathways. 

 

Abstract (max 250 words) 

The brain represents and processes information through patterns of spiking activity, which is 

influenced by local and wide-scale brain circuits as well as intrinsic neural dynamics. Whether these 

influences have independent or linked effects on spiking activity is however not known. Here we 

measured spiking activity in two visual centres, the lateral geniculate nucleus (LGN) and cortical area 

MT, in marmoset monkeys. By combining the Fano-factor time curve, power spectral analysis, and 
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rescaled range analysis, we reveal inherent fractal fluctuations of spiking activity in LGN and MT. We 

found that the evolutionary ancient koniocellular (K) pathway in LGN and area MT exhibit strong 

fractal fluctuations at short (< 1 s) timescales. Parvocellular (P) and magnocellular (M) LGN cells 

show weaker fractal fluctuations at longer (multi-second) timescales.  In both LGN and MT, the 

amplitude and timescale of fractal fluctuations can explain short– and long-timescale spiking 

dynamics. We further show differential neuronal coupling of LGN and MT cells to local population 

spiking activity. The population coupling is intrinsically linked to fractal fluctuations: neurons 

showing stronger fluctuations are more strongly correlated to the local population activity. To 

understand this relationship, we modelled spiking activity using a fractal inhomogeneous Poisson 

process with dynamic rate which is the product of an intrinsic stochastic fractal rate and a global 

modulatory gain. Our model explains the intrinsic links between neuronal spike rate and population 

coupling in LGN and MT, and establishes a unified account of dynamic spiking properties in afferent 

visual pathways. 

 

Introduction 

Neural circuits represent and process information through the temporal and spatial patterns of their 

spikes. Neuronal spike patterns are highly variable, and display substantial diversity across neurons, 

during both maintained1 activity and evoked responses (Softky and Koch, 1993; Churchland et al., 

2011). Understanding these spike patterns is therefore important for understanding how the brain 

processes information. 

Spike rates in neurones in the early visual system are known to display fractal (self-similar) 

property, as observed in retina, lateral geniculate nucleus (LGN), and primary visual cortex (V1) of 

cats (Baddeley et al., 1997; Teich et al., 1997), and monkey inferotemporal cortex (Baddeley et al., 

1997).  Other works show that, at least in primary visual cortex (V1; Okun et al., 2015) and motor 

cortex (Kells et al., 2019), neuronal spike rate is variably correlated with the pooled spike rate of 

other neurons (population coupling) and that (at least for the motor cortex) population coupling is 

related to motor coding. Here we show in measurements from the primate visual system that fractal 

                                                           

1 Spiking activity in absence of patterned visual stimulation. Sometimes referred to as spontaneous 

activity.  
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dynamics and population coupling are linked, and we develop an explanatory unifying model. The 

model shows how fractal fluctuations can explain differences in spiking dynamics and population 

coupling between distinct functional cell types in both areas. 

In neurons throughout the visual pathway, the variance in spike rate usually exceeds the 

mean rate, and rarely falls below it. That is, neurons display super-Poisson variability (Tolhurst and 

Thompson, 1981; Goris et al., 2014). Classical Poisson models of neuronal variability (Dayan and 

Abbott, 2003) cannot account for super-Poisson variability. Evoked responses in V1  (Ecker et al., 

2014; Goris et al., 2014)  and maintained activity in primary auditory cortex (Lowen and Teich, 1996) 

and LGN (Teich et al., 1997) can nevertheless be captured by an inhomogeneous Poisson process (a 

Poisson process with a dynamic rate). These models show that spike rates of single neurons, and 

correlations between pairs of neurons, are consistent with presence of global gain changes that 

fluctuate over time (Ecker et al., 2014; Goris et al., 2014). However, these models are incapable of 

explaining both the fractal variability of spike activity and the observed variability in population 

coupling. Thus, it is not known whether and how the phenomena of spike variability, population 

coupling, and correlated variability are related. 

The primate lateral geniculate nucleus (LGN) comprises three parallel visual processing 

streams. These streams are anatomically identified as the parvocellular (P), magnocellular (M) and 

koniocellular (K) layers of the LGN. Functionally, the three streams are specialised for transmission of 

different visual signals from retina to cortex. The P-cells serve high-acuity vision at high image 

contrasts, and red-green colour vision, whereas M-cells serve motion perception and spatial vision at 

low image contrast (reviewed by Nassi and Callaway, 2009; Lee et al., 2010). The K pathway is 

considered evolutionarily more primitive than the P and M pathways, having more diffuse and 

widspread connections with visual cortices and subcortical visual centers (reviewed by Jones, 2001). 

The K-cells show heterogeneous receptive field properties including blue-yellow colour selectivity 

(Martin et al., 1997; Tailby et al., 2008a), orientation selectivity (Xu et al., 2002; Cheong et al., 2013) 

and suppressed-by-contrast characteristic (Tailby et al., 2007; Zeater et al., 2015). The K-cells also 

differ from P-cells and M-cells as they show synchronisation of activity at timescales typically seen in 

primary visual cortex, and have spike rates entrained to cortical EEG (Cheong et al., 2011). Here, we 

examine spiking dynamics in these parallel subcortical visual pathways in the LGN, and in the 

motion-processing visual cortical area MT. Spike trains in both LGN and MT were measured in 

absence of patterned visual stimulation (i.e. uniform illumination) to make the datasets comparable 
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across subcortical and cortical recordings. We show that spike rate fluctuations in both LGN and MT 

can be characterized as fractal, indicating the existence of long-range temporal correlations. We 

demonstrate that pair-wise correlations in spike rate are related to the nature of the long-range 

correlations within the spike pattern, most prominently in LGN K-cells and in area MT, and that 

neurons with larger spike rate variance (Fano-factor) are more strongly coupled to population 

activity. 

We synthesise our findings by reproducing the spike dynamics with a stochastic fractal 

inhomogeneous Poisson process. The dynamic rate of this process is the product of fractal Brownian 

motion (a fractal stochastic signal) and a global modulatory gain with white noise dynamics. Using 

this model, we can quantitatively reproduce both the fractal variability and population coupling 

within the LGN and area MT. We discover an intrinsic link between these two apparently distinct 

empirical findings through the Hurst exponent (the Hurst exponent is a measure of fractal 

variability). We find that a larger Hurst exponent leads to both a larger Fano-factor (Teich et al., 

1997) and to greater population coupling (Okun et al., 2015). Together, these results establish a 

unified account of spike rate variability across subcortical and cortical areas. 

 

Methods 

Ethical approval 

Procedures were approved by the institutional (University of Melbourne and University of Sydney) 

Animal Experimentation and Ethics Committee, and conform to the Society for Neuroscience and 

NHMRC policies on the use of animals in neuroscience research, as well as with the reporting 

guidelines of The Journal of Physiology (Grundy, 2015). 

Animal preparation and cell recordings 

Male marmosets (Callithrix jacchus, n=5) were obtained from the Australian National Health and 

Medical Research Council (NHMRC) combined breeding facility. Animals were housed in family 

groups and given ad libitum access to food and water. Recordings were made separately from the 

LGN of three marmosets (cases MA024, MA025, and MY146; typically 1200 s per recording epoch) 

and from area MT of two marmosets (cases MA027 and MY144; typically 300 s per recording epoch); 

27 cells were isolated from MA024 in three recordings, three cells were isolated from MA025 in one 
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recording, 19 cells were isolated from MY146 in six recordings, and 15 cells were isolated from the 

two MT recordings.  

 Details of surgical preparation were given previously (Solomon et al., 2011; McDonald et al., 

2014). Each animal was initially anaesthetised with an intramuscular injection of 12 mg kg−1 Alfaxan 

(Jurox, NSW, Australia) and 3 mg kg−1 Diazepam (Roche, NSW, Australia). Anaesthesia and analgesia 

were maintained by intravenous infusion of sufentanil citrate (6–30 µg kg-1 h-1) and inspired 70:30 

mixture of N2O and carbogen (5% CO2, 95% O2). Dominance of low frequencies (1–5 Hz) in the 

electro-encephalogram (EEG) recording and absence of EEG or electrocardiogram changes under 

intermittent noxious stimulus (tail pinch) were taken as the chief signs of an adequate level of 

anaesthesia. We found that low anaesthetic dose rates in the range cited above were always very 

effective during the first 24 h of recordings. Thereafter, drifts towards higher frequencies (5–10 Hz) 

in the EEG record were counteracted by increasing the rate of venous infusion or the concentration 

of anaesthetic. 

 Extracellular recordings were made using a Neuronexus (16×2 recording surfaces, surface 

separation 50 µm, shank separation 500 µm) silicon array probe (for LGN recordings) or 

multielectrode (“Utah”) arrays (10 x 10 electrodes, 1.5 mm length, electrode spacing 400 µm, 

Blackrock Microsystems) for MT recordings. Details of recording procedures were given previously 

(Solomon et al., 2011; McDonald et al., 2014; Zeater et al., 2015). Recordings from MT and LGN were 

made independently, but experimental conditions were as far as possible kept identical for the two 

sets of recordings. Signals from each contact point were amplified, bandpass-filtered (0.3–5 kHz), 

and digitized at a rate of 24 kHz using an RZ2 real-time processor (Tucker-Davis Technologies). 

Single-cell and multi-unit activity were classified off-line using commercial (Plexon) and in-house 

software written in MATLAB. As described previously (Solomon et al., 2014) voltage waveforms of 

single cells were discriminated by principal component analysis of amplified voltage signals. Isolated 

cells were retained for analysis if evoked responses to visual stimuli was at least 5 spikes sec-1 above 

the maintained activity. At least 1 minute settle time was allowed between measurements of evoked 

responses and the long-epoch measure of maintained activity. After each set of measurements in 

LGN the recording probe was advanced by 500 µm, and after 30 minutes settle time the stimulus set 

and maintained activity measures were repeated. 

 The typical duration of a recording session was 48–72 h. At the end of the experiment, the 

animal was euthanised via intravenous infusion of 300–600 mg kg-1 sodium pentobarbitone 
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(Lethobarb, Virbac). The animal was perfused transcardially with 0.9% saline followed by 4% 

paraformaldehyde in 0.1M phosphate buffer (PB, pH 7.4) and the 10% glycerol in PB. The brain was 

removed and placed in 20% glycerol for 24–72 hours, then coronally sectioned at 50 μm on a 

freezing microtome for histological electrode track reconstruction.  

Visual stimulus and cell classification 

Visual stimuli were generated using custom software (EXPO, Peter Lennie) and presented to the 

animal via a front-silvered mirror on a CRT monitor (Sony G520, refresh rate 100 Hz, viewing 

distance 114 cm, mean luminance 45–55 cd m-2). Visual stimuli comprised temporal square-wave 

intensity and/or chromaticity modulation of a spatially uniform circular field (pulse, duration 200 ms; 

100 repetitions; inter-stimulus interval 600 ms). The field was 5–12° in diameter. Short-wave 

sensitive (S) and medium/long-wave sensitive (ML) cone-isolating pulses and gratings were 

constructed by convolving marmoset cone spectral sensitivity with the spectral distribution of the 

monitor phosphors (Tailby et al., 2008b). During measurements of maintained activity, the screen 

was held at the mean luminance.  

 The cell class of isolated LGN cells (parvocellular, P; magnocellular, M; or koniocellular, K) 

was based on a combination of anatomical location (determined via histological electrode track 

reconstruction) and physiological response profile to visual stimuli. Some recordings from some of 

the cells presented here were reported in previous papers (Solomon et al., 2014; Townsend et al., 

2015; Zeater et al., 2015); all recordings were reanalysed for the present study.  

Identification of variable spiking activity  

Inter-spike interval (ISI) sequences, defined as the time interval between successive spikes in a spike 

train, were calculated for each neuron. Given   spikes let    be the occurrence time of the  th spike. 

The ISI sequence is: 

                         (1) 

We first introduce a simple measure to examine fluctuations in spiking activity termed spike 

residuals. A linear regression is applied to the spike index   and spike time   . Here,   acts as the 

dependent variable and    the explanatory variable. Linear regression fits a straight line following 

 ̂         , where                      and     〈 〉    〈  〉, where, 〈 〉 and 〈  〉 denotes 
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the expected value of   and   , respectively,           denotes the covariance between the two 

signals,   , and  , and         the variance of   . Thus, the spike-index residual,   ,  

         ̂            (2) 

is the difference between the value of the spike index predicted by the regression  ̂, and the 

measured value  . The spike-time residual preserves all inter-spike intervals (i.e. no temporal binning 

is required) thus giving a simple and parameter-free representation of spiking dynamics. 

Identification of fractal spiking activity  

Fluctuations of spike counts can also be quantified using the Fano-factor, which is defined as the 

variance of the spike count divided by the mean spike count across trials (Goris et al., 2014). Here, 

we used the Fano-factor time curve as introduced by Teich et al. (1997). Given a spike count rate of 

      calculated using non-overlapping windows of duration   , the Fano-factor time curve,    is  

    
          

〈     〉
       

If spike times are Poisson-distributed, then      for any   as the variance of a Poisson process is 

equal to its mean for all window sizes. Any deviation from unity thus implies a divergence from 

Poisson-like activity. If the signal has regularity then the variance decreases as window size 

increases, and     . If the signal is fractal then the Fano-factor appears as a straight line on a log-

log plot of    against   and can be fitted as a power-law function with exponent  :        (Teich et 

al., 1997; Lowen et al., 2001). The slope of the Fano-factor time curve therefore provides an 

estimate of fractal scaling. We also characterise the Fano-factor time curve by the divergence 

point,  , the window-width where the curve diverges from unity and follows a power-law function. 

To obtain the divergence point a power law function,        , where   is an arbitrary constant, is 

fit to power-law segment of the Fano-factor time curve using a Levenberg-Marquardt nonlinear least 

squares algorithm and the fit is used to solve for the divergence point    where      .  In 

calculating the Fano-factor time curve we increased the window width from a minimum of       

ms to a maximum of             where      is the duration of the recording, to avoid limited 

sample size effects. 
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Characterising the coupling of a neuron to the population activity  

To characterize the coupling of each neuron to the population activity, we adopted methods 

introduced by Okun et al. (2015). The spike-triggered population rate,      , of each neuron   to 

population activity is given by 

         
 

‖  ‖
∫        ∑(       〈  〉)  

   

    

 

          

where   is time,   is lag,       represents the smoothed spike rate of neuron  ,      is the duration of 

the recording, 〈  〉 represents its mean spike rate across the whole recording, ‖  ‖ is a normalisation 

value (the number of spikes fired by neuron  ) and        , summing over the   recorded 

neurons and summed   multi-unit activity across all channels.  

The size of the population coupling,    , is given by value of the spike-triggered population rate at 

zero-time lag,               .  The smoothed spike rate,      , was calculated by binning spikes 

with 1 ms resolution and convolving the resultant vector with a Gaussian of half-width     √  ms 

(Renart et al., 2010). Control analyses were performed on shuffled surrogate datasets, which were 

generated as described in the Statistics section. To compare across recordings, we normalize the 

population coupling by the median population coupling of the surrogate shuffled spike data. 

 

Identification of correlated activity  

The spike count correlation,  , is the Pearson correlation coefficient between the maintained spike 

counts of two simultaneously recorded neurons. Given a pair of neurons,   and  , with maintained 

spike counts       and      , the correlation     is given by  

    
                                

√                   √                  
       

For our analysis the maintained spike counts were calculated using non-overlapping 200 ms bin then 

convolved with a Gaussian kernel (  = 200 ms) according to Renart et al. (2010). As changing brain 

states across a long recording epoch could potentially alter    , we compared pairwise correlations 

across the first and second half of the recording. No significant differences in     were found. 

Characterising functional connections 
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Functional connections between neuron pairs were calculated using     within each recording. A 

functional connection,     , is defined as existing between 2 neurons if the pairwise correlation 

    〈    〉        
 , where      represents all pairwise correlations recorded, 〈    〉 is the mean 

value, and      
 is the standard deviation. Using the resultant binarized adjacency matrix, we 

calculated the degree of connectedness,     ∑      , defined as the total number of functional 

connections connected to a given neuron   (van den Heuvel and Sporns, 2011). 

Rescaled range analysis  

In complementary analysis to the Fano-factor time curves outlined above, we characterized spike 

rate fluctuations,     ,  as a continuous self-similar process satisfying 

      | |          

 where   is an arbitrary constant,   is time, and H is the Hurst exponent (Beran, 1992). We calculated 

the Hurst exponent using rescaled range (   ) analysis as described in Weron (2001). To calculate 

the rescaled range, a neuron’s spike rate measured across a recording duration,     , is divided into 

  non-overlapping subseries of length  . For each subseries,        : we find the mean, 〈 〉 , 

and standard deviation,   , and normalise the data,     , by subtracting the sample mean 

          〈 〉 . We then calculate the cumulative time series,       ∑       
    for         , 

and the range of each subseries                    , finally, we calculate the mean rescaled 

range, 
  

  
   for each subseries of length   

(
 

 
)
 
  

 

 
∑

  

  
     

 

   

  

Asymptotically, the rescaled range follows the relation, (
 

 
)
 
    , where       is the window 

width,    the window the spikes are binned in to calculate the firing rate,   is an arbitrary constant, 

and   is the Hurst exponent  In the present study, when calculating the Hurst exponent of the spike 

rate,       spikes were binned into non-overlapping counting windows of duration            

(Thurner et al., 1997) and the subseries lengths   were chosen such that   ranged from a minimum 

of       s to a maximum of   
    

 
 s in 50 logarithmic steps; we tested other window widths from 

        ms to   s and obtained similar results. Furthermore, the reader should note that the 

Hurst exponent is related to various other fractal measures; for example  another typical fractal 
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measure is detrended fluctuation analysis (DFA) where the DFA exponent  , is equal to Hurst   via 

        (Hardstone et al., 2012). 

 

Fractal Brownian motion 

 Fractal Brownian motion (   ) is a non-stationary fractal stochastic process (Mandelbrot, 

1982), which can also be parameterised by the Hurst exponent  , satisfying Eq. 6. The commonly 

used definition of        is         ∫ [            ]      
 

  
 where      

 

      

     for     and     for    ,      ,   is the Gamma function,      is ordinary Brownian 

Motion, and     are time increments (Abry and Sellan, 1996). From this definition the variance of 

fractal Brownian motion increments is given by    (             )   |   |   where   is a 

positive constant (Abry and Sellan, 1996). The value of   determines the structure of     as 

follows. When the value of   lies between 0 and 0.5, the fBM is negatively correlated: an increase in 

spike rate is typically followed by a reduction, and a reduction is typically followed by an increase. 

When   lies between 0.5 and 1, the fractal process is positively correlated, that is, an increase in 

spike rate is typically followed by another increase, and a reduction in spike rate is typically followed 

by further reduction. Thus, long-range correlations exist in the spike rate for      . When   

   , successive changes in spike rate are independent ("pure" Brownian motion). The     signals 

are created as a cumulative summation of fractal Gaussian noise generated using bi-orthogonal 

wavelets as in Abry and Sellan (1996) and Bardet et al. (2003) and generated using the MATLAB 

function wfbm. 

 

Globally modulated fractal stochastic process 

To determine the relation between fractal Fano-factor time curves and neural population coupling 

we developed a fractal stochastic model, which combines fractal fluctuations of spike rate with a 

global modulatory gain term (Churchland et al., 2011; Ecker et al., 2014; Goris et al., 2014). The 

model is an extension of the commonly used model in which the spike count   follows an 

inhomogeneous Poisson distribution: 

   |         
      

  
        , (8) 
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here      is the spike rate and   , is the counting window. We assume the spike rate arises from the 

product of two positive-valued signals: 

                     

where        is a fractal process undergoing fractal Brownian motion constrained by the observed 

Hurst exponents (as described above), and      represents a dynamic global modulatory gain that is 

identical between simulated neurons. To ensure      is positive the two signals are set to be 

positive-definite by taking the modulus of the generated signals,         |      | and 

     |    |. As a minimal assumption, we set the global rate to be Gaussian (white) noise 

(〈 〉    Hz,      Hz) where the signal is generated in 1 ms increments. Global modulatory gain 

can represent effects such as changes in neuromodulation from arousal levels, attention, or 

anaesthesia (Goris et al., 2014; Shine et al., 2019). Furthermore, the simulated individual neuronal 

fractal rate        is scaled such that the simulated cells mean firing rate, 〈            〉 matches 

the empirically observed cell population mean spike rate 〈 〉 , where   = P, M, K, or MT, i.e., 

〈            〉   〈 〉 . This is achieved by scaling the generated        to ensure the condition 

that 〈      〉    〈 〉  〈    〉 is met, this scaling maintains the fractal relationship as a scaled 

fractal is itself fractal. Finally, we require that        cannot be strongly anti-correlated with     , 

                   , as      is generated first we achieve this condition by discarding generated 

       that fail the criterion; this assumption ensures the simulated neuronal spike rates 

predominantly range between slightly anti-correlated to strongly correlated, consistent with 

experimental findings (Okun et al., 2015). 

 

Statistics 

Statistical analyses and graphing were conducted using MATLAB (R2016b, MathWorks Inc., Natick, 

MA, USA). All values are reported as the mean   and standard deviation  . Correlations were 

assessed using Pearson’s correlation coefficients and Spearman rank coefficient (as specified). 

Statistical comparisons for measured values containing multiple groups were compared using the 

Wilcoxon non-parametric rank sum test. Two surrogate data series were generated. In the first, we 

randomly shuffled ISI times across the entire recording duration for a recorded neuron and 

generated surrogate neuronal spike times as their cumulative summation. This surrogate dataset 

removes inter-spike dependencies and long-term spike correlations while preserving the ISI 
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distribution. This surrogate dataset tests the null-hypothesis that surrogate neurons with identical 

inter-event distribution to the recorded neurons can reproduce the observed spike dynamics. The 

second surrogate data set was generated by randomly swapping spike pairs between all 

simultaneously recorded neurons (as in Okun et al., 2015) destroying inter-neuronal correlations. To 

ensure a sufficient number of swaps are performed to randomize the surrogate data, we swap all 

recorded spikes at least once. By swapping spike pairs, we ensure each surrogate neuron retains the 

same number of spikes across the entire recording as the recorded neurons and the shuffling 

preserves the population spike rate. This surrogate exercises the null-hypothesis that population 

coupling varies according to differences in mean spike rate or the temporal properties of the 

population spiking activity. Model comparisons were made using the Bayesian information criterion 

(BIC; Schwartz, 1978) after fitting data using a Levenberg-Marquardt nonlinear least squares 

algorithm. Statistical comparisons between distributions were compared using a two-sample 

Kolmogorov-Smirnov test. 

 

Results 

The activity of 49 single LGN cells was measured at 10 recording sites in three marmosets. The 

functional class of each LGN cell was determined by a combination of histological reconstruction of 

the recording sites (Fig. 1A) and visually-evoked responses to cone-isolating and achromatic contrast 

pulses. Example responses of three simultaneously recorded neurons to ML cone and S cone 

isolating contrast increments and decrements are shown in Fig 1B-D. Of the 49 isolated cells, 12 

were classified as parvocellular (P-cells), 5 as magnocellular (M-cells) and 32 as koniocellular (K-

cells); the 49 isolated cells came from 10 recordings comprising 12, 12, 5, 4, 3, 3, 3, 3, 2, and 2 well 

isolated cells. Similar measurements were made from 30 cells in area MT (15 randomly selected cells 

from each of two separate marmosets; Townsend et al., 2015). Our analyses of spiking dynamics are 

based on measurements of the maintained activity (i.e. in absence of patterned visual stimuli) of 

these cells. 

Fractal variability of maintained activity 

Spike rate in both LGN and MT shows super-Poisson dynamics (a larger variance than a Poisson 

process with the same mean). Figure 2A demonstrates the variance to mean relationship of all cells, 

for spike counts binned in windows of    10 s. The strength of fluctuations as measured by the 



 

 

This article is protected by copyright. All rights reserved. 

 

14 

coefficient of variation increases from P-cells to K-cells (p = 0.005, Wilcoxon non-parametric rank 

sum test), from M-cells to K-cells (p = 0.05), and from LGN to MT (p < 0.001). The super-Poisson 

variability in LGN and area MT cells is robust for all   1s and is due to nonstationary fluctuations of 

the spike rate. 

  We used the spike-index analysis to visualise variability at multiple temporal scales. The 

spike-index residual (see Methods) preserves all inter-spike intervals (i.e. no temporal binning is 

required) and offers a simple parameter-free representation of spiking dynamics. Spike-index and 

spike residual are demonstrated for three LGN cells in Figure 2B and C respectively. Figure 2D 

compares the spike-index residual for one K cell at several timescales. In each case, the residual 

appears as a slow-up, rapid-down sawtooth pattern over time. The appearance of similar patterns of 

variability across multiple scales is a signature of a fractal process. 

We next used Fano-factor time curve and power spectrum analyses to quantify the fractal 

structure of the spike variability. The Fano-factor as typically calculated is a biased metric, biased by 

the window,  , used to bin the spike count (Nawrot, 2010), thus, we overcome this bias by 

calculating the Fano-factor time curve (differing  ). As expected (Croner et al., 1993; Victor et al., 

2007), at short window sizes (        the Fano factor is close to unity: for short windows the spike 

count is an approximation of the Bernoulli process and in each small interval we observe either 1 

spike with probability   or 0 spikes with probability        However, beyond a critical window size, 

 , which we call the divergence point, the Fano-factor increases, with respect to the empirical limit 

             , as observed in our data the limit appears unbound and increases as a power-law 

curve. This finding is evidence for fractal dynamics. If, for example, the spike rate was oscillatory the 

FF would increase above unity before decreasing below unity at   = the period of the oscillation. We 

validate this assertion below in Fig. 7.  

 

We observed a large variability in    (Fig 3A-D) both within (individual neurons are shown by 

faint grey lines) and between different populations (averages are shown by coloured lines). The 

slope of the power-law segment of the population mean    is similar and close to     in all LGN 

subclasses, but the slope is shallower in MT,      . By contrast, the arrows in Fig 3E show that the 

divergence point occurs at shorter time windows for K (  : μ =      s, σ =      s), than for P (  : μ = 

    s, σ =     s), or M (  : μ =   s, σ =     s) cells (p < 0.01, Kruskal-Wallis test). Interestingly, we find 

that the divergence point for K-cells is closer to that for cortical area MT (   : μ = 0.01 s, σ = 0.01 s). 
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Fano-factor time curves for MT recordings terminate earlier than those for LGN because the 

recording epochs in MT were briefer (~300 s in MT compared to ~1200 s in LGN). 

We next computed the average power-spectrum for each cell population, and asked 

whether the Fano-factor time curves are consistent with the power spectrum, as is expected by 

theory (Melsa and Sage, 1973). Power spectra were calculated for spikes binned in non-overlapping 

windows of 1 ms. Because the spikes are binned in windows smaller than the mean interspike 

interval, the resultant power-spectrum,     , is an estimate of the point process (Melsa and Sage, 

1973). We averaged across recordings and found the mean power-spectrum of each cell class 

exhibits power-law 1/  decay characterised by a straight line in log-log axis (Fig. 3F, dotted lines). 

These results are congruent with the expected relationship between Fano-factor scaling exponent, 

     , and power-spectrum exponent,           , for all cell classes (Teich et al., 1997). For 

example, the power-spectrum exponent for area MT (     is close to 0.5 (              ) as is the 

Fano-factor scaling exponent (           ). Congruent values were also found for P-cells and M-

cells:              ;              and K-cells:              ;          . To ensure the suitability of 

the power-law fit of the Fano-factor time curves and power-spectra, the Bayesian information 

criterion (BIC; Schwartz, 1978) was calculated for a power-law curve, an exponential curve, and a 

logarithmic curve. Curve parameters were estimated using a Levenberg-Marquardt nonlinear least 

squares algorithm. The results are summarized in Table 1, which shows that the Fano-factor time 

curves were best fit by a power-law curve across multiple orders of magnitude for all cell types 

studied. In sum, the pooled Fano-factor time curves and spectral analyses indicate consistently that 

the LGN and cortical spike trains show fractal property. 

The reader should note at this stage that we see additional signs of non-fractal complex 

dynamics in the measured spike trains. For example, some cells show non-monotonic rise in the 

Fano-factor time curve beyond the divergence point (faint grey lines, Fig. 3A–D), and the spectra in 

Figure 3F include peaks which rise above the lines of fractal slope. We did not attempt to model 

these additional complexities. They do not affect our main conclusion that fractal dynamics give a 

better explanation for the observed spike trains than do exponential or logarithmic dynamics. 

 We tested our Fano-factor and frequency analyses on surrogate datasets by randomly 

shuffling the ISIs of each neuron. The surrogate point process formed from the shuffled intervals has 

the same distribution of ISIs but the correlations between spikes are destroyed. In other words, the 

surrogate datasets are equivalent to a sample from a renewal process with ISI distribution 
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equivalent to the original point process (Melsa and Sage, 1973). As expected we find that shuffling 

the ISI times of each neuron flattens the Fano-factor time curve to unity (Fig. 3E), and flattens the 

power spectrum to the mean spike rate (Fig. 3F). Thus, when compared with the surrogate data for 

all LGN and MT neurons at large temporal windows spiking activity is significantly different from 

surrogate uncorrelated spiking data with an identical ISI distribution (at   = 2 s: MT-cells, μ = 16, σ = 

8; K-cells, μ = 4.7, σ = 4.0; P-cells, μ = 1.6, σ = 0.4; M-cells μ = 1.8, σ = 0.5; Fig. 3E). In all cases these 

values are larger than values for the surrogate data (μ = 1.1 σ = 0.1, p < 0.001, Kruskal-Wallis test). 

Because the above analyses indicate fractal variability, we also performed rescaled-range 

analysis, which provides a measure of fractal fluctuations from a different perspective (Eq. 6, Eq. 7). 

The rescaled-range is the ratio between the range of the cumulative normalised spike rate and its 

standard deviation at each temporal scale. The slope of the resulting power-law increase of rescaled 

range is the Hurst exponent (see Methods). The Hurst exponent   is a dimensionless quantity that 

characterizes the long-range temporal correlations: for         correlations are negative; for 

        correlations are positive. As   increases the variability of fractal stochastic process 

increases. At this point we note that fractal Brownian motion (   ) can also be characterised by the 

Hurst exponent: in a later section we use     to develop a model which explains the 

experimentally observed data. 

As shown in Figure 4, the rescaled range analysis reveals fractal fluctuations that are well 

described by a power-law function, (
 

 
)
 
    , (Fig. 4 left column; dashed line) as the curve extends 

across multiple orders of magnitude across all cells. The slope of the power-law fit is the Hurst 

exponent. As the Hurst exponent is calculated on the spike-rate calculated using a counting window 

       ms it has a limited range and only asymptotically scales as the Hurst exponent (Weron, 

2001), thus, to ensure the suitability of the power-law fit of the rescaled range analysis the Bayesian 

information criterion (BIC) was again calculated as above (Table 1) yielding a result congruent with 

the Fano-factor time curve analysis, that is, the power-law model best fits the data indicating fractal 

spike rates. The spike rate of an example cell from each population is shown in the centre column of 

Figure. 4. Importantly, we find that the Hurst exponent is similar within each cell class, and across 

recordings (Fig. 4, right column), and is always less than 0.5 (indicating negative long-timescale 

correlations). Furthermore, the Hurst exponent increases from LGN to area MT and is lower in P-cells 

and M-cells cells than in K-cells. The population mean,  , and standard deviation,  , of the Hurst 

exponent distribution are P-cells,              ; M-cells,              ; K-cells,   
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            ; and MT-cells,              . The K-cells show marginally larger Hurst 

exponents than P-cells (       , Wilcoxon non-parametric rank sum test) and M-cells (      ). 

Similarly, MT-cells show larger Hurst exponents than P-cells (       ), M-cells (       , 

Kruskal-Wallis test), and K-cells (         , Kruskal-Wallis test). These results are consistent with 

our earlier finding that the mean-normalized variance (Fano-factor) in K-cells is greater than that in 

P-cells or M-cells, and that the mean-normalized variance of MT-cells is greater than that of LGN 

cells. 

Population coupling and variable spiking are related  

Studies of visual cortical area V1 in mouse and macaque monkey have shown the activity of 

individual neurons can range from weakly to strongly coupled (correlated) to the population activity 

(Okun et al., 2015). In this section we show that that diverse coupling is a feature of spiking activity 

in the LGN (most prominently in K-cells) and is also a property of MT-cells. Figure 5A shows examples 

of K-cell, M-cell, and P-cell spike-triggered population rate (    ). To normalise and compare across 

recordings we use the median value of population coupling (         at zero-lag) after shuffling 

(see Methods: Characterising the coupling of a neuron to the population activity). As shown in Fig. 

5B, population coupling in LGN neurons varies from strongly correlated to anti-correlated with the 

population activity. The    coefficients range from -0.5 to 4, displaying anti-correlated to strongly 

correlated population coupling. A similar pattern was observed within MT, with values ranging from 

-1 to 4  (Fig. 5D, E), which is also consistent with that described in V1 of mouse and macaque (Okun 

et al., 2015). As expected, shuffling spike times destroys the broad population coupling yielding μ = 

0.99 and σ = 0.1 (Fig. 5B, E). The shuffling removes non-stationarities of individual neurones but 

preserves mean spike rates as well as temporal fluctuations in the population spike rate. This result 

therefore confirms that diverse coupling of neurons is not a statistical artefact due to the average 

spike rate of individual neurons. The K-cells (μ = 1.2, σ = 0.9) and MT-cells (μ = 0.9, σ = 0.6) 

demonstrate a broader distribution of population coupling than M-cells and P-cells (μ = 0.9, σ = 0.4). 

Our analyses show that spiking variability and population coupling is stronger in K-cells than 

in M-cells or P-cells. We therefore asked whether spiking variability is related to population coupling. 

Indeed, Fig 5C and F show that population coupling,   , is positively correlated with the Fano-factor 

(   10 s), for K-cells (r = 0.48, p =     , Spearman rank) and MT-cells (r = 0.6, p <      ). The 

correlation was not significant for M-cells (  = 0.20, p = 0.78) or P-cells (  = 0.27, p = 0.39), but the 

sample size for these populations is too small to draw firm conclusions. The result was robust for 
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Fano-factor window sizes           s (not shown). In sum, the data appear to reveal an intrinsic 

relationship between population coupling and spike variability that is common to subcortical and 

cortical visual centres.  

Sub-cortical correlated activity and population coupling 

W

Correlated activity is a 

hallmark of cells that share input or are reciprocally connected. Cortical cells generally exhibit small 

pairwise correlations that are distance dependent (Smith and Kohn, 2008; Solomon et al., 2014). We 

measured the pairwise correlations in maintained activity among LGN cell pairs; for example two K-

cells would constitute a KK pair while a K-cell and P-cell would constitute a KP pair. The recordings 

contain 10 PP, 2 MM, 99 KK, 40 PK and 11 MK pairs. No PM pairs were recorded. As shown in Fig. 6A 

we find PP (μ =0.03, σ =0.05, n = 10), PK (μ =0.06, σ =0.07, n = 40), MM (μ = 0.09, σ = 0.07, n=2) and 

MK (μ =0.05, σ = 0.08, n=11) pairs are tightly distributed around r = 0, with the median r = 0.05. As 

expected (Cheong et al., 2011) the KK pairs (μ = 0.08 σ = 0.16, n = 99) show a broader and more 

positively skewed distribution than the other type-pairings. Correlations between most LGN pairs are 

small, and decrease slightly with distance (Fig. 6B). Interestingly, some KK pairs show high 

correlations at distances as far as 600 μm, suggesting that these correlations do not originate from 

visuotopically organised inputs but perhaps from broadly organised inputs from other sub-cortical 

areas.

Population coupling in mouse V1 was suggested to reflect greater synaptic connectivity 

(Okun et al., 2015). To address this possibility in LGN, we calculated functional connectivity maps 

(Buckner et al., 2011), where the existence of a functional connection is determined by the strength 

of pairwise correlation coefficients. An example of a functional connectivity map between 

simultaneously recorded pairwise neurons is shown in Fig. 6C. We first looked at the spatial spread 

of functional connections by ignoring all small or negative functional connections,        , and 

calculating the degree of connectedness,  , for each neuron (Poli et al., 2015). For the purposes of 

these analyses, connections were taken to be undirected and unweighted. The degree of 

connectedness   (See Methods) quantifies the number of functional connections of a neuron with 

its neighbours. We find that P-cells (μ = 1.1, σ = 2.1) and M-cells (μ = 1.2, σ = 1.9), have lower q than 

K-cells (μ = 2.6, σ = 3.3; Chi-square variance test, p <       for both comparisons). Figure 6D shows 

connections of 4 example neurons from the functional connectivity map in Fig. 6C; here it is evident 
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that functional connections can extend across layers of the LGN and between functionally distinct 

cell types.  

We next asked if there is correlation between the number of functional connections a 

neuron receives and its population coupling. We limited our comparison to recordings containing 

more than 10 isolated K-cells. Figure 6E compares the normalised population coupling (  ) and the 

total number of functional connections (q). Population coupling increases with the number of 

functional connection (Spearman rank correlation coefficient = 0.66, p < 0.005). This result expands 

our understanding of population coupling to include inferred connections to K-cells within the LGN. 

It should be noted that the calculation of functional connections (strongly correlated neurons) is 

extremely similar to population coupling in terms of the data analysis calculations and it is no 

surprise that they are strongly correlated. 

As the final step of our empirical analysis, we asked how the variable spiking of each neuron 

relates to the degree of connectedness. Figure 6F shows that Fano-factor (     s) and the total 

number of functional connections are marginally correlated (Spearman rank correlation coefficient = 

0.48, p = 0.05). Thus, K-cells with stronger functional connections are not only more variable but are 

also more coupled to the population activity, revealing a relationship between pairwise correlations 

and spike rate variability. 

Unifying explanatory model  

 In this section, we show that a fractal stochastic process with a global modulatory gain can provide a 

unifying model for our empirical data. Although previous studies have used inhomogeneous Poisson 

processes to reproduce variability in maintained activity (Teich et al., 1997) and evoked variability 

(Ecker et al., 2014; Goris et al., 2014), they were unable to explain both diverse population coupling 

and fractal spiking. Here we model the rate of an inhomogeneous fractal Poisson process, 

           G(t), as the product of an intrinsic process of fractal Brownian motion,        and a 

global modulatory gain,     , which is assumed to be white noise  〈 〉          (see Methods). 

When simulating a cell from a given population, we randomly sample the Hurst exponent from a 

normal distribution whose parameters are matched to our empirical data (Fig. 4): P-cells,   

          ; M-cells,             ; K-cells,                MT-cells,               

and we normalise individual      such that the population spike rate distribution matches the 

empirical data. Thus, the generative model is empirically constrained to produce activity that 

matches both the Hurst and average spike rate distribution seen in experimental data. 
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Figure 7 compares our fractal inhomogeneous Poisson model to other plausible types of 

non-stationary spike dynamics. We first showed that 20 simulated neurons with a dynamic rate 

undergoing fractal Brownian motion (Fig. 7A) reproduce the fractal signature in the Fano-factor time 

curve. We then simulated three other inhomogeneous Poisson models by modifying       , while 

preserving the global gain modulation      and the mean spike rate. Firstly we removed the fractal 

component of the model (by setting the Hurst exponent to 0.5). This change destroyed the increase 

in Fano-factor for increasing window (Fig. 7B). Secondly we set the dynamic rate to oscillate at a rate 

of      Hz. In this case, the Fano-factor peaks at       s before decreasing below unity at       s, 

which corresponds to the period of the oscillation (Fig. 7C). Finally, we randomly drew spike rates 

from a heavy-tailed lognormal distribution (  = 2,   = 2) and found the Fano-factor does not increase 

above unity (Fig. 7D). Thus, our model (through the inclusion of a fractal rate) provides a simple and 

minimal method to reproduce the empirically observed power-law increase in the Fano-factor time 

curve.  

Comparison to experimental data. 

The model quantitatively reproduces the temporal spike patterns observed experimentally. Figure 

8A (left column) shows the simulated spike rate of a P-cell (upper row), a K-cell (centre row) and an 

MT-cell (lower row). In these examples the global modulatory gain is identical, and the Hurst 

exponent used to generate the fractal Brownian motion is varied depending on cell type. We found a 

good match between simulated and recorded spike rates for each cell class (Fig. 8A, right column). 

After simulating the same number of neurons for each cell-type as experimentally recorded we 

found the model produced cell-type population ISI distributions (pooled ISIs across all cells of a given 

type; Fig. 8B left column) that match the empirical data for P (p = 0.03), M (p = 0.01), K (p < 0.001), 

and MT cells (p = 0.01; two-sample Kolmogorov-Smirnov test; Fig. 8B right column). Removing the 

fractal component of the model (by setting the Hurst exponent to 0.5, as in Fig. 7B) destroyed the 

quantitative correspondence for all cell groups (p > 0.2 for all comparisons; two-sample Kolmogorov-

Smirnov test). Consistent with the experimental recordings (Fig. 2A) we found (Fig. 8C) simulated 

cells reproduce the same spike-count variance to spike-count mean ratio qualitatively and the K-cells 

display more spike-count variability than P-cells and M-cells do (Cheong et al., 2011). Thus, an 

increasing Hurst exponent captures the variable spiking dynamics in the observed data. 

The simulated spike trains resemble the experimentally observed spike trains, but of course 

we need to show deeper connections between our model and the population data. We therefore 
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asked whether our fractal stochastic model can explain the observed differences in Fano-factor time 

curves between the different  (K-cell, P/M-cell, MT-cell) groups as seen in Figure 3E. Figure 8D 

demonstrates the simulated Fano-factor time curves (pale lines show individual simulations; the 

dark line shows population mean ±SEM). In close agreement with the experimentally observed Fano-

factor time curves (Fig. 3E), the simulated curves are unity for small windows before increasing as a 

power-law function as expected for a fractal process generated using     (Teich et al., 1997). 

Further, we find the divergence points (arrows) are quantitatively comparable to the experimentally 

observed divergence points (                     ⁄    ) for each of the cell populations and 

inversely proportional to the Hurst exponent of each cell-type population. Thus, fractal Brownian 

changes in spike rate and  cell-type specific Hurst exponents are required for our model to 

reproduce the empirical data. 

 We next asked whether our inhomogeneous fractal model could also reproduce diverse 

population coupling by allowing the global modulatory signal    to vary (see Methods). We found 

diverse population coupling that matches the recorded data under only a restricted range of global 

modulation    variability. Figure 9A shows five example      traces (Fig. 9A left column) and the 

population coupling distribution (Fig. 9A right column) of 40 simulated K-cells without global 

modulation (     Hz), here the normalized population coupling (red) is extremely broadly 

distributed before (      and    ; Fig. 9A right column red) and tightly distributed after spike-

pair shuffling (       and       ; Fig. 9A right column blue). The broad distribution of 

normalized population coupling is expected as the simulated cells are uncorrelated. On the other 

hand, under strong global modulation variability (      Hz), the      traces overlap (Fig. 9B left 

column) and the normalized population coupling are tightly distributed both before (       and 

     ; Fig. 9B right column red) and after (       and       ; Fig. 9B right column blue) spike-

pair shuffling. Here, the tight distribution around      shows  that spike rates of all the simulated 

neurons are strongly correlated. Finally, as shown in Figure 9C, under a restricted ("Goldilocks") 

range of global modulation variability between these two extremes, (   = 1 Hz to 4 Hz), we found 

the simulated population coupling is intermediately distributed and closely resembles the 

experimentally observed distribution of K-cells             ,  cf. Fig. 5B). For example, at 

       , the simulated      traces (Fig. 9C left column) and the normalized population coupling 

are broadly distributed (             ; Fig. 9C right column red) and become narrowly 

distributed (             ; Fig. 9C right column blue) after spike time shuffling. The difference 

between normalized population coupling and spike-pair shuffled population coupling implies the 
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population coupling reproduced by the model is not due to differences in mean spike rates or 

temporal properties of the population rate. Congruent results were obtained from simulated sets of 

P-cells, M-cells, and MT-cells (data not shown). 

Our recorded data in LGN and MT showed an intrinsic relationship between diverse 

population coupling and fractal Fano-factor time curves (Fig. 5C, 5F). Under the conditions shown in 

Figure 8C and simulating 400 K-cells, the inhomogeneous fractal model reproduces this relationship 

(               , Fig. 10A). We note here that the relationship between Fano-factor and 

normalised population coupling,   , is consistent with experimental findings (Okun et al., 2015). 

Within our model each simulated neuron receives the same global modulation, thus, the difference 

in Fano-factor and population coupling arise from the individual neuronal fractal rates        

generated with differing Hurst exponents. We observe the    is positively correlated with the Hurst 

exponent (             , solid line Fig.10B). Less variable simulated cells (smaller than average 

Hurst exponent) are centered around the shuffle normalized median population coupling    ~ 1 

extending into negative   , whereas, the more variable simulated cells (larger than average Hurst 

exponent) the population coupling increases with Hurst exponent. This result is expected as the 

magnitude of the population coupling is proportional to the variance of the spike rate for cells with 

identical mean spike rates (Eq. 4). Finally, we found that as the Hurst exponent increases the 

variance of the spike rate increases (              ; Fig. 10C). This can be understood by the 

variance of fractal Brownian motion increments given by    (             )   |   |   

where   is a positive constant and     are time increments (Abry and Sellan, 1996), i.e. given two 

       signals with identical mean spike rate the signal with a larger Hurst exponent will possess 

greater variance (‘burstier’) and as a result a larger Fano-factor. In other words, a neuron's intrinsic 

fractal variability (Hurst exponent) can explain the correlation between apparently independent 

properties of spike variability and diverse population coupling.  

Discussion 

  Our results indicate that fractal spike dynamics and diverse coupling to population activity are 

general properties extending across sub-cortical (LGN) and cortical (MT) visual areas. The fractal 

dynamic and population coupling properties are linked, in that neurons showing greater fractal 

fluctuations are more correlated to the local population activity. An inhomogeneous fractal Poisson 

process with global modulatory gain can explain this linkage, as well as account for the transition 

from Poisson-like dynamics at short timescales to fractal dynamics at longer timescales. Our results 
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thus establish a unified account of two dynamic properties of neural spike activity: fractal spike 

patterns (Teich et al., 1997) and diverse population coupling (Okun et al., 2015), which to date have 

been treated independently and which previous rate-based stochastic modelling studies (Ecker et 

al., 2014; Goris et al., 2014) could not reproduce. The computational simplicity of our model means 

empirical spiking dynamics can be readily simulated and used to guide more biophysiological models 

to drive further insights into neural dynamics. 

  Despite our successful application of a fractal-based model to the observed spike trains it 

could be argued that (as with any model) the fractal analysis does not offer a complete 

characterisation of the data. Most importantly, as noted in connection with Figure 3, we see 

additional signs of non-fractal complex dynamics in the observed spike trains. We did not further 

elaborate our model to capture such complex dynamics, but our main conclusions regarding 

differences between the cell classes (for example, the tighter coupling of K-cell activity to population 

activity) are relative, and therefore not an artificial by-product of the fractal analysis. In contrast, our 

fractal-based model contains the minimal additions required to reproduce empirically observed 

fractal variability and diverse population coupling. 

  Recordings were conducted under sufentanil anaesthesia, which constitutes a limitation to 

our study. Most pertinently, during recordings the EEG spectrum was dominated by sub-alpha 

frequencies, that is, quite different to waking state. Alitto et al. (2011) showed LGN cell responses to 

visual stimuli remain consistent between alert and anaesthetised states (although maintained rates 

are reduced under anaesthesia), but it is of course implausible that our results would translate 

directly to waking animals. Nevertheless, we expect that the broad pattern of results – specifically, 

the fractal properties of spike trains (Baddeley et al., 1997) and the differences between LGN cell 

classes (present results), would largely be preserved in alert animals. Analysis of spike trains in 

waking animals would of course be required to substantiate or refute this prediction. 

Fractal nature of fluctuations 

Our results extend classical studies of fractal activity in the central nervous system (Teich, 1989; 

Baddeley et al., 1997; Teich et al., 1997) in two main ways. Firstly, we found fractal spiking activity 

within both the LGN and cortex, suggesting fractal dynamics could be a general property of ongoing 

activity in the visual system (and, perhaps, the brain in general). Secondly, we found the spiking 

variability and population fractal properties vary between parallel visual pathways in the LGN. 

Furthermore, as we have found that it is neurons with ‘burstier’ fractal dynamics (larger Hurst value) 
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which are correlated with population spiking activity, larger-scale EEG/MEG recordings which record 

population activity may be over-represented by the burstier fractal activity (Hardstone et al., 2012). 

 The fractal feature of neural spike activity indicates that spike rate fluctuations occur over a 

broad range of time scales and possess long-range correlation. These properties may enable neurons 

to maximize their information-carrying capacity (Baddeley et al., 1997) and to be capable of rapid 

reorganization during processing demands (Linkenkaer-Hansen et al., 2001). Furthermore, it could 

be speculated that intrinsic fractal fluctuations seen at the individual neuronal level are related to 

behavioural measurements such as fractal fluctuation in reaction time latency (Gilden et al., 1995). 

Fractal fluctuations of maintained neural activity might underlie such behavioural observations, and 

may provide an efficient mechanism for exploiting the spatiotemporal structures of scale-invariant 

natural environments (Ruderman and Bialek, 1994; Munn and Gong, 2018); this may lead to similar 

fractal spiking dynamics as found in V1 and IT neurons in response to natural movies (Baddeley et 

al., 1997). Similar to Baddeley et al. (1997) we found that neurons fire sparsely, consistent with using 

an optimized rate code where the spike rate is constrained to maximize information transmission 

(Baddeley et al., 1997; Olshausen and Field, 1997). 

Relevance to parallel processing in the visual system 

We found the divergence point from Poisson-like to fractal Fano-factor time curves decreases from 

P-cells and M-cells (~1s) to K-cells (~100 ms), and MT-cells (~10 ms). It is possible that the divergence 

point reflects the timescale over which neuronal populations are recruited for computational tasks. 

It is interesting to note that MT cells diverge much earlier than thalamic neurons (an order of 

magnitude compared with K-cells and 2 orders earlier than P/M cells) despite possessing 

approximately an order of magnitude lower mean spike rate. Furthermore, the fractal slopes of the 

Fano-factor time curves and power spectrum are consistent within the LGN (~0.7) but shallower 

within MT (~0.5), and the fractal fluctuations in spike rate characterized by the Hurst exponent 

increase from P-cells and M-cells (~0.1), to K-cells (~0.18) and MT-cells (~0.25).  

The more cortical-like dynamics of K-cells as compared to P-cells and M-cells may be related 

to other cortical-like properties of K-cells including orientation-selectivity (Cheong et al., 2013), 

complex (non-phase-locked) responses to periodic grating stimuli (Eiber et al., 2018), and more 

extensive connections with subcortical centres (Zeater et al., 2019). The K-cells are also distinct from 

P-cells and M-cells based on their neurochemical signature and cortical projection targets. Whereas 

P-cells and M-cells are immunoreactive for parvalbumin and project to layer IV of primary visual 
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cortex, K-cells are immunoreactive for calbindin and project to layer IV as well as the superficial 

layers of primary visual cortex (Hendry and Yoshioka, 1994; Casagrande et al., 2007). This difference 

feeds into the broader theory of thalamic organization which argues for two parallel thalamocortical 

systems: a “core” system of parvalbumin reactive cells involved in the relay of sensory signals to 

cortex and a “matrix” system of calbindin reactive cells involved in synchronization of thalamo-

cortical networks (Jones, 2001). 

 The differences in spike rate fluctuations between LGN and MT lead us to predict that the 

Hurst exponent increases systematically along the hierarchy of the visual system. In the present 

study, we recorded from area MT, which receives sparse direct inputs from K-cells (Sincich et al., 

2004; Warner et al., 2010) as well as inputs from V1 (Movshon and Newsome, 1996). It is possible 

that interactions between these inputs contribute to the overall higher Hurst exponent in MT 

compared to K-cells. Murray et al. (2014) showed an increase in decay time of population 

autocorrelations along the hierarchy of primate cortical areas. These authors modelled decay time 

with an exponential distribution. Our results (Fig. 3F). suggests that autocorrelation of spiking 

activity could alternatively be modelled with a power-law with exponent which increases along the 

hierarchy of the cortex. 

Intrinsic relationships between diverse population coupling and neural variability 

The diverse range of population coupling ranging from highly correlated ‘choristers’, weakly 

correlated ‘soloists’, and anti-correlated neurons previously found in V1 of mice and macaque is a 

simple way to characterise the relationship of a neuron to the population fluctuations (Okun et al., 

2015). Here we have extended this observation to both subcortical (LGN) and higher cortical areas 

(MT), indicating that it may be a general property of visual areas. Furthermore, we have found that 

diverse population coupling is linked to variable spike dynamics because Fano-factor and the 

magnitude of population coupling are correlated on a cell-by-cell basis (Fig. 5, Fig. 9). We further 

confirmed that population coupling is related to pairwise correlations as strongly coupled neurons 

possess more functional connections (Fig. 6). In sum these empirical results provide a link between 

spiking properties of individual neurones and connectivity to the neural networks in which they are 

embedded. 

  



 

 

This article is protected by copyright. All rights reserved. 

 

26 

 

References 

Abry P & Sellan F(1996). The wavelet-based synthesis for the fractional Brownian motion proposed 

by F. Sellan and Y. Meyer: Remarks and fast implementation. Appl. and Comp. Harmonic Anal., 

3, 377–383. 

Alitto HJ, Moore BD, Rathbun DL & Usrey WM (2011). A comparison of visual responses in the lateral 

geniculate nucleus of alert and anaesthetized macaque monkeys. J Physiol 589, 87-99. 

Arieli A, Sterkin A, Grinvald A & Aertsen A (1996). Dynamics of ongoing activity: explanation of the 

large variability in evoked cortical responses. Science 273, 1868-1871. 

Baddeley R, Abbott LF, Booth MC, Sengpiel F, Freeman T, Wakeman EA & Rolls ET (1997). Responses 

of neurons in primary and inferior temporal visual cortices to natural scenes. Proc R Soc Lond 

Ser B Biol Sci 264, 1775-1783. 

Bardet JM, Lang G, Oppenheim G, Philippe A, & Taqqu MS (2003). Generators of long-range 

dependent processes: a survey. Theory and applications of long-range dependence, Birkhäuser, 579-

623. 

Beran J (1992). Statistical Methods for Data with Long-Range Dependence. Statistical Science 7, 404-

416. 

Buckner RL, Krienen FM, Castellanos A, Diaz JC & Yeo BT (2011). The organization of the human 

cerebellum estimated by intrinsic functional connectivity. J Neurophysiol 106, 2322-2345. 

Casagrande V, Yazar F, Jones K & Ding Y (2007). The morphology of the koniocellular axon pathway 

in the macaque monkey. Cereb Cortex 17, 2334-2345. 

Cheong SK, Tailby C, Martin PR, Levitt JB & Solomon SG (2011). Slow intrinsic rhythm in the 

koniocellular visual pathway. Proc Natl Acad Sci USA 108, 14659-14663. 

Cheong SK, Tailby C, Solomon SG & Martin PR (2013). Cortical-like receptive fields in the lateral 

geniculate nucleus of marmoset monkeys. J Neurosci 33, 6864-6876. 

Churchland AK, Kiani R, Chaudhuri R, Wang XJ, Pouget A & Shadlen MN (2011). Variance as a 

signature of neural computations during decision making. Neuron 69, 818-831. 



 

 

This article is protected by copyright. All rights reserved. 

 

27 

Croner LJ, Purpura K & Kaplan E (1993). Response variability in retinal ganglion cells of primates. Proc 

Natl Acad Sci USA 90, 8128-8130. 

Dayan P & Abbott LF (2003). Theoretical Neuroscience: computational and mathematical modeling of 

neural systems. MIT press, Cambridge. 

Ecker AS, Berens P, Cotton RJ, Subramaniyan M, Denfield GH, Cadwell CR, Smirnakis SM, Bethge M & 

Tolias AS (2014). State dependence of noise correlations in macaque primary visual cortex. 

Neuron 82, 235-248. 

Eiber CD, Rahman AS, Pietersen ANJ, Zeater N, Dreher B, Solomon SG & Martin PR (2018). Receptive 

Field Properties of Koniocellular On/Off Neurons in the Lateral Geniculate Nucleus of 

Marmoset Monkeys. J Neurosci 38, 10384-10398. 

Fox MD & Raichle ME (2007). Spontaneous fluctuations in brain activity observed with functional 

magnetic resonance imaging. Nat Rev Neurosci 8, 700-711. 

Gilden DL, Thornton T & Mallon MW (1995). 1/f noise in human cognition. Science 267, 1837-1839.  

Goris RL, Movshon JA & Simoncelli EP (2014). Partitioning neuronal variability. Nat Neurosci 17, 858-

865. 

Grundy D (2015). Principles and standards for reporting animal experiments in The Journal of 

Physiology and Experimental Physiology. Exp Physiol 100, 755–758. 

Hardstone R, Poil SS, Schiavone G, Jansen R, Nikulin VV, Mansvelder HD, & Linkenkaer-Hansen K 

(2012). Detrended fluctuation analysis: a scale-free view on neuronal oscillations. Frontiers in 

physiology, 3, 450. 

Hendry SHC & Yoshioka T (1994). A neurochemically distinct third channel in the macaque dorsal 

lateral geniculate nucleus. Science 264, 575-577. 

Hesselmann G, Kell CA, Eger E & Kleinschmidt A (2008). Spontaneous local variations in ongoing 

neural activity bias perceptual decisions. Proc Natl Acad Sci USA 105, 10984-10989. 

Jones EG (2001). The thalamic matrix and thalamocortical synchrony. Trends Neurosci 24, 595-601. 

Kells PA, Gautam SH, Fakhraei L, Li J, & Shew WL (2019). Strong neuron-to-body coupling implies 

weak neuron-to-neuron coupling in motor cortex. Nature communications, 10, 1575. 



 

 

This article is protected by copyright. All rights reserved. 

 

28 

Lee BB, Martin PR & Grünert U (2010). Retinal connectivity and primate vision (review). Prog Ret Eye 

Res 29, 622-639.  

Linkenkaer-Hansen K, Nikouline VV, Palva JM, & Ilmoniemi RJ (2001). Long-range temporal 

correlations and scaling behavior in human brain oscillations. J Neurosci, 21, 1370-1377. 

Lowen SB, Ozaki T, Kaplan E, Saleh BE & Teich MC (2001). Fractal features of dark, maintained, and 

driven neural discharges in the cat visual system. Methods 24, 377-394. 

Lowen SB & Teich MC (1996). The periodogram and Allan variance reveal fractal exponents greater 

than unity in auditory-nerve spike trains. Journal of the Acoustic Society of America 99, 3585-

3591. 

Mandelbrot BB (1982). The Fractal Geometry of Nature. WH Freeman, New York. 

Martin PR, White AJR, Goodchild AK, Wilder HD & Sefton AE (1997). Evidence that blue-on cells are 

part of the third geniculocortical pathway in primates. Eur J Neurosci 9, 1536-1541. 

McDonald JS, Clifford CW, Solomon SS, Chen SC & Solomon SG (2014). Integration and segregation of 

multiple motion signals by neurons in area MT of primate. J Neurophysiol 111, 369-378. 

Melsa JL & Sage AP (1973). An introduction to probability and stochastic processes. Prentice Hall, 

New Jersey. 

Movshon JA & Newsome WT (1996). Visual response properties of striate cortical neurons projecting 

to area MT in macaque monkeys. J Neurosci 16, 7733-7741. 

Munn B & Gong P (2018). Critical Dynamics of Natural Time-Varying Images. Phys Rev Lett 121, 

058101. 

Murray JD, Bernacchia A, Freedman DJ, Romo R, Wallis JD, Cai X, Padoa-Schioppa C, Pasternak T, Seo 

H, Lee D & Wang XJ (2014). A hierarchy of intrinsic timescales across primate cortex. Nat 

Neurosci 17, 1661-1663. 

Nassi JJ & Callaway EM (2009). Parallel processing strategies of the primate visual system. Nat Rev 

Neurosci 10, 360-372. 



 

 

This article is protected by copyright. All rights reserved. 

 

29 

Okun M, Steinmetz N, Cossell L, Iacaruso MF, Ko H, Barthó P, Moore T, Hofer SB, Mrsic-Flogel TD, 

Carandini M & Harris KD (2015). Diverse coupling of neurons to populations in sensory cortex. 

Nature 521, 511-515. 

Olshausen BA & Field DJ (1997). Sparse coding with an overcomplete basis set: a strategy employed 

by V1? Vision Res 37, 3311-3325. 

Poli D, Pastore VP & Massobrio P (2015). Functional connectivity in in vitro neuronal assemblies. 

Front Neural Circ 9, 57. 

Renart A, de la Rocha J, Bartho P, Hollender L, Parga N, Reyes A & Harris KD (2010). The 

asynchronous state in cortical circuits. Science 327, 587-590. 

Ruderman DL & Bialek W(1994). Statistics of natural images: Scaling in the woods. Phys Rev Lett 73, 

814-817. 

Schwartz GW (1978). Estimating the dimensions of a model. Ann Stat 6, 461-464. 

Shine JM (2019). Neuromodulatory Influences on Integration and Segregation in the Brain. Trends 

Cogn Sci 23, 572-583. 

Sincich LC, Park KF, Wohlgemuth MJ & Horton JC (2004). Bypassing V1: a direct geniculate input to 

area MT. Nat Neurosci 7, 1123-1128. 

Smith MA & Kohn A (2008). Spatial and temporal scales of neuronal correlation in primary visual 

cortex. J Neurosci 28, 12591-12603. 

Softky WR & Koch C (1993). The highly irregular firing of cortical cells is inconsistent with temporal 

integration of random EPSPs. J Neurosci 13, 334-350. 

Solomon SS, Chen SC, Morley JW & Solomon SG (2015). Local and Global Correlations between 

Neurons in the Middle Temporal Area of Primate Visual Cortex. Cereb Cortex 25, 3182-3196. 

Solomon SS, Tailby C, Gharaei S, Camp AJ, Bourne JA & Solomon SG (2011). Visual motion integration 

by neurons in the middle temporal area of a New World monkey, the marmoset. J Physiol 589, 

5741-5758. 

Tailby C, Solomon SG, Dhruv NT, Majaj NJ, Sokol SH & Lennie P (2007). A new code for contrast in the 

primate visual pathway. J Neurosci 27, 3904-3909. 



 

 

This article is protected by copyright. All rights reserved. 

 

30 

Tailby C, Solomon SG & Lennie P (2008a). Functional asymmetries in visual pathways carrying S-cone 

signals in macaque. J Neurosci 28, 4078-4087. 

Tailby C, Szmajda BA, Buzás P, Lee BB & Martin PR (2008b). Transmission of blue (S) cone signals 

through the primate lateral geniculate nucleus. J Physiol 586, 5947-5967. 

Teich MC (1989). Fractal character of the auditory neural spike train. IEEE Trans Biomed Eng 36, 150-

160. 

Teich MC, Heneghan C, Lowen SB, Ozaki T & Kaplan E (1997). Fractal character of the neural spike 

train in the visual system of the cat. J Opt Soc Am 14, 529-546. 

Thurner S, Lowen SB, Feurstein MC, Heneghan C, Feichtinger HG & Teich MC (1997). Analysis, 

synthesis, and estimation of fractal-rate stochastic point processes. Fractals 5, 565-595. 

Tolhurst DJ & Thompson ID (1981). On the variety of spatial frequency selectivities shown by 

neurons in area 17 of the cat. Proc R Soc Lond Ser B Biol Sci 213, 183-199. 

Townsend RG, Solomon SS, Chen SC, Pietersen AN, Martin PR, Solomon SG & Gong P (2015). 

Emergence of complex wave patterns in primate cerebral cortex. J Neurosci 35, 4657-4662. 

van den Heuvel MP & Sporns O (2011). Rich-club organization of the human connectome. J Neurosci 

31, 15775-15786. 

Victor JD, Blessing EM, Forte J, Buzás P & Martin PR (2007). Response variability of marmoset 

parvocellular neurons. J Physiol 579, 29-51. 

Warner CE, Goldshmit Y & Bourne JA (2010). Retinal afferents synapse with relay cells targeting the 

middle temporal area in the pulvinar and lateral geniculate nuclei. Front Neuroanat 4, 8/1 - 

8/16. 

Weron R (2002). Estimating long-range dependence: finite sample properties and confidence 

intervals. Physica A: Stat Mech App, 312, 285-299. 

Xu X, Ichida J, Shostak Y, Bonds AB & Casagrande VA (2002). Are primate lateral geniculate nucleus 

(LGN) cells really sensitive to orientation or direction? Visual Neurosci 19, 97-108. 

Zeater N, Buzás P, Dreher B, Grünert U & Martin PR (2019). Projections of three subcortical visual 

centres to marmoset lateral geniculate nucleus. J Comp Neurol 527, 535-545. 



 

 

This article is protected by copyright. All rights reserved. 

 

31 

Zeater N, Cheong SK, Solomon SG, Dreher B & Martin PR (2015). Binocular visual responses in 

primate lateral geniculate nucleus. Curr Biol 25, 3190-3195. 

 

Table 1. Goodness-of-fit comparison 

 

  Bayesian information criterion (BIC) 

as multiple of  power law model  

Data Model K-cells P-cells M-cells MT-cells 

FF POW (1665.8)*  

1.00 

(83.2) 

1.00 

(129.3) 

1.00 

(1415.2) 

1.00 

FF EXP 1.33 3.11 1.79 1.62 

FF LOG 2.00 8.33 4.54 1.58 

PS POW (1923.3) 

1.00 

(885.7) 

1.00 

(1126.7) 

1.00 

(603.0) 

1.00 

PS EXP 1.10 1.05 1.01 1.04 

PS LNM 1.27 1.48 1.24 1.07 

RR POW (34.8) 

1.00 

(-152.1) 

1.00 

(-109.5) 

1.00 

(-13.0) 

1.00 

RR EXP 5.66 1.73 1.74 1.69 

RR LOG 1.47 1.10 1.02 2.6 

 

*Absolute BIC values shown in parentheses. Abbreviations: FF, Fano-factor time curve; POW, power-

law; EXP, exponential; LOG, logarithmic; PS, power spectrum; RR, rescaled-range. 
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Figure legends 

Figure 1. Cell classification in LGN recordings. A, schematic drawing of a coronal section through the 

LGN. Parvocellular (P, light grey), magnocellular (M, dark grey) and koniocellular layers (K, white) are 

shown. Coloured points show reconstructed positions of cells recorded at a single array location. 

Light grey lines indicate the single cells with responses shown in B–D. B, peri-stimulus time 

histograms (PSTHs) of responses of one P on-centre (P-on) cell to a 200 ms contrast pulse. Responses 

to contrast increments and decrements are respectively shown as upwards– and downwards-facing 

PSTHs. Pulse duration is indicated by the horizontal bar between each pair of PSTHs. Cone 

modulation direction is indicated at the right of each PSTH. Responses to middle/long-wavelength 

cone modulation (ML+/- ) are shown in the left column; responses to short-wave cone modulation 

(S+/-) are shown in the right column. C, D, responses of two koniocellular blue-on (K-bon) cells 

shown in the same format as B. 
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Figure 2. Fractal character of spiking. A, mean spike rate as a function of spike count variance in a 

ten second window for all recorded MT and LGN cells (K, M and P). Solid diagonal line shows Poisson 

(mean = variance) prediction. B, spike times as a function of spike index (spike number) for the three 

cells shown in Fig. 1 B-D. Cells were simultaneously recorded in absence of patterned visual stimulus. 

Linear regression for expected values of the spike index if there was no variability in spike timing is 

indicated for each cell as a dashed line. C, spike-index residuals (deviation from the linear regression 

calculated in B) for the cells shown in B. Note the coherent fluctuations in spike timing of the K-cells 

compared to the steady rate of the P cell. D, spike residuals calculated for another K-cell over a 

period of 1000 seconds (top left) with successive snapshots of the residuals in decreasing time 

windows to 1 second (bottom right). Note the "slow-up, rapid-down" sawtooth pattern present at 

multiple temporal scales. 

 



 

 

This article is protected by copyright. All rights reserved. 

 

34 

 

Figure 3. Fano-factor time curves. A, K-cells. Thick blue line shows mean value. Curves for individual 

cells are shown in light grey. Dark grey line shows the mean values after inter-spike intervals were 

shuffled. Dashed line indicates the slope of the mean Fano-factor time curve in the region where the 

curve follows a power law. B, M-cells in same format as A. C, P-cells in same format as A. D, MT-cells 

in same format as A. E, mean Fano-factor time curve ±SEM from A-D overlaid. Arrows indicate the 

Fano-factor window width () at which each cell class diverges from Poisson-like activity and begins 

to follow a power-law. F, log-log plots of the mean power spectra of K, M, P and MT cells. The mean 

power spectrum for shuffled ISIs is given by the grey line. The power-law fit to the K, M/P and MT 

spectra are shown by dashed lines. Error bars show ±SEM. 
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Figure 4. Rescaled range analysis of spike rates. A, left column, rescaled range (R/) vs. window 

length () of an example P cell (dots). The resulting Hurst exponent H is calculated as the slope of the 

fitted line (black). Centre column, spike rate across the recording epoch. Right column, Histogram of 

Hurst exponents for all recorded P cells. B-D, same as in A, for M, K, and MT cells, respectively.  
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Figure 5. Population coupling analysis. A, spike triggered population rate (stPR) traces from example 

P, M and K cells. B, frequency histograms of population coupling for all recorded P, M and K cells as 

well as shuffled data, at zero time-lag. C, scatter plots of the Fano-factor in a 10 second time window 

as a function of the normalised   . D-F, same analysis as in A-C, for MT cells.  
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Figure 6. Noise correlation analysis. A, frequency histogram of noise correlations (r) between pairs of 

P, M and K cells in LGN. B, distribution of correlations between pairs of LGN cells as function of 

distance (m) between the pairs. C, an example of a functional connectivity map for a single LGN 

recording site. Coloured points indicate isolated single cells on the recording array. Coloured lines 

indicate the strength of correlation between pairs of cells. D, higher magnification of the multiple 

connections of four cells from C. The chosen cell is indicated with an asterisk. E, scatter plot of 

degree of connectedness as a function of    for cells from the two recording sites with the largest 

number of isolated cells. Red line shows linear regression. F, scatter plot of the degree of 

connectedness as a function of Fano-factor at time a 10 second time window from the same two 

recording sites as E.      
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Figure 7. Comparison of spike-rate (Left column) and Fano-factor time curve (right column) for 

various inhomogeneous Poisson processes. A, simulated spike rate undergoing fractal Brownian 

motion and Fano-factor time curves for 20 simulated cells (dark grey) and the mean Fano-factor time 

curve ±SEM error-bars. B, C, D, same as A for an intrinsic rate undergoing Brownian motion, 1/30 Hz 

oscillation, and a rate sampled from a lognormal distribution.  
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Figure 8. A fractal Poisson process with global gain modulation reproduces properties of empirically 

recorded activity. A, Each row shows a different cell type. Left column shows simulated spike rates. 

Right column shows example recordings. B, Each row shows a different cell population. Left column 

shows the pooled distribution of ISIs. Left column shows simulated data. Right column shows 

empirical data. C, mean spike rate as a function of spike count variance in a ten second window for 

all simulated P/M-cells (purple circles), K-cells (blue diamonds), and MT-cells (green squares). D, 

Fano-factor time curves of individual neurons (faint lines) and population mean (dark line, vertical 

bars are SEM) for simulated MT-cells (green), K-cells (blue), and P/M-cells (purple). Shuffling ISIs of 

the simulated neurons destroys the fractal relationship (grey line). 
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Figure 9. Effect of global modulation on normalized population coupling. A, without global 

modulation (       ). Left column shows stPR traces from five example simulated cells. Right 

column shows the normalized population coupling (  ) is very broadly distributed before (red) as 

the simulated cells are uncorrelated and tightly distributed after shuffling (blue). B, strong global 

modulatory variability (        ). Left column shows stPR traces from five example simulated 

cells. Right column shows the distribution of normalized    before (blue) and after shuffling (red) is 

tightly distributed around unity. C, intermediate global modulatory variability (       ). Left 

column shows stPR traces from five example simulated cells. Right column shows the normalized    

distribution resembles the experimentally observed distribution (cf. Fig. 5B), and spike-pair shuffling 

reduces sharply the range of    values.  
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Figure 10. Relation of Fano-factor to population coupling can be explained by variability in the Hurst 

exponent demonstrated in 400 simulated K-cells. A, the model reproduces the observed positive 

correlation between Fano-factor (     s) and population coupling (solid red line). B, the 

population coupling of a simulated cell is positively correlated with its Hurst exponent (solid red 

line). C, the Fano-factor (     s) of a simulated cell is positively correlated with its Hurst exponent 

(solid red line). 
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