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Abstract:
We propose autoregressive Bayesian semi-parametric models for gap times between recurrent events. The aim
is two-fold: inference on the effect of possibly time-varying covariates on the gap times and clustering of in-
dividuals based on the time trajectory of the recurrent event. Time-dependency between gap times is taken
into account through the specification of an autoregressive component for the frailty parameters influencing
the response at different times. The order of the autoregression may be assumed unknown and is an object of
inference. We consider two alternative approaches to perform model selection under this scenario. Covariates
may be easily included in the regression framework and censoring and missing data are easily accounted for.
As the proposed methodologies lie within the class of Dirichlet process mixtures, posterior inference can be
performed through efficient MCMC algorithms. We illustrate the approach through simulations and medical
applications involving recurrent hospitalizations of cancer patients and successive urinary tract infections.
Keywords: autoregressive models, Dirichlet process mixtures, model selection
DOI: 10.1515/ijb-2018-0088
Received: August 28, 2018; Revised: July 18, 2019; Accepted: July 19, 2019

1 Introduction

Recurrent event processes generate events repeatedly over time and recurrent event data arise in many ap-
plications, for example in medicine (e. g. [1, 2]), economy (e. g. [3]) and technology (for example, [4]). Typical
examples include recurrent infections, asthma attacks, hospitalizations, product repairs and machine failures.
In particular, in this work, we are interested in settings where recurrent event processes are available from
a large number of individuals, but with a small number of occurrences for each subject. Here we consider a
benchmark dataset, in which we are interested in modelling the time between re-hospitalisation after surgery
in colon cancer patients, and an application where the main clinical outcome is recurrence of urinary tract
infections.

Typically, the focus is on modeling the rate of occurrence, accounting for the variation within and between
individuals. Moreover, in applications, it is often of interest to assess the relationship between event occurrence
and potential explanatory factors. The two main statistical approaches to perform inference on recurrent event
data are (see [5]): (i) modelling the intensity function of the event counts {N(t), t ≥ 0}, where N(t) is the number
of events between the time origin and time t; (ii) modelling the whole sequence of gap times between successive
realizations of the recurrent events.

The first approach is most suitable when individuals frequently experience the event of interest and the oc-
currence does not alter the process itself. The canonical framework for the analysis of event counts is the Poisson
process. For a full review of this class of methods, see [6]. Wang et al. [7] suggest a subject-specific nonstationary
Poisson process via a latent variable to model the occurrence of recurrent events. An alternative method was
introduced by Thall [8] who considers a parametric mixed Poisson model which deals with covariates. Further,
[9] propose a semiparametric model based on a non-homogeneous Poisson process. Finally, Pepe and Cai [10],
Lawless and Nadeau [11] and Lawless et al. [12] propose semiparametric procedures for making inferences
about the mean and rate functions of the counting process without the Poisson-type assumption.

The second approach based on gap times is more appropriate when the events are relatively infrequent,
when, after an event, individual renewal takes place in some way, or when the focus of the analysis is the
prediction of the time to the next event. The two dominant families of models in this framework are accelerated
Marta Tallarita is the corresponding author.
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failure time (AFT) and proportional hazards (PH) regressions. For example, Prentice et al. [13] propose a PH
model for recurrent events, while Chang and Wang [14] propose a slightly different model by incorporating
two kinds of covariates: some structural covariates (fixed) and some episode-specific covariates. Frailty models
are discussed in McGilchrist and Aisbett [15] and Duchateau and Janssen [16]. However, in the frailty models
time dependence is not modelled, but in many situations the occurrence of a past event may change the risk of
a later event and so it is essential to incorporate and quantify how the occurrence of a past event may change
the risk of a later event. Lin et al. [17] overcome this problem and propose a Bayesian recurrent event model
to account for both subject-specific heterogeneity and event dependence. An alternative approach to frailty
models consists in specifying a multivariate distribution for the gap times using copulas (see, for example, [18,
19]). This strategy requires specifying the marginal distribution of each gap time and then using a copula to
introduce dependence.

1.1 Bayesian nonparametric framework

This paper lies within the gap times approach and develops a Bayesian semiparametric model for gap times
between events. We assume that the joint distribution of the finite sequence of gap times for each individual is
the product of the conditional distributions of each gap time, given the previous ones. Moreover, we specify a
regression model for each of these conditional distributions to link the realization of each gap time to possibly
time-varying covariates and previous gap times. To account for inter-subject variability, we introduce individual
specific frailty parameters which we model flexibly using a Dirichlet process mixture prior as random effects
distribution. Dirichlet process mixture (DPM) models [20, 21] are arguably the most common nonparametric
Bayesian prior and have proved successful in many applications due to their flexibility and ease of computation.
DPM models are mixtures of a parametric distribution where the mixing measure is the Dirichlet process (DP)
introduced by Ferguson [22]. It is well known that the DP is almost surely discrete, and that if G is a DP(M, G0)
with total mass parameter M and baseline distribution G0, then G admits the following representation [23]:

𝐺(⋅) = ∑
ℎ≥1

𝑤ℎ𝛿𝜃ℎ
(⋅)

where δθ is a point-mass at θ, the weights follow a stick-breaking process, 𝑤ℎ = 𝑉ℎ ∏𝑗<ℎ(1 − 𝑉𝑗), with 𝑉ℎ
iid∼

Beta(1, 𝑀), and the atoms {𝜃ℎ}ℎ≥1 are such that 𝜃ℎ
iid∼ 𝐺0. As the discreteness of G is inappropriate in many

applications, it is common to convolve a parametric kernel 𝑘(𝑦 ∣ 𝜃) with respect to G, obtaining a DPM:

𝐻(𝑦) = ∫ 𝑘(𝑦 ∣ 𝜃)𝐺( 𝑑𝜃).

Due to the discreteness of G, the DPM prior induces clustering of the subjects in the sample based on the
trajectory of the recurrent events over time, where the number K of clusters is unknown and learned from the
data. Earliest examples of the use of a Bayesian nonparametric distribution for the random effects can be found
in Müller and Rosner [24] and Kleinman and Ibrahim [25]. More recently, Pennell and Dunson [26] employ a
Dirichlet process prior to build semiparametric dynamic frailty models for multiple event time data, allowing
also the frailty parameter to change over time. Moreover, Paulon et al. [27] develop a joint model for gap times
between two consecutive hospitalizations and survival time using the DP as random effect distribution, but do
not explicitly account for the temporal dependence between gap times observed on the same individual.

In this work, we investigate different strategies to link gap times at time t with previous gap times. We
start by assuming a standard Markov model where also the order of dependence p is unknown and is object
of inference. We explore two different strategies to specify a prior distribution on p: one involves eliciting a
prior directly on the space of all possible Markov models for p ∈ {0, 1, …, P}, while the other approach employs
spike and slab base measures and it is in the spirit of stochastic search variable selection [28]. In conclusion,
the main contribution of this work is to provide, within a Bayesian nonparametric framework, a model for gap
times which accommodates for temporal dependence, performs variable selection on the order of dependence
with two different approaches, allows for clustering of individuals and inter-subject variability, is able to handle
different numbers of gap times per individual and missingness.

In Section 2 we introduce the model, while in Section 3 we explain how to perform inference on the order
of dependence in the Markov structure. In Section 4 we investigate the performance of the proposed approach
in simulations and compare the different strategies to model time dependency and to select the order p. Sec-
tions 5 and 6 present two medical applications involving recurrent hospitalizations and urinary tract infections,
respectively. We conclude the paper in Section 7.
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2 Autoregressive frailty models via Dirichlet process mixtures

We consider data on N individuals. We assume that 0: = Ti0 corresponds to the start of the event process and that
individual i is observed over the time interval [0, τi]. If ni events are observed at times 0 < 𝑇𝑖1 < ⋯ < 𝑇𝑖𝑛𝑖

< 𝜏𝑖, let
𝑊𝑖𝑗 = 𝑇𝑖𝑗 −𝑇𝑖𝑗−1 for j = 1, …, ni denote the gap times between events of subject i and 𝑊𝑖𝑛𝑖+1 = 𝜏𝑖 −𝑇𝑖𝑛𝑖

. Note that
if τi corresponds to an actual event, then 𝑊𝑖𝑛𝑖+1 is observed. Otherwise τi becomes a censoring time and 𝑊𝑖𝑛𝑖+1
is a censored observation. Therefore Wij, j = 1, …, ni, are the observed gap times for individual i with a possibly
censoring time 𝑊𝑖𝑛𝑖+1. Let J be the maximum number of observed repeated events, i. e. 𝐽 = max𝑖=1,…,𝑁(𝑛𝑖) and
let 𝑌𝑖𝑗 = log(𝑊𝑖𝑗). We describe the joint distribution of 𝑌𝑌𝑌𝑖 ∶= (𝑌𝑖1, … , 𝑌𝑖𝑛𝑖

, 𝑌𝑖𝑛𝑖+1) through the specification of
the conditional laws ℒ(𝑌𝑖𝑗|𝑥𝑥𝑥𝑖𝑗, 𝑌𝑖1, … , 𝑌𝑖𝑗−1), where 𝑥𝑥𝑥𝑖𝑗 denotes the vector of possibly time-varying covariates
for the ith individual. In particular, we assume that an observation at time j, for each subject i, i = 1, …, N and
j = 1, …, ni, is distributed as follows

𝑌𝑖𝑗 = 𝑥𝑥𝑥𝑇
𝑖𝑗𝛽𝛽𝛽𝑗 + 𝛼𝑖𝑗 + 𝜎𝜀𝑖𝑗, 𝜀𝑖𝑗

iid∼ 𝒩 (0, 1) (1)

where 𝛽𝛽𝛽𝑗 is the vector of regression coefficients at time j common to all individuals. Covariates and regression
parameters here have dimension q. Moreover, the random parameters αij’s represents time-specific frailties, for
which we assume a nonparametric prior with a time-dependent modeling structure as described in Sections
2.1 and 2.2. Given the parameters in the model, the individual recurrent processes are assumed conditionally
independent. Note that the number of recurrent events does not need to be the same for all individuals and that
missing data are at least in principle easily accommodated in a Bayesian framework by assuming missingness
at random.

The likelihood for all the sample is then given by:

𝐿 =
𝑁

∏
𝑖=1

{ �(�
𝑛𝑖

∏
𝑗=1

𝑓 (𝑦𝑖𝑗|𝑧𝑧𝑧𝑖𝑗,𝛽𝛽𝛽𝑗, 𝛼𝑖𝑗, 𝜎)) �𝑆𝜈𝑖(𝑦𝑖𝑛𝑖+1
|𝑧𝑧𝑧𝑖𝑛𝑖+1

,𝛽𝛽𝛽𝑛𝑖+1
, 𝛼𝑖𝑛𝑖+1

, 𝜎)

× 𝑓 1−𝜈𝑖(𝑦𝑖𝑛𝑖+1
|𝑧𝑧𝑧𝑖𝑛𝑖+1

,𝛽𝛽𝛽𝑛𝑖+1
, 𝛼𝑖𝑛𝑖+1

, 𝜎)} �

where 𝑧𝑧𝑧𝑖𝑗 = (𝑥𝑥𝑥𝑖𝑗, 𝑦𝑖1, … , 𝑦𝑖𝑗−1, ), f is the density of the gap times (in this case a Gaussian density), S denotes the
survival function of the last (censored) gap times and νi is the censoring indicator equal 1 if the last observation
is censored and 0 otherwise. We are assuming that the censoring mechanism is independent of the recurrent
event process.

The vector 𝑥𝑥𝑥𝑖𝑗 can contain both time-varying and fixed covariates and the effect of the covariates can be
assumed to be constant over time if appropriate, i. e. 𝛽𝛽𝛽𝑗 = 𝛽𝛽𝛽. The vector 𝛽𝛽𝛽𝑗 does not include the intercept term,
because of identifiability issues with αij. Moreover, the model can be generalised to include a subject specific
and/or time specific observational variance σ2 and/or a different distribution for the gap times.

2.1 Nonparametric AR(1)-type models

Following a similar modelling strategy to the one described in Di Lucca et al. [29], a straightforward way to
introduce dependence among random effects at different times is to allow the distribution of αij to depend on
some summary of the observations up to time j – 1:

𝛼𝑖𝑗 ∣ 𝑚𝑖0, 𝑚𝑖1, 𝜏 ind∼ 𝒩 (𝑚𝑖0 + 𝑚𝑖1𝑔(𝑌𝑖1, … , 𝑌𝑖𝑗−1), 𝜏2), 𝑗 = 1, … , 𝑛𝑖 + 1 (2)

(𝑚𝑖0, 𝑚𝑖1) ∣ 𝐺 iid∼ 𝐺, 𝐺 ∼ 𝐷𝑃(𝑀, 𝐺0). (3)

When j = 1, the distribution of the random effect αi1 simplifies as the autoregressive term in (2) disappears and
it reduces to the Normal distribution with mean mi0.

We assume conditional independence among subjects, given the parameters, and that (𝑚𝑖0, 𝑚𝑖1) are inde-
pendent under the base measure G0, which becomes the product of a Normal density for mi0 and a Normal
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density for the autoregressive coefficient mi1. The prior specification is completed as follows:

𝛽𝑗
iid∼ 𝑁𝑞(0, 𝛽2

0𝐼𝑞)

𝜎2 ∼ Inv-Gamma(𝑎𝜎 , 𝑏𝜎)
𝜏2 ∼ Inv-Gamma(𝑎𝜏 , 𝑏𝜏)
𝑀 ∼ 𝑈(0, 𝑀0)
𝐺0 = 𝑁(0, 𝜎2

𝑔) × 𝑁(𝜇𝑧, 𝜎2
𝑧),

(4)

assuming a priori independence among the different parameters.
When implementing the model in JAGS, we opt for marginal uniform priors on bounded interval for σ2

and τ2 as suggested by. Gelman [30] as inverse-gamma distributions give numerical instability problems when
hyperparameters are small. Moreover, Gelman [30] recommends uniform distributions (on bounded intervals)
for scale parameters in hierarchical models as being weakly-informative, opposite to inverse-gamma priors for
variance parameters, which are very sensitive to the choice of the hyperparameters themselves.

The choice of g in (2) is obviously crucial and depends on the context and the goals of the inference problem.
Common choices in the literature are:

– 𝑔(𝑌𝑖1, … , 𝑌𝑖𝑗−1) = 𝑌𝑖𝑗−1, i. e. the random effect at time j depends only on the observation at time j – 1, condi-
tionally on the remaining parameters;

– 𝑔(𝑌𝑖1, … , 𝑌𝑖𝑗−1) = (𝑌𝑖1 + ⋯ + 𝑌𝑖𝑗−1)/(𝑗 − 1), i. e. the conditional expected value of each αij depends on the
sample mean of the observations up to time j – 1;

– 𝑔(𝑌𝑖1, … , 𝑌𝑖𝑗−1) = (𝑌𝑖1 × ⋯ × 𝑌𝑖𝑗−1)
1/(𝑗−1)

, this is equivalent to the geometric mean of the observations up to
time j – 1.

Note that, when 𝑔(𝑌𝑖1, … , 𝑌𝑖𝑗−1) = 𝑌𝑖𝑗−1, then (2)–(3) imply that the random effects distribution at time j is a
DPM of AR(1) processes, with dependence only on the gap time at time j – 1.

2.2 Nonparametric AR(p) models

The model in Section 2.1 can be extended to include higher order dependence, by modifying (2) – (3) as follows:

𝛼𝑖𝑗 ∣ 𝑚𝑖0, 𝑚𝑖1, … , 𝑚𝑖𝑝, 𝜏 ind∼ 𝒩 (𝑚𝑖0 +
𝑝

∑
𝑙=1

𝑚𝑖𝑙 𝑌𝑖𝑗−𝑙, 𝜏2), 𝑗 = 𝑝 + 1, … , 𝑛𝑖 + 1 (5)

(𝑚𝑖0, 𝑚𝑖1, … , 𝑚𝑖𝑝) ∣ 𝐺 iid∼ 𝐺, 𝐺 ∼ 𝐷𝑃(𝑀, 𝐺0) (6)

𝐺0 = 𝒩 (0, 𝜎2
𝑔) × 𝒩 (𝜇𝑧, 𝜎2𝑧) × ⋯ × 𝒩 (𝜇𝑧, 𝜎2𝑧)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑝 times
. (7)

The distribution of αij for j ≤ p, depends only on the available past observations as in any AR(p) model. Prior
specification for the remaining parameters is the same as described in Section 2.1.

3 Estimating the order of dependence

In (5) we assume that the order of dependence on past observations is a fixed integer p. However, this parameter
is often unknown in applications, and it needs to be estimated. A wealth of research focuses on Bayesian model
selection (see, for example, [31, 32]). Here we concentrate on two approaches. The first one modifies the base
measure of the DP by including a spike and slab distribution on the autoregressive coefficient, leading to the
Spiked Dirichlet process prior introduced by Kim et al. [33]. The second one involves the direct specification
of a prior on p, and then, conditional on p, we specify the prior distribution for the remaining parameters; in
this case the dimension of the parameter vector (𝑚𝑖0, 𝑚𝑖1, … , 𝑚𝑖𝑝) changes according to p and consequently the
dimension of the space where the Dirichlet process measure is defined.
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3.1 Spike and slab base measure

Kim et al. [33] introduce the Spiked Dirichlet process prior in the context of regression. A key feature of their
method is to employ the spike and slab distribution, i. e. a mixture of a point mass at 0 and a continuous
distribution as centering distribution of the DP. This implies that, in a regression context, some coefficients
have a positive probability of being equal to 0 and therefore they are not influential on the response of interest.
Their technique is easily accommodated in our context by simply modifying G0 in (7) as

𝐺0 = 𝒩 (0, 𝜎2
𝑔) × 𝜋1(𝜇𝑧, 𝜎2𝑧) × ⋯ × 𝜋𝑝(𝜇𝑧, 𝜎2𝑧)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑝 times

𝜋𝑙(𝜇𝑧, 𝜎2
𝑧) = (1 − 𝜂𝑙)𝛿0 + 𝜂𝑙𝒩 (0, 𝜎2

𝑧), 𝑙 = 1, … , 𝑝

𝜂𝑙
ind∼ Bernoulli(𝑐𝑙)

𝑐𝑙
iid∼ 𝒰(0, 1)

(8)

where the introduction of hyperpriors on the weights of the mixture induces sparsity.

3.2 Prior on the Order of Dependence

Following Quintana and Müller [34], we specify a prior directly on the order p of the autoregressive process
and then, conditioning on p, we set a Dirichlet Process prior of appropriate dimension for the parameters of
the AR(p), i. e. the vector (𝑚𝑖0, 𝑚𝑖1, … , 𝑚𝑖𝑝). Let P be the maximum possible order. Then we can specify the
following hierarchy:

𝛼𝑖𝑗 ∣ 𝑝, 𝑚𝑖0, 𝑚𝑖1, … , 𝑚𝑖𝑝, 𝜏 ind∼ 𝒩 (𝑚𝑖0 +
𝑝

∑
𝑙=1

𝑚𝑖𝑙 𝑌𝑖𝑗−𝑙, 𝜏2), 𝑗 = 𝑝 + 1, … , 𝑛𝑖 + 1

(𝑚𝑖0, 𝑚𝑖1, … , 𝑚𝑖𝑝) ∣ 𝑝, 𝐺𝑝
iid∼ 𝐺𝑝

𝐺𝑝 ∼ 𝐷𝑃(𝑀, 𝐺0𝑝)
𝐺0𝑝 = 𝒩 (0, 𝜎2

𝑔) × 𝒩 (𝜇𝑧, 𝜎2𝑧) × ⋯ × 𝒩 (𝜇𝑧, 𝜎2𝑧)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑝 times

𝑝 ∼ Discrete Uniform on {0, 1, … , 𝑃}.

(9)

When p = 0, the process simplifies as the autoregressive term in (9) disappears and the base measure of the DP
reduces to the Normal distribution for the intercept term.

An MCMC algorithm to perform posterior inference on the order of dependence is described in [34], who
sample from the posterior distribution of p given the data. For the JAGS implementation we have opted for a
pseudo-prior approach, see [35].

4 Simulated data

In order to check the performance of the class of models proposed in the previous sections, different simulation
scenarios have been created. The simulated datasets discussed in this section, as well as the scenario in Section
3 of Supplementary Material, are generated from a mixture of Gaussian distributions. In Section 4 of Supple-
mentary Material, results from a simulation scenario where data are generated from a mixture of Exponential
distributions are presented. For all scenarios we generate data without censoring and datasets in which the
subjects are right-censored with respect to their last gap time. Posterior inference for these examples, as well
as for the real data applications in Section 5 and 6, can be performed through a standard Gibbs sampler algo-
rithm, which we implement in JAGS [36], using a truncation-based algorithm for stick-breaking priors [37]. For
all simulations, we run the algorithm for 251,000 iterations, discarding the first 1,000 iterations as burn-in and
thinning every 50 iterations to reduce the autocorrelation of the Markov chain. The final sample size is then
5,000. The computational time for both simulation scenarios was close to three hours using a MacBook Pro with
2, 4 GHz Intel Core i5 processor type. Unless otherwise stated, we check through standard diagnostics criteria
such as those available in the R package CODA [38] that convergence of the chain is satisfactory for most of the
parameters.
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4.1 Simulation scenario 1

We consider a simulated dataset of N = 300 subjects, with ni randomly generated from a Poisson distribution.
In particular we select ni in such a way that all subjects have at least three gap times: 𝑛𝑖 ∼ 𝒫 (2.5) + 3, for all i.
One third of the observations are generated from

𝑌𝑖𝑗 ∼ 𝒩 (0, (1.2)2), 𝑗 = 1, … , 𝑛𝑖

while another third is generated from

𝑌𝑖1 ∼ 𝒩 (0, (1.5)2), 𝑌𝑖2|𝑌𝑖1 ∼ 𝒩 (𝑌𝑖1, (1.5)2)
𝑌𝑖𝑗|𝑌𝑖𝑗−1, 𝑌𝑖𝑗−2 ∼ 𝒩 (𝑌𝑖𝑗−1 + 0.7 × 𝑌𝑖𝑗−2, (1.5)2), 𝑗 = 3, … , 𝑛𝑖

and the last 100 observations are generated from

𝑌𝑖1 ∼ 𝒩 (0, (0.9)2), 𝑌𝑖2|𝑌𝑖1 ∼ 𝒩 (𝑌𝑖1, (0.9)2)
𝑌𝑖3|𝑌𝑖2, 𝑌𝑖1 ∼ 𝒩 (𝑌𝑖2 + 0.7 × 𝑌𝑖1, (0.9)2)

𝑌𝑖𝑗|𝑌𝑖𝑗−1, 𝑌𝑖𝑗−2, 𝑌𝑖𝑗−3 ∼ 𝒩 (𝑌𝑖𝑗−1 + 0.7 × 𝑌𝑖𝑗−2 + 0.4 × 𝑌𝑖𝑗−3, (0.9)2), 𝑗 = 4, … , 𝑛𝑖.

In simulating the data, we assume independence across subjects. In this example, for ease of explanation, we
do not include covariates. We introduce censoring according to the following procedure. Firstly, we set the
percentage of the sample for which we have censoring. In this simulation we have used three different censoring
rates: 10 %, 25 % and 50 %. We consider at least two gap times for each individual and so for all patients i with
censoring we generate a censoring time Ci from a Uniform distribution defined on the interval (𝑇𝑖2, 𝑇𝑖𝑛𝑖

). The
results obtained without censored data and with the different censoring rates are compared.

We fit the model (1), (5)–(6) with p = 3:

𝑌𝑖𝑗 = 𝑥𝑥𝑥𝑇
𝑖𝑗𝛽𝛽𝛽𝑗 + 𝛼𝑖𝑗 + 𝜎𝜀𝑖𝑗, 𝜀𝑖𝑗

iid∼ 𝒩 (0, 1)

𝛼𝑖𝑗 ∣ 𝑚𝑖0, 𝑚𝑖1, … , 𝑚𝑖𝑝, 𝜏 ind∼ 𝒩 (𝑚𝑖0 +
3

∑
𝑙=1

𝑚𝑖𝑙𝑌𝑖𝑗−𝑙, 𝜏2), 𝑗 = 4, … , 𝑛𝑖 + 1

(𝑚𝑖0, 𝑚𝑖1, … , 𝑚𝑖𝑝) ∣ 𝐺 iid∼ 𝐺, 𝐺 ∼ 𝐷𝑃(𝑀, 𝐺0)

where G0 is given by the product of spike and slab distributions as defined in (8):

𝐺0 = 𝒩 (0, 10) × 𝜋1(0, 100) × ⋯ × 𝜋3(0, 100)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
3 times

𝜋𝑙(0, 100) = (1 − 𝜂𝑙)𝛿0 + 𝜂𝑙𝒩 (0, 100), 𝑙 = 1, 2, 3

𝜂𝑙
ind∼ Bernoulli(𝑐𝑙)

𝑐𝑙
iid∼ 𝒰(0, 1).

In fitting the model we set:

𝜎 ∼ 𝑈(0, 10)
𝜏 ∼ 𝑈(0, 10)

𝑀0 = 10.

Hyperparameters are chosen in order to specify vague marginal prior distributions. Figure 1 shows the pre-
dictive distributions of mi0, mi1, mi2 and mi3 obtained with the spike and slab base measures. Red, blue, green
and grey lines correspond to estimates obtained using the dataset with 0 %, 10 %, 25 % and 50 % censoring
rates, respectively. By visual inspection, it is clear that the marginal posterior predictive distributions of the
mij’s agree with the true values used to generate the dataset. In fact, the predictive distribution of mi0 is concen-
trated around 0, while the predictive distributions of mi1, mi2 and of mi3 are bimodal. Furthermore, the variance
of the predictive distributions of each mij becomes larger with increasing censoring rate, because we have less
information about the population parameters. The marginal posterior distributions of η1, η2, and η3 in the prior
(8), not reported here, concentrate most mass on 1.
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Figure 1: Simulation scenario 1: predictive marginal distributions of mi0 (a), mi1 (b), mi2 (c) and mi3 (d) under the spike and
slab prior. Red, blue, green and grey lines correspond to estimates obtained using the dataset with 0 %, 10 %, 25 % and
50 % censoring rates, respectively.

Moreover, there is a clear difference between the posterior distribution of K, the number of distinct components
in the mixture (5)–(6), using the data with and without censoring (results shown in Figure 2 of Supplementary
Material). Using data without censoring, the configuration involving K = 3 clusters has the highest posterior
probability: posterior inference on K is in agreement with the 3 components used to generate the data. Instead,
using data with censoring, the number of clusters increases as the model needs to accommodate for the lack
of information and the greater uncertainty in the distribution of the gap times. We also fit model (1), (9) to this
dataset and similar results are obtained using the prior on the order of dependence. For further details, see
Section 1 and Figure 1 of Supplementary Material.

4.2 Simulation Scenario 2

In this section we simulate a dataset of N = 200, with ni randomly generated from a Poisson distribution. Sim-
ilarly as in the previous example, we select 𝑛𝑖 ∼ 𝒫 (2.5) + 3 for all i, so that all subjects have at least three gap
times. Half observations are generated independently from

𝑌𝑖1 ∼ 𝑁(0, 1.52), 𝑌𝑖2|𝑌𝑖1 ∼ 𝑁(0.9 × 𝑌𝑖1, 0.92)
𝑌𝑖𝑗|𝑌𝑖𝑗−1, 𝑌𝑖𝑗−2 ∼ 𝑁(0.9 × 𝑌𝑖𝑗−1 + 0.7 × 𝑌𝑖𝑗−2, 0.92), 𝑗 = 3, … , 𝑛𝑖

while the other half is independently generated from

𝑌𝑖1 ∼ 𝒩 (0, 1.52), 𝑌𝑖2|𝑌𝑖1 ∼ 𝒩 (−0.9 × 𝑌𝑖1, 1.52)
𝑌𝑖𝑗|𝑌𝑖𝑗−1, 𝑌𝑖𝑗−2 ∼ 𝒩 (−0.9 × 𝑌𝑖𝑗−1 − 0.7 × 𝑌𝑖𝑗−2, 1.52), 𝑗 = 3, … , 𝑛𝑖.

As in the previous example, covariates are not included and we introduce censoring using the same strategy.
Also in this case we set the censoring rate equal to 10 %, 25 % and 50 %. We consider at least two gap times
for each individual and for all the patients with censoring we generate a censoring time Ci from a Uniform
distribution defined on the interval (𝑇𝑖2, 𝑇𝑖10). The results obtained without censoring and with the different
censoring rates are compared.

Also for this scenario, we fit both model (1), (5)–(6), (8) and model (1), (9). Here we report posterior inference
of the latter model, with the prior on the order of dependence, where the maximum order of dependence is
P = 3 and the prior hyperparameters (corresponding to a vague prior) are set as follows:

𝑌𝑖𝑗 = 𝑥𝑥𝑥𝑇
𝑖𝑗𝛽𝛽𝛽𝑗 + 𝛼𝑖𝑗 + 𝜎𝜀𝑖𝑗, 𝜀𝑖𝑗

iid∼ 𝒩 (0, 1)
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𝛼𝑖𝑗 ∣ 𝑝, 𝑚𝑖0, 𝑚𝑖1, … , 𝑚𝑖𝑝, 𝜏 ind∼ 𝑁(𝑚𝑖0 +
𝑝

∑
𝑙=1

𝑚𝑖𝑙𝑌𝑖𝑗−𝑙, 𝜏2), 𝑗 = 𝑝 + 1, … , 𝑛𝑖 + 1

(𝑚𝑖0, 𝑚𝑖1, … , 𝑚𝑖𝑝) ∣ 𝑝, 𝐺𝑝
iid∼ 𝐺𝑝

𝐺𝑝 ∼ 𝐷𝑃(𝑀, 𝐺0𝑝)
𝐺0𝑝 = 𝑁(0, 10) × 𝑁(0, 100) × 𝑁(0, 100) × 𝑁(0, 100)

𝑝 ∼ Discrete Uniform on {0, 1, 2, 3}
𝜎 ∼ 𝑈(0, 10)
𝜏 ∼ 𝑈(0, 10)
𝑀 ∼ 𝑈(0, 5).

The mode of the marginal posterior distribution of p is 2 for all datasets without and with censoring, with
corresponding posterior probability reported in the Table 1. In particular, the mass placed on p = 2 decreases
with increasing censoring rate.

Table 1: Simulation scenario 2: posterior distributions (masses) of p under the prior on the order of dependence for differ-
ent rates of censoring.

Censoring rate p = 0 p = 1 p = 2 p = 3
0 % 0.01 0.01 0.98 0.00
10 % 0.18 0.01 0.81 0.00
25 % 0.21 0.02 0.77 0.00
50 % 0.25 0.02 0.73 0.00

Conditional on p = 2, Figure 2 reports the predictive distributions of mi0, mi1 and mi2. Red, blue, green and grey
lines correspond to estimates obtained using the dataset with censoring rates equal to 0 %, 10 %, 25 % and 50 %,
respectively.

More in detail, the predictive distribution of mi0 is concentrated around 0, while the predictive distributions
of mi1 and of mi2 are bimodal with mode around {–0.9, 0.9} and {–0.7, 0.7}, respectively. Also in this scenario,
the variance of the predictive distributions of mij becomes larger with increasing censoring rate.

Figure 2: Simulation scenario 2: predictive marginal distributions of mi0 (a), mi1 (b), mi2 (c) and mi3 (d) under the prior on
the order of dependence, conditioning on p = 2. Red, blue, green and grey lines correspond to estimates obtained using
the dataset with 0 %, 10 %, 25 % and 50 % censoring rates, respectively.

Finally, in the dataset without censoring time, conditioning on p = 2, the posterior mode for the number K of
clusters is 2 (results not shown), with associated posterior probability equal to 0.5, while for the datasets with
censoring, the number of clusters increases because of the greater uncertainty on the distribution of gap times.
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See Section 2 of Supplementary Material for the results obtained by fitting the model with the spike and slab
base measure.

To evaluate the computational performance of the two approaches for model selection, we report in Table
2 summary statistics for the Effective Sample Size (ESS). ESS measures the amount by which autocorrelation
within a MCMC chain increases uncertainty in estimates. The ESS of a parameter aims to estimate how many iid
samples have the same estimation performance as the correlated samples found in the MCMC chain and it will
be typically smaller than the final sample size. Hence large values of the ESS denote smaller autocorrelation
in the chains; for further details, see [39]. Summary statistics are evaluated across the ESS of all estimated
parameters. We report results for both simulations scenarios and four different censoring rates. The empirical
distributions of the ESS in Table 2 seem comparable across different prior specifications and scenarios.

Table 2: ESS: summary statistics. We report 2.5 %, 50 %, 97.5 % empirical quantiles of the ESS evaluated for all estimated
parameters. SS denotes the spike and slab base measure, while POD indicates the prior on the order of dependence.

Method Censoring rate Scenario 1 Scenario 2

SS 0 % (37.45, 104.40, 245.09) (38.96, 80.780, 207.70)
10 % (57.57, 144.70, 345.70) (101.96, 120.78, 296.70)
25 % (43.50, 111.50, 241.80) (167.96, 225.78, 370.70)
50 % (698.60, 1235.00, 1865.00) (174.67, 253.82, 390.70)

POD 0 % (41.52, 114.80, 265.09) (143.30, 519.70, 573.00)
10 % (47.79, 141.01, 351.04) (165.92, 290.60, 589.20)
25 % (53.50, 131.09, 298.09) (821.90, 2125.00, 4521.00)
50 % (398.06, 1565.00, 1951.20) (812.99, 2245.30, 4728.55)

4.3 Comparison with the time-dependent frailty model

In this subsection, we compare our model with the time-dependent frailty model of [40] on the same simulated
data described in the previous section. This strategy not only accounts for dependence of recurrent failure times
within observations for the same subject by introducing a subject-specific random frailty, but also for the order
of events, which is a significant feature of dependence. In this setup, time independence is introduced in the
model for the intensity function of the recurrent event process at time t:

𝜆𝑖(𝑡 | 𝛽, 𝑉𝑖(𝑡)) = 𝑐𝑖(𝑡)𝜆0(𝑡) exp(𝑉𝑖(𝑡))
where the variable ci(t) is the censoring indicator equal to 1 if patient i is observed at time t and 0 otherwise.
The function λ0(t) is an unspecified baseline intensity, while Vi(t) is a subject-specific random frailty capturing
the risk not accounted for by potential risk variables included in the analysis. The model can be extended to
include time-dependent covariates. Following [40] we assume 𝜆0(𝑡) = exp(𝛽0) and a first-order autocorrelated
process prior for the frailties:

𝑉𝑖(𝑡)|𝑉𝑖(𝑡−1) = 𝜙𝑉𝑖(𝑡−1) + 𝑒𝑖(𝑡)

where 𝑉𝑖(0) ∼ 𝒩 (0, 𝜎2
𝑊) and ei(t) are i.i.d. random variables having a 𝒩 (0, 𝜎2

𝑊) distribution. The parameter
ϕ is constrained to lie between – 1 and 1 (a priori ϕ ∼ Translated Beta(3, 3), i. e. with density proportional to
(𝜙 + 1)2(1 − 𝜙)2𝕀(−1,1)(𝑦)), and it measures the degree of serial correlation in the subject-specific frailty. The
prior specification is completed as follows:

𝛽0 ∼ 𝒩 (0, 1000)
𝜎2

𝑊 ∼ Inv-Gamma(1, 1).𝑦
Also for this model posterior inference can be performed through a standard Gibbs sampler algorithm, which
we implement in JAGS [36]. For each simulated scenarios, we run the algorithm for 251,000 iterations, discarding
the first 1,000 iterations as burn-in and thinning every 50 iterations to reduce the autocorrelation of the Markov
chain. The final sample size is 5,000 as before. Table 3 reports the posterior mean and standard deviation of the
frailty correlation parameter ϕ, for the first simulation scenario, described in Section 4.1; Table 4 reports similar
summaries of ϕ for the second simulation scenario (see Section 4.2).

 

Table 3: Simulation scenario 1: posterior mean and standard deviation of the frailty correlation parameter ϕ in [40].
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Censoring rate Mean Standard Deviation

0 0.698 0.513
10 % 0.634 0.502
25 % 0.711 0.453
50 % 0.684 0.498

From Table 3 it is clear that Manda and Meyer’s model is able to detect a significant positive correlation between
recurrent events (as evident from the posterior means and standard deviations). In fact, in the first scenario, the
data are generated so that observations at time j depend on observations at time t – j in two clusters, while in
the third one the observations are i.i.d.

Table 4: Simulation scenario 2: posterior mean and standard deviation of the frailty correlation parameter ϕ in [40].

Censoring rate Mean Standard Deviation

0 0.002 0.428
10 % 0.002 0.487
25 % 0.002 0.424
50 % 0.002 0.434

On the other hand, the posterior mean of ϕ in the second scenario is centred around 0. This shows the limita-
tions of a parametric approach as observations are generated from two equal size groups, with the same order
of dependence, but opposite effect. Therefore, it is difficult to capture the effect of the correlation between the
recurrent event times. Moreover, from Figure 1 and Figure 2, it is clear that our model is more flexible. Both
Figures show multimodal distributions for the autoregressive coefficients; this implies that our approach cap-
tures the clustering of observations and the cluster specific dependence structure. For example in Figure 1, the
predictive distribution for mi3 has a mode in 0, i. e. in one cluster there is no dependence of third order, while
the other mode is centred over 0.4, i. e. in the other cluster there is a positive dependence of the third order.

5 Hospitalization dataset

We fit model (1)–(3) to the readmission dataset in the R package frailtypack for all the possible choices of g de-
scribed in Section 2.1. The dataset contains rehospitalization times (in days) after surgery in patients diagnosed
with colorectal cancer. Data are available on N = 403 patients, for a total number of 861 recurrent events. In
addition to gap times between successive rehospitalizations, the dataset contains information for each patient
on the following covariates:

– chemo: variable indicating if the patient received chemotherapy.

– sex: gender of the patient.

– dukes: ordinal variable indicating the classification of the colorectal cancer. The baseline A–B denotes the
invasion of the tumor through the bowel wall penetrating the muscle layer but not involving lymph nodes;
the value C indicates the involvement of lymph nodes; the value D implies the presence of widespread
metastases. Category D corresponds to the most severe type of cancer.

– charlson: Charlson comorbidity index. It measures ten-year mortality for a patient who may have a range of
comorbidity conditions, and ranges within 3 classes, i. e. {0, 1 – 2, 3}. This is the only time-varying covariate.

The recurrent events in this study are readmission times (colorectal cancer patients may have several readmis-
sions after first discharge). The origin of the time axis is the date of the surgical procedure for each patient
and the recurrent events are subsequent rehospitalizations related to colorectal cancer. We exclude from the
analysis patients with just one censored gap time, i. e. patients for which no further rehospitalization has been
observed, and eight patients (approximately 2 % of the subjects) with 7 or more events. We are then left with a
dataset of N = 197 patients and a total number of 495 recurrent events. Table 5 reports the number of patients
with exactly j gap times, for 𝑗 = 1,..., 6. Moreover, 119 observations out of 197 are right-censored with respect to
their last gap time. Since the proportion of censored data is considerably high, we need to take censoring into
account.
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Table 5: Readmission dataset: number of patients with exactly j gap times, 𝑗 = 1, … , 𝐽.

j 1 2 3 4 5 6 TOT

nj 30 96 36 18 9 8 197

Prior hyperparameters in (4) are set as follows:

𝛽2
0 = 1, 000
𝜎 ∼ 𝒰(0, 10)
𝜏 ∼ 𝒰(0, 10)

𝜎2
𝑔 = 10, 𝜇𝑧 = 0, 𝜎2

𝑧 = 100
𝑀 = 1.

5.1 Testing for the order of dependence

When testing the order of dependence, we first fit model (1), (5)–(6) and (8) with p = 3 (G0 being the spike and
slab distribution) and then model (1), but specifying a prior directly on model size as in (9) with P = 3.

Figure 3 reports the marginal posterior predictive marginal distributions of mi, l, for l = 0, 1, 2, 3, obtained
with the spike and slab base measure. Since the predictive distributions of 𝑚𝑖0, 𝑚𝑖1, 𝑚𝑖2 are not concentrated
around 0, unlike that of mi3, we can conclude that the process best describing the readmission dataset has a
dependency of the second order. This result is confirmed also using the approach described in Section 3.2.
Indeed, the posterior distribution of p, displayed in Figure 9 of Supplementary Material, places most of its
mass on 2.

Figure 3: Readmission dataset: marginal posterior predictive distributions of mi0 (a), mi1 (b), mi2 (c) and mi3 (d) under the
spike and slab prior.

5.2 Posterior analysis

We compare now the results of the nonparametric AR(2) model for the random effects αij’s as in (5)–(7), selected
in the previous section, with models (2)–(3) built using different choices of g. In particular we consider two
summary statistics: 𝑔(𝑌𝑖1, … , 𝑌𝑖𝑗−1) = (𝑌𝑖1+⋯+𝑌𝑖𝑗−1)/(𝑗−1) and 𝑔(𝑌𝑖1, … , 𝑌𝑖𝑗−1) = (𝑌𝑖1 × ⋯ × 𝑌𝑖𝑗−1)

1/(𝑗−1)
. The

goal is to understand if higher order temporal dependency can be approximated by an AR(1)-type process built
on some appropriate function of past observations as described in (2). We analyze the posterior distribution of
K, the number of components in the mixture (5)–(6) under different alternatives. In particular, the results show
that the posterior modes of K are 2 or 3 with a probability of around 30 % for the AR(1)-type models. On the
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other hand, the AR(2) model, suggests the existence of 3, 4 or 5 groups (See Figure 10 of Supplementary Material
for results).

In Figure 4 we present the marginal posterior predictive distributions of 𝑌𝑛𝑒𝑤
𝑗 for a hypothetical new subject,

for each time 𝑗, 𝑗 = 1,..., 6, setting the values of the covariates to the empirical mode. From the figure, it is evident
that the two AR(1)-type models produce very similar results. Obviously, for j = 1 and j = 2 the three distributions
are almost identical, as the models are closer. For j > 2, it is clear that the posterior predictive distributions of
𝑌𝑛𝑒𝑤

𝑗 have a larger variance and are more skewed under the AR(2) model. This experiment shows that it is not
straightforward to approximate higher order dependency using summary statistics.

Figure 4: Readmission dataset: posterior predictive distributions of 𝑌𝑛𝑒𝑤
𝑗 , 𝑗 = 1, … , 6 for a hypothetical new subject, with

covariates equal to the empirical mode of all covariates in the sample. The green and blue lines represent AR(1)-type
models, with 𝑔(𝑌𝑖1, … , 𝑌𝑖𝑗−1) = (𝑌𝑖1 + ⋯ + 𝑌𝑖𝑗−1)/(𝑗 − 1) and 𝑔(𝑌𝑖1, … , 𝑌𝑖𝑗−1) = (𝑌𝑖1 × ⋯ × 𝑌𝑖𝑗−1)

1/(𝑗−1)
, respectively,

and the red distribution indicates AR(2) model.

5.3 Posterior inference on the regression parameters

We now discuss the inference on the regression parameters in order to understand how covariates influence
the recurrent event process. Although some covariates are fixed and do not vary over time, we still assume that
their effect can be different in time and therefore we estimate a different vector of regression coefficients for
all covariates in the model for each gap time j, j = 1, …,6. Covariates chemo and sex are binary variables, while
dukes and charlson are 3 levels categorical variables and we need to introduce 2 dummy variables for each of
them in the model, with baseline set to A–B for dukes and to 0 for charlson. Therefore, the final covariate vector
for individual i is given by 𝑥𝑥𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, 𝑥𝑖4, 𝑥𝑖5, 𝑥𝑖6) =(indicator for chemotherapy, indicator for female,
indicator for dukes equal to C, indicator for dukes equal to D, indicator for charlson in 1–2, indicator for charlson
equal to 3). The vector of regression parameters 𝛽𝛽𝛽𝑗 = (𝛽1𝑗, 𝛽2𝑗, 𝛽3𝑗, 𝛽4𝑗, 𝛽5𝑗, 𝛽6𝑗) for each gap time j, j = 1, …, J (= 6),
is therefore 6-dimensional.

Figure 5 displays 95 % credible intervals for the marginal posteriors of the regression parameter of each
covariate for the first 5 gap times, i. e. of ̃𝛽𝛽𝛽𝑟 ∶= (𝛽𝑟1, 𝛽𝑟2, 𝛽𝑟3, 𝛽𝑟4, 𝛽𝑟5). In general there is no evident effect of
chemotherapy on the outcome on any gap time. However, ̃𝛽𝛽𝛽2, which measures the effect of sex on the gap
times, indicates that women have mainly larger gap times.
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Figure 5: Readmission dataset: 95 % posterior credible intervals for the regression parameters of each covariate across the
first five gap times. (a) Regression coefficients of chemo. (b) Regression coefficents of sex. (c) Regression coefficients of
dukes = C. (d) Regression coefficients of dukes = D. (e) Regression coefficents of charlson = 1–2. (f) Regression coefficents
of charlson = 3.

The dummy variable relative to Dukes stage C of the tumour and the regression coefficients corresponding to
Dukes stage D are never significant. Finally, posterior CI’s of the parameters corresponding to the Charlson
index show that, in general, patients with index 0 will have larger gap times with respect to the one with index
3, in fact the medians of the posterior distribution are concentrated on negative values. Moreover, credible
intervals are larger for the last gap times, as expected, since few individuals have a large number of events. The
regression coefficients at time j = 6 are not shown as the credible intervals are not comparable with those of the
previous times.

5.4 Comparison with existing methods

In this subsection, we compare our model with the frequentist shared frailty model of [41] as implemented in the
R package frailtypack [42]. In this setup the dependence between recurrences is modelled through a frailty
variable, such that events which occur several times within the same subject during the period of observation
share an unobserved random effect, i. e. frailty. The hazard function for the j-th event (𝑗 = 1, … , 𝑛𝑖 + 1) and i-th
individual (𝑖 = 1, … , 𝑁), conditional on the frailty parameter ωi, is

ℎ𝑖𝑗(𝑡|𝜔𝑖) = ℎ0(𝑡)𝜔𝑖𝑒𝛽𝑇𝑥ij

𝜔𝑖
iid∼Γ( 1

𝜃 , 1
𝜃 )

where h0(t) is the baseline hazard function, 𝛽𝛽𝛽 is the vector of the regression coefficients associated to the covari-
ate vector 𝑥𝑥𝑥𝑖𝑗. Table 6 reports the estimates of the regression coefficients and the associated p-value.

Table 6: Readmission dataset: estimates of the regression coefficients and associated p-values in the shared frailty model of
[41].

coef p-value

chemo – 0.206 1.48e-01
sex – 0.537 1.06e-04
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dukes C 0.297 6.42e-02
dukes D 1.056 5.82e-08
charlson 1– 2 0.451 8.11e-02
charlson 3 0.410 2.74e-03

The estimate of the variance θ of the frailty term is 0.67 with standard error 0.14, so θ is significantly different
from 0, meaning that there is heterogeneity between subjects. Differently from our approach, in this model
the regression coefficients do no vary across time. The most significant variables are the indicator for female,
indicator for dukes equal to D and indicator for charlson equal to 3. A negative coefficient implies a lower risk of
rehospitalization, while a positive a higher risk. In our analysis we obtain that (i) the coefficient for indicator of
female (sex=1) remains in general positive over time, implying longer times between rehospitalizations; (ii) the
coefficient for duke equal to D is initially negative but becomes positive for the last gap times; (iii) the regression
parameters corresponding to charlson index equal to 3 are mostly negative over time. These results show a good
agreement between the two models. Finally, Section 6 of Supplementary Material reports a comparison of our
model with the dynamic frailty models of [26], who also adopt a Bayesian nonparametric approach based on
the DP.

6 Urinary tract infection dataset

We consider data on patients at risk of urinary tract infection (UTI). The best clinical marker of UTI available
is pyuria, i. e. White Blood Cell count (WBC) µl–1 (1/microliter) ≥ 1, detected by microscopy of a fresh unspun,
unstained specimen of urine ([43, 44]). Let Ti0 correspond to the first visit attendance at the Lower Urinary Tract
Service Clinic (Whittington Hospital, London, UK) and let Tij be the time of the j – th new infection for the patient
i. Note that at time 0, all patients suffer of UTI. For each patient and at each visit the result of the microanalysis
of a sample of urine has been recorded in terms of the WBC count. Presence of WBC in the urine (regardless of
the quantity) indicates the presence of Urinary Tract Infection. We include in the analysis only female patients
with at least two gap times, giving a total of N = 306 patients. The number of observations with exactly j gap
times is displayed in Table 7.

Table 7: UTI dataset: number of patients with exactly j gap times, 𝑗 = 1, ..., 𝐽.

j 2 3 4 5 6 7 8 9 TOT

nj 121 89 54 21 10 6 2 3 306

We note that 85 subjects out of 306 are right-censored with respect to their last gap time. Since the proportion of
censored data is considerable, we have taken censoring into account and modified the likelihood appropriately.
Figure 6 displays the recurrent events of two randomly selected patients, in which the last gap time of the patient
in the left panel is observed, while that of the patient in the right panel is censored. Indeed, the first patient
suffers of infection at her last visit, while the second patient has a WBC count equal to zero implying that a new
infection will happen necessarily after her last visit.

Figure 6: UTI dataset: recurrent events for two patients; the last gap time of the patient on the left is observed, while that
of the patient on the right is censored. The vertical axis reports the value of WBC in the urine, red circles denote zero
WBC at the visit while green circles denote WBC greater than 0.

We fit model (1), including for each patient a 5-dimensional vector of time-varying covariates: a continu-
ous covariate representing the standardized age of the patient i during gap time j and four binary variables
denoting the presence, during the j-th gap time, of urgency, pain, stress incontinence and voiding symptoms
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(=1 if the symptom is present, 0 otherwise). Therefore, the final covariate vector for individual i is given by
𝑥𝑥𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, 𝑥𝑖4, 𝑥𝑖5) =(age, indicator for urgency, indicator for incontinence, indicator for pain, indicator
for voiding). Descriptive statistics of the covariates are given in Table 8.

Table 8: UTI dataset: descriptive statistics of the covariates.

Covariate Mean Standard Deviation

age 53.87 16.01
presence of urgency symptoms 0.56 0.50
presence of incontinence symptoms 0.21 0.41
presence of pain symptoms 0.47 0.50
presence of voiding symptoms 0.45 0.50

In the analysis we set the prior hyperparameters in (4) in order to specify vague prior distributions:

𝛽2
0 = 1000
𝜎 ∼ 𝒰(0, 10)
𝜏 ∼ 𝒰(0, 10)

𝜎2
𝑔 = 10, 𝜇𝑧 = 0, 𝜎2

𝑧 = 100.
𝑀 = 1.

6.1 Posterior inference

We perform inference on the order of dependence using both approaches introduced in Section 3. The marginal
posterior predictive distributions of mi, l, for l = 0, 1, 2, 3, obtained with the spike and slab base measure, are
displayed in red in Figure 7. Panels (b), (c) and (d) show that the predictive distributions of mi,1, mi,2, mi,3 are all
concentrated around 0. In addition, specifying directly a prior on p, with P = 3, leads to a posterior distribution
for the order of temporal dependence with mode in 0 (result shown in blue). These results indicate that there
is no evidence of dependence between gap times, although the presence of a small cluster whose distribution
is concentrated slight away from zero is detectable. This result is confirmed also by running the model for the
three choices of function g described in Section 2.1, assuming an AR(1) structure. We obtain similar posterior
predictive marginal distributions for mi0 and mi1, as well as the same posterior inference for K. In particular, a
posteriori, the marginal distribution of mi1 is concentrated around 0, supporting the hypothesis of independence
between gap times.

Figure 7: UTI dataset: marginal posterior predictive distributions of mi0 (a), mi1 (b), mi2 (c) and mi3 (d) obtained with the
spike and slab base measure (red) and with the prior on the order of dependence (blue).
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7 Conclusion

In this work we propose novel Bayesian nonparametric approaches for modelling gap times between recur-
rent events. Time-dependency is taken into account through the specification of an autoregressive model
on the frailty parameters governing the distributions of the gap times. To allow for clustering of patients,
overdispersion and outliers, we introduce Dirichlet process mixtures as random effects distribution. Both time-
homogeneous and inhomogeneous covariates can be included in the model and we allow for their effect to vary
through time.

The strategy we adopt is flexible and allows testing for the order of dependence among random effects at
different times, that is a key feature of the nonparametric AR(p) model. We propose two different methods to test
the order of dependence: spike and slab base measure and direct prior specification on the order of dependence.
In the first case we can simply modify the base measure of the DP, whereas with the second technique, we elicit
a prior on the order p of the autoregressive process and then, conditioning on p, we set a Dirichlet Process prior
of appropriate dimension for the parameters of the AR(p) model.

We can introduce time-dependency between subject-specific gap times in different ways. The simplest and
probably most natural way consists of assuming that the random effects at time j – 1, …, j – p influence the be-
haviour of the random effect at time j. We then investigate the possibility of approximating higher order of
dependency using summary statistics of past observations. Our results show that the choice of summary statis-
tics is crucial and not obvious and that the approximation worsens as the number of gap times increases. As
such, this topic will be object of future research, possibly borrowing ideas from the Approximate Bayesian
Computation literature.

In our model the random effect has a key clinical importance as it highlights the temporal evolution of the
gap times. Our model allows for situations in which you can have independence among gap times as well as
temporal dependence. This gives insight into the mechanisms of disease progression and the efficacy of medical
interventions. In the cancer example, from Figure 3 it is evident that there is a time dependence between gap
times, for some clusters of observations, up to order 2. For example, we find a cluster of individuals where
there is a negative correlation with the second lag gap time. For another group this correlation is positive.
These considerations have consequences on the expected length of time between events. On the other hand,
there is no strong evidence of time dependency between gap times in the urinary infection example, which can
impact therapeutic decisions.

The model strategy we propose can be extended to other fields of application; in particular it is straightfor-
ward to adapt the proposed approach to model multiple time series analysis [see [29, 45]. In fact, in this case, the
data consist in N time series Y𝑖 = (𝑌𝑖1, … , 𝑌𝑖𝑛𝑖

), where i denotes the time series and ni is the number of obser-
vations for each series. The likelihood for each time series can be expressed as in (1) and temporal dependence
may be introduced as in (2)–(3) with appropriate choice of the function g( · ).

Finally although the main focus of the paper is on modelling the recurrent event process itself, the proposed
model can also be used as building block in a hierarchy to describe the relationship between recurrent events
and survival up to a terminating event. In recent years there has been a surge of interest in methods for analysing
recurrent events data with risk of termination dependent on the recurrent process [46]. This can be achieved
by specifying a joint distribution of the gap times and event (termination) time. Let 𝒯𝑖 denote the event time of
interest for individual i. We can assume a survival regression model for 𝒯𝑖, for example:

𝒯𝑖 ∣ 𝛾𝛾𝛾𝑖, x⋆
𝑖 , 𝜌𝑖 ∼ 𝑓 (𝑡𝑖 ∣ x⋆

𝑖 𝛾𝑖, 𝜌𝑖)

where x⋆
𝑖 is a vector of covariates relevant for survival and 𝛾𝛾𝛾𝑖 is the vector of respective coefficients. We link the

survival and recurrence processes through the parameter ρi by setting a joint nonparametric prior on ρi and
(𝑚𝑖0, 𝑚𝑖1) in (3):

(𝜌𝑖, 𝑚𝑖0, 𝑚𝑖1) ∣ 𝐺 iid∼ 𝐺, 𝐺 ∼ 𝐷𝑃(𝑀, 𝐺0)

with 𝐺0 = 𝒩 (0, 𝜎2
𝜌) × 𝒩 (0, 𝜎2

𝑔) × 𝒩 (𝜇𝑧, 𝜎2
𝑧). This latter extension is object of on-going investigation.
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Supplementary Material: The Supplementary Materials file includes further posterior inference under our
models for the different simulated scenarios referenced in Section 4 (see Sections 1–2 there) and two extra
simulation scenarios (Sections 3–4 there). Further posterior inference on the Readmission dataset is included in
Section 5 and 6. Sections 7 and 8 contains the JAGS files.

The online version of this article offers supplementary material (https://doi.org/10.1515/ijb-2018-0088).
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