
Gaussian Processes for Survival Analysis

Tamara Fernández
Department of Statistics

University of Oxford
Oxford, UK.

fernandez@stat.ox.ac.uk

Nicolás Rivera
Department of Informatics.

King’s College London
London, UK.

nicolas.rivera@kcl.ac.uk

Yee Whye Teh
Department of Statistics.

University of Oxford.
Oxford, UK.

y.w.teh@stats.ox.ac.uk

Abstract

We introduce a semi-parametric Bayesian model for survival analysis. The model
is centred on a parametric baseline hazard, and uses a Gaussian process to model
variations away from it nonparametrically, as well as dependence on covariates.
As opposed to many other methods in survival analysis, our framework does not
impose unnecessary constraints in the hazard rate or in the survival function. Fur-
thermore, our model handles left, right and interval censoring mechanisms common
in survival analysis. We propose a MCMC algorithm to perform inference and an
approximation scheme based on random Fourier features to make computations
faster. We report experimental results on synthetic and real data, showing that our
model performs better than competing models such as Cox proportional hazards,
ANOVA-DDP and random survival forests.

1 Introduction

Survival analysis is a branch of statistics focused on the study of time-to-event data, usually called
survival times. This type of data appears in a wide range of applications such as failure times
in mechanical systems, death times of patients in a clinical trial or duration of unemployment in
a population. One of the main objectives of survival analysis is the estimation of the so-called
survival function and the hazard function. If a random variable has density function f and cumulative
distribution function F , then its survival function S is 1 − F , and its hazard λ is f/S. While the
survival function S(t) gives us the probability a patient survives up to time t, the hazard function
λ(t) is the instant probability of death given that she has survived until t.

Due to the nature of the studies in survival analysis, the data contains several aspects that make
inference and prediction hard. One important characteristic of survival data is the presence of many
covariates. Another distinctive flavour of survival data is the presence of censoring. A survival time
is censored when it is not fully observable but we have an upper or lower bound of it. For instance,
this happens in clinical trials when a patient drops out the study.

There are many methods for modelling this type of data. Arguably, the most popular is the Kaplan-
Meier estimator [12]. The Kaplan-Meier estimator is a very simple, nonparametric estimator of the
survival function. It is very flexible and easy to compute, it handles censored times and requires
no-prior knowledge of the nature of the data. Nevertheless, it cannot handle covariates naturally and
no prior knowledge can be incorporated. A well-known method that incorporates covariates is the
Cox proportional hazard model [3]. Although this method is very popular and useful in applications,
a drawback of it, is that it imposes the strong assumption that the hazard curves are proportional and
non-crossing, which is very unlikely for some data sets.

There is a vast literature of Bayesian nonparametric methods for survival analysis [9]. Some examples
include the so-called Neutral-to-the-right priors [5], which models survival curves as e−µ̃((0,t]), where
µ̃ is a completely random measure on R+. Two common choices for µ̃ are the Dirichlet process
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[8] and the beta-Stacy process [19], the latter, being a bit more tractable due its conjugacy. Other
alternatives place a prior on the hazard function, one example of this, is the extended gamma process
[7]. The weakness of the above methods is that there is no natural nor direct way to incorporate
covariates and thus, they have not been extensively used by practitioners of survival analysis. More
recently, [4] developed a new model called ANOVA-DDP which mixes ideas from ANOVA and
Dirichlet processes. This method successfully incorporates covariates without imposing strong
constraints, though it is not clear how to incorporate expert knowledge. Within the context of
Gaussian process, a few models has been considered, for instance [13] and [11]. Nevertheless these
models fail to overcome the proportional hazard assumption, which corresponds to one of the aims of
this work. Recently, we became aware of the work of [2], which uses a so-called accelerated failure
times model. Here, the dependence of the failure times on covariates is modelled by rescaling time,
with the rescaling factor modelled as a function of covariates with a Gaussian process prior. This
model is different from our proposal, and is more complex to study and to work with.

Lastly, another well-known method is Random Survival Forest [10]. This can be seen as a generali-
sation of Kaplan Meier estimator to several covariates. It is fast and flexible, nevertheless it cannot
incorporate expert knowledge and lacks interpretation which is fundamental for survival analysis.

In this paper we introduce a new semiparametric Bayesian model for survival analysis. Our model is
able to handle censoring and covariates. Our approach models the hazard function as the multiplication
of a parametric baseline hazard and a nonparametric part. The parametric part of our model allows
the inclusion of expert knowledge and provides interpretability, while the nonparametric part allow
us to handle covariates and to amend incorrect or incomplete prior knowledge. The nonparametric
part is given by a non-negative function of a Gaussian process on R+.

Giving the hazard function λ of a random variable T , we sample from it by simulating the first jump
of a Poisson process with intensity λ. In our case, the intensity of the Poisson process is a function of
a Gaussian process, obtaining what is called a Gaussian Cox process. One of the main difficulties of
working with Gaussian Cox processes is the problem of learning the ‘true’ intensity given the data
because, in general, it is impossible to sample the whole path of a Gaussian process. Nevertheless,
exact inference was proved to be tractable by [1]. Indeed, the authors developed an algorithm by
exploiting a nice trick which allows them to make inference without sampling the whole Gaussian
process but just a finite number of points.

In this paper, we study basic properties of our prior. We also provide an inference algorithm based in
a sampler proposed by [17] which is a refined version of the algorithm presented in [1]. To make
the algorithm scale we introduce a random Fourier features to approximate the Gaussian process
and we supply the respective inference algorithm. We demonstrate the performance of our method
experimentally by using synthetic and real data.

2 Model

Consider a continuous random variable T on R+ = [0,∞), with density function f and cumulative
distribution function F . Associated with T , we have the survival function S = 1− F and the hazard
function λ = f/S. The survival function S(t) gives us the probability a patient survives up to time t,
while the hazard function λ(t) gives us the instant risk of patient at time t.

We define a Gaussian process prior over the hazard function λ. In particular, we choose λ(t) =
λ0(t)σ(l(t)), where λ0(t) is a baseline hazard function, l(t) is a centred stationary Gaussian process
with covariance function κ, and σ is a positive link function. For our implementation, we choose σ as
the sigmoidal function σ = (1 + e−x)−1, which is a quite standard choice in applications. In this
way, we generate T as the first jump of the Poisson process with intensity λ, i.e. T has distribution
λ(t)e−

∫ t
0
λ(s)ds. Our model for a data set of i.i.d. Ti, without covariates, is

l(·) ∼ GP(0, κ), λ(t)|l, λ0(t) = λ0(t)σ(l(t)), Ti|λ
iid∼ λ(t)e−

∫ Ti
0 λ(s)ds, (1)

which can be interpreted as a baseline hazard with a multiplicative nonparametric noise. This is an
attractive feature as an expert may choose a particular hazard function and then the nonparametric
noise amends an incomplete or incorrect prior knowledge. The incorporation of covariates is discussed
later in this section, while censoring is discussed in section 3.
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Notice that E(σ(X)) = 1/2 for a zero-mean Gaussian random variable. Then, as we are working
with a centred Gaussian process, it holds that E(λ(t)) = λ0(t)E(σ(l(t))) = λ0(t)/2. Hence, we can
imagine our model as a random hazard centred in λ0(t)/2 with a multiplicative noise. In the simplest
scenario, we may take a constant baseline hazard λ0(t) = 2Ω with Ω > 0. In such case, we obtain a
random hazard centred in Ω, which is simply the hazard function of a exponential random variable
with mean 1/Ω. Another choice might be λ0(t) = 2βtα−1, which determines a random hazard
function centred in βtα−1, which corresponds to the hazard function of the Weibull distribution, a
popular default distribution in survival analysis.

In addition to the hierarchical model in (1), we include hyperparameters to the kernel κ and to the
baseline hazard λ0(t). In particular for the kernel, it is common to include a length scale parameter
and an overall variance.

Finally, we need to ensure the model we proposed defines a well-defined survival function, i.e.
S(t)→ 0 as t tends to infinity. This is not trivial as our random survival function is generated by a
Gaussian process. The next proposition, proved in the appendix, states that under suitable regularity
conditions, the prior defines proper survival functions.
Proposition 1. Let (l(t))t≥0 ∼ GP(0, κ) be a stationary continuous Gaussian process. Suppose
that

∫ t
0
κ(s)ds = o(t). Moreover, assume it exists K > 0 and α > 0 such that λ0(t) ≥ Ktα−1 for

all t ≥ 1. Let S(t) be the random survival function associated with (l(t))t≥0, then limt→∞ S(t) = 0
with probability 1.

Note the above proposition is satisfied by the hazard functions of the Exponential and Weibull
distributions. Also, the condition

∫ t
0
κ(s)ds = o(t) is satisfied by all κ(t) decreasing to 0.

2.1 Adding covariates

We model the relation between time and covariates by the kernel of the Gaussian process prior. A
simple way to generate kernels in time and covariates is to construct kernels for each covariate and
time, and then perform basic operation of them, e.g. addition or multiplication. Let (t,X) denotes a
time t and with covariates X ∈ Rd. Then for pairs (t,X) and (s, Y ) we can construct kernels like

K̂((t,X), (s, Y )) = K̂0(t, s) +
∑d
j=1 K̂j(Xj , Yj),

or, the following kernel, which is the one we use in our experiments,

K((t,X), (s, Y )) = K0(t, s) +
∑d
j=1XjYjKj(t, s). (2)

Observe that the first kernel establishes an additive relation between time and covariates while
the second creates an interaction between the value of the covariates and time. More complicated
structures that include more interaction between covariates can be considered. We refer to the work
of [6] for details about the construction and interpretation of the operations between kernels. Observe
the new kernel produces a Gaussian process from the space of time and covariates to the real line, i.e
it has to be evaluated in a pair of time and covariates.

The new model to generate Ti, assuming we are given the covariates Xi, is

l(·) ∼ GP(0,K), λi(t)|l, λ0(t), Xi = λ0(t)σ(l(t,Xi)), Ti|λi
indep∼ λ(Ti)e

−
∫ Ti
0 λi(s)ds, (3)

In our construction of the kernel K, we choose all kernels Kj as stationary kernels (e.g. squared
exponential), so that K is stationary with respect to time, so proposition 1 is valid for each fixed
covariate X , i.e. giving a fix covariate X , we have SX(t) = P(T > t|X)→ 0 as t→∞.

3 Inference

3.1 Data augmentation scheme

Notice that the likelihood of the model in equation (3) has to deal with terms of the form
λi(t) exp−

∫ t
0
λi(s)ds as these expressions come from the density of the first jump of a non-

homogeneous Poisson process with intensity λi. In general the integral is not analytically tractable
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since λi is defined by a Gaussian process. A numerical scheme can be used, but it is approximate and
computationally expensive. Following [1]and [17], we develop a data augmentation scheme based on
thinning a Poisson process that allows us to efficiently avoid a numerical method.

If we want to sample a time T with covariate X , as given in equation (3), we can use the following
generative process. Simulate a sequence of points g1, g2, . . . of points distributed according a Poisson
process with intensity λ0(t). We assume the user is using a well-known parametric form and then,
sampling the points g1, g2, . . . is tractable (in the Weibull case this can be easily done). Starting from
k = 1 we accept the point gk with probability σ(lgk,X). If it is accepted we set T = gk, otherwise we
try the point gk+1 and repeat. We denote by G the set of rejected point, i.e. if we accepted gk, then
G = {g1, . . . , gk−1}. Note the above sampling procedure needs to evaluate the Gaussian process in
the points (gk, X) instead the whole space.

Following the above scheme to sample T , the following proposition can be shown.

Proposition 2. Let Λ0(t) =
∫ T

0
λ0(t)dt, then

p(G,T |λ0, l(t)) =

λ0(T )
∏
g∈G

λ0(g)

 e−Λ0(T )

σ(l(T ))
∏
g∈G

(1− σ(lg))


proof sketch. Consider a Poisson process on [0,∞) with intensity λ0(t). Then, the first term is the
density of putting points exactly inG∪{T}. The second term is the probability of putting no points in
[0, T ]\ (G∪{T}), i.e. e−Λ0(T ). The second term is independent of the first one. The last term comes
from the acceptance/rejection part of the process. The points g ∈ G are rejected with probability
1 − σ(g), while the point T is accepted with probability σ(T ). Since the acceptance/rejection of
points is independent of the Poisson process we get the result.

Using the above proposition, the model of equation (1) can be reformulated as the following tractable
generative model:

l(·) ∼ GP(0,K), (G,T )|λ0(t), l(t) ∼ e−Λ0(T )(σ(l(T ))λ0(T ))
∏
g∈G

(1− σ(lg))λ0(g). (4)

Our model states a joint distribution for the pair (G,T ) where G is the set of rejected jump point of
the thinned Poisson process and T is the first accepted one.

To perform inference we need data (Gi, Ti, Xi), whereas we only receive points (Ti, Xi). Thus, we
need to sample the missing data Gi given (Ti, Xi). The next proposition gives us a way to do this.

Proposition 3. [17] Let T be a data point with covariate X and let G be its set of rejected points.
Then the distribution of G given (T,X, λ0(t), l(t)) is distributed as a non-homogeneous Poisson
process with intensity λ0(t)(1− σ(l(t,X))) on the interval [0, T ].

3.2 Inference algorithm

The above data augmentation scheme suggests the following inference algorithm. For each data
point (Ti, Xi) sample Gi|(Ti, Xi, λ0, l), then sample l|((Gi, Ti, Xi)

n
i=1, λ0), where n is the number

of data points. Observe that the sampling of l given (Gi, Ti, Xi)
n
i=1, λ0) can be seen as a Gaussian

process binary classification problem, where the points Gi and Ti represent two different classes. A
variety of MCMC techniques can be used to sample l, see [14] for details.

For our algorithm we use the following notation. We denote the dataset as (Ti, Xi)
n
i=1. The set Gi

refers to the set of rejected points of Ti. We denote G =
⋃n
i=1Gi and T = {T1, . . . , Tn} for the

whole set of rejected and accepted points, respectively. For a point t ∈ Gi ∪ {Ti} we denote l(t)
instead of l(t,Xi), but remember that each point has an associated covariate. For a set of points A
we denote l(A) = {l(a) : a ∈ A}. Also Λ0(t) refers to

∫ t
0
λ0(s)ds and Λ0(t)−1 denotes its inverse

function (it exists since Λ0(t) is increasing). Finally, N denotes the number of iterations we are going
to run our algorithm. The pseudo code of our algorithm is given in Algorithm 1.

Lines 2 to 11 sample the set of rejected points Gi for each survival time Ti. Particularly lines 3
to 5 used the Mapping theorem, which tells us how to map a homogeneous Poisson process into a
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Algorithm 1: Inference Algorithm.
Input: Set of times T and the Gaussian proces l instantiated in T and other initial parameters

1 for q=1:N do
2 for i=1:n do
3 ni ∼ Poisson(1; Λ0(Ti));

4 C̃i ∼ U(ni; 0,Λ0(Ti));
5 Set Ai = Λ−1

0 (Ãi);
6 Set A = ∪ni=1Ai
7 Sample l(A)|l(G ∪ T ), λ0

8 for i=1:n do
9 Ui ∼ U(ni; 0, 1)

10 set G(i) = {a ∈ Ai such that Ui < 1− σ(l(a))}
11 Set G = ∪ni=1Gi
12 Update parameters of λ0(t)
13 Update l(G ∪ T ) and hyperparameter of the kernel.

non-homogeneous with the appropriate intensity. Observe it makes uses of the function Λ0 and its
inverse function, which shall be provided or be easily computable. The following lines classify the
points drawn from the Poisson process with intensity λ0 in the set Gi as in proposition 3. Line 7 is
used to sample the Gaussian process in the set of points A given the values in the current set G ∪ T .
Observe initially G = ∅.

3.3 Adding censoring

Usually, in Survival analysis, we encounter three types of censoring: right, left and interval censoring.
We assume each data point Ti is associated with an (observable) indicator δi, denoting the type of
censoring or if the time is not censored. We describe how the algorithm described before can easily
handle any type of censorship.

Right censorship: In presence of right censoring, the likelihood for a survival time Ti is S(Ti). The
related event in terms of the rejected points correspond to do not accept any location [0, Ti). Hence,
we can treat right censorship in the same way as the uncensored case, by just sampling from the
distribution of the rejected jump times prior Ti. In this case, Ti is not an accepted location, i.e. Ti is
not considered in the set T of line 7 nor 13.

Left censorship: In this set-up, we know the survival time is at most Ti, then the likelihood of
such time is F (Ti). Treating this type of censorship is slightly more difficult than the previous case
because the event is more complex. We ask for accepting at least one jump time prior Ti, which
might leads us to have a larger set of latent variables. In order to avoid this, we proceed by imputing
the ‘true’ survival time T ′i by using its truncated distribution on [0, Ti]. Then we proceed using T ′i
(uncensored) instead of Ti. We can sample T ′i as following: we sample the first point of a Poisson
process with the current intensity λ, if such point is after Ti we reject the point and repeat the process
until we get one. The imputation step has to be repeated at the beginning of each iteration.

Interval censorship: If we know that survival time lies in the interval I = [Si, Ti] we can deal with
interval censoring in the same way as left censoring but imputing the survival time T ′i in I .

4 Approximation scheme

As shown is algorithm 1, in line 7 we need to sample the Gaussian process (l(t))t≥0 in the set of
points A from its conditional distribution, while in line 13, we have to update (l(t))t≥0 in the set
G∪ T . Both lines require matrix inversion which scales badly for massive datasets or for data T that
generates a large set G. In order to help the inference we use a random feature approximation of the
Kernel [16].

We exemplify the idea on the kernel we use in our experiment, which is given by K((t,X), (s, Y )) =

K0(t, s) +
∑d
j=1XjYjKj(t, s), where each Kj is a square exponential kernel, wuth overall variance
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σ2
j and length scale parameter φj Hence, for m ≥ 0, the approximation of our Gaussian process is

given by

gm(t,X) = gm0 (t) +
∑d
j=1Xjg

m
j (t) (5)

where each gmj (t) =
∑m
k=1 a

j
k cos(sjkt) + bjk sin(sjkt), and each ajk and bjk are independent samples

ofN (0, σ2
j ) where σ2

j is the overall variance of the kernel Kj . Moreover, sjk are independent samples
of N (0, 1/(2πφj)) where φj is the length scale parameter of the kernel Kj . Notice that g(t,X) is a
Gaussian process since each gj(t) is the sum of independent normally distributed random variables.
It is know that as m goes to infinity, the kernel of gm(t,X) approximates the kernel Kj . The above
approximation can be done for any stationary kernel and we refer the reader to [16] for details.

The inference algorithm for this scheme is practically the same, except for two small changes. The
values lA in line 7 are easier to evaluate because we just need to know the values of the ajk and bjk,
and no matrix inversion is needed. In line 13 we just need to update all values akj and bkj . Since they
are independent variables there is no need for matrix inversion.

5 Experiments

All the experiments are performed using our approximation scheme of equation (5) with a value of
m = 50. Recall that for each Gaussian process, we used a squared exponential kernel with overall
variance σ2

j and length scale parameter φj . Hence for a set of d covariates we have a set of 2(d+ 1)
hyper-parameters associated to the Gaussian processes. In particular, we follow a Bayesian approach
and place a log-Normal prior for the length scale parameter φj , and a gamma prior (inverse gamma is
also useful since it is conjugate) for the variance σ2

j . We use elliptical slice sampler [15] for jointly
updating the set of coefficients {ajk, b

j
k} and length-scale parameters.

With respect the baseline hazard we consider two models. For the first option, we choose the baseline
hazard 2βtα−1 of a Weibull random variable. Following a Bayesian approach, we choose a gamma
prior on β and a uniform U(0, 2.3) on α. Notice the posterior distribution for β is conjugate and thus
we can easily sample from it. For α, use a Metropolis step to sample from its posterior. Additionally,
observe that for the prior distribution of α, we constrain the support to (0, 2.3). The reason for this is
because the expected size of the set G increases with respect to α and thus slow down computations.

As second alternative is to choose the baseline hazard as λ0(t) = 2Ω, with gamma prior over the
parameter Ω. The posterior distribution of Ω is also gamma. We refer to both models as the Weibull
model (W-SGP) and the Exponential model (E-SGP) respectively.

The implementation for both models is exactly the same as in Algorithm 1 and uses the same hyper-
parameters described before. As the tuning of initial parameters can be hard, we use the maximum
likelihood estimator as initial parameters of the model.

5.1 Synthetic Data

In this section we present experiments made with synthetic data. Here we perform the experiment
proposed in [4] for crossing data. We simulate n = 25, 50, 100 and 150 points from each of the
following densities, p0(t) = N (3, 0.82) and p1(t) = 0.4N (4, 1) + 0.6N (2, 0.82), restricted to R+.
The data contain the sample points and a covariate indicating if such points were sampled from the
p.d.f p0 or p1. Additionally, to each data point, we add 3 noisy covariates taking random values in the
interval [0, 1]. We report the estimations of the survival functions for the Exponential and Weibull
model in figures 1 and 2, respectively.

It is clear that for the clean data (without extra noisy covariates), the more data the better the
estimation. In particular, the model perfectly detects the cross in the survival functions. For the noisy
data we can see that with few data points the noise seems to have an effect in the precision of our
estimation in both models. Nevertheless, the more points the more precise is our estimate for the
survival curves. With 150 points, each group seems to be centred on the corresponding real survival
function, independent of the noisy covariates.

We finally remark that for the W-SGP and E-SGP models, the prior of the hazards are centred in a
Weibull and a Exponential hazard, respectively. Since the synthetic data does not come from those
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Figure 1: Exponential Model. First row: clean data, Second row: data with noisy covariates. Per
columns we have 25,50,100 and 150 data points per each group (shown in X-axis) and data is
increasing from left to right. Dots indicate data is generated from density p0, crosses, from p1. In
the first row a confidence interval for each curve is given. In the second row each curve for each
combination of noisy covariate is shown.
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Figure 2: Weibull Model. First row: clean data, Second row: data with noise covariates. Per columns
we have 25, 50, 100 and 150 data points per each group (shown in X-axis) and data is increasing from
left to right. Dots indicate data is generated from p0, crosses, from p1. In the first row a credibility
interval is shown. In the second row each curve for each combination of noisy covariate is given.
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Figure 3: Left: C-Index for ANOVA-DDP,COX,E-SGP,RSF,W-SGP; Middle: Survival curves
obtained for the combination of score: 30, 90 and treatments: 1 (standard) and 2 (test); Right:
Survival curves, using W-SGP, across all scores for fixed treatment 1, diagnosis time 5 moths, age 38
and no prior therapy. (Best viewed in colour)

distributions, it will be harder to approximate the true survival function with few data. Indeed, we
observe our models have problems at estimating the survival functions for times close to zero.

5.2 Real data experiments

To compare our models we use the so-called concordance index. The concordance index is a standard
measure in survival analysis which estimates how good the model is at ranking survival times.
We consider a set of survival times with their respective censoring indices and set of covariates
(T1, δ1, X1), . . . , (Tn, δn, Xn). On this particular context, we just consider right censoring.

To compute the C-index, consider all possible pairs (Ti, δi, Xi;Tj , δj , Xj) for i 6= j. We call a
pair admissible if it can be ordered. If both survival times are right-censored i.e. δi = δj = 0 it is
impossible to order them, we have the same problem if the smallest of the survival times in a pair is
censored, i.e. Ti < Tj and δi = 0. All the other cases under this context will be called admissible.
Given just covariates Xi, Xj and the status δi, δj , the model has to predict if Ti < Tj or the other way
around. We compute the C-index by considering the number of pairs which were correctly sorted by
the model, given the covariates, over the number of admissible pairs. A larger C-index indicates the
model is better at predicting which patient dies first by observing the covariates. If the C-index close
to 0.5, it means the prediction made by the model is close to random.

We run experiments on the Veteran data, avaiable in the R-package survival package [18]. Veteran
consists of a randomized trial of two treatment regimes for lung cancer. It has 137 samples and
5 covariates: treatment indicating the type of treatment of the patients, their age, the Karnofsky
performance score, and indicator for prior treatment and months from diagnosis. It contains 9
censored times, corresponding to right censoring.

In the experiment we run our Weibull model (W-SGP) and Exponential model (E-SGP), ANOVA
DDP, Cox Proportional Hazard and Random Survival Forest. We perform 10-fold cross validation
and compute the C-index for each fold. Figure 3 reports the results.

For this dataset the only significant variable corresponds to the Karnofsky performance score. In
particular as the values of this covariate increases, we expect an improved survival time. All the
studied models achieve such behaviour and suggest a proportionality relation between the hazards.
This is observable in the C-Index boxplot we can observe good results for proportional hazard rates.
Nevertheless, our method detect some differences between the treatments when the Karnofsky
performance score is 90, as it can be seen in figure 3.

For the other competing models we observe an overall good result. In the case of ANOVA-DDP we
observe the lowest C-INDEX. In figure 4 we see that ANOVA-DDP seems to be overestimating the
Survival function for lower scores. Arguably, our survival curves are more visually pleasant than Cox
proportional hazards and Random Survival Trees.
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Figure 4: Survival curves across all scores for fixed treatment 1, diagnosis time 5 months, age 38 and
no prior therapy. Left: ANOVA-DDP; Middle: Cox proportional; Right: Random survival forests.

6 Discussion

We introduced a Bayesian semiparametric model for survival analysis. Our model is able to deal with
censoring and covariates. In can incorporate a parametric part, in which an expert can incorporate his
knowledge via the baseline hazard but, at the same time, the nonparametric part allows the model to
be flexible. Future work consist in create a method to choose initial parameter to avoid sensitivity
problems at the beginning. Construction of kernels that can be interpreted by an expert is something
desirable as well. Finally, even though the random features approximation is a good approach and
helped us to run our algorithm in large datasets, it is still not sufficient for datasets with a massive
number of covariates, specially if we consider a large number of interactions between covariates.
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A Proof of proposition 1

Proof. Denote with P the probability associated with the gaussian process (l(t))t≥0 ∼ GP(0, κ) and
by E the corresponding expected values.

Remember our (random) hazard is given by λ(s) = λ0(s)σ(l(s)) ≥ Ksα−1σ(l(s)) ≥ 0 for s ≥ 1.
It is well-known that the survival function satisfy can be written as S(t) = e−

∫ t
0
λ(s)ds, then

S(t) = e−
∫ t
0
λ(s)ds ≤ e−

∫ 1
0
λ(s)−

∫ t
1
Ksα−1σ(l(s))ds ≤ e−

∫ t
1
Ksα−1σ(l(s))ds

for t ≥ 1.

We just need to prove that the latter term tends to 0. Consider the stochastic process (Xt)t≥0 given
by Xt =

∫ t
1
Ktα−1σ(l(s))ds. We compute the expected value and variance of Xt. By Tonelli’s

Theorem we have that

E(Xt) = KE

(∫ t

1

sα−1σ(l(s))ds

)
= K

∫ t

1

sα−1E(σ(l(s)))ds

=
K(st − 1)

2α
(6)

In the last equality we used that E(σ(l(s))) = 1/2 since σ is a symmetric function around (0, 1/2)
and l(s) is centred.

For the variance, we use Tonelli’s Theorem, again, to obtain

Var(Xt) = K2Var
(∫ t

1

σ(l(s))xα−1ds

)
= K2

∫ t

1

∫ t

1

Cov(σ(l(x)), σ(l(y)))(xy)α−1dxdy (7)

We separate the last integral in two pieces, one integrating the region A = {t, s ∈ [1, t] : |t− s| < 1}
and its complement on [1, t]2

In the region A we use that Cov(σ(l(x)), σ(l(y))) ≤
√

Var(σ(l(x)))Var(σ(l(y))) = Var(σ(l(0)))
since (l(t))t≥0 is stationary. Note that Var(σ(l(0))) < 1 because |σ(l(0))| ≤ 1. Then∫

A

Cov(σ(l(x)), σ(l(y)))(xy)α−1dxdy ≤
∫
A

(xy)α−1dxdy (8)

a tedious computation gives us∫
A

Var(σ(l(x)))(xy)α−1dxdy ≤ C (t+ 1)2α−1

2α− 1
(9)

for some constant C > 0.

The integral in Ac can be computed using the following bound, valid for any |t− s| > 1,

Cov(σ(l(x)), σ(l(y))) ≤ 2
κ(|x− y|)E(σ(l(x)))2

κ(0)− κ(1)
.

The proof of the above inequality is given in Lemma 1. Therefore, by denoting by C a large enough
constant we have∫

Ac
Cov(σ(l(x)), σ(l(y)))(xy)α−1dxdy ≤

∫
Ac

2
κ(|x− y|)E(σ(l(x)))2

κ(0)− κ(1)
(xy)α−1dxdy(10)

≤ C

∫ t

1

∫ t

x+1

κ(x− y)(xy)α−1dydx (11)

11



Using the change of variables w = x and z = x− y we get from equation 11 that∫
Ac

Cov(σ(l(x)), σ(l(y)))(xy)α−1dxdy ≤ C

∫ t

1

∫ t

z

κ(z)wα−1(w − z)α−1dwdz (12)

≤ C

∫ t

1

∫ t

1

κ(z)w2α−2dwdz (13)

≤ C
t2α−1

2α

∫ t

0

κ(z)dz (14)

Adding the integral on A with the one over Ac, we get that it exists a large constant C > 0, depending
on α such that for large enough t it holds

Var(Xt) ≤ Ct2α−1

∫ t

0

κ(s)ds (15)

Then, by Chebyshev’s inequality we get

P(|Xt −E(Xt)| ≥ E(Xt)/2) ≤ 4Var(Xt)

E(Xt)2
= O

(
t2α−1

∫ t
0
κ(s)ds

tα

)
=
o(t)

t
(16)

Let Bt be the event Bt = {|Xt − E(Xt)| ≥ E(Xt)/2}. Let (tn)n≥1 be an increasing succession
of times, such that P(Btn) ≤ n−2 and tn → ∞ as n tends to∞. Observe it is always possible to
find such tn because equation (16). Observe

∑
n≥1 P(Btn) ≤ ∞, then by using the Borel-Cantelli

Lemma it holds that all but finite event Btn holds. Then it exists N such that for all n ≥ N we have
|Xtn −E(Xtn)| ≥ E(Xtn)/2,

implying that
Xtn ≥ E(Xtn)/2.

From there, for n ≥ N we have
S(tn) ≤ e−Xtn ≤ e−E(Xtn )/2 = e−ctn

α

,

for a small constant c > 0, independent of tn. Then since S(t) is decreasing it holds

lim
t→∞

S(t) = lim
n→∞

S(tn) ≤ lim
n→∞

e−ct
α
n = 0.

Lemma 1. For any t, s such that |t− s| > 1 we have

Cov(σ(l(x)), σ(l(y))) ≤ 2
κ(|x− y|)E(σ(l(x)))2

κ(0)− κ(1)
.

Proof. Assume t > s. Using that xy ≤ x2+y2

2 we have

E(σ(l(t)σ(l(s))) =

∫ ∞
−∞

∫ ∞
−∞

σ(x)σ(y)
exp

{
−κ(0)(x2+y2)−2κ(t−s)xy

2(κ(0)2−κ(t−s)2)

}
2π(κ(0)2 − κ(t− s)2)1/2

dxdy

≤
∫ ∞
−∞

∫ ∞
−∞

σ(x)σ(y)
exp

{
− (κ(0)−κ(t−s))(x2+y2)

2(κ(0)2−κ(t−s)2)

}
2π(κ(0)2 − κ(t− s)2)1/2

dxdy

≤
∫ ∞
−∞

∫ ∞
−∞

σ(x)σ(y)
exp

{
− (x2+y2)

2(κ(0)+κ(t−s))

}
2π(κ(0)2 − κ(t− s)2)1/2

dxdy

=
κ(0) + κ(t− s)√
κ(0)2 − κ(t− s)2

∫ ∞
−∞

∫ ∞
−∞

σ(x)σ(y)
exp

{
− (x2+y2)

2(κ(0)+κ(t−s))

}
2π(κ(0) + κ(t− s))

dxdy

≤ κ(0) + κ(t− s)√
κ(0)2 − κ(t− s)2

∫ ∞
−∞

σ(x)
exp

{
− x2

2(κ(0)+κ(t−s))

}
√

2π(κ(0) + κ(t− s))
dx

2

=

(
κ(0) + κ(t− s)
κ(0)− κ(t− s)

)1/2

E(σ(l(0)))2 ≤ κ(0) + κ(t− s)
κ(0)− κ(t− s)

E(σ(l(0)))2.

12



Note the last integral is the expected value of the sigmoid function of a Normal random variable with
mean 0 and variance κ(0) + κ(t− s). By the symmetry of the sigmoid function, this expected value
is the same as if we have variance κ(0). Finally, by deleting E(σ(l(0)))2 in both sides of the above
equation, we get the desired result.
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