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Abstract  1 

The cause of the end-Cretaceous mass extinction is vigorously debated due to the occurrence of a 2 

very large bolide impact and flood basalt volcanism near the boundary. Disentangling their 3 

relative importance is complicated by uncertainty regarding kill mechanisms and the relative 4 

timing of volcanogenic outgassing, impact, and extinction. We use carbon cycle modeling and 5 

paleotemperature records to constrain the timing of volcanogenic outgassing. We found support 6 

for major outgassing beginning and ending distinctly prior to the impact, with only impact 7 

coinciding with mass extinction and biologically amplified carbon cycle change. Our models 8 

show that these extinction-related carbon cycle changes would have allowed the ocean to absorb 9 

massive amounts of CO2, thus limiting the global warming otherwise expected from post-10 

extinction volcanism. 11 

 12 

Introduction  13 

Sixty-six million years ago two planetary-scale disturbances occurred within less than a million 14 

years of one another. An asteroid of more than 10 km in diameter collided with the Yucatan 15 

Peninsula at the boundary between the Cretaceous and the Paleogene (~66 Ma), producing the 16 

~200 km wide Chicxulub impact crater (1-4). Impact markers at hundreds of sites globally co-17 

occur with the deposition of the Cretaceous-Paleogene (K/Pg) boundary clay and include 18 

elevated abundances of siderophilic elements such as iridium, osmium, and nickel, and tektites 19 

and shocked quartz (1, 5, 6). During the K/Pg boundary-spanning magnetochron C29r (65.688-20 

66.398 Ma, ~ 710,000 years long (7)), an estimated ~500,000 km3 of lava flooded across much 21 

of India and into the deep sea in a large igneous province (LIP) known as the Deccan Traps (8, 22 

9). Deccan volcanism was, like most flood basalt eruptions (9-11), episodic, with flows 23 

deposited in pulses throughout magnetochron C29r (12, 13). That both volcanism and the impact 24 

event occurred within several hundred thousand years of the K/Pg extinctions is beyond 25 

reasonable doubt (5, 9, 12, 13). However, this still leaves many aspects uncertain, including the 26 

relative timing and magnitude of volcanic effects on the biosphere (13, 14), the potential 27 

relationship between impact and volcanism (8, 13, 15), and whether impact or volcanism acted 28 

as the sole, primary, or joint drivers of extinction (5, 10, 16). 29 

 30 
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The case for the Chicxulub impact as a driver of K/Pg mass extinction includes processes 31 

hypothesized to operate during the days and decades following the collision. The bolide impact 32 

injected an estimated >50,000 km3 of ejecta (4), ~ 325 Gt of sulfur and ~425 Gt CO2 and other 33 

volatiles (17) into the atmosphere from the marine carbonate and anhydrite target rock of the 34 

Yucatan Peninsula (5, 18). The combined effects of an expanding impact fireball and the re-entry 35 

of molten ejecta from the skies (19) may have raised temperatures to the point of spontaneous 36 

combustion near the impactor and caused severe heat stress and even death many thousands of 37 

km away from the impact site in minutes to days after impact (20). In the days to years that 38 

followed, nitrogen and sulfur vapors reacted to form nitric and sulfuric acids and, with CO2 39 

gases, acidified the oceans (21-23). Finally, models and empirical evidence suggest that the 40 

combination of dust and aerosols precipitated a severe impact winter in the decades post-impact 41 

(24-27).  42 

 43 

Impressive though these environmental effects may be, some researchers question whether the 44 

Chicxulub impactor acted as the sole or main driver of the K/Pg mass extinction for three 45 

primary reasons. First, no single kill mechanism appears to explain the extinction patterns: 46 

acidification (28, 29) and primary productivity decline (30) (due to darkness and cold (26)) are 47 

favored in the marine realm, whereas heat exposure and/loss of productivity (due to fires, 48 

darkness and cold (18, 26)) are favored in the terrestrial realm (31, 32). Second, asteroid and 49 

comet impacts occur throughout the history of life (although likely none in the last ~500 Myr of 50 

the size and force of Chicxulub (33)), but no other mass extinction is unambiguously linked to 51 

such a collision (34). Third, flood basalt volcanism is strongly implicated as the driver of two of 52 

the greatest mass extinctions in the last half billion years (the Permian-Triassic [P/T] and 53 

Triassic-Jurassic [T/J]) leading some to favor a similar role for Deccan volcanism in the K/Pg 54 

mass extinction (e.g., 35). However, most episodes of flood basalt volcanism after the T/J 55 

produced no increase in extinction rates (36), potentially due to important Earth system changes 56 

that dampened the effects of flood basalts post-P/T.  57 

 58 

Questions regarding the role of Deccan volcanism in driving the K/Pg mass extinction arise 59 

because of the relative lack of evidence for a volcanogenic driver. Despite advances in 60 

chronology, the timing of the most voluminous Deccan eruptions relative to the K/Pg extinctions 61 
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remains unclear (e.g., ref. 8 vs. 9). Many earlier authors argued that most Deccan flood basalts 62 

(>85%) were emplaced in a relatively short interval before the K/Pg, starting around the 63 

C29r/C30n boundary (~66.39 Ma) and ending well before the K/Pg impact (11, 12). In contrast, 64 

Renne et al. (13) and Sprain et al. (9) proposed that the vast majority of Deccan basalts were 65 

emplaced after the impact. Schoene et al. (8) largely agree with the basalt flow ages of refs. 9 66 

and 13, but place the K/Pg boundary higher in the lava pile (i.e., the upper part of, or above, the 67 

Poladpur unit), and therefore propose major pulses of emplacement just before and just after the 68 

impact (8).  69 

 70 

Pre- and post-impact scenarios are debated in part because they are tied to different 71 

environmental disruption scenarios. Pre-event volcanism may have acted in concert with the 72 

impact to drive K/Pg extinctions (10), whereas post-event volcanism suggests a role for 73 

volcanism in the delayed recovery of biodiversity (13). For the environment and life, the main 74 

environmental effects of large igneous provinces are attributed to volatile release (37-39), not 75 

lava emplacement, and the magnitude of volcanic outgassing is not necessarily linked directly to 76 

the volume of erupted lava. If early eruptive phases of flood basalt volcanism have higher 77 

volatile concentrations, then most volatiles could have been released before the impact, even if 78 

most of the lava was emplaced afterwards (9). 79 

 80 

Here we provide constraints on Deccan Trap outgassing by comparing exceptionally well-81 

resolved and temporally detailed ocean drilling and global temperature records, with five 82 

modeled end-member scenarios for the timing, magnitude, and composition of outgassing (40). 83 

These comparisons allow us to consider the relative effects of Deccan Trap outgassing and 84 

bolide impact on the marine carbon cycle and biological change. 85 

 86 

Marine environmental record of outgassing 87 

Deccan Trap degassing released a mix of volatiles including sulfur dioxide (SO2), chlorine (Cl) 88 

and other halogens, and carbon dioxide (CO2), with sulfur having perhaps the greatest direct 89 

effect on ecosystems through acidification and pronounced global cooling (>4.5°C) (38). The 90 

environmental effects of sulfur dioxide, however, would have been relatively short-lived (years 91 

to centuries at most) and difficult to detect in slowly accumulating deep-sea sediments. In 92 
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contrast, the influence of CO2 emissions should be clearly evident in marine sediments as a 93 

global warming event paired with a carbon isotope anomaly (41). We used this diagnostic 94 

fingerprint of CO2 emissions as a proxy for the timing of potentially disruptive outgassing of 95 

sulfur (and other noxious gasses) and to test which volcanic degassing scenarios are compatible 96 

with the observed record.   97 

 98 

Two dominant features are clear in our global temperature compilation (Fig. 1) (40). First, 99 

marine and terrestrial records show a late Maastrichtian warming event of ~2°C on average 100 

(Figs. S1-S16; 42, 43, 44) in the Cretaceous part of C29r that cools back to pre-event 101 

temperatures prior to the K/Pg boundary (Fig. 1). Second, the earliest Danian has temperatures 102 

comparable to those in the late Maastrichtian prior to the warming event, with temperatures 103 

gradually increasing to become >1°C warmer on average by ~600 kyr after the impact. Benthic 104 

foraminiferal oxygen isotope records typically track changes in global mean temperatures, and 105 

they show both these features (Figs. 1, 2, S13a), as do most other archives (Figs. S1-S16). The 106 

two exceptions are the bulk carbonate records and fish teeth phosphate records from El Kef 107 

(Figs. S10c, S11, S12), which likely do not track global temperature for extinction-related 108 

reasons (40), thus we excluded them from the calculation of global mean temperatures.  109 

 110 

Our multiproxy, astronomically tuned record from the North Atlantic site (45) has an 111 

exceptionally complete Maastrichtian sequence and a mm-thick tektite layer at the K-Pg 112 

boundary (Figs. 2, S17-S19). The record documents an excursion to lower values in d13C in bulk 113 

sediments coincident with d18O decline (a warming indicator) as well as a decline in osmium 114 

isotope values (Fig. 2, S20-S21). Similar patterns are seen in records from the South Atlantic 115 

Walvis Ridge and the North Pacific Shatsky Rise (Figs. 2, S18-S19; 42, 46). The similarity of 116 

these records amongst three such widespread localities and four sites (Fig. 2), suggests that they 117 

provide a remarkably complete record of magnetochron C29r. Slight temporal offsets in the 118 

apparent onset and recovery from latest Maastrichtian warming (among all sites) and in early 119 

Paleogene carbon isotope patterns at Shatsky Rise, due either to short unconformities and/or the 120 

limitations of cyclostratigraphic age models, illustrate the current temporal uncertainties (Fig. 2). 121 

Temperature and atmospheric CO2, as reflected in both our d18O and d13C anomalies, and recent 122 

boron isotope records (23), returned to pre-warming values in the very latest Maastrichtian. The 123 
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most prominent feature in the records is the dramatic decline in d13C isotopes and change in 124 

sedimentary CaCO3 content beginning at the K/Pg boundary (Fig. 2). 125 

 126 

We investigated the timing of Deccan Trap outgassing by modeling the effects of CO2 and sulfur 127 

emissions on long-term global temperatures using the geochemical box model LOSCAR (Long-128 

term Ocean Sediment CArbon Reservoir v. 2.0.4) (47).  Guided by published hypotheses for the 129 

timing and volume of trap emplacement, we tested five major Deccan Trap emission scenarios 130 

differing in the timing of volatile release: (i) Case 1: Leading, majority (87%) of degassing pre-131 

K/Pg boundary (after (10)) (ii) Case 2: 50/50, half of degassing prior to and half following the 132 

K/Pg boundary (after lower estimate in (9)); (iii) Case 3: Punctuated, four pulses with one major 133 

event just preceding the K/Pg boundary (after (8)), (iv) Case 4: Lagging, majority (87%) of 134 

degassing post-K/Pg boundary (inverse Case 1 pre-/post- outgassing volumes, (13)); and (v) 135 

Case 5: Spanning, emissions released evenly throughout magnetochron C29r  (after (12)) (Table 136 

1). All volcanic outgassing scenarios assume the same (i) initial climatic and oceanographic 137 

conditions: 600 ppm pCO2 and climate sensitivity of 2-4°C per CO2 doubling (41), LOSCAR’s 138 

Paleogene ocean configuration and circulation, and marine [Mg2+] of 42 mmol/kg and [Ca2+] of 139 

21 mmol/kg; (ii) K/Pg impact volatile release from the target rock (325 Gt S; 425 Gt CO2)(17); 140 

(iii) upper and lower end-estimates for total volcanic outgassing volumes (4091-9545 Gt C and 141 

3200-8500 Gt S (10) at constant ratios) (40); and iv) extinction related changes in the marine 142 

carbon cycle (41, 48) (including reductions in both organic carbon and carbonate export and 143 

increases in intermediate-depth organic carbon remineralization, see Table 1) that taper back to 144 

pre-event values over 1.77 Myr following the extinction (49). In most outgassing scenarios, we 145 

assumed a common onset of Deccan degassing at the C30n/C29r boundary, following 146 

geochronology of the traps (8, 9, 12, 50). In the GTS 2012 age framework (7) used to align the 147 

temperature records, C30n/C29r is 358 kyr prior to the K/Pg boundary, rather than the ~250-300 148 

kyrs indicated by the most recent 40Ar/39Ar and U-Pb geochronology (8, 50). Simulations were 149 

initially tuned (40) to find the biological scenario (iv) that minimized data-model mismatches 150 

(Figs. S22-S27) and multiple scenarios for climate sensitivity and outgassing are considered in 151 

assessing goodness of fit (Figs. 3-4, S25, S28-S32, Table 2). 152 

 153 
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Three modeled scenarios differ distinctly from the observed pattern of temperature change (Fig. 154 

3), thus we consider them unlikely to represent the true outgassing history. Case 3 fails to 155 

reproduce the late Maastrichtian warming and shows a pronounced boundary-crossing warming 156 

event that is not supported by proxy data. In Case 4, late Maastrichtian warming is too muted and 157 

early Paleocene warming is too pronounced, and in Case 5 warming increases up to the K/Pg 158 

boundary, unlike the empirical record (Fig. 3). Relatively poor model fit is also indicated by high 159 

mean absolute errors (MAEs) for Cases 3 and 4 as compared to Cases 1 and 2 (Table 2). The 160 

temporal dynamics of d13C in Cases 3 and 5 also deviate from the empirical record (Fig 4).   161 

 162 

Only two outgassing scenarios produce modeled temperatures resembling the empirical records: 163 

the leading case (Case 1) and the 50:50 case (Case 2). We thus consider these the two most likely 164 

of the tested scenarios to represent Deccan Trap outgassing. In Case 1, most CO2 and SO2 165 

degassing occurred in the latest Maastrichtian, leading to global warming and subsequent cooling 166 

prior to the K/Pg. The relatively constant early Paleocene temperatures of Case 1, with a gradual 167 

warming over the 600kyrs following the impact, are also consistent with empirical records (Figs. 168 

1-3, S17-S18). Case 2 (50:50) also matches the empirical temperature record well (Fig. 3), with 169 

the lowest MAEs of all cases (Table 2). The Late Cretaceous warming differs between Case 1 170 

and Case 2 due to the reduced Late Cretaceous volcanic outgassing in the latter. Although 171 

uncertainty about climate sensitivity (51) and total Deccan Trap emissions (10, 12) has a greater 172 

effect on modeled temperatures than the difference in outgassing volume (Figs. 3, S25, S28), 173 

carbon isotopes also support Case 2 as the more likely scenario (Fig. 4; MAEs in Table S31).  174 

 175 

The climatic effects of a major pulse (50%) of Deccan outgassing released over the ~350 kyr 176 

immediately following the impact (Case 2) were limited by extinction-related changes to the 177 

carbon cycle, including the reduction in CaCO3 export from pelagic calcifiers to the seafloor. 178 

Marine CaCO3 export indirectly affects atmospheric CO2 by changing the distribution of carbon 179 

and alkalinity between the surface and deep-ocean, and slows the removal of alkalinity from the 180 

system via CaCO3 burial (41). The difference between Case 1 and 2 is almost imperceptible, 181 

with Case 2 having slightly warmer (~0.25°C) early Danian temperatures than Case 1. Notably, 182 

more rapid Paleocene outgassing, such as modeled in Case 3 (ref. 8), exceeds the capacity of the 183 

altered marine carbon cycle to absorb CO2. 184 
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 185 

Our results inform several important boundary debates. First, if there was a large pulse of 186 

emplacement just 20-60 kyrs prior to the impact (8), most CO2 outgassing (and associated 187 

environmental impacts) must have preceded lava emplacement by several hundred thousand 188 

years. This would be prior to the eruption of the most voluminous stages of Deccan volcanism 189 

(i.e., pre-Wai subgroup) as modeled for Case 1 and 2 (Fig. 3-4; see expanded discussion in (40)). 190 

Second, roughly equal pre- and post-impact volcanic degassing is supported (i.e., Case 2, Figs. 3-191 

4), a hypothesized scenario in ref. 9. However, our results are not consistent with most (>75%) 192 

volcanogenic degassing post-impact (i.e., outgassing more similar to eruptive volumes in refs. 9, 193 

13), because modeled warming is too muted in the Cretaceous and too pronounced in the early 194 

Paleocene (i.e., Case 4) as compared to empirical records (Fig. 3). Third, impact-related volatile 195 

release from the target rock has a negligible climatic effect (Fig. S24), so is unlikely to account 196 

for the dramatic warming indicated by fish teeth d18O in the first 100 kyr (52). Instead, this 197 

record likely predominantly reflects changes in fish biology rather than temperature. Fourth, 198 

biotic recovery can account for the apparently gradual early Danian warming as observed in 199 

marine records if it begins at or shortly after impact and occurs over >1.5 myr. This biotic 200 

recovery scenario reproduces the general pattern of change in d13C gradients (Figs. 2, S27), 201 

carbonate saturation state (Figs. 2c, S27) and temperature, but differs from recovery hypotheses 202 

that posit a delay in the onset of biological recovery for ~ 500kyr or more (e.g., 40, 49, 53).  203 

 204 

No marine evidence for joint cause in mass extinction 205 

The fossil record indicates no lasting, outsized, or cascading effect of the late Maastrichtian 206 

warming event on marine ecosystems of the sort that might predispose them to mass extinction 207 

by impact. First, we found no evidence for elevated extinction rates in the latest Cretaceous in 208 

marine taxa (Table S1), excepting a contested record from Seymour Island, Antarctica (e.g., 54, 209 

55). The scarcity of biostratigraphic datums in the Cretaceous portion of magnetochron C29r 210 

signifies a conspicuous lack of extinction in widespread species including planktonic 211 

foraminifera, nannoplankton, radiolarians, and ammonites (7). Second, late Cretaceous 212 

outgassing did not have a lasting effect on the community structure of well-fossilized taxa. 213 

Although range and community shifts coincided with warming, a shift back to the pre-warming-214 

like communities occurred prior to impact (see Table S1). Third, marine carbon cycle indicators 215 
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(d13C and carbonate deposition) show no discernable effect of late Maastrichtian outgassing and 216 

warming on a major ecosystem function: the export and cycling of carbon. The d13C anomaly 217 

size (~0.2-0.3 per mil; see also ref. 44) is consistent with a volcanogenic driver as in Case 2 218 

(Figs. 2, 4, S28) given the magnitude of warming, without biological amplification.  219 

 220 

In contrast, major and enduring changes to ecosystems coincided with the K/Pg impact. In deep-221 

sea records, impact markers occur at the level of the abrupt mass extinction of >90% planktonic 222 

foraminifera and 93% of nannoplankton species (Fig. 2). These groups exhibit rapid turnover and 223 

high dominance in community composition in the first 500 kyrs of the Paleocene (56, 57), an 224 

interval where bulk carbonate d18O likely reflects community composition rather than surface 225 

ocean temperatures (Figs. 5, S33-S35). At the same time, tracers of the marine carbon cycle 226 

indicate a profound change in marine ecosystem function. The community structure of some 227 

groups such as small fishes, which show no evidence of elevated extinction, changed 228 

permanently (58). The d13C composition of planktonic foraminifera and nannoplankton fell to or 229 

below that of benthic foraminifera at the iridium anomaly (Figs. 2,5, S34-S35; 43, 49). The loss 230 

or inversion of the d13C gradient typically maintained by the biological pump is unmatched in the 231 

fossil record of pelagic calcifiers (~170 million years), and indicates that the K/Pg boundary 232 

impact had an outsized effect on the marine carbon cycle.  233 

 234 

After the impact, an already altered marine carbon cycle is needed to counteract the CO2 emitted 235 

by a major post-impact pulse of outgassing as in Case 2 (Fig. 3) to avoid a warming event of the 236 

same magnitude as the Late Cretaceous warming event. This suggests that the major ecological 237 

change of the K/Pg mass extinction must have occurred prior to any major post-impact 238 

volcanism. Our modeling does support a scenario in which Deccan volcanism could have 239 

contributed to the aftermath of the impact and mass extinction as in (13), if environmentally 240 

destructive gases such as SO2, halogens, or sulfate aerosols contributed to (or drove) the 241 

persistence of unusual marine communities for the first ~500 kyrs of the Paleocene. This might 242 

be particularly true if the evolution of the magma chamber led to higher sulfur content of later 243 

emissions, as in other eruption types (59). However, no observations document acidification 244 

coupled to extreme cold snaps in the earliest Paleocene as predicted by this hypothesis, and there 245 
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is no explanation for why SO2 would have greater biotic effects in the well-buffered early 246 

Danian oceans than in the latest Maastrichtian oceans (Fig. S1-S18). 247 

 248 

Conclusion 249 

We combined climatic, biotic, and carbon cycle records with modeled impact and outgassing 250 

scenarios, and found support for a bolide impact as the primary driver of the end-Cretaceous 251 

mass extinction. Our analysis suggests that roughly 50% of Deccan Trap CO2 outgassing 252 

occurred well before the impact, but does not support the suggestion (8) that a large outgassing 253 

event took place just before (~10-60 kyrs). This suggests a pronounced decoupling between CO2 254 

outgassing and lava flow emplacement if ref. 8 is correct, or a relative impact and eruption 255 

chronology similar to ref. 9 and our best-supported, 50:50 outgassing scenario. The Late 256 

Cretaceous warming event attributed to Deccan degassing is of a comparable size to small 257 

warming events in the Paleocene and early Eocene that are not associated with elevated 258 

extinction or turnover (43, 60), similar to what we find for the late Maastrichtian. We therefore 259 

conclude that impact and extinction created the initial opportunity for the rise of Cenozoic 260 

species and communities, but Deccan volcanism might have contributed to shaping them during 261 

the extinction aftermath. 262 
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 457 

 458 
 459 
 460 
Figure 1. Global temperature change across the Cretaceous-Paleogene boundary.  New and 461 

existing empirical temperature records from marine sediments (foraminiferal d18O and Mg/Ca, 462 

TEX86), shallow marine carbonates (clumped isotopes of mollusk carbonate), and terrestrial 463 

proxies (leaf margin analysis, biomarkers, clumped isotopes of mollusk carbonate) were aligned 464 

to common age model (Table S2 and S3) and normalized to the latest Cretaceous temperature 465 

within each record. A 60pt fast Fourier transform smoother of global temperature change is 466 

shown in dark red. Data are provided in Table S4-S12. Some outlying data points do not fall 467 

within plot bounds, but can be seen in Figs. S1-S16. 468 

  469 
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 471 
 472 

Figure 2. K/Pg boundary dynamics at the best-resolved deep-sea sites globally: Shatsky 473 

Rise, Walvis Ridge, and J-Anomaly Ridge. High resolution carbon (A) and oxygen (B) isotope 474 

dynamics in benthic foraminifera (transparent lines) and bulk carbonate (discrete points), and 475 

sediment composition (C, weight % coarse fraction), at Shatsky Rise (blue), Walvis Ridge 476 

(grey), and J-Anomaly Ridge (red), compared to (D) global records of nannofossil (grey) and 477 

foraminifera (blue, from (61)) species richness (40). Major interval of Deccan Trap emplacement 478 

(estimated 93% of volume) indicated at left by the black bar, after ref 9.  479 
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 481 
 482 

Figure 3. Global temperature change across the Cretaceous-Paleogene boundary as 483 

compared to five scenarios for Deccan Trap outgassing.  Outgassing scenarios include (A) 484 

Case 1 (Leading): most outgassing prior to impact, (B) Case 2 (50/50): 50% outgassing prior to 485 

and 50% post impact, (C) Case 3 (Punctuated), (D) Case 4 (Lagging): most outgassing post 486 

impact, and (E) Case 5 (Spanning): continuous outgassing throughout magnetochron C29r (Table 487 

1). Each model scenario is represented by four lines (bounding a shaded region) delineating 488 

different combinations of climate sensitivity and volcanic outgassing: high degassing (9545 GtC 489 

and 8500 GtS) and 3°C/doubling (thick grey line); high degassing and 4°C/doubling (thick black 490 

line); low degassing (4090 GtC and 3200 GtS) and 3°C/doubling (thin grey line), and low 491 

degassing and 2°C/doubling (thin black line), and compared to a 60pt fast Fourier transform 492 

smoother of global temperature change (red line) from Fig. 1. Deccan outgassing timing 493 

indicated by bars at left, with the shading intensity of the bar indicative of the proportion 494 

outgassing in that interval. 495 
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 497 
 498 

Figure 4. Surface ocean d13C change across the late Maastrichtian warming as compared to 499 

five scenarios for Deccan Trap outgassing.  Bulk carbonate ∆d13C (20pt fast Fourier transform 500 

smoother of Site U1403 and Site 1262 data) shown against surface ocean d13C for end-member 501 

outgassing and climate sensitivity scenarios (grey envelope) for each case as detailed in Fig. 3. In 502 

each case, carbonate carbon isotopes are expressed as ∆d13C, relative to the late Maastrichtian 503 

high of 3.03	‰ at 0.432 Myr prior to the onset of the CO2 release (see also Figs. S36-S37).   504 



	 20	

 505 
Figure 5.  Late Cretaceous warming and early Paleocene record of environmental and 506 

biotic change at IODP Site U1403, J-Anomaly Ridge, Newfoundland.  A negative carbon 507 

isotope anomaly (A) coincides with late Cretaceous warming in d18O (B), and osmium isotope 508 

evidence for volcanism (A) at IODP Site U1403. The collapse in surface ocean d13C values (A) 509 

coincides with iridium anomaly (B), and step change in fish tooth accumulation (C). Earliest 510 

Paleocene d18O values of bulk carbonate appear to be strongly influenced by vital effects driven 511 

by rapid turnover in the dominant calcareous nannofossil taxa (D) in sites globally (Figs. S18, 512 

S34, S35). Data in Tables S12, S16, S17, S29. 513 
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Table 1.  Model parameters for five focal Deccan outgassing scenarios tested in LOSCAR. 516 
  Case 1: Leading Case 2: 50/50 Case 3: Punct. Case 4: Lagging Case 5: Spanning 
       

V
ol

ca
ni

c 
O

ut
ga

ss
in

g 

Pulse 1 (Pre): 
Volume 

87% of total 
h: 8305 Gt C, 7395 Gt S 
l: 3559 Gt C, 2784 Gt S 

50% of total 
high: 4773 Gt C, 4250 Gt S 
low: 2045 Gt C, 1600 Gt S 

20% of total 
h: 1909 Gt C, 1700 Gt S 

l: 818 Gt C, 640 Gt S 
13% of total 

high: 1241 Gt C, 1105 Gt S 
low: 532 Gt C, 416 Gt S 

100% of total 
high: 9545 Gt C, 8500 Gt S 
low: 4091 Gt C, 3200 Gt S 

Timing Starts: -358 kyr 
Ends: -218 kyr 

Starts: -358 kyr 
Ends: -218 kyr 

Starts: -290 kyr 
Ends: -110 kyr 

Starts: -358 kyr 
Ends: -218 kyr 

Starts: -358 kyr 
Ends: 355 kyr 

Pulse 2 (Pre): 
Volume   

35% of total 
h: 3340 Gt C, 2975 Gt S 
l: 1431 Gt C, 1120 Gt S 

  

Timing   Starts: -60 kyr 
Ends: -20 kyr   

Pulse 1 (Post): 
Volume 

13% of total 
h: 1241 Gt C, 1105 Gt S 

l: 532 Gt C, 416 Gt S 
50% of total 

high: 4773 Gt C, 4250 Gt S 
low: 2045 Gt C, 1600 Gt S 

35% of total 
h: 3340 Gt C, 2975 Gt S 
l: 1431 Gt C, 1120 Gt S 

87% of total 
high: 8305 Gt C, 7395 Gt S 
low: 3559 Gt C, 2784 Gt S 

 

Timing Starts: 0 kyr 
Ends: 355 kyr 

Starts: 0 kyr 
Ends: 355 kyr 

Starts: 80 kyr 
Ends: 170 kyr 

Starts: 0 kyr 
Ends: 355 kyr  

Pulse 2 (Post): 
Volume   

10% of total 
h: 955 Gt C, 850 Gt S 
l: 409 Gt C, 320 Gt S 

  

Timing   Starts: 390 kyr 
Ends: 430 kyr   

       

Im
pa

ct
 O

ut
ga

s. 

Volume 100% of total 
115 Gt C, 325 Gt S 

100% of total 
115 Gt C, 325 Gt S 

100% of total 
115 Gt C, 325 Gt S 

100% of total 
115 Gt C, 325 Gt S 

100% of total 
115 Gt C, 325 Gt S 

Timing Starts: 0 kyr 
Ends: 1 kyr 

Starts: 0 kyr 
Ends: 1 kyr 

Starts: 0 kyr 
Ends: 1 kyr 

Starts: 0 kyr 
Ends: 1 kyr 

Starts: 0 kyr 
Ends: 1 kyr 

       

B
io

tic
 C

ha
ng

e 

Organic Export 
Flux D 50% reduction 50% reduction 50% reduction 50% reduction 50% reduction 

CaCO3 Export 
Flux D  42.5% reduction 42.5% reduction 42.5% reduction 42.5% reduction 42.5% reduction 

Frac. Int.-depth 
Corg remin. D 22% increase 22% increase 22% increase 22% increase 22% increase 

Timing 
Starts: 0 kyr 

immediately tapers 
Ends: 1770 kyr 

Starts: 0 kyr 
immediately tapers 
Ends: 1770 kyr 

Starts: 0 kyr 
immediately tapers 
Ends: 1770 kyr 

Starts: 0 kyr 
immediately tapers 
Ends: 1770 kyr 

Starts: 0 kyr 
immediately tapers 
Ends: 1770 kyr 
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Table 2.  Mean absolute error (MAE) and mean minimum absolute error (MMAE) of cases 518 
relative to the interpolated global temperature record. The mean minimum absolute error 519 
(MMAE) was calculated for each case by determining whether the empirical data fell outside of 520 
the temperature range bounded by the high and low outgassing scenarios given a climate 521 
sensitivity of 3°C/CO2 doubling, and, if so, by how much. MAEs were also calculated for each 522 
outgassing volume and climate sensitivity shown in Fig. 3. MMAEs and MAEs were calculated 523 
on a 20 kyr interpolated time step from 360kyr prior to 600 kyr post K/Pg. Case 2 consistently 524 
has the lowest MAEs and Case 1 and 2 have the lowest MMAEs. 525 
 526 

 

Mean 
Min. Abs. 

Error 
High Volc., 

3°C/CO2 doub. 
High Volc., 

4°C/CO2 doub. 
Low Volc., 

3°C/CO2 doub 
Low Volc., 

2°C/CO2 doub 
Case 1 0.25 0.46 0.65 0.50 0.58 
Case 2 0.21 0.35 0.43 0.48 0.58 
Case 3 0.45 0.59 0.65 0.58 0.64 
Case 4 0.45 0.61 0.69 0.56 0.63 
Case 5 0.29 0.40 0.44 0.53 0.61 

 527 
 528 


