
34

Quantitative Separation Logic

A Logic for Reasoning about Probabilistic Pointer Programs

KEVIN BATZ, RWTH Aachen University, Germany

BENJAMIN LUCIEN KAMINSKI, RWTH Aachen University, Germany

JOOST-PIETER KATOEN, RWTH Aachen University, Germany

CHRISTOPH MATHEJA, RWTH Aachen University, Germany

THOMAS NOLL, RWTH Aachen University, Germany

We present quantitative separation logic (QSL). In contrast to classical separation logic, QSL employs quantities

which evaluate to real numbers instead of predicates which evaluate to Boolean values. The connectives of

classical separation logic, separating conjunction and separating implication, are lifted from predicates to

quantities. This extension is conservative: Both connectives are backward compatible to their classical analogs

and obey the same laws, e.g. modus ponens, adjointness, etc.

Furthermore, we develop a weakest precondition calculus for quantitative reasoning about probabilistic

pointer programs in QSL. This calculus is a conservative extension of both Ishtiaq’s, O’Hearn’s and Reynolds’

separation logic for heap-manipulating programs and Kozen’s / McIver and Morgan’s weakest preexpectations

for probabilistic programs. Soundness is proven with respect to an operational semantics based on Markov

decision processes. Our calculus preserves O’Hearn’s frame rule, which enables local reasoning.We demonstrate

that our calculus enables reasoning about quantities such as the probability of terminating with an empty

heap, the probability of reaching a certain array permutation, or the expected length of a list.

CCS Concepts: · Theory of computation → Probabilistic computation; Logic and verification; Pro-

gramming logic; Separation logic; Program semantics; Program reasoning;

Additional Key Words and Phrases: quantitative separation logic, probabilistic programs, randomized algo-

rithms, formal verification, quantitative reasoning

ACM Reference Format:

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Thomas Noll. 2019.

Quantitative Separation Logic: A Logic for Reasoning about Probabilistic Pointer Programs. Proc. ACM

Program. Lang. 3, POPL, Article 34 (January 2019), 29 pages. https://doi.org/10.1145/3290347

1 INTRODUCTION

Randomization plays an important role in the construction of algorithms. It typically improves
average-case performance at the cost of a worse best-case performance or at the cost of incorrect
results occurring with low probability. The former is observed when, e.g., randomly picking the
pivot in quicksort [Hoare 1962]. A prime example of the latter is Freivalds’ matrix multiplication
verification algorithm [Freivalds 1977].

Authors’ addresses: Kevin Batz, RWTH Aachen University, Germany, kevin.batz@rwth-aachen.de; Benjamin Lucien

Kaminski, RWTHAachen University, Germany, benjamin.kaminski@cs.rwth-aachen.de; Joost-Pieter Katoen, RWTHAachen

University, Germany, katoen@cs.rwth-aachen.de; Christoph Matheja, RWTH Aachen University, Germany, matheja@cs.

rwth-aachen.de; Thomas Noll, RWTH Aachen University, Germany, noll@cs.rwth-aachen.de.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/1-ART34

https://doi.org/10.1145/3290347

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3290347
https://doi.org/10.1145/3290347

34:2 Batz, Kaminski, Katoen, Matheja, and Noll

procedure randomize (array,n) {

i := 0 ;

while (0 ≤ i < n) {

j := uniform (i,n − 1) ;

call swap (array, i, j) ;

i := i + 1

} }

(a) Procedure to randomize an array of length n

procedure lossyReversal (hd) {

r := 0 ;

while (hd , 0) {

t := < hd > ;
{

< hd > := r ;

r := hd

}

[1/2]

{

free(hd)
}

hd := t

} }

(b) Lossy reversal of a list with head hd

Fig. 1. Examples of probabilistic programs. We write < e > to access the value stored at address e .

Sophisticated algorithms often make use of randomized data structures. For instance, Pugh states
that randomized skip lists enjoy łthe same asymptotic expected time bounds as balanced trees and
are faster and use less spacež [Pugh 1990]. Other examples of randomized data structures include
randomized splay trees [Albers and Karpinski 2002], treaps [Blelloch and Reid-Miller 1998] and
randomized search trees [Aragon and Seidel 1989; Martínez and Roura 1998].
Randomized algorithms are conveniently described by probabilistic programs, i.e. programs

with the ability to sample from a probability distribution, e.g. by flipping coins. While randomized
algorithms have desirable properties, their verification often requires reasoning about programs
that mutate dynamic data structures and behave probabilistically. Both tasks are challenging on
their own and have been the subject of intensive research, see e.g. [Barthe et al. 2018; Chakarov and
Sankaranarayanan 2013; Chatterjee et al. 2016; Kozen 1979; Krebbers et al. 2017; McIver et al. 2018;
Ngo et al. 2018; O’Hearn 2012]. However, to the best of our knowledge, work on formal verification
of programs that are both randomized and heap-manipulating is scarce. To highlight the need for
quantitative properties and their formal verification in this setting let us consider three examples.

Example 1: Array randomization. A common approach to design randomized algorithms is to
randomize the input and process it in a deterministic manner. For instance, the only randomization
involved in algorithms solving the famous Secretary Problem (cf. [Cormen et al. 2009, Chapter 5.1])
is computing a random permutation of its input array. A textbook implementation (cf. [Cormen
et al. 2009, Chapter 5.3]) of such a procedure randomize for an array of length n is depicted in
Figure 1a. For each position in the array, the procedure uniformly samples a random number j in the
remaining array between the current position i and the last position n − 1. After that, the elements
at position i and j are swapped. The procedure randomize is correct precisely if all outputs are
equally likely. Thus, to verify correctness of this procedure, we inevitably have to reason about
a probability, hence a quantity. In fact, each of the n! possible permutations of the input array is
computed by procedure randomize with probability at most 1/n!.

Beyond randomized algorithms. Probabilistic programs are a powerful modeling tool that is
not limited to randomized algorithms. Consider, for instance, approximate computing: Programs
running on unreliable hardware, where instructions may occasionally return incorrect results,
are naturally captured by probabilistic programs [Carbin et al. 2016]. Since incorrect results are
unavoidable in such a scenario, the notion of a program’s correctness becomes blurred: That is,
quantifying (and minimizing) the probability of encountering a failure or the expected error of a
program becomes crucial. The need for quantitative reasoning is also stressed by [Henzinger 2013]

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

Quantitative Separation Logic 34:3

who argues that łthe Boolean partition of software into correct and incorrect programs falls short
of the practical need to assess the behavior of software in a more nuanced fashion [. . .].ž

Example 2: Faulty garbage collector. Consider a procedure delete(x) that takes a tree with root
x and recursively deletes all of its elements. This is a classical example due to [O’Hearn 2012;
Reynolds 2002]. However, our procedure fails with some probability p ∈ [0, 1] to continue deleting
subtrees, i.e. running delete(x) on a tree with root x does not necessarily result in the empty heap.
If failures of delete(x) are caused by unreliable hardware, they are unavoidable. Instead of proving
a Boolean correctness property, we are thus interested in evaluating the reliability of the procedure
by quantifying the probability of collecting all garbage. In fact, the probability of completely deleting
a tree with root x containing n nodes is at least (1 − p)n . Thus, to guarantee that a tree containing
100 elements is deleted at least with probability 0.90, the probability p must be below 0.00105305.

Example 3: Lossy list reversal. A prominent benchmark when analyzing heap-manipulating
programs is in-place list-reversal (cf. [Atkey 2011; Krebbers et al. 2017; Magill et al. 2006]). Figure 1b
depicts a lossy list reversal: The procedure lossyReversal traverses a list with head hd and attempts
to move each element to the front of an initially empty list with head r . However, during each
iteration, the current element is dropped with probability 1/2. This is modeled by a probabilistic
choice, which either updates the value at address hd or disposes that address:

{ < hd > := r ; r := hd } [1/2] { free(hd) }

The procedure lossyReversal is not functionally correct in the sense that, upon termination, r is
the head of the reversed initial list: Although the program never crashes due to a memory fault and
indeed produces a singly-linked list, the length of this list varies between zero and the length of the
initial list. A more sensible quantity of interest is the expected, i.e. average, length of the reversed list.
In fact, the expected list length is at most half of the length of the original list.

Our approach. We develop a quantitative separation logic (QSL) for quantitative reasoning about
heap-manipulating and probabilistic programs at source code level. Its distinguished features are:

• QSL is quantitative: It evaluates to a real number instead of a Boolean value. It is capable of
specifying values of program variables, heap sizes, list lengths, etc.

• QSL is probabilistic: It enables reasoning about probabilistic programs, in particular about
the probability of terminating with a correct result. It allows to express expected values of
quantities, such as expected heap size or expected list length in a natural way.

• QSL is a separation logic: It conservatively extends separation logic (SL) [Ishtiaq and O’Hearn
2001; Reynolds 2002; Yang and O’Hearn 2002]. Our quantitative analogs of SL’s key operators,
i.e. separating conjunction ⋆ and separating implication −−⋆ , preserve virtually all properties
of their Boolean versions.

For program verification, separation logic is often used in a (forward) Floyd-Hoare style. For
probabilistic programs, however, backward reasoning is more common. In fact, certain forward-
directed predicate transformers do not exist when reasoning about probabilistic programs [Jones
1990, p. 135]. We develop a (backward) weakest-precondition style calculus that uses QSL to verify
probabilistic heap-manipulating programs. This calculus is a marriage of the weakest preexpectation
calculus by [McIver and Morgan 2005] and separation logic à la [Ishtiaq and O’Hearn 2001; Reynolds
2002]. In particular:

• Our calculus is a conservative extension of two approaches: For programs that never access the
heap, we obtain the calculus of McIver and Morgan. Conversely, for Boolean properties of
ordinary programs, we recover exactly the wp-rules of Ishtiaq, O’Hearn, and Reynolds. QSL
preserves virtually all properties of classical separation logicÐincluding the frame rule.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

34:4 Batz, Kaminski, Katoen, Matheja, and Noll

• Our calculus is sound with respect to an operational semantics based on Markov decision
processes. While this has been shown before for simple probabilistic languages (cf. [Gretz
et al. 2014]), heap-manipulating statements introduce new technical challenges. In particular,
allocating fresh memory yields countably infinite nondeterminism, which breaks continuity
and rules out standard constructions for loops.

• We apply our calculus to analyze all aforementioned examples.

Outline. In Section 2, we present a probabilistic programming language with pointers together
with an operational semantics. Section 3 introduces QSL as an assertion language. In Section 4, we
develop a wp-style calculus for the quantitative verification of (probabilistic) programs with QSL.
Furthermore, we prove soundness of our calculus and develop a frame rule for QSL. Section 5 dis-
cusses alternative design choices for wp-style calculi and Section 6 briefly addresses how recursive
procedures are incorporated. In Section 7, we apply QSL to four case studies, including the three
introductory examples. Finally, we discuss related work in Section 8 and conclude in Section 9.
Detailed proofs of all theorems are found in a separate technical report [Batz et al. 2018].

2 PROBABILISTIC POINTER PROGRAMS

We use a simple, imperative language à la Dijkstra’s guarded command language with two distin-
guished features: First, we endow our programs with a probabilistic choice instruction. Second, we
allow for statements that allocate, mutate, access, and dispose memory.

2.1 Syntax

The set of programs in heap-manipulating probabilistic guarded command language, denoted hpGCL,
is given by the grammar

c −→ skip (effectless program)

| x := e (assignment)

| c ; c (seq. composition)

| if (b) { c } else { c } (conditional choice)

| while (b) { c } (loop)

| { c } [p] { c } (prob. choice)

| x := new (e1, . . . , en) (allocation)

| < e > := e ′ (mutation)

| x := < e > (lookup)

| free(e), (deallocation)

where x is a variable in the set Vars, e, e ′, e1, . . . , en are arithmetic expressions, b is a predicate, i.e.
an expression over variables evaluating to either true or false, and p ∈ [0, 1] ∩ Q is a probability.

2.2 Program states

A program state (s, h) consists of a stack s , i.e. a valuation of variables by integers, and a heap h mod-
eling dynamically allocated memory. Formally, the set of stacks is given by S = { s | s : Vars → Z }.
Like in a standard RAM model, a heap consists of memory addresses that each store a value and is
thus a finite mapping from addresses (i.e. natural numbers) to values (which may themselves be
allocated addresses in the heap). Formally, the set of heaps is given by

H = {h | h : N → Z, N ⊆ N>0, |N | < ∞ } .

The 0 is excluded as a valid address in order to model e.g. null-pointer terminated lists. The set of
program states is given by Σ = { (s,h) | s ∈ S, h ∈ H }. Notice that expressions e and guards b may
depend on variables only (i.e. they may not depend upon the heap) and thus their evaluation never
causes any side effects. Side effects such as dereferencing unallocated memory can only occur after
evaluating an expression and trying to access the memory at the evaluated address.

Given a program state (s,h), we denote by s(e) the evaluation of expression e in s , i.e. the value
that is obtained by evaluating e after replacing any occurrence of any variable x in e by the value

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

Quantitative Separation Logic 34:5

s(x). By slight abuse of notation, we also denote the evaluation of a Boolean expression b by s(b).
Furthermore, we write s [x/v] to indicate that we set variable x to value v ∈ Z in stack s , i.e.1

s [x/v] = λy.

{

v, if y = x

s(y), if y , x .

For heap h, h [u/v] is defined analogously. For a given heap h : N → Z, we denote by dom (h) its
domain N . Furthermore, we write {u 7→ v1, . . . ,vn} as a shorthand for the heap h given by

dom (h) = {u,u + 1, . . . ,u + n − 1}, ∀k ∈ {0, . . . ,n − 1} : h(u + k) = vk+1.

Two heaps h1, h2 are disjoint, denoted h1 ⊥ h2, if their domains do not overlap, i.e. dom (h1) ∩
dom (h2) = ∅. The disjoint union of two disjoint heaps h1 : N1 → Z and h2 : N2 → Z is given by

h1 ⋆h2 : dom (h1) Û∪ dom (h2) → Z,
(

h1 ⋆h2
)

(n) =

{

h1(n), if n ∈ dom (h1)

h2(n), if n ∈ dom (h2) .

We denote by h∅ the empty heap with dom (h∅) = ∅. Note that h ⋆h∅ = h∅ ⋆h = h for any heap
h. We define heap inclusion as h1 ⊆ h2 iff ∃h′1 ⊥ h1 : h1 ⋆ h

′
1 = h2. Finally, we use the Iverson

bracket [Knuth 1992] notation [φ] to associate with predicate φ its indicator function. Formally,

[φ] : Σ → {0, 1}, [φ] (s,h) =

{

1, if (s, h) |= φ

0, if (s, h) ̸|= φ,

where (s,h) |= φ denotes thatφ evaluates to true in (s,h). Notice that while predicates may generally
speak about stack-heap pairs, guards in hpGCL-programs may only refer to the stack.

2.3 Semantics

We assign meaning to hpGCL-statements in terms of a small-step operational semantics, i.e. an
execution relation → between program configurations, which consist of a program state and either
a program that is still to be executed, a symbol ⇓ indicating successful termination, or a symbol E
indicating a memory fault. Formally, the set of program configurations is given by

Conf = (hpGCL ∪ { ⇓, E }) × Σ .

Since our programming language admits memory allocation and probabilistic choice, our semantics
has to account for both nondeterminism (due to the fact that memory is allocated at nondeterminis-
tically chosen addresses) and execution probabilities. Our execution relation is hence of the form

→ ⊆ Conf × N × ([0, 1] ∩ Q) × Conf ,

where the second component is an action labeling the nondeterministic choice taken in the execution

step and the third component is the execution step’s probability.2 We usually write c, s,h
n,p
−−→

c ′, s ′,h′ instead of ((c, (s,h)),n,p, (c ′, (s ′,h′))) ∈→. The operational semantics of hpGCL-programs,
i.e. the execution relation→, is determined by the rules in Figure 2. Let us briefly go over those rules.
The rules for skip, assignments, conditionals, and loops are standard. In each case, the execution
proceeds deterministically, hence all actions are labeled 0 and the execution probability is 1. For
a probabilistic choice { c1 } [p] { c2 } there are two possible executions: With probability p we
execute c1 and with probability 1 − p, we execute c2.

1We use λ-expressions to denote functions: Function λX . f applied to an argument α evaluates to f in which every

occurrence of X is replaced by α .
2For simplicity, we tacitly distinguish between the probabilities 0.5 and 1 − 0.5 to deal with the corner case of two identical

executions between the same configurations.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

34:6 Batz, Kaminski, Katoen, Matheja, and Noll

skip, s,h
0,1
−−→⇓, s,h

s(e) = v

x := e, s,h
0,1
−−→⇓, s [x/v] ,h

c1, s,h
a,p
−−→ E, s,h

c1 ; c2, s,h
a,p
−−→ E, s,h

c1, s,h
a,p
−−→⇓, s ′,h′

c1 ; c2, s,h
a,p
−−→ c2, s

′
,h′

c1, s,h
a,p
−−→ c ′1, s

′
,h′

c1 ; c2, s,h
a,p
−−→ c ′1 ; c2, s

′
,h′

s(b) = true

if (b) { c1 } else { c2 } , s,h
0,1
−−→ c1, s,h

s(b) = false

if (b) { c1 } else { c2 } , s,h
0,1
−−→ c2, s,h

s(b) = false

while (b) { c } , s,h
0,1
−−→⇓, s,h

s(b) = true

while (b) { c } , s,h
0,1
−−→ c ; while (b) { c }, s,h

{ c1 } [p] { c2 } , s,h
0,p
−−→ c1, s,h { c1 } [p] { c2 } , s,h

0,1−p
−−−−→ c2, s,h

u,u + 1, . . . ,u + n − 1 ∈ N>0 \ dom (h) s(e1) = v1, . . . , s(en) = vn

x := new (e1, . . . , en) , s,h
u ,1
−−→⇓, s [x/u] ,h ⋆ {u 7→ v1, . . . ,vn}

s(e) = u ∈ dom (h) s(e ′) = v

< e > := e ′, s,h
0,1
−−→⇓, s,h [u/v]

s(e) < dom (h)

< e > := e ′, s,h
0,1
−−→ E, s,h

s(e) = u ∈ dom (h) h(u) = v

x := < e >, s,h
0,1
−−→⇓, s [x/v] ,h

s(e) < dom (h)

x := < e >, s,h
0,1
−−→ E, s,h

s(x) = u

free(x), s,h ⋆ {u 7→ v}
0,1
−−→⇓, s,h

s(x) < dom (h)

free(x), s,h
0,1
−−→ E, s,h

Fig. 2. Inference rules determining the execution relation→.

The remaining statements access or manipulate memory. x := new (e1, . . . , en) allocates a block
of n memory addresses and stores the first allocated address in variable x . Since allocated addresses
are chosen nondeterministically by the memory allocator, there are countably infinitely many
possible executions, which are each labeled by an action corresponding to the first allocated address.
Under the assumption that an infinite amount of memory is available,memory allocation cannot fail.
< e > := e ′ attempts to write the value of e ′ to address e . If address e has not been allocated before,
we encounter a memory fault, i.e. move to a configuration marked by E. Conversely, x := < e >

assigns the value at address e to variable x . Again, failing to find address e on the heap leads to an
error. Finally, free(e) disposes the memory cell at address e if it is present and fails otherwise.

Notice that no statement other than memory allocation introduces nondeterminism, i.e. entails
an action label different from 0 Moreover, for every action n ∈ N, we have

∑

c ,s ,h
n,p

−−→ c ′,s ′,h′

p ∈ {0, 1},

where we set
∑

∅ = 0. Our execution relation thus describes a Markov Decision Process, which is
an established model for probabilistic systems (cf. [Baier and Katoen 2008; Puterman 2005]).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

Quantitative Separation Logic 34:7

3 QUANTITATIVE SEPARATION LOGIC

The term separation logic refers to both a logical assertion language as well as a Floyd-Hoare-style
proof system for reasoning about pointer programs (cf. [Ishtiaq and O’Hearn 2001; Reynolds 2002]).
In this section, we develop QSL in the sense of an assertion language. A proof system for reasoning
about hpGCL programs is introduced in Section 4. The rationale of QSL is to combine concepts
from two worlds:

(1) From separation logic (SL): separating conjunction (⋆) and separating implication (−−⋆).
(2) From probabilistic program verification: expectations.

Separating conjunction and implication are the two distinguished logical connectives featured in
SL [Ishtiaq and O’Hearn 2001; Reynolds 2002]. Expectations [McIver and Morgan 2005] on the other
hand take over the role of logical formulae when doing quantitative reasoning about probabilistic
programs. In what follows, we gradually develop both a quantitative separating conjunction and a
quantitative separating implication which each connect expectations instead of formulae (as in the
classical setting).

3.1 Expectations

Floyd-Hoare logic [Hoare 1969] as well as Dijkstra’s weakest preconditions [Dijkstra 1976] employ
first-order logic for reasoning about the correctness of programs. For probabilistic programs, Kozen
in his PPDL [Kozen 1983] was the first to generalize from predicates to measurable functions (or
random variables). Later, [McIver and Morgan 2005] coined the term expectation for such functions.
Here, we define the set E of expectations and the set E≤1 of one-bounded expectations as

E =
{

X
�
� X : Σ → R∞≥0

}

and E≤1 = {Y | Y : Σ → [0, 1] } .

An expectation X maps every program state to a non-negative real number or∞. E≤1 allows for
reasoning about probabilities of events whereas E allows for reasoning about expected values of
more general random variables such as the expected value of a variable x , the expected height
of a tree (in the heap), etc. Notice that a predicate is a particular expectation, namely its Iverson
bracket, that maps only to {0, 1}. In contrast to [McIver and Morgan 2005], our expectations are not
necessarily bounded. Hence, (E, ⪯) and (E≤1, ⪯), where X ⪯ Y iff ∀(s, h) ∈ Σ : X (s, h) ≤ Y (s, h)
each form a complete lattice with least element 0 and greatest element ∞ and 1, respectively.3 We
present most of our results with respect to the domain (E, ⪯), i.e. we develop a logic for reasoning
about expected values. A logic for reasoning about probabilities of events can be constructed
analogously by using the complete lattice (E≤1, ⪯) instead.
Analogously to [Reynolds 2002], we call an expectation X ∈ E domain-exact iff for all stacks

s ∈ S and heaps h,h′ ∈ H , X (s, h) > 0 and X (s, h′) > 0 together implies that dom (h) = dom (h′),
i.e. for a fixed stack, the domain of all heaps such that the quantity X does not vanish is constant.

We next lift the atomic formulas of SL to a quantitative setting: The empty-heap predicate [emp],
which evaluates to 1 iff the heap is empty, is defined as

[emp] = λ(s,h).

{

1, if dom (h) = ∅,

0, otherwise.

The points-to predicate [e 7→ e ′], evaluating to 1 iff the heap consists of exactly one cell with address
e and content e ′, is defined as

[e 7→ e ′] = λ(s,h).

{

1, if dom (h) = {s(e)} and h(s(e)) = s(e ′)

0, otherwise.

3By slight abuse of notation, for any constant k ∈ R∞≥0, we write k for λ(s , h). k .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

34:8 Batz, Kaminski, Katoen, Matheja, and Noll

Notice that if s(e) < N>0 then automatically dom (h) , {s(e)}. As a shorthand, we denote by
[

e 7→ e ′1, . . . , e
′
n

]

the predicate that evaluates to 1 on (s,h) iff the heap h contains exactly n cells
with addresses s(e), . . . , (e) + n − 1 and respective contents s(e ′1), . . . , s(e

′
n).

The allocated pointer predicate [e 7→ −], which evaluates to 1 iff the heap consists of a single
cell with address e (but arbitrary content), is defined as

[e 7→ −] = λ(s,h).

{

1, if dom (h) = {s(e)},

0, otherwise.

All of the above predicates are domain-exact expectations evaluating to either zero or one.
As an example of a truly quantitative expectation consider the heap size quantity

size = λ(s,h). |dom (h) |,

where |dom (h) | denotes the cardinality of dom (h), which measures the number of allocated cells
in a heap h. In contrast to the standard SL predicates, size is neither domain-exact nor a predicate.

3.2 Separating Connectives between Expectations

We now develop quantitative versions of SL’s connectives. Standard conjunction (∧) is modeled by
pointwise multiplication. This is backward compatible as for any two predicates φ andψ we have
[φ ∧ψ] = [φ] · [ψ] = λ(s, h). [φ] (s, h) · [ψ] (s, h). Towards a quantitative separating conjunction,
let us first examine the classical case, which is defined for two predicates φ andψ as

(s,h) |= φ ⋆ψ iff ∃h1,h2 : h = h1 ⋆h2 and (s,h1) |= φ and (s,h2) |= ψ .

In words, a state (s,h) satisfies φ ⋆ψ iff there exists a partition of the heap h into two heaps h1 and
h2 such that the stack s together with heap h1 satisfies φ, and s together with h2 satisfiesψ .

How should we connect two expectations X and Y in a similar fashion? As logical łandž corre-
sponds to a multiplication, we need to find a partition of the heap h into h1 ⋆h2, measure X in h1,
measure Y in h2, and finally multiply these two measured quantities. The naive approach,

(

X ⋆Y
)

(s, h) = ∃h1,h2 : [h = h1 ⋆h2] · X (s,h1) · Y (s,h2),

is not meaningful. At the very least, it is ill-typed. Moreover, what precisely determined quantity
would the above express? After all, the existentially quantified partition of h need not be unique.

Our key redemptive insight here is that ∃ should correspond to max. From an algebraic perspec-
tive, this corresponds to the usual interpretation of existential quantifiers in a complete Heyting
algebra or Boolean algebra as a disjunction (cf. [Scott 2008] for an overview), which we will interpret
as a maximum in the realm of expectations. In first-order logic, the effect of the quantified predicate
∃v : φ(v) is so-to-speak to łmaximize the truth of φ(v)ž by a suitable choice of v . In QSL, instead
of truth, we maximize a quantity: Out of all partitions h = h1 ⋆ h2, we choose the oneÐout of
finitely many for any given hÐthat maximizes the product X (s,h1) · Y (s,h2). We thus define the
quantitative ⋆ as follows:

Definition 3.1 (Quantitative Separating Conjunction). The quantitative separating conjunction
X ⋆Y of two expectations X ,Y ∈ E is defined as

X ⋆Y = λ(s,h). max
h1,h2

{

X (s,h1) · Y (s,h2)
�
� h = h1 ⋆h2

}

. △

As a first sanity check, notice that this definition is backward compatible to the qualitative setting:
For predicates φ andψ , we have ([φ]⋆ [ψ]) (s,h) ∈ {0, 1} and moreover ([φ]⋆ [ψ]) (s,h) = 1 holds
in QSL if and only if (s,h) |= φ ⋆ψ holds in SL.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

Quantitative Separation Logic 34:9

Next, we turn to separating implication. For SL, this is defined for predicates φ andψ as

(s,h) |= φ −−⋆ ψ iff ∀h′ : h′ ⊥ h and (s,h′) |= φ implies (s,h ⋆h′) |= ψ .

So (s,h) satisfies φ −−⋆ ψ iff the following holds: Whenever we can find a heap h′ disjoint from h

such that stack s together with heap h′ satisfies φ, then s together with the conjoined heap h ⋆h′

must satisfy ψ . In other words: We measure the truth of ψ in extended heaps h ⋆ h′, where all
admissible extensions h′ must satisfy φ.

How should we connect expectations Y and X in a similar fashion? Intuitively, Y −−⋆ X intends
to measure X in extended heaps, subject to the fact that the extensions satisfy Y . Since the least
element of our complete lattice, i.e. 0, corresponds to falsewhen evaluating a predicate, we interpret
satisfying an expectation Y as measuring some positive quantity, i.e. Y (s,h) > 0.

As for the universal quantifier, our key insight is now thatÐdually to ∃ corresponding to maxÐ∀
should correspond to min: Whereas in first-order logic the predicate ∀v : φ(v) łminimizes the
truth of φ(v)ž by requiring that φ(v) must be true for all choices of v , in QSL we minimize a
quantity: Out of all heap extensions h′ disjoint from h that satisfy a given expectation Y , we choose
an extension that minimizes the quantity X (s,h ⋆h′). Intuitively speaking, we pick the smallest
possible4 extension h′ that barely satisfies Y . Since for given Y and h, there may be infinitely many
(or no) admissible choices for h′, we define the quantitative −−⋆ by an infimum:

Y −−⋆ X = λ(s,h). inf
h′

{

X (s,h ⋆h′)

Y (s,h′)

�
�
�
�
h′ ⊥ h and Y (s,h′) > 0

}

.

This definition is well-behaved with (E≤1, ⪯) as the underlying lattice.
5 However, for the domain

(E, ⪯) the above definition of −−⋆ is not well-defined if Y (s,h′) = ∞ holds. We thus restrict Y to
predicates. The above definition then simplifies as follows:

Definition 3.2 (Quantitative Separating Implication). The quantitative separating implication
[φ] −−⋆ X of predicate φ and expectation X ∈ E is defined as

[φ] −−⋆ X = λ(s,h). inf
h′

{X (s,h ⋆h′) | h′ ⊥ h and (s,h′) |= φ } . △

Unfortunately, backward compatibility for quantitative separating implication comes with certain
reservations: Suppose for a particular state (s, h) there exists no heap extension h′ such that
(s, h′) |= φ. Then {X (s,h ⋆h′) | h′ ⊥ h and (s,h′) |= φ } is empty, and the greatest lower bound
(within our domain R∞≥0) of the empty set is ∞ and not 1. In particular, false −−⋆ ψ ≡ true holds in
SL, but 0 −−⋆ [ψ] = ∞ holds in QSL. Since 0 = [false] but ∞ , [true], backward compatibility of
quantitative separating implication breaks here. As a silver lining, however, we notice that true is
the greatest element in the complete lattice of predicates and correspondingly ∞ is the greatest
element in E. In this light, the above appears not at all surprising. In fact, if we restrict ourselves to
the domain (E≤1, ⪯) to reason about probabilities, we achieve full backward compatibility. To be
precise, let us explicitly embed classical separation logic (SL) into QSL.

Definition 3.3 (Embedding of SL into QSL). Formulas in classical separation logic (SL) are embed-
ded into quantitative separation logic by a function qslJ.K : SL → E≤1 mapping formulas in SL to
expectations in E≤1. This function is defined inductively as follows:

qslJφK = [φ] for any atomic formula φ ∈ SL qslJ¬φK = 1 − qslJφK

qslJφ1 ⋆φ2K = qslJφ1K⋆ qslJφ2K qslJφ1 −−⋆ φ2K = qslJφ1K −−⋆ qslJφ2K

4In terms of measuring X (s , h ⋆ h′).
5In particular, quantitative separating implication and quantitative separating conjunction are adjoint.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

34:10 Batz, Kaminski, Katoen, Matheja, and Noll

qslJ∃x : φK = sup
v ∈Z

qslJφK [x/v] qslJφ1 ∧ φ2K = qslJφ1K · qslJφ2K △

Every atomic separation logic formula is thus interpreted as its Iverson bracket in QSL. Further-
more, every connective is replaced by its quantitative variant. We then obtain that QSLÐas an
assertion languageÐis a conservative extension of classical separation logic.

Theorem 3.4 (Conservativity of QSL as an assertion language). For all classical separation
logic formulas φ ∈ SL and all states (s,h) ∈ Σ, we have

(1) qslJφK(s,h) ∈ {0, 1}, and
(2) (s,h) |= φ if and only if qslJφK(s,h) = 1.

The same result is achieved for the expectation domain (E, ⪯) if we define the embedding of
separating implication as qslJφ1 −−⋆ φ2K = min{1, qslJφ1K −−⋆ qslJφ2K}.

3.3 Properties ofQuantitative Separating Connectives

Besides backward compatibility, the separating connectives of QSL are well-behaved in the sense
that they satisfy most properties of their counterparts in SL. To justify this claim, we now present a
collection of quantitative analogs of properties of classical separating conjunction and implication.
Most of those properties originate from the seminal papers on classical separation logic [Ishtiaq and
O’Hearn 2001; Reynolds 2002]. We start with algebraic laws for quantitative separating conjunction:

Theorem 3.5. (E, ⋆, [emp]) is a commutative monoid, i.e. for all X ,Y ,Z ∈ E the following holds:

(1) Associativity: X ⋆ (Y ⋆Z) = (X ⋆Y)⋆Z
(2) Neutrality of [emp]: X ⋆ [emp] = [emp]⋆X = X

(3) Commutativity: X ⋆Y = Y ⋆X

Theorem 3.6 ((Sub)distributivity Laws). Let X ,Y ,Z ∈ E and let φ be a predicate. Then:

(1) X ⋆max {Y , Z } = max {X ⋆Y , X ⋆Z }

(2) X ⋆ (Y + Z) ⪯ X ⋆Y + X ⋆Z

(3) [φ]⋆ (Y · Z) ⪯
(

[φ]⋆Y
)

·
(

[φ]⋆Z
)

Furthermore, if X and [φ] are domain-exact, we obtain full distributivity laws:

(4) X ⋆ (Y + Z) = X ⋆Y + X ⋆Z

(5) [φ]⋆ (Y · Z) =
(

[φ]⋆Y
)

·
(

[φ]⋆Z
)

The max in Theorem 3.6.1 corresponds to a disjunction (∨) in the classical setting as for any two
predicates φ andψ we have [φ ∨ψ] = max { [φ], [ψ] }, where the max is taken pointwise. Moreover,
if φ andψ are mutually exclusive, i.e. [φ] · [ψ] = 0, their maximum coincides with their sum. That is,
we have max{[φ] , [ψ]} = [φ]+ [ψ]. Theorem 3.6.1 shows that⋆ distributes over max. Unfortunately,
for + we only have sub-distributivity (Theorem 3.6.2). We recover full distributivity in case that X
is domain-exact (Theorem 3.6.4).
A further important analogy to SL is that quantitative separating conjunction is monotonic:

Theorem 3.7 (Monotonicity of ⋆). X ⪯ X ′ and Y ⪯ Y ′ implies X ⋆Y ⪯ X ′
⋆Y ′.

Next, we look at a quantitative analog to modus ponens. The classical modus ponens rule states
that φ ⋆ (φ −−⋆ ψ) impliesψ . In a quantitative setting, implication generalizes to ⪯, i.e. the partial
order we defined in Section 3.1 (see also [McIver and Morgan 2005]).

Theorem 3.8 (Quantitative Modus Ponens). [φ]⋆
(

[φ] −−⋆ X
)

⪯ X .

Analogously to the qualitative setting, quantitative ⋆ and −−⋆ are adjoint operators:

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

Quantitative Separation Logic 34:11

Theorem 3.9 (Adjointness of ⋆ and −−⋆). X ⋆ [φ] ⪯ Y iff X ⪯ [φ] −−⋆ Y .

Intuitively, a separating conjunction ⋆ [φ] carves out a portion of the heap, since X ⋆ [φ] splits
of a part of the heap satisfying φ and measures X in the remaining heap. Conversely, [φ] −−⋆

extends the heap by a portion satisfying φ. Adjointness now tells us that instead of carving out
something on the left-hand side of an inequality, we can extend something on the right-hand side
and vice versa. This is analogous to a − ϵ ≤ b iff a ≤ ϵ + b in standard calculus.

Example 3.10. Let us consider a few examples to gain more intuition on quantitative separating
connectives. For that, let s be any stack and let heap h = {1 7→ 2, 2 7→ 3, 4 7→ 5}. Then:

([1 7→ 2]⋆ size) (s,h) = 2 = size(s,h) − 1

([3 7→ 4] −−⋆ size) (s,h) = 4 = size(s,h) + 1

([3 7→ 4]⋆ size) (s,h) = 0 = ([1 7→ 2]⋆ [1 7→ 2]⋆ size) (s,h)

([1 7→ 2]⋆ ([1 7→ 2] −−⋆ size)) (s,h) = 3 = size(s,h) = ([3 7→ 4] −−⋆ ([3 7→ 4]⋆ size)) (s,h)

([1 7→ 2] −−⋆ size) (s,h) = ∞ = ([3 7→ 4] −−⋆ ([3 7→ 4] −−⋆ size)) (s,h) △

3.4 Pure Expectations

In SL, a predicate is called pure iff its truth does not depend on the heap but only on the stack.
Analogously, in QSL we call an expectation X pure iff

∀ s,h1,h2 : X (s,h1) = X (s,h2) .

For pure expectations, several of [Reynolds 2002] laws for SL hold as well:

Theorem 3.11 (Algebraic Laws for ⋆ under Purity). Let X ,Y ,Z ∈ E and let X be pure. Then

(1) X · Y ⪯ X ⋆Y ,
(2) X · Y = X ⋆Y , if additionally Y is also pure, and
(3) (X · Y)⋆Z = X · (Y ⋆Z).

3.5 Intuitionistic Expectations

In SL, a predicate φ is called intuitionistic, iff for all stacks s and heaps h,h′ with h ⊆ h′, (s, h) |= φ
implies (s, h′) |= φ. So as we extend the heap from h to h′, an intuitionistic predicate can only get
łmore truež. Analogously, in QSL, as we extend the heap from h to h′, the quantity measured by an
intuitionistic expectation can only increase. Formally, an expectation X is called intuitionistic iff

∀ s,h ⊆ h′ : X (s,h) ≤ X (s,h′) .

A natural example of an intuitionistic expectation is the heap size quantity

size = λ(s,h). |dom (h) | .

[Reynolds 2002] describes a systematic way to construct intuitionistic predicates from possibly
non-intuitionistic ones: For any predicate φ, φ⋆ true is the strongest intuitionistic predicate weaker
than φ, and true −−⋆ φ is the weakest intuitionistic predicate stronger than φ. In QSL:

Theorem 3.12 (Tightest Intuitionistic Expectations). Let X ∈ E. Then:

(1) X ⋆ 1 is the smallest intuitionistic expectation that is greater than X . Formally, X ⋆ 1 is intu-
itionistic, X ⪯ X ⋆ 1, and for all intuitionistic X ′ satisfying X ⪯ X ′, we have X ⋆ 1 ⪯ X ′.

(2) 1 −−⋆ X is the greatest intuitionistic expectation that is smaller than X . Formally, 1 −−⋆ X is
intuitionistic, 1−−⋆ X ⪯ X , and for all intuitionisticX ′ satisfyingX ′ ⪯ X , we haveX ′ ⪯ 1−−⋆ X .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

34:12 Batz, Kaminski, Katoen, Matheja, and Noll

For example, the contains-pointer predicate [e ֒→ e ′] defined by

[e ֒→ e ′] = [e 7→ e ′]⋆ 1

is an intuitionistic version of the points-to predicate [e 7→ e ′]: Whereas [e 7→ e ′] evaluates to 1 iff
the heap consists of exactly one cell with value e ′ at address e and no other cells, [e ֒→ e ′] evaluates
to 1 iff the heap contains a cell with value e ′ at address e but possibly also other allocated memory.
Analogously, the fact that some cell with address e exists on the heap is formalized by

[e ֒→ −] = [e 7→ −]⋆ 1 .

With intuitionistic versions of points-to predicates at hand, we can derive specialized laws when
dealing with the heap size quantity, which we already observed for a concrete heap in Example 3.10.

Theorem 3.13 (Heap Size Laws). Let X ,Y ∈ E and e, e ′ be arithmetic expressions. Then:

(1) [e 7→ e ′]⋆ size = [e ֒→ e ′] · (size − 1)
(2) [e 7→ e ′] −−⋆ size = 1 + size + [e ֒→ −] · ∞
(3) (X ⋆Y) · size ⪯ (X · size)⋆Y + X ⋆ (Y · size)

(4) (X ⋆Y) · size = (X · size)⋆Y + X ⋆ (Y · size), if X or Y is domain-exact.

The first two rules illustrate the role of ⋆ and −−⋆ : ⋆ removes a part of the heap that is measured
and consequently decreases the size of the remaining heap. Dually, −−⋆ extends the heap and hence
increases its size. If the heap cannot be extended appropriately, the infimum in the definition of −−⋆

yields∞. The third and fourth rule intuitively state that the size of the heap captured byX ⋆Y is the
sum of the sizes of the heap captured by X , i.e. X · size, and of the heap captured by Y , i.e. Y · size.
However, in both cases we have to account for parts of the heap whose size is not measured, i.e. Y
if we measure the size of X and vice versa. These parts are łabsorbedž by an additional separating
conjunction with Y and X , respectively.

3.6 Recursive Expectation Definitions

To reason about unbounded data structures such as lists, trees, etc., separation logic relies on induc-
tive predicate definitions (cf. [Brotherston 2007; Reynolds 2002]). In QSL, quantitative properties of
unbounded data structures are specified similarly using recursive equations of the form

P(®α) = XP (®α), (1)

where ®α ∈ Zn , P : Zn → E, and X · (·) : (Z
n → E) → (Zn → E) is a monotone function.

Example 3.14. Consider a recursive predicate definition from standard separation logic: A singly-
linked list segment with head α and tail β is given by the equation

[ls (α, β)] = [α = β] · [emp] + [α , β] · supγ [α 7→ γ]⋆ [ls (γ , β)]
︸ ︷︷ ︸

≕Xls(α ,β)

.

Clearly, XP (α, β) is monotone, i.e. P ⪯ P ′ implies XP (α, β) ⪯ XP ′(α, β). Hence, all list segments
between α and β are given by the least fixed point of the above equation. △

The semantics of (1) is defined as the least fixed point of a monotone expectation transformer

ΨP : (Zn → E) → (Zn → E) , Q 7→ λ ®α . XQ (®α).

Thus, we define the expectation given by recursive equation (1) as P(®α) =
(

lfpQ. ΨP (Q)
)

(®α), where
lfp Q. Ψ(Q) denotes the least fixed point of Ψ. Existence of the least fixed point is guaranteed due
to Tarski and Knaster’s fixed point theorem (cf. [Cousot and Cousot 1979]).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

Quantitative Separation Logic 34:13

This notion of recursive definitions coincides with the semantics of inductive predicates in
SL [Brotherston 2007] if expectations are restricted to predicates. For instance, [ls (α, β)] (s,h) = 1
iff h consists exactly of a singly-linked list with head α and tail β .
Recursive expectation definitions in QSL are, however, not limited to predicates. For example,

the length of a singly-linked list segment can be defined as follows:

len (α, β) = [α , β] · supγ [α 7→ γ]⋆ ([ls (γ , β)] + len (γ , β))

If the heap exclusively consists of a singly-linked list from α to β , then the expectation len (α, β)
evaluates to the length of that list, and to zero otherwise. We next collect a few properties of the
two closely related expectations len and ls that simplify reasoning about programs.

Lemma 3.15 (Properties of List Segments and Lengths of List Segments). We have:

(1) len (α, β) = [ls (α, β)] · size
(2) [ls (α, β)] = supγ [ls (α,γ)]⋆ [ls (γ , β)]

The first property gives an alternative characterization of list lengths which exploits the fact that
[ls] ensures that nothing but a list is contained in the heap. Consequently, the length of that list
is given by the size of the specified heap. The second property shows that lists can be split into
multiple lists or merged into a single list at any address in between.

The list-length quantity len actually serves two purposes: It ensures that the heap is a list and if
so determines the longest path through the heap. The latter part can be generalized to other data
structures. To this end, assume the heap is organized into fixed-size, successive blocks of memory
representing records, for example the left and right pointer of a binary tree. If the size of records is
a constant n ∈ N, then the longest path through these records starting in α is given by

pathJnK (α) = supβ ∈N

(

(max0≤k<n [α + k 7→ β])⋆
(

1 + pathJnK (β)
)
)

.

Intuitively, pathJnK (α) always selects the successor address β among the possible pointers in the
record belonging to α which is the source of the longest path through the remaining heap. Notice
that no explicit base case is needed, because the length of empty paths is zero. Moreover, the use of
the separating conjunction prevents selecting the same pointer twice. The quantity path is more
liberal than len in the sense that heaps may contain pointers that do not lie on the specified path.
The path quantity can then be easily combined with stricter data structure specifications.

Example 3.16. Consider a classical recursive SL predicate specifying binary trees with root α :

[tree (α)] = [α = 0] · [emp] + supβ ,γ ∈N [α 7→ β,γ]⋆ [tree (β)]⋆ [tree (γ)] .

Combining [tree (α)] with pathJ2K (α), we can measure the height of binary trees with root α :

treeHeight(α) = [tree (α)] · pathJ2K (α) .

This is illustrated in Figure 3, where two heaps are graphically depicted as directed graphs. The left
graph contains a cycle and thus does not constitute a binary tree. Consequently, [tree (α)] = 0. The
longest path through this heap is αβ1 . . . β4, i.e. pathJ2K (α) = 5. In contrast, the right graph is a
binary tree with root α , i.e. [tree (α)] = 1. The longest path through this heap is of length two, e.g.
αβ1β2. Hence, the height of the tree is given by treeHeight(α) = [tree (α)] · pathJ2K (α) = 2. △

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

34:14 Batz, Kaminski, Katoen, Matheja, and Noll

α

β1

β2

β3

β4

[tree (α)] = 0, path (α) = 5

α

0 β1

0β2 = 0

[tree (α)] = 1, path (α) = 2

Fig. 3. Evaluation of [tree (α)] and path (α) for two heaps depicted as graphs. Here, an edge x → y denotes
h(s(x)) = s(y) or h(s(x + 1)) = s(y).

4 REASONING ABOUT PROGRAMS

We now turn from QSL as an assertion language to program verification. Classical separation
logic is commonly applied as a basis for Floyd-Hoare-style correctness proofs. The main concept
in Floyd-Hoare logic are Hoare triples. A Hoare triple ⟨φ ⟩ c ⟨ψ ⟩ consists of a precondition φ, a
nonśprobabilistic program c , and a postconditionψ .
One approach to proving a triple ⟨φ ⟩ c ⟨ψ ⟩ valid is to determine whether precondition φ is

covered by all initial states that Ð executed on c Ð reach a final state satisfying postconditionψ .
This kind of backward reasoning corresponds to Dijkstra’s weakest preconditions. More precisely,
the weakest precondition of c with respect to postconditionψ is the weakest predicate wpJcK (ψ), such
that the triple

〈

wpJcK (ψ)
〉

c
〈

ψ
〉

is valid, i.e. wpJcK (ψ) is the predicate such that

∀ φ : φ =⇒ wpJcK (ψ) iff ⟨φ ⟩ c ⟨ψ ⟩ is valid .

For SL, validity of Hoare triples usually includes that łcorrect programs do not failž [Reynolds 2002;
Yang and O’Hearn 2002], i.e. no execution satisfying the precondition may lead to a memory fault.

Reasoning about probabilistic programs is more subtle. Running a probabilistic program on an
initial state does not yield one or more final states, but a subdistribution of final states. The missing
probability mass corresponds to the probability of nontermination or encountering a memory fault.
Furthermore, when performing quantitative reasoning, the notion of correctness becomes blurred.
For instance, it might be acceptable that a program fails with some small probability.

In order to account for probabilistic behavior, [Kozen 1983] generalized weakest precondition rea-
soning from predicates to measurable functions and later [McIver and Morgan 2005] (re)introduced
nondeterminism and coined the term weakest preexpectation. To incorporate dynamic memory,
we extend their approach by lifting the backward reasoning rules of [Ishtiaq and O’Hearn 2001;
Reynolds 2002] to a quantitative setting. To be precise, our calculus is designed for total correctness,
asserts that no memory faults happen during any execution (with positive probability), and assumes
a demonic interpretation of nondeterminism. Alternative design choices are discussed in Section 5.
Notice that forward reasoning in the sense of strongest postexpectations is not an option as in

general strongest postexpectations do not exist for probabilistic programs [Jones 1990]. This also
justifies our need for the separating implication in QSL which Ð in classical approaches based on
separation logic Ð is not needed when applying forward reasoning.

4.1 Weakest Preexpectations

The weakest preexpectation of program c with respect to postexpectation X ∈ E is an expectation
wpJcK (X) ∈ E, such that wpJcK (X) (s, h) is the least expected value of X (measured in the final
states) after successful termination, i.e. no memory faults during execution, of c on initial state (s, h).
In particular, ifX is a predicate thenwpJcK (X) (s,h) is the least probability that c executed on initial
state (s, h) does not cause a memory fault and terminates successfully in a final state satisfying X .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

Quantitative Separation Logic 34:15

Table 1. Rules for the weakest preexpectation transformer. Here X ∈ E is a (post)expectation, X [x/v] =

λ(s,h). X (s [x/s(v)] ,h) is the łsyntactic replacementž of x by v in X , and ®e = (e1, . . . , en) is a tuple of
expressions. Moreover, lfp Y . Φ(Y) is the least fixed point of Φ.

c wp JcK (X)

skip X

x := e X [x/e]

c1 ; c2 wpJc1K
(

wpJc2K (X)
)

if (b) { c1 } else { c2 } [b] · wpJc1K (X) + [¬b] · wpJc2K (X)

while (b) { c ′ } lfp Y . [¬b] · X + [b] · wpJc ′K (Y)

{ c1 } [p] { c2 } p · wpJc1K (X) + (1 − p) · wpJc2K (X)

x := new (®e) inf
v ∈N>0

[v 7→ ®e] −−⋆ X [x/v]

x := < e > sup
v ∈Z

[e 7→ v]⋆
(

[e 7→ v] −−⋆ X [x/v]
)

< e > := e ′ [e 7→ −]⋆
(

[e 7→ e ′] −−⋆ X
)

free(e) [e 7→ −]⋆X

In the following, we extend the weakest preexpectation calculus of [McIver and Morgan 2005] to
heap-manipulating programs, i.e. hpGCL as presented in Section 2.

Definition 4.1 (Weakest Preexpectation Transformer). The weakest preexpectation wpJcK (X) of
c ∈ hpGCL with respect to postexpectation X ∈ E is defined according to the rules in Table 1. △

Let us go over the individual rules for wp stated in Table 1. We start with briefly considering the
non-heap-manipulating constructs. wpJskipK behaves as the identity since skip does not modify
the program state. ForwpJx := eK (X)we returnX [x/e]which is obtained fromX by łsyntactically
replacingž x with e . More formally, X [x/e] = λ(s,h). X (s [x/s(e)] ,h). For sequential composition,
wpJc1 ; c2K (X) obtains a preexpectation of the program c1 ; c2 by applyingwpJc1K to the intermediate
expectation obtained from wpJc2K (X). For conditional choice, wpJif (b) { c1 } else { c2 }K (X)
selects eitherwpJc1K (X) orwpJc2K (X) by multiplying them accordingly with the indicator function
of b or the indicator function of ¬b and adding those two products. For the probabilistic choice,
wpJ{ c1 } [p] { c2 }K (X) is a convex sum that weighs wpJc1K (X) and wpJc2K (X) by probabilities p
and (1 − p), respectively. For loops, wpJwhile (b) { c ′ }K (X) is characterized as a least fixed point
of loop unrollings. We discuss loops and corresponding proof rules in Section 4.4. For a detailed
treatment of weakest preexpectations for these standard constructs, confer [McIver and Morgan
2005]. Before we consider the remaining statements, let us collect a few basic properties of wp:

Theorem 4.2 (Basic Properties of wp). For all hpGCL-programs c , expectations X ,Y ∈ E,
predicates φ and constants k ∈ R≥0, we have:

(1) Monotonicity: X ⪯ Y implies wpJcK (X) ⪯ wpJcK (Y)
(2) Superślinearity: wpJcK (k · X + Y) ⪯ k · wpJcK (X) + wpJcK (Y)
(3) Strictness: wpJcK (0) = 0
(4) 1śBoundedness of Predicates: wpJcK ([φ]) ⪯ 1.

Additionally, if c does not contain an allocation statement x := new (®e), we have:

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

34:16 Batz, Kaminski, Katoen, Matheja, and Noll

x : y :
· · ·

v w

α : β : γ :
· · ·

a b c
⋆

s(e) :

d

s : h :

[e 7→ −] ⋆ X

x : y :
· · ·

v w

α : β : γ :
· · ·

a b c

s↓ : h↓ :

X

free(e)

wpJfree(e)K

Fig. 4. Weakest preexpectation of memory deallocation.

(5) ω-continuity: For every increasing ω-chain X1 ⪯ X2 ⪯ . . . in E, we have

supn wpJcK (Xn) = wpJcK
(

supn Xn

)

.

(6) Linearity: wpJcK (k · X + Y) = k · wpJcK (X) + wpJcK (Y)

4.2 Deallocation, Heap Mutation, and Lookup

We now go over the definitions for deterministic heapśaccessing language constructs in Table 1.

Memory deallocation. Amemory cell is deleted from the current heap using the free(e) construct
as illustrated in Figure 4. free(e) starts on some initial state (s, h) shown on the left-hand side
and tries to deallocate the memory cell with address s(e). In case that s(e) is a valid address (as
depicted in Figure 4), i.e. s(e) ∈ dom (h), free(e) removes the corresponding cell from the heap
and terminates in a final state (s↓, h↓) shown on the right-hand side. In case that s(e) is not a valid
address (not depicted in Figure 4), i.e. s(e) < dom (h), free(e) crashes.

What is theweakest preexpectation of free(e)with respect to a postexpectationX? For answering
that, we need to construct an expectation wpJfree(e)K (X), such that the quantity wpJfree(e)K (X)
measured in the initial state coincides with quantity X measured in the final state. The way we will
construct wpJfree(e)K (X) is to measure X in the initial state and successively rectify the difference
to measuring X in the final state. So what is that difference? We need to dispose the allocated
memory cell with address s(e) in the initial state. We can rectify this through (a) ensuring that this
memory cell actually exists and (b) notionally separating it from the rest of the heap and measuring
X only in that rest. Both (a) and (b) are achieved by separatingly conjoining X with [e 7→ −], thus
obtaining [e 7→ −]⋆X . Notice that only heaps consisting of a single cell with address s(e) make
[e 7→ −] evaluate to 1 and are hence the only possible choices such that [e 7→ −]⋆X is evaluated
to some quantity possibly larger than 0. This also means that if free(e) crashes because address
s(e) is not allocated, then wpJfree(e)K (X) (s, h) correctly yields 0.

Memory allocation. The memory allocation statement x := new (e) deserves special attention
as it is the only statement that exhibits nondeterministic behavior. For simplicity, let us consider
x := new (e) instead of x := new (®e), i.e. we only allocate a single memory cell. The situation is
illustrated in Figure 5. Operationally, the instruction x := new (e) starts on some initial state (s, h)
shown on the left-hand side, adds (allocates) to the domain of heap h a single fresh address v , and
stores at this address content s(e). After allocating memory at address v , the address v is stored
in variable x . The statement x := new (e) then terminates in a final state (s↓, h↓) shown on the
right-hand side. Since v is chosen nondeterministically, we cannot give any a-priori guarantees on
v except for v < dom (h). Furthermore, notice that in our memory model there are at any point
infinitely many free addresses available for allocation. Allocation thus never causes a memory fault.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

Quantitative Separation Logic 34:17

x : y :
· · ·

u w

α : β : γ :
· · ·

a b c

s : h :

inf
v∈N>0

[v 7→ e] −−⋆ X [x/v]

x : y :
· · ·

v w

α : β : γ :
· · ·

a b c
⋆

v :

s(e)

s↓ : h↓ :

X

x := new (e)

wpJx := new (e)K

valid extension

Fig. 5. Weakest preexpectation of memory allocation.

What is now the weakest preexpectation of x := new (e) with respect to a postexpectation X?
Again, we construct wpJx := new (e)K (X) by measuring X in the initial state and rectifying the
differences to measuring X in the final state. So what are those differences? The first difference is
that we are missing in the initial state the newly allocated memory cell with address v and content
s(e) which is present in the final state. We can rectify this through notionally extending the heap of
the initial state bymeasuring [v 7→ e]−−⋆X instead ofX . Notice that a heap consisting of a single cell
with addressv and content s(e) is the only valid extension that satisfies [v 7→ e]. The next difference
is that in the final state variable x has value v . We can mimic this by a syntactic replacement of
x by v in X , thus obtaining [v 7→ e] −−⋆ X [x/v]. Finally, we have to account for the fact that
the newly allocated address v is chosen nondeterministically. Following McIver and Morgan’s
demonic nondeterminism school of thought, we select by infv ∈N>0 any address that minimizes the
sought-after quantity. We thus obtain wpJx := new (e)K (X) = infv ∈N>0 [v 7→ e] −−⋆ X [x/v].

Heap mutation. Figure 6 illustrates how the heap is mutated by a statement < e > := e ′. Opera-
tionally, we can dissect this instruction into two parts: Starting in some initial state (s, h) shown on
the left-hand side, we first deallocate the memory at address s(e) by free(e) and thereby obtain an
intermediate state (s ′, h′). Second, we allocate a new memory cell with content s(e ′). In contrast
to the statement x := new (e ′), which is addressed in the next section, the address of that cell is
fixed to s(e). This is achieved by the instruction new(e ′)@e , which we introduce here ad-hoc just for
illustration purposes. Consequently, the weakest preexpectation of new(e ′)@e coincides with the
weakest preexpectation of x := new (e ′) except that (a) the allocated address v is fixed to s(e) and
(b) we do not perform an assignment to x . Thus, wpJnew(e ′)@eK (X) = [e 7→ e ′] −−⋆ X .

Since < e > := e ′ has the same effect as free(e) ; new(e ′)@e , its weakest preexpectation is given by

wpJ< e > := e ′K (X) = wpJfree(e) ; new(e ′)@eK (X) (see above)

= wpJfree(e)K
(

wpJnew(e ′)@eK (X)
)

(see Table 1)

= wpJfree(e)K ([e 7→ e ′] −−⋆ X) (see above)

= [e 7→ −]⋆
(

[e 7→ e ′] −−⋆ X
)

. (see Table 1)

Another explanation of [e 7→ −]⋆
(

[e 7→ e ′] −−⋆ X
)

from a syntactic point of view is as follows:
By [e 7→ −]⋆ , we ensure that the heap contains a cell with address e and carve it out from the
heap. Thereafter, by [e 7→ e ′]−−⋆ , we extend the heap by a single cell with address e and content
e ′. After performing the aforementioned two operations, we measure X .

Heap lookup. The statement x := < e > determines the value at address e and stores it in variable
x . Its weakest preexpectation is defined as supv ∈Z [e 7→ v] ⋆

(

[e 7→ v] −−⋆ X [x/v]
)

. We give an
intuition on this preexpectation on a syntactic level. By [e 7→ v] ⋆ , we ensure that the heap
contains a cell with address e and content v , and carve it out from the heap. It is noteworthy that

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

34:18 Batz, Kaminski, Katoen, Matheja, and Noll

x : y :
· · ·

v w

α : β : γ :
· · ·

a b c
⋆

s(e) :

d

s : h :

[e 7→ −] ⋆
(

[e 7→ e
′] −−⋆ X

)

x : y :
· · ·

v w

α : β : γ :
· · ·

a b c

s
′ : h

′ :

[e 7→ e′]−−⋆ X

x : y :
· · ·

v w

α : β : γ :
· · ·

a b c
⋆

s(e) :

s(e′)

s↓ : h↓ :

X

free(e) new(e′)@e

< e > := e′

wpJnew(e′)@eKwpJfree(e)K

wpJ< e > := e′K

Fig. 6. Weakest preexpectation of heap mutation.

the value v at address e is really selected (rather than maximized) by supv ∈Z. This is because either
address e is not allocated at all (i.e. [e 7→ v] becomes 0 for all choices of v), or there is a unique
value v at address e which is selected by supv ∈Z (i.e. [e 7→ v] becomes 1). We can thus think of the
sup here as taking the role of a ∃!-quantifier. After carving out the cell with address e and content
v , this very cell is put back into the heap by [e 7→ v] −−⋆ . The aforementioned two operations
serve only as a mechanism for selecting v at address e as we can now measure X in a state where
variable x has value v through finally measuring X [x/v]. Notice that supv ∈Z [e ֒→ v] · X [x/v] is
equivalent to wpJx := < e >K (X) (cf. [Batz et al. 2018]).

4.3 On continuity of wp

For an initially empty heap, the allocation instruction x := new (e) nondeterministically assigns a
positive natural number to variable x . It is thus a countably infinitely branching nondeterministic
assignment. The presence of countably infinite nondeterminism in our semantics has dire conse-
quences: Our wp-calculus is not continuous. Consider, for instance, an ω-chain of expectations
Xn = [1 ≤ x ≤ n]. Moreover, let h∅ be the empty heap. Then, for an arbitrary stack s ,

wpJx := new (0)K
(

supn Xn

)

(s,h∅) = 1 , 0 = sup
n∈N

wpJx := new (0)K (Xn) (s,h∅).

Why do we not attempt to find an alternative semantics of x := new (e) that restores continuity?
There are two main reasons:

First, [Yang and O’Hearn 2002] argue that nondeterministic allocation in SL is essential to enable
local reasoning in the presence of address arithmetic. Alternative approaches for allocation, such as
always picking the smallest available memory cell, would invalidate the frame rule (cf. Section 4.7).

Second, [Apt and Plotkin 1986] show that it is impossible to define a (fully abstract) continuous
least fixed point semantics, such as our wp-style calculus, that exhibits countably infinite nondeter-
ministic assignments. Without further restrictions, e.g. limiting ourselves to a finite total amount
of available memory, there is thus no hope for a continuous weakest preexpectation transformer.

4.4 Weakest Preexpectations of Loops

As is standard in denotational semantics, the weakest preexpectation of a loop while (b) { c } is
characterized as a least fixed point of the loop’s unrollings. That is, the weakest preexpectation of
program while (b) { c } with respect to postexpectation X is given by the least fixed point of

ΦJb, c,X K(Y) = [¬b] · X + [b] · wpJcK (Y) .

Unfortunately, since our wp transformer is not continuous in general (see Section 4.3), we cannot
rely on Kleene’s fixed point theorem. However, due to Theorem 4.2, both wp and ΦJb, c,X K are

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

Quantitative Separation Logic 34:19

monotone. We may thus resort to a constructive version of the more general fixed point theorem
due to Tarski and Knaster (cf. [Cousot and Cousot 1979]) for (countable) ordinals:

Theorem 4.3. For every loop while (b) { c } and X ∈ E, there exists an ordinal α such that

wpJwhile (b) { c }K (X) = lfp Y . ΦJb, c,X K(Y) = Φ
α Jb, c,X K(0) .

Hence, weakest preexpectations of loops are well-defined. Reasoning about the exact least fixed
point of a loopmay, however, require transfinite arguments. Fortunately, we have an invariant-based
rule for reasoning about upper bounds on preexpectations of loops, which is easier to discharge.

Theorem 4.4. For loop while (b) { c } and expectations X , I ∈ E, we have

ΦJb, c,X K(I) ⪯ I implies wpJwhile (b) { c }K (X) ⪯ I .

In this case, we call I an invariant with respect to program while (b) { c } and expectation X .

Proof. By the Tarski and Knaster fixed point theorem, lfp Y . ΦJb, c,X K(Y) is the smallest
pre-fixed point of ΦJb, c,X K (cf. [Cousot and Cousot 1979]). It is thus the smallest I satisfying
ΦJb, c,X K(I) ⪯ I . Consequently, by Table 1, wpJwhile (b) { c }K (X) = lfp Y . ΦJb, c,X K(X) ⪯ I . □

4.5 Soundness of Weakest Preexpectations

We prove the soundness of our weakest preexpectation semantics with respect to the operational
semantics introduced in Section 2. To capture the expected value expectation X ∈ E, we assign a
reward to every program configuration. Our operational model is a special case of Markov decision
process with rewards (cf. [Baier and Katoen 2008; Puterman 2005]). Let G = {(⇓, s,h) | (s,h) ∈ Σ}
be the collection of all (goal) configurations indicating successful program termination. Given
X ∈ E, goal configuration (⇓, s,h) is assigned reward X (s,h). All other configurations are assigned
zero reward. Formally, the reward function for expectation X is given by

rew : Conf → R∞≥0, (c, s,h) 7→ [c = ⇓] · X (s,h) .

We are interested in the minimal (due to demonic nondeterminism) expected reward of reaching a
goal configuration in G (and thus successfully terminating) from an initial configuration init ∈ Conf.
Intuitively, the expected reward is given by the minimal (for all resolutions of nondeterminism)
sum over all finite paths π from init to a configuration in G weighted by the probability of path π
and the reward of the reached goal configuration.
Formally, nondeterminism is resolved by a scheduler ρ : Conf+ → N mapping finite sequences

of visited configurations to the next action. Moreover, let Prob be a function collecting the total
probability mass of execution steps (→) between two configurations for a given action:

Prob : Conf × N × Conf → [0, 1] ∩ Q, (t,n, t ′) 7→
∑

t
n,p

−−→ t ′

p .

The set of finite paths from t ∈ Conf to some goal configuration using scheduler ρ is given by

Π[t] (ρ) = {t1 . . . tm |m ∈ N, t1 = t, tm ∈ G,

∀k ∈ {1, . . . ,m − 1} : Prob(tk , ρ(t1 . . . tk), tk+1) > 0} .

The probability of a path t1 . . . tm ∈ Π[t] (ρ) is the product of its transition probabilities, i.e.

Prob(t1 . . . tm) =
∏

1≤k<m

Prob(tk , ρ(t1 . . . tk), tk+1) .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

34:20 Batz, Kaminski, Katoen, Matheja, and Noll

With these notions at hand, the expected reward of successful terminationwith respect to expectation
X ∈ E when starting execution in configuration t ∈ Conf is defined as

ExpRewJX K (t) = inf
ρ

∑

t1 ...tm ∈Π[t](ρ)

Prob(t1 . . . tm) · rew(tm) .

The main result of this subsection asserts that our weakest preexpectation calculus for hpGCL
programs is sound with respect to our operational model.

Theorem 4.5 (Soundness of Weakest Preexpectation Semantics). For all hpGCL-programs
c , expectations X ∈ E, and initial states (s,h) ∈ Σ, we have wpJcK (X) (s,h) = ExpRewJX K (c, s,h).

4.6 Conservativity

QSL is a conservative extension of both the weakest preexpectation calculus of [McIver and Morgan
2005] and classical separation logic as developed in [Ishtiaq and O’Hearn 2001; Reynolds 2002].
Since, for programs that never access the heap, we use the same expectation transformer as [McIver
and Morgan 2005], it is immediate that QSL conservatively extends weakest preexpectations.

To show that QSL is also a conservative extension of separation logic, recall from Definition 3.3,
p. 9, the embedding qslJ.K : SL → QSL of SL formulas into QSL. We then obtain conservativity
with respect to separation logic in the following sense:

Theorem 4.6 (Conservativity of QSL as a verification system). Let c ∈ hpGCL be a non-
probabilistic program. Then, for all classical separation logic formulas φ,ψ ∈ SL,

the Hoare triple {φ } c {ψ } is valid for total correctness iff qslJφK ⪯ wpJcK
(

qslJψ K
)

.

A key principle underlying separation logic is that correct programs must be memory safe
(cf. [Reynolds 2002]), i.e. all executions of a program do not lead to a memory error. By the above
theorem, the same holds for our wp calculus when considering non-probabilistic programs. For
probabilistic programs, however, we get a more fine-grained view as we can quantify the probability
of encountering a memory error. This allows to evaluate programs if failures are unavoidable, for
example due to unreliable hardware. In particular, the weakest preexpecation wpJcK (1) measures
the probability that program c terminates without a memory fault. Does this mean thatÐfor
probabilistic programsÐour calculus can only prove memory safety with probability one, but is
unable to prove that a program is certainly memory safe? After all, there might exist an execution
of program c that encounters a memory error with probability zero. The answer to this question
is no: Assume there is some execution of a program c that encounters a memory error. By the
correspondence between wp and our operational semantics (cf. Theorem 4.5), there is a path from
some initial state to an error state (E, s,h). Since such a path must be finite and thus has a positive
probability, the probability of encountering a memory error must be positive. In other words,

Corollary 4.7. An hpGCL program is memory safe with probability one iff it is memory safe.

4.7 TheQuantitative Frame Rule

In classical SL (in the sense of a proof system), the frame rule is a distinguished feature that allows
for local reasoning [Yang and O’Hearn 2002]. Intuitively, it states that a part of the heap that is not
explicitly modified by a program is unaffected by that program. Consequently, it suffices to reason
locally only on the subheap that is actually mutated. The frame rule reads as follows:

⟨φ ⟩ c ⟨ψ ⟩

⟨φ ⋆ ϑ ⟩ c ⟨ψ ⋆ ϑ ⟩
if Mod (c) ∩ Vars(ϑ) = ∅.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

Quantitative Separation Logic 34:21

Here,Mod (c) is the set of variables updated by a program c , i.e. all variables appearing on a left-hand
side of an assignment in c .6 Moreover, Vars(ϑ) collects all variables that łoccurž in ϑ .7

Towards a quantitative frame rule. Let us first translate the above Hoare-style rule into an

equivalent version for weakest preconditions. To this end, we use the well-established fact that

⟨φ ⟩ c ⟨ψ ⟩ is valid iff φ ⇒ wpJcK (ψ) .

Notice that this fact remains valid for memory-fault avoiding interpretations of Hoare triples as
used by [Yang and O’Hearn 2002]. Based on this fact, we obtain a suitable formulation of the frame
rule in the setting of weakest preconditions: Assume that Mod (c) ∩ Vars(ϑ) = ∅. Then

⟨φ ⟩ c ⟨ψ ⟩

⟨φ ⋆ ϑ ⟩ c ⟨ψ ⋆ ϑ ⟩

iff
(

φ ⇒ wpJcK (ψ)
)

⇒
(

φ ⋆ ϑ ⇒ wpJcK (ψ ⋆ ϑ)
)

(♣)

iff wpJcK (ψ)⋆ ϑ ⇒ wpJcK (ψ ⋆ ϑ) . (♠)

To understand the last equivalence, assume that (♣) holds and chooseφ = wpJcK (ψ). Then replacing
φ by wpJcK (ψ) in the conclusion of (♣) immediately yields the implication (♠). Conversely, assume
(♠) holds and let φ ⇒ wpJcK (ψ). By monotonicity of ⋆, we obtain φ ⋆ ϑ ⇒ wpJcK (ψ)⋆ ϑ . Then
(♠) yields that wpJcK (ψ)⋆ ϑ implies wpJcK (ψ ⋆ ϑ), i.e. (♣) holds.
In a quantitative setting the analog to implication ⇒ is ⪯. Hence, the frame rule for QSL is:

Theorem 4.8 (Quantitative Frame Rule). For every hpGCL-program c and expectations X ,Y ∈
E with Mod (c) ∩ Vars(Y) = ∅, we have wpJcK (X)⋆Y ⪯ wpJcK (X ⋆Y).

Proof. By structural induction on hpGCL programs. For loops, we additionally have to perform
a transfinite induction on the number of iterations. □

What about the converse direction? Can we also obtain a frame rule of the form wpJcK (X)⋆Y ⪰
wpJcK (X ⋆Y)? In the quantitative case, a converse frame rule breaks for probabilistic choice due to
the fact that ⋆ and + are only subdistributive in general (Theorem 3.6). This problem can partially
be avoided by requiring Y to be domain-exact. However, the łconverse frame rulež also breaks in
the qualitative case, i.e. if X and Y are predicates and ⪰ corresponds to⇐: For X = [emp], we have

wpJ<x > := 0K ([emp]) = [x 7→ −]⋆ ([x 7→ 0] −−⋆ [emp]) = 0 .

If we additionally choose Y = [x ֒→ 0], we also obtain Mod (c) ∩ Vars(Y) = ∅ and

wpJ<x > := 0K ([emp]⋆ [x ֒→ 0]) = [x 7→ −]⋆ ([x 7→ 0] −−⋆ ([emp]⋆ [x ֒→ 0]))

= [x ֒→ −] .

Put together, this yields a counterexampleÐeven in the qualitative case:

wpJ<x > := 0K ([emp])⋆ [x ֒→ 0] ⪰̸ wpJ<x > := 0K ([emp]⋆ [x ֒→ 0]) .

Hence, there is no converse version of the frame rule for a conservative extension of SL.

5 A LANDSCAPE OFWEAKEST PREEXPECTATION CALCULI

Our weakest preexpectation calculus for QSL is for total correctness with intrinsic memory safety
and demonic nondeterminism. We now briefly discuss alternative possibilities.

6More formally, Mod (c) = {x } if c is of the form x := e , x := new (®e), or x := < e >, and Mod (c) = ∅ if c is skip, free(e),

or < e > := e′. For the composed programs, we have Mod (c) = Mod (c1) ∪Mod (c2) if c is either if (b) { c1 } else { c2 },

{ c1 } [p] { c2 }, or c1 ; c2. For loops, we have Mod (while (b) { c }) = Mod (c).
7Formally, x ∈ Vars(ϑ) iff ∃ (s , h) ∈ Σ ∃v , v ′ ∈ Z : ϑ (s [x/v] , h) , ϑ (s [x/v ′] , h).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

34:22 Batz, Kaminski, Katoen, Matheja, and Noll

Angelic nondeterminism. For a program c andX ∈ E, instead of the least expected valuewpJcK (X),
we are now interested in the largest expected value awpJcK (X) (read: angelic weakest preexpecta-
tion) of X after execution of c . How does angelic nondeterminism affect the inductive definition of
wp in Table 1? For nondeterministic statements, we now have to maximize instead of minimize the
expected value. As x := new (®e) is the only statement that exhibits nondeterminism, we get

awpJx := new (®e)K (X) = λ(s,h). sup
v ∈N>0:v ,v+1, ...,v+ | ®e |−1<dom(h)

([v 7→ ®e] −−⋆ X [x/v]) (s,h) ,

where, since allocation never fails, we only choose from locations that are not already allocated.
For all other statements, awp is defined just as wp in Table 1 (except that wp is replaced by awp).
Since a question like łwhat is the expected value of x after execution of program cž does not

make much sense if there is some positive probability such that c does not terminate or encounters
a memory fault, the remainder of this section considers expectations in E≤1 only.

Partial correctness. The weakest liberal preexpectation wlpJcK (X) (s, h) of program c and expec-
tation X ∈ E≤1 for an initial state (s, h) corresponds to the weakest preexpectation wpJcK (X) (s, h)
plus the probability that c does not terminate on state (s, h). How does shifting to partial correctness
affect the inductive definition of wp in Table 1? Following [McIver and Morgan 2005], we consider
the greatest fixed point for loops:

wlpJwhile (b) { c ′ }K (X) = gfp Y . [¬b] · X + [b] · wlpJc ′K (Y)
︸ ︷︷ ︸

= ΦJb ,c ,X K(Y)

.

For weakest liberal preexpectations, our quantitative frame rule also applies:

Theorem 5.1 (Quantitative Frame Rule forwlp). For every hpGCL-program c and expectations
X ,Y ∈ E≤1 with Mod (c) ∩ Vars(Y) = ∅, we have wlpJcK (X)⋆Y ⪯ wlpJcK (X ⋆Y).

Furthermore, a dual version of our proof rule for invariant-based reasoning about loops is available
for weakest liberal preexpectations. Its proof is analogous to the proof of Theorem 4.4.

Theorem 5.2. For loop while (b) { c }, postexpectation X ∈ E≤1 and invariant I ∈ E≤1, we have

I ⪯ ΦJb, c,X K(I) implies I ⪯ wlpJwhile (b) { c }K (X) .

Extrinsic memory safety. Finally, we assume terminating with a memory fault is acceptable. This
is analogous to weakest liberal preexpectations, where nontermination is considered acceptable.
The weakest extrinsic memory safe preexpectation wepJcK (X) (s, h) corresponds to the weakest
preexpectation wpJcK (X) plus the probability that c terminates with a memory fault on initial
state (s, h). How does extrinsic memory safety affect the inductive definition of wp in Table 1? We
have to modify the connectives ⋆ and −−⋆ to add the probability of memory faults. The resulting
connectives, denoted X •Y and [φ]−−• Y , where X ,Y ∈ E≤1 and φ is a predicate, are defined below.

X • Y = λ(s,h). min { 1 − X (s,h1) + X (s,h1) · Y (s,h2) | h = h1 ⋆h2 }

[φ] −−• Y = λ(s,h). sup
h′

{Y (s,h ⋆h′) | h ⊥ h′ and (s,h′) |= φ}

The rules of wep are then obtained from the rules for wp in Table 1 by replacing every occurrence
of ⋆ by • and −−⋆ by −−• , respectively, and changing the rule for heap lookups to

wepJx := < e >K (X) = inf
v ∈Z

[e 7→ v] • ([e 7→ v] −−• X [x/v]) .

Thus, we replaced the supremum by an infimum as encountering a memory fault is acceptable.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

Quantitative Separation Logic 34:23

The weakest preexpectation landscape. The individual changes to wp can easily be combined.
Thus, apart from wp, awp, wlp, and wep, we also have transformers awlep, awep, wlep, and awlp.
How are these transformers related? As a first observation, we note that for every hpGCL-program
c , we have wpJcK (0) = 0 and awlepJcK (1) = 1. For each given initial state (s, h) there are at most
four possible outcomes: c diverges, c encounters a memory fault, c successfully terminates in a state
łcaptured by X ž, or c terminates in some other state, which we denote by ¬X . The total probability
of these four outcomes is one. Hence, we can describe the probability of successful termination
and measuring X , i.e. wpJcK (X), as one minus the probability of the other three events. Similar
dualities are obtained for all of the possible calculi:

Theorem 5.3 (Duality principle for the weakest preexpectation landscape). Let c ∈
hpGCL be a program. Moreover, let X ∈ E≤1. Then

wpJcK (X) = 1 − awlepJcK (1 − X) , (probability of X)

wlpJcK (X) = 1 − awepJcK (1 − X) , (probability of X + divergence)

wepJcK (X) = 1 − awlpJcK (1 − X) , and (probability of X + memory fault)

wlepJcK (X) = 1 − awpJcK (1 − X) . (probability of X + divergence + memory fault)

6 BEYOND HPGCL PROGRAMS

We presented our results in terms a simple probabilistic programming language. Some of the
case studies presented in the next section, however, additionally use procedure calls and sample
from discrete uniform probability distributions. Let us thus briefly discuss how our wp calculus is
extended accordingly.8

We allow programs c to contain procedure calls of the form call P (®e), where P is a procedure
name and ®e is a tuple of arithmetic expressions representing the values passed to the procedure.
Since assume parameters are passed by value, no variables are modified by a procedure call, i.e.
Mod (call P (®e)) = ∅. The meaning of procedure calls is determined by procedure declarations of
the form procedure P (®x) { body(P) }, where body(P) ∈ hpGCL is the procedure’s body that may
contain (recursive) procedure calls and ®x is a tuple of variables that are never changed by program
body(P). All variables in body(P) except for its parameters are considered local variables.
For non-recursive procedures, the weakest preexpectation of a procedure call coincides with

the weakest preexpectation of its body. The semantics of recursive procedure calls is determined
by a least fixed point of a transformer on procedure environments mapping procedure names and
parameters to expectations. In particular, our previous results, such as linearity ofwp, monotonicity,
and the frame rule, remain valid in the presence of recursive procedure calls.
Furthermore, we employ a standard proof rule to deal with recursion (cf. [Hesselink 1993]):

∀®e : wpJcall P (®e)K (X) ⪯ I (®e) ⊩ wpJbody(P)K (X) ⪯ I (®e)

∀®e : wpJcall P (®e)K (X) ⪯ I (®e),
[rec]

where X ∈ E is a postexpectation, I (®e) ∈ E is an invariant, and ®e is a tuple of expression passed to
the called procedure. Intuitively, for proving that a procedure call satisfies a specification, it suffices
to show that the procedures body satisfies the specificationÐassuming that all recursive calls in
the procedure’s body do so, too. An analogous rule is obtained for weakest liberal preexpectations
by replacing all occurrences of ⪯ by ⪰.
Moreover, we support sampling from arbitrary discrete distributions instead of flipping coins.

While these sampling instructions, such as x := uniform (e, e ′), which samples an integer in the
interval [e, e ′] uniformly at random, can be simulated with coin flips, it is more convenient to

8Detailed formalizations and extensions of previous proofs are found in [Batz et al. 2018].

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

34:24 Batz, Kaminski, Katoen, Matheja, and Noll

directly derive their semantics. For example, the weakest preexpecation of the uniform random
assignment x := uniform (e, e ′) with respect to postexpectation X ∈ E is given by

wpJx := uniform (e, e ′)K (X) = λ(s,h).
1

s(e ′) − s(e) + 1
·

s(e ′)∑

k=s(e)

X [x/k] (s,h) .

7 CASE STUDIES

We examine a few examplesÐincluding the programs presented in Section 1Ðto demonstrate QSL’s
applicability to reason about probabilities and expected values of hpGCL programs.

7.1 Array Randomization

For our first example, recall the procedure randomize(array,n) in Section 1, Figure 1a that computes
a random permutation of an array of size n. To conveniently specify subarrays, we use iterated
separating conjunctions (cf. [Reynolds 2002]) given by

n

⋆
k=i

Xk = λ(s,h).

{(

Xs(i) ⋆Xs(i+1) ⋆ . . . ⋆Xs(n)

)

(s,h) if s(i) ≤ s(n)

[emp] (s,h) otherwise.

Our goal is to show that no particular permutation of the input array has a higher probability than
other ones. Since there are n! permutations of an array of length n, we prove that the probability of
computing an arbitrary, but fixed, permutation is at most 1/n!. That is, we compute an upper bound
of wpJcall randomize (array,n)K ([array 7→ α0, . . . ,αn−1]), where we use variables α0, . . . ,αn−1,
which do not appear in the program, to keep track of the individual values in the array. To this end,
we propose the invariant

I = [0 ≤ i < n] ·
1

(n − i)!
·
i−1

⋆
k=0

[array + k 7→ αk]⋆
∑

π ∈Perm(i ,n−1)

n−1

⋆
k=i

[

array + k 7→ απ (k)
]

+ [¬(0 ≤ i < n)] · [array 7→ α0, . . . ,αn−1]

for the loop cloop in procedure randomize, where Perm (e, e ′) denotes the set of permutations over
{e, e+1, . . . , e ′}. Intuitively, I describes the situation for i remaining loop iterations (since we reason
backwards): All but the first i array elements are already known to be swapped consistently with
our fixed permutation. In our preexpectation, the last n − i elements are thus arbitrarily permuted
and the probability of hitting the right permutation for these elements is 1/(n − i)!. The remaining i
iterations still have to be executed, i.e. the first i array elements coincide with our postexpectation.
For the whole procedure randomize we continue as follows:

wpJcall randomize (array,n)K ([array 7→ α0, . . . ,αn−1])

= wpJi := 0K
(

wpJcloopK ([array 7→ α0, . . . ,αn−1])
)

(Definition of wp for procedure body)

⪯ wpJi := 0K (I) = I [i/0] (Theorem 4.4 for invariant I , Table 1)

=

1

n!
·

∑

π ∈Perm(0,n−1)

n−1

⋆
k=0

[

array + k 7→ απ (k)
]

. (Algebra)

The probability of computing exactly the permutation α0, . . . ,αn−1 is thus at most 1/n!. Moreover, if
the initial heap is not some permutation of our fixed array, the probability becomes 0.

7.2 Faulty Garbage Collector

The next example is a garbage collector that is executed on cheap, but unreliable hardware (cf.
Section 1): Procedure delete takes a binary tree with root x and recursively deletes all elements in

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

Quantitative Separation Logic 34:25

procedure delete (x) { // [tree (x)] · (1 − p)size (7)

// [x , 0] · (p · [emp] + (1 − p) · f) + [x = 0] · [emp] (6)

if (x , 0) { // p · [emp] + (1 − p) · f (5)

{ skip } [p] { // sup
α ,β

[x 7→ α , β]⋆ ([x 7→ α , β] −−⋆ д [l , r/α , β]) =: f (4)

l := <x > ; r := <x + 1 > ; // [x 7→ −, −]⋆ t (l)⋆ t (r) =: д (3)

call delete (l) ; // [x 7→ −, −]⋆ t (r) (2)

call delete (r) ; // [x 7→ −, −]⋆ [emp] (1)

free(x) ; free(x + 1) } // [emp]

} else {skip} } // [emp]

} // [emp]

Fig. 7. Faulty garbage collection procedure with a proof sketch, where t(α) = [tree (α)] · (1 − p)size.

the tree. However, with some probability p ∈ [0, 1], the condition x , 0, which checks whether the
tree is empty, is ignored although x is the root of a non-empty tree. This scenario is implemented
by the probabilistic program in Figure 7, where each node in a tree consists of two consecutive
pointers: <α > and <α + 1 > respectively represent the left and right child of α .

Our goal is to establish a lower bound on the probability that the garbage collector successfully
deletes the whole tree, i.e. wlpJcall delete (x)K ([emp]). To this end we claim that

wlpJcall delete (x)K ([emp]) ⪰ [tree (x)] · (1 − p)size , (†)

where
(

pX
)

(s, h) = pX (s ,h) for some rational p and X ∈ E≤1. The main steps of a proof of our claim
are sketched in Figure 7: Starting with postexpectation [emp], step (1) results from applying the
wlp rule for free() and the fact that

[x 7→ −]⋆ [x + 1 7→ −]⋆ [emp] = [x 7→ −,−]⋆ [emp] .

Step (2) deserves special attention. We would like to apply rule [rec] for recursive procedures (and
wlp) using the premise

wlpJcall delete (r)K ([emp]) ⪰ t(r) = [tree (r)] · (1 − p)size ,

but the postexpectation is [x 7→ −,−] ⋆ [emp] instead of [emp]. Here, the quantitative frame
rule (Theorem 4.8) allows us to apply the rule [rec] for recursive procedures to postexpectation
[emp] and derive [x 7→ −,−]⋆ t(r). Notice that the frame rule would not be applicable without the
separating conjunction. In particular, our proof would have to deal with aliasing: It is not immediate
that the heaps reachable from l and r do not share memory.
Step (3) first extends the postexpectation exploiting that Z = Z ⋆ [emp] for any Z ∈ E≤1. We

then proceed analogously to step (2). Step (4) is an application of the lookup rule with minor
simplifications to improve readability. Steps (5) and (6) apply wlp to the probabilistic choice and
the conditional. Finally, we show that (6) is entailed by the expectation in step (7), i.e. (6) ⪰ (7).

7.3 Lossy List Reversal

We analyze the lossy list reversal presented in Section 1, Figure 1b. Our goal is to obtain an upper
bound on the expected length of the reversed list after successful termination, i.e. we compute an

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

34:26 Batz, Kaminski, Katoen, Matheja, and Noll

upper bound of wpJcall lossyReversal (hd)K (len (r , 0)). To this end, we propose the invariant

I = len (r , 0)⋆ [ls (hd, 0)] + 1/2 · [hd , 0] · (len (hd, 0)⋆ [ls (r , 0)]) .

Intuitively, invariant I states that during each loop iteration, the expected length of the list with
head r is its current length, i.e. len (r , 0), plus half of the length of the remaining list with head
hd, i.e. len (hd, 0). To obtain a tight specification, i.e. describe the exact content of the heap, we
additionally use predicates [ls (hd, 0)] and [ls (r , 0)] to cover the remaining parts of the heap when
measuring the length of a list. We then continue as follows:

wpJcall lossyReversal (hd)K (len (r , 0))

= wpJr := 0K
(

wpJwhile (hd , 0) { . . . }K (len (r , 0))
)

(Definition of procedure body, Table 1)

⪯ wpJr := 0K (I) (Theorem 4.4)

= len (0, 0)
︸ ︷︷ ︸

= 0

⋆ [ls (hd, 0)] + 1/2 · [hd , 0] · (len (hd, 0)⋆ [ls (0, 0)]
︸ ︷︷ ︸

= 1

) (Def. of I , Table 1)

=
1/2 · [hd , 0] · len (hd, 0) .

Hence, the expected length of the reversed list after successful termination is at most half of the
length of the original list.

7.4 Randomized List Extension

As a last example, we consider a program clist that inserts new elements at the beginning of a list
with head x , but gradually loses interest in adding further elements:

clist : c := 1 ; while (c = 1) { { c := 0 } [1/2] { c := 1 ; x := new (x) } }

Our goal is to compute an upper bound on the expected length of the list with head x after
termination of program clist, i.e. we compute an upper bound of wpJclistK (len (x, 0)). To this end,
we propose the loop invariant I = len (x, 0) + [c = 1], which states that the length of the list is
increased by one if variable c equals one. For the full program we proceed as follows:

wpJclistK (len (x, 0))

= wpJc := 1K
(

wpJwhile (c = 1) { . . . }K (len (x, 0))
)

(Definition of wp)

⪯ wpJc := 1K (I) = I [c/1] (Theorem 4.4 for invariant I)

= len (x, 0) + 1. (Algebra)

Hence, in expectation, program clists increases the length of the initial list by at most one element.

8 RELATED WORK

Although many algorithms rely on randomized data structures, formal reasoning about probabilis-
tic programs that mutate memory has received scarce attention. To the best of our knowledge,
there is little other work on formal verification of programs that are both probabilistic and heap
manipulating. A notable exception is recent work by [Tassarotti and Harper 2018] who combine
concurrent separation logic with probabilistic relational Hoare logic (cf. [Barthe et al. 2012]). Their
focus is on program refinement. Verification is thus understood as establishing a relation between
a program to be analyzed and a program which is known to be well-behaved. In contrast to that,
the goal of our logic is to directly measure quantitative program properties on source code level
using a weakest-precondition style calculus. In particular, programs that do not certainly terminate,
e.g. the list extension example in Section 7.4, are outside the scope of their approach (cf. [Tassarotti
and Harper 2018, Theorem 3.1]). Furthermore, they do not consider unbounded expectations.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

Quantitative Separation Logic 34:27

Probabilistic program verification. Seminal work on semantics and verification of probabilistic
programs is due to [Kozen 1979, 1983]. [McIver and Morgan 2005; Morgan et al. 1996] developed
the weakest preexpectation calculus to reason about a probabilistic variant of Dijkstra’s guarded
command language. While variants of their calculus have been successfully applied to programs
that access data structures, such as the coupon collector’s problem [Kaminski et al. 2016] and a
probabilistic binary search [Olmedo et al. 2016], treatment of data structures is usually added in an
adśhoc manner. In particular, proofs quickly get extremely complicated if programs do not only
access but also mutate a data structure. Our work extends the calculus of McIver and Morgan to
formally reason about heap manipulating probabilistic programs.

Separation Logic. Apart from the backward reasoning rules in [Ishtiaq andO’Hearn 2001; Reynolds
2002], weakest preconditions are extensively used by [Krebbers et al. 2017]. For ordinary programs,
our calculus allows for reasoning about quantities of heaps, such as the length of lists. Such shapeś
numeric properties have been investigated before, see, e.g., [Bozga et al. 2010; Chang and Rival
2008]. [Chin et al. 2012] use recursive predicate definitions together with fold/unfold reasoning to
verify properties, such as balancedness of trees. Furthermore, [Atkey 2011] developed a proof logic
that combines separation logic with reasoning about consumable resources. His work supports
reasoning about quantities by means of special predicates that that are evaluated by one or more
resources in addition to the heap. However, the amount of resources must be bounded. It is unclear
how this approach can be extended to reason about expected values of probabilistic programs.

9 CONCLUSION

We presented QSL Ð a quantitative separation logic that evaluates to real numbers instead of truth
values. Our wp calculus built on top of QSL is a conservative extension of both separation logic
and Kozen’s / McIver and Morgan’s weakest preexpectations. In particular, virtually all properties
of separation logic remain valid. We applied QSL to reason about four examples, ranging from
the success probability of a faulty garbage collector, over the expected list length of a list reversal
algorithm to a textbook procedure to randomize arrays.

Our calculus provides a foundation for formal reasoning about randomized algorithms on source
code level. Future work includes developing proof systems for quantitative entailments and analyzing
more involved algorithms, e.g. randomized skip lists or randomized splay trees.

ACKNOWLEDGMENTS

We are grateful for the valuable and very constructive comments we received from the anonymous
reviewers. This applies particularly to the formulation of Theorems 3.4 and 4.6.
Furthermore, we acknowledge the support of this work by DFG research training group 2236

UnRAVeL and by DFG grant NO 401/2-1.

REFERENCES

Susanne Albers and Marek Karpinski. 2002. Randomized splay trees: Theoretical and experimental results. Inf. Process. Lett.

81, 4 (2002), 213ś221.

Krzysztof R Apt and Gordon D Plotkin. 1986. Countable nondeterminism and random assignment. Journal of the ACM

(JACM) 33, 4 (1986), 724ś767.

Cecilia R. Aragon and Raimund Seidel. 1989. Randomized Search Trees. In FOCS. 540ś545.

Robert Atkey. 2011. Amortised Resource Analysis with Separation Logic. Logical Methods in Computer Science 7, 2 (2011).

https://doi.org/10.2168/LMCS-7(2:17)2011

Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking. MIT Press.

Gilles Barthe, Thomas Espitau, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2018. An Assertion-

Based Program Logic for Probabilistic Programs. In ESOP 2018. 117ś144. https://doi.org/10.1007/978-3-319-89884-1_5

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

https://doi.org/10.2168/LMCS-7(2:17)2011
https://doi.org/10.1007/978-3-319-89884-1_5

34:28 Batz, Kaminski, Katoen, Matheja, and Noll

Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2012. Probabilistic Relational Hoare Logics for Computer-

Aided Security Proofs. In MPC. 1ś6.

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Thomas Noll. 2018. Quantitative

Separation Logic. CoRR abs/1802.10467 (2018). arXiv:1802.10467 http://arxiv.org/abs/1802.10467

Guy E. Blelloch and Margaret Reid-Miller. 1998. Fast Set Operations Using Treaps. In SPAA. 16ś26.

Marius Bozga, Radu Iosif, and Swann Perarnau. 2010. Quantitative Separation Logic and Programs with Lists. J. Autom.

Reasoning 45, 2 (2010), 131ś156.

James Brotherston. 2007. Formalised Inductive Reasoning in the Logic of Bunched Implications. In SAS. 87ś103.

Michael Carbin, Sasa Misailovic, and Martin C. Rinard. 2016. Verifying quantitative reliability for programs that execute on

unreliable hardware. Commun. ACM 59, 8 (2016), 83ś91. https://doi.org/10.1145/2958738

Aleksandar Chakarov and Sriram Sankaranarayanan. 2013. Probabilistic Program Analysis with Martingales. In CAV (LNCS),

Vol. 8044. Springer, 511ś526.

Bor-Yuh Evan Chang and Xavier Rival. 2008. Relational inductive shape analysis. In POPL. 247ś260.

Krishnendu Chatterjee, Hongfei Fu, Petr Novotný, and Rouzbeh Hasheminezhad. 2016. Algorithmic Analysis of Qualitative

and Quantitative Termination Problems for Affine Probabilistic Programs. In POPL. ACM, 327ś342.

Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin. 2012. Automated verification of shape, size and bag

properties via user-defined predicates in separation logic. Sci. Comput. Program. 77, 9 (2012), 1006ś1036.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms, 3rd Edition.

MIT Press. http://mitpress.mit.edu/books/introduction-algorithms

Patrick Cousot and Radhia Cousot. 1979. Constructive versions of Tarski’s fixed point theorems. Pacific J. Math. 82, 1 (1979),

43ś57.

Edsger Wybe Dijkstra. 1976. A Discipline of Programming. PrenticeśHall.

Rusins Freivalds. 1977. Probabilistic Machines Can Use Less Running Time. In IFIP Congress, Vol. 839. 842.

Friedrich Gretz, Joost-Pieter Katoen, and Annabelle McIver. 2014. Operational versus Weakest Pre-Expectation Semantics

for the Probabilistic Guarded Command Language. Performance Evaluation 73 (2014), 110ś132.

Thomas A. Henzinger. 2013. Quantitative reactive modeling and verification. Computer Science - R&D 28, 4 (2013), 331ś344.

Wim H. Hesselink. 1993. Proof Rules for Recursive Procedures. Formal Asp. Comput. 5, 6 (1993), 554ś570.

Charles Antony Richard Hoare. 1962. Quicksort. Comput. J. 5, 1 (1962), 10ś15.

Charles Antony Richard Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (1969),

576ś580.

Samin S. Ishtiaq and Peter W. O’Hearn. 2001. BI as an Assertion Language for Mutable Data Structures. In POPL. 14ś26.

Claire Jones. 1990. Probabilistic NonśDeterminism. Ph.D. Dissertation. University of Edinburgh, UK.

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2016. Weakest Precondition

Reasoning for Expected RunśTimes of Probabilistic Programs. In ESOP (LNCS), Vol. 9632. Springer, 364ś389.

Donald Ervin Knuth. 1992. Two Notes on Notation. The American Mathematical Monthly 99, 5 (1992), 403ś422.

Dexter Kozen. 1979. Semantics of Probabilistic Programs. In FOCS. 101ś114.

Dexter Kozen. 1983. A Probabilistic PDL. In STOC. 291ś297.

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive proofs in higher-order concurrent separation logic. In

POPL. 205ś217.

Stephen Magill, Aleksandar Nanevski, Edmund Clarke, and Peter Lee. 2006. Inferring invariants in separation logic for

imperative list-processing programs. SPACE 1, 1 (2006), 5ś7.

Conrado Martínez and Salvador Roura. 1998. Randomized Binary Search Trees. J. ACM 45, 2 (1998), 288ś323.

Annabelle McIver and Carroll Morgan. 2005. Abstraction, Refinement and Proof for Probabilistic Systems. Springer.

Annabelle McIver, Carroll Morgan, Benjamin Lucien Kaminski, and Joost-Pieter Katoen. 2018. A new proof rule for

almost-sure termination. PACMPL 2, POPL (2018), 33:1ś33:28. https://doi.org/10.1145/3158121

Carroll Morgan, Annabelle McIver, and Karen Seidel. 1996. Probabilistic Predicate Transformers. Trans. on Programming

Languages and Systems 18, 3 (1996), 325ś353.

Van Chan Ngo, Quentin Carbonneaux, and Jan Hoffmann. 2018. Bounded expectations: resource analysis for probabilistic

programs. In PLDI. 496ś512.

Peter W. O’Hearn. 2012. A Primer on Separation Logic (and Automatic Program Verification and Analysis). In Software

Safety and Security - Tools for Analysis and Verification. 286ś318.

Federico Olmedo, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2016. Reasoning about Recursive

Probabilistic Programs. In LICS. 672ś681.

William Pugh. 1990. Skip Lists: A Probabilistic Alternative to Balanced Trees. Commun. ACM 33, 6 (1990), 668ś676.

Martin Lee Puterman. 2005. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons.

John Charles Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In LICS. IEEE Computer Society,

55ś74.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

http://arxiv.org/abs/1802.10467
http://arxiv.org/abs/1802.10467
https://doi.org/10.1145/2958738
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1145/3158121

Quantitative Separation Logic 34:29

Dana Scott. 2008. The Algebraic Intepretation of Quantifiers. Intuitionistic and Classical. Andrzej Mostowski and Foundational

Studies (2008), 289ś312.

Joseph Tassarotti and Robert Harper. 2018. A Separation Logic for Concurrent Randomized Programs. CoRR abs/1802.02951

(2018). arXiv:1802.02951 http://arxiv.org/abs/1802.02951

Hongseok Yang and Peter W. O’Hearn. 2002. A Semantic Basis for Local Reasoning. In FOSSACS. 402ś416.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 34. Publication date: January 2019.

http://arxiv.org/abs/1802.02951
http://arxiv.org/abs/1802.02951

	Abstract
	1 Introduction
	2 Probabilistic Pointer Programs
	2.1 Syntax
	2.2 Program states
	2.3 Semantics

	3 Quantitative Separation Logic
	3.1 Expectations
	3.2 Separating Connectives between Expectations
	3.3 Properties of Quantitative Separating Connectives
	3.4 Pure Expectations
	3.5 Intuitionistic Expectations
	3.6 Recursive Expectation Definitions

	4 Reasoning about Programs
	4.1 Weakest Preexpectations
	4.2 Deallocation, Heap Mutation, and Lookup
	4.3 On continuity of wp
	4.4 Weakest Preexpectations of Loops
	4.5 Soundness of Weakest Preexpectations
	4.6 Conservativity
	4.7 The Quantitative Frame Rule

	5 A Landscape of Weakest Preexpectation Calculi
	6 Beyond hpGCL Programs
	7 Case Studies
	7.1 Array Randomization
	7.2 Faulty Garbage Collector
	7.3 Lossy List Reversal
	7.4 Randomized List Extension

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

