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ABSTRACT  

Cystic fibrosis (CF) is a multi-organ protein misfolding disease caused by mutations of the 

cystic fibrosis transmembrane conductance regulator (CFTR). In addition to respiratory 

impairment due to mucus accumulation, viruses, bacteria and their co-infections are recognized 

triggers of acute pulmonary exacerbations, accelerating disease progression, and increasing 

hospitalization and mortality rate. Treatment complexity increases with the age of patients, as 

do the number and severity of side effects, drug-drug interactions and costs. Simplifying the 

therapeutic regimen represents therefore one of the key priorities of CF treatment. We have 

recently reported the discovery of multitarget compounds able to “kill two birds with one 

stone” by targeting F508del-CFTR and PI4KIIIβ and thus acting simultaneously as mild 

correctors and broad-spectrum picornavirus inhibitors. Starting from the previously identified 

multitarget hits, we report herein the synthesis and biological profiling of new bithiazole 

derivatives to elucidate the structural requirements to improve F508del-CFTR correction and 

antiviral potencies. The most promising compound 23a inhibited PI4KIIIβ and selected 

picornaviruses (EV71, CVB3, hRV02), showed good F508del-CFTR correction potency, 

additivity and possible synergy with lumacaftor (VX809) at low micromolar concentration. In 

addition, it was well tolerated in vivo by C57BL/6 mice with no sign of acute toxicity and 

histological alterations in key biodistribution organs. 
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INTRODUCTION 

Cystic fibrosis (CF) is a common lethal autosomal recessive disease caused by mutations 

affecting the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-regulated 

anion-selective channel expressed in various epithelia such as those of airways, intestinal tract, 

pancreas ducts, testes and sweat glands. About 90% of cystic fibrosis patients are either 

heterozygous or homozygous for a CFTR protein lacking phenylalanine 508 (ΔF508-CFTR).1 

The ΔF508 mutant is largely unable to exit the endoplasmic reticulum.2,3 Only a small fraction 

of the synthesized protein reaches the plasma membrane (trafficking defect). However, when 

targeted to the plasma membrane, the ΔF508 protein also shows an accelerated rate of 

internalization and an intrinsic low channel activity compared to wild type CFTR.4 Low anion 

flow due to mutated CFTR, causes reduced fluid secretion and accumulation of abnormally 

thick mucus that clogs the ducts and favors the development of bacterial/viral infections. CF 

epithelial cell vulnerability and dysregulation of the local inflammatory responses lead to more 

severe viral infections and appear to render the airway even more prone to bacterial infection, 

leading to pulmonary exacerbations that accelerate disease progression, impair quality of life, 

increase hospitalization and mortality rate.5-7 To reduce symptoms and slow organ 

deterioration, patients receive multiple treatments (antibiotics, steroids, mucolytics, 

bronchodilators, pancreatic enzymes) and undergo a daily physical exercise regimen including 

physiotherapy to loosen and remove airway mucus. This complex regimen, combined with 

patients’ comorbidities, makes therapeutic burden and drug-drug interactions important issues 

in CF care.8-11 Over the years, there has been an intensive effort to find drugs acting on the root 

cause of the disease: lumacaftor (VX-809) and tezacaftor (VX-661) are pharmacological 

chaperones that correct the folding defect and improve trafficking of the , while ivacaftor (VX-

770) is a small molecule acting as a potentiator of the channel’s conductance.12-14 However, 



 4 

F508del-CFTR patients do not benefit from monotherapy with these agents, providing only 

~4% improvement in lung function measured as improvement in FEV1 percentage predicted. 

On the other hand, the combination of a corrector (lumacaftor) with a potentiator (ivacaftor), 

marketed as Orkambi™, has provided minimal health benefits for people ages 12 and older, 

which were homozygous for the F508del-CFTR mutation.15 In addition to the poor 

effectiveness of Orkambi™ in F508del-CFTR bearing patients, lumacaftor negatively 

interacted with ivacaftor, increasing its metabolism and thus requiring a higher dose of the 

latter when used in combination as Orkambi, while Ivacaftor reduces F508del-CFTR surface 

expression.16-18 Recently, the positive effect of combination treatments in correcting F508del-

CFTR has been highlighted by Carlile et al. by showing that a triple combination of correctors 

(MCG1516A, RDR1 and VX-809) binding to different pockets on CFTR, yielded a functional 

expression of the channel that was approximately 90% of wild-type’s.19 Even if drug 

combinations seem to be the right approach for optimal F508del-CFTR functional expression, 

drug-drug interactions (e.g. lumacaftor-ivacaftor, macrolides-lumacaftor/ivacaftor) represent a 

serious risk and must be taken into account for a safe and efficient CF therapy.16  

Considering the poor efficacy of current therapeutic treatments for F508del-CFTR, the CF 

therapeutic burden, the severity of viral infections in CF and their role in facilitating bacterial 

colonization,20,21 our research group has recently approached this complex disease by 

developing multitarget compounds able to simultaneously act as correctors of the F508del-

CFTR folding defect and as broad-spectrum antivirals.22 Here we report the synthesis and 

biological profiling of new bithiazole derivatives to elucidate the structural requirements 

needed to improve both F508del-CFTR correction and antiviral potencies. Among the 

synthesized compounds, 23a-c showed a dual effect on F508del-CFTR, increasing the 

membrane expression (in a pHTomato assay) and channel function. They  had a corrector effect 

additive to VX-809’s, increasing the F508del-CFTR membrane density three-fold more 
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thanVX-809 alone. The most promising compound 23a was well tolerated in acute toxicity 

studies conducted on C57BL/6 mice, with no sign of histological alterations in gut, lung and 

liver parenchyma.  

 

RESULTS AND DISCUSSION 

Over the past decade, the “one-drug, one-gene, one-disease” paradigm has been questioned, 

based also on functional genomic studies showing that single-gene knockouts gave a 

phenotypic response in a low percentage of cases, due to redundancy and compensatory 

signaling of biological networks.23-25 It has been proposed that partial inhibition of multiple 

biological targets with a single (multi-target) drug, the so called polypharmacology approach, 

is more effective than full inhibition of a single target, reducing target-related toxicity and 

attrition rate in clinical development.26 This “one-drug, multiple-targets” approach is quite 

valuable in the treatment of a complex disease like cystic fibrosis, which is characterized by a 

high drug-burden, virus/bacteria-related exacerbations and poor efficacy of current treatments, 

especially for patients bearing the F508del-CFTR mutation. Recently, we used a combined 

virtual docking/similarity clustering approach to identify, for the first time, single compounds 

acting as broad-spectrum antivirals and correctors of the F508del-CFTR folding defect.22 We 

reasoned that the best way to kill two birds with one stone is if the birds are closed in the same 

cage: out of the metaphor, we focused on two targets (PI4KIIIβ and F508del-CFTR) that are 

localized within the endoplasmic reticulum (ER) to avoid additional problems of delivering the 

compound to different locations/compartments. On one side, our multi-target molecule will 

enter the ER and bind F508del-CFTR (like structurally related Corr-4a does)27 to correct the 

folding defect. On the other hand, once inside the ER this molecule will also inhibit PI4KIIIβ 

to interfere with the replication of Picornaviruses and may also facilitate restoration of airway 

surface liquid (ASL) fluidity by indirectly downmodulating epithelial Na(+) channel (ENaC) 
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activity via reduction of PI(4,5)P2 concentration.28 In addition, PI4KIIIβ inhibition by the same 

multi-target compound may work as alternative immunosuppressive approach to overcome 

acute cellular rejection (ACR) in CF patients who have received lung transplant.29 Here we 

started by analyzing the structure-activity relationship (SAR) of previously published multi-

target compounds against PI4KIII: as shown in the upper part of Figure 1, the central 

bithiazole scaffold was fundamental for biological activity, while small aliphatic amide 

moieties (MeCONH, EtCONH, tBuCONH) on the left part improved activity and selectivity. 

Different substituents on the right part of the molecule did not much change the activity against 

PI4KIII, although only a few modifications were attempted. Subsequently, we focused our 

multidimensional SAR analysis on the most promising multi-target compounds previously 

developed by us (1-4) in comparison with the known corrector 5 (Corr-4a) (Figure 1, lower 

part) which was not further developed because of the high toxic effect and low in vivo 

efficacy.30 The latter compound was synthesized as described in literature31 and submitted to 

the same panel of biological assays used for compounds 1-4.22 As described in Figure 1, we 

analyzed the in vitro activities of the selected compounds i) against a panel of picornaviruses 

representative of all major groups; ii) against lipid kinases PI4KIII/ PI4KIII/ PI3K and iii) 

as F508del-CFTR correctors. Key efficiency metrics were also computed using Datawarrior32: 

lipophilic ligand efficiency (LLE), lipophilicity-corrected ligand efficiency (LELP) and cLogP 

(Figure 2). As reported by Tarcsay et al., marketed drugs and advanced clinical candidates are 

characterized by LELP<10 and LLE>5.33 It emerged that small changes in the functionalization 

of the bithiazole scaffold may be sufficient to convert the pure corrector 5 into the multi-target 

compounds 1-4, whose F508del-CFTR correction potency increased with the bulkiness of the 

left amide moiety. However, too bulky amide moieties (e.g. substituted aromatics) decreased 

the PI4KIII inhibition and consequently abolished the activity against Picornaviruses. The 

best compromise between lipid kinase inhibition/selectivity and F508del-CFTR correction 
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efficacy was obtained with the tert-butyl amide moiety as in compound 2. Looking at the 

calculated metrics, Corr-4a was predicted to be very lipophilic and this may account for its 

toxic effect. Among compounds 1-4, LLE and LELP parameters indicated compounds 1 and 2 

as the most promising starting point for optimization. Considering the incomplete SAR 

previously obtained by modifying compound 1 on the right part of the bithiazole scaffold and 

aiming for less lipophilic compounds, we decided to replace the right aromatic ring with 

different aliphatic moieties. 

 

Figure 1. Multidimensional SAR of selected multi-target bithiazoles 1-4 compared to CFTR 

corrector 5 (Corr-4a). Biological activity was evaluated against lipid kinases (PI4KIII/ 

PI4KIII/PI3K), F508del-CFTR correction and selected picornaviruses: enterovirus 71 

(EV71), coxsackievirus B3, poliovirus 1 (PV1), human rhinovirus 2 (hRV02), human 

rhinovirus 14 (hRV14). EC50 and CC50 values expressed in μM. 

 

To obtain the desired compounds 9a-d, the bromo-derivative 8, previously prepared,22 was 

refluxed with the substituted thioureas 7a-d as described in Scheme 1. The synthesis of 7a-d 
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from the corresponding primary and secondary amines 6a-d is outlined in the Supporting Info. 

We also evaluated the possibility of irreversibly inhibiting PI4KIIIβ, considering that 

wortmannin is a potent inhibitor of PI3K isoforms, binding covalently to the ε-amino group of 

LYS802 in the catalytic site.34 We planned to introduce different electrophilic warheads on the 

right part of the bithiazole scaffold that would point towards LYS549 in the PI4KIIIβ ATP-

binding pocket. Starting from compound 10, easily prepared by refluxing 8 with thiourea, we 

introduced reactive electrophilic moieties on the free amino group by reaction with the proper 

acyl chloride (Scheme 1). First, by reaction with acryloyl chloride, we introduced an 

acrylamide Michael acceptor (compound 9e), commonly found in many covalent kinase 

inhibitors. Following the same procedure and using propionyl chloride, we synthesized its 

unreactive saturated analogue (compound 9f), to be used as a reference compound in the 

evaluation of the mechanism of action of these covalent inhibitors. Similarly we obtained the 

bromoacetamide derivative (9g) and we also added an isopropyl group to the terminal carbon 

of the acrylamide (9h) to reduce the electrophilic reactivity of the Michael acceptor. For the 

synthesis of compound 9h, the acyl chloride was prepared in situ from the corresponding acid, 

synthesized following the procedure reported in literature.35 Compound 9i was obtained by 

reaction of 10 with the commercial 2-chloroethanesulfonyl chloride in the presence of an 

excess of base to generate the reactive vinyl sulfonamide Michael acceptor.36  
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Scheme 1. Reagents and conditions: i. (a) benzoyl isothiocyanate, DCM, rt, 12 h, (b) method 

A (for 7a,b,d) NaOH 1N, THF, reflux, 2-18 h, 80-85%, method B (for 7c) N2H4 H2O, rt, 3 h, 

76%; ii. EtOH, reflux, 1 h, 75-95%; iii. thiourea, EtOH, reflux, 40 min, 90%; iv. (a) method A 

(for 9e-h) R3Cl, DIPEA, THF, rt, 2-6 h, 43-74%, method B (for 9i) 2-chloroethanesulfonyl 

chloride, DIPEA, DMAP, THF, rt, 12 h, 40%. 

 

Table 1. Activity of synthesized derivatives 9a-i in PI4KIIIβ inhibition assay and in virus-cell-

based enterovirus 71 (EV71) assay. 

Cpd PI4K IIIβ 

IC50 (μM)a 

LLE from 

IC50 

(PI4KIIIβ) 

LELP from 

IC50 

(PI4KIIIβ) 

cLogP 

 

EV71  

 t = 0 

min 

t = 5 

min 

t = 20 

min 

EC50 (μM)a CC50 (μM)b SIc 

9a 8.29 -d - 3.88 8.34 4.20 1.10 ± 0.16 25.50 ± 20.70 23.2 

9b 14.16 - - 3.38 9.55 4.47 0.34 ± 0.04 10.90 32.2 

9c 9.52 - - 3.57 9.31 4.45 0.88 ± 0.01 19.40 ± 2.08 22.1 

9d 4.50 - - 6.22 3.53 2.13 12.60 ± 0.02 333.00 ± 2.60 26.4 

9e 2.16 0.57 0.14 5.86 4.90 2.97 1.89 6.01 ± 0.80 3.2 
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9f 5.39 5.58 5.21 5.18 5.52 3.16 NA - - 

9g 2.11 1.71 1.67 5.57 5.17 3.06 NA - - 

9h 17.40 4.84 5.58 3.72 8.72 4.03 107.00 ± 94.70 172.00 ± 8.25 1.6 

9i NAe - - - - 2.32 >290.00 - - 

1 0.48 - - 4.90 8.60 4.40 0.92 ± 2.75 16.50 ± 9.04 17.9 

aValues are the mean of at least three independent experiments. bCC50 values were assessed by MTS method. 

cSelectivity index (SI = CC50/EC50). d- = not determined. eNA = not active.  

 

All the synthesized compounds were initially evaluated for their inhibitory potency against 

PI4KIIIβ kinase in vitro and for their cell-based antiviral activity against enterovirus 71 (EV71) 

using 1 as reference compound. As shown in Table 1, most compounds showed a low 

micromolar activity against PI4KIIIβ (column t = 0 min) while only compound 9i was inactive. 

Compounds 9e-i were also analyzed to confirm their irreversible inhibition of the PI4KIIIβ 

kinase using 9f as a reference compound. For a reversible inhibitor, in a reaction mixture, an 

equilibrium of free enzyme and enzyme in complex with the inhibitor is established ([E] « 

[E:I]). As a result, once the equilibrium has been reached, the proportion of enzyme inhibited 

by the reversible inhibitor does not change over time. On the contrary, for an irreversible 

inhibitor, once the [E:I] complex has formed, dissociation of the enzyme cannot occur. The 

amount of [E:I] complex therefore increases over time. Assessing the potency of inhibitors at 

different time points, can thus allow us to discriminate between reversible and irreversible 

inhibitors. We performed inhibition assays leaving the enzyme in pre-incubation with the 

inhibitors for different times [0 min (no pre-incubation); 5 min; 20 min] (Table 1). As expected 

for a reversible inhibitor, the calculated IC50 of compound 9f did not change over time. On the 

other hand, compounds 9e and 9h showed IC50 values that decreased with increasing time of 

pre-incubation. In particular for compound 9e, the IC50 decreased by about 15 fold from 2.16 

μM (with no pre-incubation) to 0.14 μM (after 20 minutes of pre-incubation). Similarly, the 
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IC50 value of 9h decreased by about 3 fold after 20 minutes of pre-incubation with the enzyme. 

In contrast, the bromoacetamide derivative 9g (with stable IC50 values in the same pre-

incubation time frame) did not seem to exhibit a similar irreversible mechanism of action.  

Cell-based antiviral activity of compounds 9a-i was evaluated in an EV71-induced CPE-

reduction assay in rhabdosarcoma (RD) cells. The EC50 and CC50 values allowed us to calculate 

the selectivity index (SI), defined as CC50/EC50. Compounds 9a-d inhibited EV71 replication 

at low micromolar concentrations and with a good selectivity index (>20). However, the 

activity of compounds 9b,c was associated with some morphological alterations of RD cells. 

On the other hand, both compounds 9a,d showed a good antiviral profile and 9d also had little 

effect on the uninfected host cells (minimal cytotoxicity). Compounds 9a-d were also 

evaluated for their CFTR corrector activity using the pHTomato assay37: none of the 

compounds showed any effect on F508del-CFTR membrane exposure. Among compounds 9e-

i, only 9e was able to inhibit EV71 replication at low micromolar concentration but this 

covalent PI4KIIIβ inhibitor had unacceptable levels of cytotoxicity and no further studies were 

conducted on these derivatives.  

From this first round of evaluations, it was clear that the introduction of aliphatic 

moieties on the right portion of the bithiazole scaffold only resulted in a slight loss of affinity 

for PI4KIIIβ without a major decrease in antiviral activity (see Table 1). Interestingly, a free 

NH on the right side of the bithiazole is not needed for PI4KIIIβ inhibition and antiviral activity 

(Table 1, compound 9a vs 9c) and this observation reveals additional space for chemical 

exploration. Finally, an ethanolamine chain on the right resulted in a compound with very low 

cytotoxicity (9d), while the absence of CFTR corrector activity may be due to the low steric 

bulk on the left of the molecule (C2 acetamido moiety) in line with the previous trend reported 

in Figure 1. 
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Based on the above observations, we planned the synthesis of the new compounds reported in 

Schemes 2-4. First, we decided to evaluate the effect of an additional ethoxy chain on the two 

most interesting compounds reported in Table 1: the hit 1 and derivative 9a. The secondary 

amines 11a,b (the synthesis of 11a is reported in the Supporting Info) were converted into the 

corresponding thioureas 12a,b by reaction with ammonium thiocyanate (for 12a) or benzoyl 

isothiocyanate followed by basic deprotection (for 12b). The latter intermediates were then 

cyclized by reaction with intermediate 8 in refluxing ethanol to give the desired compounds 

13a,b in good yields (Scheme 2). 

 

Scheme 2. Reagents and conditions: i. method A (for 12a) NH4SCN, HCl 1N, 100 °C 12 h, 

65%, method B (for 12b) (a) benzoyl isothiocyanate, THF, reflux, 25 min, (b) LiOH 1M, THF, 

reflux, 5 h, 69%; ii. 8, EtOH, reflux, 1 h, 86-89%. 

 

Next, we decided to modify compound 9d (with low cytotoxicity) by introducing bulkier 

moieties on the left part of the bithiazole scaffold, in an attempt to increase CFTR correction 

efficacy as suggested by SAR analysis (Figure 1). The condensation of the intermediate 14, 

previously prepared,22 with the 1-(2-hydroxyethyl)thiourea 7d gave the common intermediate 

15, whose hydroxyl group was then protected as t-butyldiphenylsilyl (TBDPS) ether (Scheme 

3). The free 2-amino group on the 4-methylthiazole ring (left part) was then properly acylated 

by reaction with different acyl chlorides or anhydrides to obtain compounds 17a-c after TBAF-

deprotection of the crude mixture.  
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Scheme 3. i.7d, EtOH, reflux, 1 h, 80%; ii. TBDPSCl, imidazole, CH3CN, 0 °C, 30 min, 

57%; iii. (a) R1COCl (for 17a,b) or di-tert-butyl dicarbonate (for 17c), Et3N, DCM, rt, 15 h; 

(b) TBAF 1.0 M in THF, CH3COOH, THF, rt, 18 h, 60-77%. 

 

Having previously selected the tert-butyl amide moiety as the best compromise between lipid 

kinase inhibition/selectivity and F508del-CFTR correction efficacy, we decided to modify 

compounds 13a,b by introducing this bulkier group on the left part of the bithiazole scaffold. 

We also decided to introduce aromatic/aliphatic carboxy moieties on the right part of the 

molecule that may give profitable interactions with positively charged lysine residues (Lys549, 

Lys377) in the binding pocket. Intermediate 18, previously prepared,22 was reacted with 

pivaloyl chloride to give compound 19 which was then brominated in α to the carbonyl, thus 

providing the key intermediate 20. The latter compound was finally cyclized by reaction with 

thioureas 12a,b or 22a-f (synthesis of 22a-f in the Supp Inf) affording the expected compounds 

23a-f (Scheme 4).  
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Scheme 4. Reagents and conditions: i. pivaloyl chloride, pyridine, THF, reflux, 12 h, 90%; ii. 

Br2, 1,4-dioxane, 50 °C, 18 h, 80%; iii. method A (for 22c) NH4SCN, HCl 1N, 100 °C 12 h, 

65%, method B (for 22d-f) (a) SOCl2, MeOH, reflux, 12 h, (b) benzoyl isothiocyanate, DCM, 

rt, 1 h, (c) NaOH 1M, MeOH, reflux, 2 h, 60-72%; iv. 12a,b, 22c-f, EtOH, reflux, 1h, 68-88%.  

 

The second set of synthesized derivatives (compounds 13, 17 and 23) was also first assessed 

with respect to inhibitory potency against isolated PI4KIIIβ and antiviral activity against EV71. 

As shown in Table 2, all compounds inhibited PI4KIIIβ at micromolar and sub-micromolar 

concentrations with 13b, 17b and 23c being the most potent kinase inhibitors in vitro. PI4KIIIβ 

inhibition correlates well with antiviral effect on EV71 replication with the notable exception 

of compounds 13b and 17a. Compounds endowed with the most promising inhibitory potency 

against EV71 and higher selectivity index (13a, 17b, 23a, 23c) were also tested against 

additional EVs: coxsackievirus B3 (CVB3), rhinovirus group A (RV02), and rhinovirus group 

B (RV14). Results confirmed compounds 17b, 23a and 23c as having the most promising 

antiviral activity against this panel of entero/rhinoviruses, while the hit compounds 1 and 2 
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showed lower SI values in EV71 replication and no activity (1) or high toxicity (2) against 

hRV02 and hRV14. 

 

Table 2. Activity of synthesized derivatives 13, 17, 23 in PI4KIIIβ inhibition assay and against 

a representative panel of Enteroviruses. 

Cpd PI4K 

IIIβ 

IC50 

(μM)a 

EV71  CVB3 hRV02 hRV14 

 EC50 

(μM)a 

CC50 

(μM)b 

SIc EC50 

(μM)a 

CC50 

(μM)b 

EC50 

(μM)a 

CC50 

(μM)b 

EC50 

(μM)a 

CC50 

(μM)b 

13a 0.60 NAc -d - - - - - - - 

13b 5.80 

1.10 ± 

0.86 

16.40 ± 

1.12 

95.50 16.10 20.80 >263.00 >4.51  6.24 

4.51 ± 

0.52 

17a 1.54 NA - - - - - - - - 

17b 

0.73 

1.83 ± 

0.32 

361.00 ± 

55.80 

113.00 2.30 >293 5.40 41.20 3.80 41.20 

17c 

1.36 

11.40 ± 

1.30 

>421 >37.60 - - - - - - 

23a 

2.10 

<0.43 

(EC90 = 

5.78) 

28.90 ± 

10.50 

>67.20 6.60 >218 6.10 16.80 >9.1 16.80 

23b 

3.40 

4.96 ± 

1.85 

4.46 ± 

1.85 

- - - - - - - 

23c 

0.09 

0.42 ± 

0.01 

32.10 ± 

8.10 

53.90 17.00 110.70 9.70 36.30 15.30 36.30 

23d 

9.93 

5.31 ± 

0.26 

>282 >54.5 - - - - - - 

23e 

5.46 

6.48 ± 

1.88 

>271 >33.1 - - - - - - 
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23f 

6.98 

7.27 ± 

0.82 

261 38.8 - - - - - - 

1 

0.48 0.92 ± 

2.75 

16.50 ± 

9.04 

17.90 2.17 101.00 

± 33.60 

NA - NA - 

2 

0.32 0.27 ± 

0.50 

7.94 ± 

1.24 

29.20 1.31 15.10 2.01 ± 

0.05 

4.07 ± 

1.43 

4.85 ± 

1.09 

3.87 ± 

1.62 

aValues are the mean of at least three independent experiments. bCC50 values were assessed by MTS method. 

cSelectivity index (SI = CC50/EC50). d- = not determined. eNA = not active.  

 

Interestingly, the introduction of an ethoxy chain on the right side of the bithiazole scaffold 

was able to convert the relatively cytotoxic compound 2 into the less toxic and broad-spectrum 

antiviral compound 23a. 

Next, compounds 13, 17 and 23 (reported in Table 2) were evaluated for their CFTR 

corrector/potentiator activity. As shown in Figure 2A, four compounds (17b, 23a-c) acted as 

F508del-CFTR correctors, increasing steady-state levels of F508del-CFTR at the plasma 

membrane after 24 h incubation at 10 M. Confirmatory tests on selected derivatives 17 and 

23, in comparison with hits 3 and 4, were conducted at 3 M concentration of each molecule. 

All compounds increased CFTR plasma membrane exposure (Figure 2B), with an effect that 

was comparable (for 23a,b) to that of Lumacaftor (VX809). With the exception of compound 

17b, the improvement in CFTR biogenesis caused by all the other compounds also led to 

increased anion permeability, estimated from fluorescence quenching of a CFTR-fused YFP 

probe following extracellular iodide addition (Figure 2C). 
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Figure 2. Effects of selected compounds on CFTR biogenesis and function. All treatments 

were carried out alongside low temperature incubation (30oC), known to improve F508del-

CFTR membrane localization, in order to increase the fluorescence signal. A) F508del-CFTR-

pHTomato present at the plasma membrane was quantified following 24 h incubation in 10 M 

of each drug. Incubation with VX809 (Lumacaftor) was assessed in parallel, as a positive 

control and results were reported as % of VX809 effect (F %). B) Same as in A conducted on 

selected compounds 17 and 23 incubated at 3 M in comparison with hit molecules 3 and 4. 

C) Anion permeability quantified using a YFP-F508del-CFTR probe37 following 24 h 

treatment as in A. D) F508del-CFTR-pHTomato exposed at the plasma membrane, estimated 

following 24 h incubation with a lower concentration [3M] of the indicated compounds, with 

or without VX-809. 

 

The four most interesting derivatives, 17b, 23a-c, structural analogues of Corr-4a, can be 

considered as belonging to the so called Class II correctors38 whose binding site on CFTR (still 

unknown) was shown to be distinct from that of Class I correctors (e.g. Lumacaftor, VX-

809).39,40 As mentioned in the introduction, combinations of correctors from different classes 
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are quite efficient in restoring F508del-CFTR functionality and here we evaluated the 

interaction between our best derivatives and VX-809, using the Corr-4a/VX-809 combination 

as reference (Figure 2D). All combinations showed an additive effect in improving F508del-

CFTR membrane-localization and the best results were obtained with 23a/VX809 and 

23b/VX-809 combinations, which improved the effect of VX-809 and increased the F508del-

CFTR membrane density up to three fold higher than seen with VX-809 alone. This confirms 

that our dual-acting molecules, like Corr-4a, are likely to belong to the class-II family of 

correctors and target a binding site on the F508del-CFTR that is different from that targeted by 

VX-809. 

To select the most suitable candidate for subsequent in vivo acute toxicity studies, a multi-

dimensional SAR analysis was conducted by plotting the size-adjusted PI4KIIIβ activity 

(expressed as LELP), antiviral activity (expressed as EV71 EC50), CFTR correction potency 

(expressed as F508del-CFTR membrane exposure) and cLogP for the synthesized multitarget 

inhibitors (9a-i, 13a-b, 17a-c, 23a-f) with respect to those of previously reported hits (1-4) and 

reference compound 5 (Corr-4a) (Figure 3).  
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Figure 3. A scatter plot of LELP (based on PI4KIIIβ IC50) versus cLogP for all synthesized 

and reference compounds. Colors represent EV71 antiviral activity. Size of the circles 

represents CFTR F508del-CFTR membrane exposure expressed as percentage of exposure 

obtained following VX-809 incubation. The most representative compounds are labelled. 

Dotted blue line follows the evolution of hit 1. Dotted orange line follows the evolution of hit 

2. Plotted using Datawarrior.32 

 

Lipophilicity-based metrics have been correlated to ADMET properties and may help 

identify those compounds endowed with favorable pharmacokinetic and safety properties 

(LELP <10) while looking at the most balanced multitarget activity profile. As we initially 

mentioned, hit compounds 1 and 2 were chosen as starting points for structure optimization 

(described by dotted lines in Figure 3) because of their better multitarget profile and LLE/LELP 

metrics compared to 3 and 4, while Corr-4a is just a pure CFTR corrector with high 

lipophilicity. Starting from compound 1 and keeping the acetamido moiety on the left side of 

the molecule unchanged, structural modification on the right side (blue dotted circle) led to a 

series of derivatives (along the blue dotted line) with good LELP, comparable or lower 

lipophilicity than 1 and, in a few cases (9a-d), promising antiviral activity but no effect as 

CFTR correctors. On the other hand, starting from compound 2 and keeping the pivaloylamido 

moiety on the left side of the molecule unchanged, structural modification on the right side 

(orange dotted circle) led to a series of derivatives (along the orange dotted line) with a wide 

range of LELP, lower lipophilicity, good antiviral activity and, in a few cases (17b, 23a-c) 

improved CFTR corrector properties. Among the latter four compounds, 17b had the best 

profile in terms of PI4KIIIβ inhibition, broad-spectrum antiviral activity and LELP but it 

showed the lower F508del-CFTR correction potency and additivity but no synergy with 

VX809.  Compound 23b showed the best F508del-CFTR correction activity, some degree of 
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synergy with VX809, moderate PI4KIIIβ inhibition and antiviral activity but high cytotoxicity. 

Compound 23c showed the best PI4KIIIβ inhibition potency and was relatively potent/selective 

against EV71, showed good F508del-CFTR correction potency but simple additivity with 

VX809 and borderline LELP. Compound 23a showed moderate PI4KIIIβ inhibition potency 

and some interesting activity against EV71 and CVB3, good F508del-CFTR correction 

potency, additivity and possible synergy with VX809 plus borderline LELP with lower 

lipophilicity than 23c and Corr-4a. Overall, the multitarget compound 23a showed the most 

balanced activity profile and, despite its borderline LELP metrics, it was selected for acute 

toxicity studies in vivo.  

Male C57BL/6 mice (8-12 weeks old) maintained under standard conditions (12:12h light-

dark cycle, 22-24°C, food and water available ad libitum) and following 4 hours of fasting, 

were treated with 23a, administered subcutaneously (s.c.) at 20, 60 and 180mg/kg (3 

mice/dose). A battery of tests to evaluate physical appearance and changes in unprovoked and 

provoked behavior, motor activity, coordination and sensory/motor reflexes were carried out 

immediately before fasting, 1h and 24h after 23a administration. Body weight was also 

assessed before and after fasting, prior to 23a treatment, and daily thereafter for a total of 14 

days. Results showed that 23a was well tolerated at all the three tested doses: no changes in 

motor coordination and sensory/motor reflexes could be detected following doses up to 

180mg/kg s.c. and no behavioural alterations were observed up to 15 days after 23a 

administration (Table 3). After fasting, 23a-treated mice recovered initial body weight almost 

as quickly as vehicle-treated mice. Based on a previous report on the biodistribution of 

fluorescent bithiazole correctors in mice,41 we analyzed the effect of 23a on the histology of 

key biodistribution organs: lung parenchyma, intestine mucosa and liver. At both the time 

points (1h and 24h) considered after 23a administration, the histological analysis revealed a 

normal morphology of the lung and liver parenchyma and of the intestinal mucosa (Figure 4). 
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Table 3. Signs of acute toxicity detected 1h and 24h after 23a 180mg/kg s.c. administration 

Parameters observed Observations Observations 

1h 24h 

Skin/fur N.Ca N.C 

Eyes and mucous membranes N.C. N.C. 

Cardiac/Respiratory signs N.C. N.C. 

Somato-motor activity and 

coordination  

N.C. N.C. 

Behavioural pattern N.C. N.C. 

Corneal reflex N.C. N.C. 

Salivation N.O.b N.O. 

Tremor N.O. N.O. 

Convulsions N.O. N.O. 

Lethargy N.O. N.O. 

Sleep N.O. N.O. 

Coma N.O. N.O. 

Mortality N.O. N.O. 

a N.C.: not changed. b N.O.: not observed 

 

In the lung parenchyma, the alveolar microstructure was well maintained, with no sign of 

alveolar/interstitial inflammatory infiltrate nor haemorrhage in 23a treated mice. In the 

airways, no alteration of the ciliated pseudo-stratified columnar epithelium, comprising ciliated 

cells, goblet and basal cells, was noted. The small intestine mucosa showed a normal columnar 

lining cell with regular distribution of Goblet cells, without signs of epithelial hyperplasia and 

inflammation of the submucosa. No morphological intestinal alteration was detected after 23a 

treatment. In the liver, a normal hepatic labyrinth of hepatocytes aligning with the bile ductules 

was detected. The characteristic granular appearance of hepatocytes with varying amounts of 
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vacuolation and basophilic material, representing endoplasmic reticulum, was seen both in 

control and 23a-treated animals at both experimental time points without morphological 

alterations. In summary, compound 23a did not show severe citotoxicity in vitro, nor were any 

serious clinical signs observed in the acute toxicity study. 

 

 

Figure 4. Representative Microphotographs of the lung, small intestine and liver of mice 

treated with the highest dose of compound 23a and vehicle-treated mice. Scale bar 100 µm. 

 

CONCLUSIONS 

The simplification of therapeutic complexity and burden in CF care is one of the top ten 

priorities of future CF treatment. To address this issue, we have reported in this work the 

optimization of an original polypharmacology approach recently established by our group: the 

development of a well-balanced multitarget inhibitor able to simultaneously correct F508del-
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CFTR and inhibit the replication of picornaviruses responsible of pulmonary exacerbation. 

Chemical exploration of the hit bithiazole scaffolds guided by multidimensional SAR allowed 

to identify a number of promising compounds able to inhibit PI4KIIIβ (and thus picornavirus 

replication), correct the F508del-CFTR folding defect and act additively with the class I 

corrector lumacaftor (VX-809). The most promising compound 23a showed a well-balanced 

multitarget activity profile, inhibiting at low micromolar concentration PI4KIIIβ and selected 

picornaviruses (EV71, CVB3, hRV02), increasing steady-state levels of F508del-CFTR at the 

plasma membrane (around 80% of VX809 effect) and anion permeability (around 50% of VX-

809 effect) and acting additively/synergically with VX-809 to increase F508del-CFTR 

membrane density up to three fold higher than VX-809 alone. Finally, in vivo acute toxicity 

studies showed that compound 23a was well tolerated by C57BL/6 mice with no sign of 

toxicity and histological alterations in key biodistribution organs up to 180mg/kg. Compound 

23a represent therefore an excellent starting point to better understand the benefits and 

potentiality offered by a polypharmacology approach in comparison with standard CF 

treatments. Future efforts will be focused on further compounds’ optimization and 

quantification of known PI4KIIIβ-mediated beneficial side effects, such as restoration of 

airway surface liquid (ASL) fluidity by indirectly downmodulating epithelial Na(+) channel 

(ENaC) and prevention of acute cellular rejection that may cause premature graft loss in CF 

patients who have received lung transplantation. 

 

EXPERIMENTAL SECTION 

Chemistry 

General. All commercially available chemicals were purchased from both Sigma-Aldrich 

and Alfa Aesar and, unless otherwise noted, used without any previous purification. Solvents 

used for work-up and purification procedures were of technical grade. Dry solvents used in the 
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reactions were obtained by distillation of technical grade materials over appropriate 

dehydrating agents. Reactions were monitored by thin layer chromatography on silica gel-

coated aluminium foils (silica gel on Al foils, SUPELCO Analytical, Sigma-Aldrich) at 254 

and 365 nm. Where indicated, products were purified by silica gel flash chromatography on 

columns packed with Merck Geduran Si 60 (40-63 µm). 1H and 13C NMR spectra were 

recorded on BRUKER AVANCE 300 MHz and BRUKER AVANCE 400 MHz spectrometers. 

Chemical shifts (δ scale) are reported in parts per million relative to TMS. 1H-NMR spectra 

are reported in this order: multiplicity and number of protons; signals were characterized as: s 

(singlet), d (doublet), t (triplet), q (quadruplet), m (multiplet), bs (broad signal). ESI-mass 

spectra were recorded on an API 150EX apparatus and are reported in the form of (m/z). 

Elemental analyses were performed on a Perkin-Elmer PE 2004 elemental analyzer. All final 

compounds showed chemical purity ≥95% as determined by elemental analysis data for C, H, 

and N (within 0.4% of the theoretical values). All final and reference compounds passed the 

PAINS filter.42 

 

General Procedure for the Synthesis of Compounds 9a-d. A solution of intermediate 8 (50 

mg, 0.18 mmol) and the proper thiourea 7a-d (0.18 mmol) in ethanol (2.5 mL) was heated at 

reflux for 1 h. After cooling to room temperature, saturated aqueous NaHCO3 solution, H2O 

and ethyl acetate were added and the aqueous phase was extracted three times with ethyl 

acetate. The combined organic phases were washed with brine, dried over Na2SO4 and 

evaporated. The crude was purified by flash chromatography using DCM/MeOH (from 97/3 

to 95/5) as eluent. 

 

N-(2-(cyclohexylamino)-4'-methyl-[4,5'-bithiazol]-2'-yl)acetamide (9a). Yield 90%. MS 

(ESI) [M + H]+: 337.3 m/z. 1H NMR (DMSO-d6 300 MHz): δ 1.08-1.34 (m, 5H), 1.55-1.59 (m, 
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1H), 1.69-1.73 (m, 2H), 1.91-1.99 (m, 2H), 2.12 (s, 3H), 2.42 (s, 3H), 3.38-3.42 (m, 1H), 6.58 

(s, 1H), 7.66 (d, 1H, J = 7.5 Hz), 11.98 (s, 1H). 13C NMR (DMSO-d6 100 MHz): δ 17.43, 22.91, 

24.86 (2x), 25.78, 32.67 (2x), 53.99, 100.41, 121.13, 142.50, 143.29, 155.29, 167.52, 168.59. 

Anal. (C15H20N4OS2) C, H, N. 

 

N-(4'-methyl-2-((4-methylcyclohexyl)amino)-[4,5'-bithiazol]-2'-yl)acetamide 

(9b). Yield 95%. MS (ESI) [M + H]+: 351.3 m/z. 1H NMR (CDCl3 400 MHz): δ 0.91 (d, 3H, 

J = 5.5 Hz), 1.04-1.10 (m, 2H), 1.19-1.22 (m, 2H), 1.25-1.27 (m, 2H), 1.74-1.77 (m, 2H), 2.12 

(s, 3H), 2.17 (bs, 1H), 2.51 (s, 3H), 3.21 (bs, 1H), 6.00 (d, 1H, J = 7.1 Hz), 6.41 (s, 1H), 11.60 

(s, 1H). 13C NMR (DMSO-d6 100 MHz): δ 17.00, 22.13, 22.94, 29.70, 31.91 (2x), 33.85 (2x), 

55.65, 101.16, 121.54, 142.17, 143.30, 156.68, 168.21, 168.79. Anal. (C16H22N4OS2) C, H, N. 

N-(2-(cyclohexyl(methyl)amino)-4'-methyl-[4,5'-bithiazol]-2'-yl)acetamide (9c). 

 

Yield 93%. MS (ESI) [M + H]+: 351.0 m/z. 1H NMR (CDCl3 400 MHz): δ 1.12-1.18 (m, 

1H), 1.37-1.54 (m, 4H), 1.69-1.72 (m, 1H), 1.85-1.87 (m, 4H), 2.23 (s, 3H), 2.58 (s, 3H), 3.00 

(s, 3H), 3.81 (bs, 1H), 6.42 (s, 1H), 11.74 (s, 1H). 13C NMR (CDCl3 100 MHz): δ 17.18, 23.16, 

25.57, 25.85 (2x), 29.83 (2x), 32.16, 60.24, 100.55, 122.42, 141.71, 143.91, 156.96, 168.09, 

169.99. Anal. (C16H22N4OS2) C, H, N. 

 

N-(2-((2-hydroxyethyl)amino)-4'-methyl-[4,5'-bithiazol]-2'-yl)acetamide (9d). Yield 75%. 

MS (ESI) [M + H]+: 299.2 m/z. 1H NMR (DMSO-d6 300 MHz): δ 2.12 (s, 3H), 2.42 (s, 3H), 

3.31 (q, 2H, J = 5.7 Hz), 3.57 (t, 2H, J = 5.7 Hz), 4.76 (bs, 1H), 6.60 (s, 1H), 7.71 (t, 1H, J = 

5.7 Hz), 11.97 (s, 1H). 13C NMR (DMSO-d6 100 MHz): δ 17.45, 22.92, 47.65, 59.90, 100.80, 

121.08, 142.55, 143.16, 155.31, 168.55, 168.63. Anal. (C11H14N4O2S2) C, H, N. 
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Synthesis of N-(2-amino-4'-methyl-[4,5'-bithiazol]-2'-yl)acetamide (10). A mixture of 

intermediate 8 (500 mg, 1.80 mmol) and thiourea (137 mg, 1.80 mmol) in ethanol (8.5 mL) 

was heated at reflux for 40 minutes. Then saturated aqueous NaHCO3 solution and ethyl acetate 

were added to the mixture and the aqueous phase was extracted three times with ethyl acetate. 

The combined organic phases were washed with brine, dried over Na2SO4 and concentrated 

under vacuum. Compound 10 was used in the following step without any further purification. 

Yield 90%. MS (ESI) [M + H]+: 255.2 m/z. 1H NMR (DMSO-d6 400 MHz): δ 2.11 (s, 3H), 

2.41 (s, 3H), 6.56 (s, 1H), 7.12 (s, 2H), 11.96 (s, 1H). 

General Procedure for the Synthesis of Compounds 9e-h. DIPEA (46 μL, 0.29 mmol) was 

added to a stirred solution of intermediate 10 (50 mg, 0.20 mmol) in dry THF (2 mL) cooled 

to 0 °C. After 15 minutes a solution of the proper acyl chloride (0.29 mmol) in dry THF (0.5 

mL) was added dropwise. The resulting solution was warmed to room temperature and stirred 

for 2-6 h, after which H2O and ethyl acetate were added and the aqueous phase was extracted 

twice with ethyl acetate. The combined organic phases were washed with brine, dried over 

Na2SO4 and evaporated. The crude was purified by flash chromatography using DCM/MeOH 

(from 98/2 to 96/4) as eluent to give compounds 9e-h as white solids. 

 

N-(2'-acetamido-4'-methyl-[4,5'-bithiazol]-2-yl)acrylamide (9e). Yield 43%. MS (ESI) [M + 

H]+: 309.2 m/z. 1H NMR (DMSO-d6 400 MHz): δ 2.14 (s, 3H), 2.48 (s, 3H), 5.91 (d, 1H, J = 

10.0 Hz), 6.41 (d, 1H, J = 17.1 Hz), 6.55 (dd, 1H, J = 17.1, 10.0 Hz), 7.26 (s, 1H), 12.08 (s, 

1H), 12.51 (s, 1H). 13C NMR (DMSO-d6 100 MHz): δ 17.41, 22.89, 108.52, 120.27, 129.80, 

130.09, 142.49, 143.40, 155.82, 157.91, 163.52, 168.85. Anal. (C12H12N4O2S2) C, H, N. 

 

N-(2'-acetamido-4'-methyl-[4,5'-bithiazol]-2-yl)propionamide (9f). Yield 74%. MS (ESI) [M 

+ H]+: 311.4 m/z. 1H NMR (DMSO-d6 400 MHz): δ 1.10 (t, 3H, J = 7.5 Hz) 2.14 (s, 3H), 2.45 
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(q, 2H, J = 7.5 Hz), 2.47 (s, 3H), 7.19 (s, 1H), 12.06 (s, 1H), 12.22 (s, 1H). 13C NMR (DMSO-

d6 100 MHz): δ 9.55, 17.40, 22.89, 28.66, 107.71, 120.42, 142.10, 143.23, 155.77, 158.07, 

168.77, 172.76. Anal. (C12H14N4O2S2) C, H, N. 

 

N-(2'-acetamido-4'-methyl-[4,5'-bithiazol]-2-yl)-2-bromoacetamide (9g). Yield 68%. MS 

(ESI) [M + H]+: 375.2 m/z. 1H NMR (DMSO-d6 400 MHz): δ 2.14 (s, 3H), 2.48 (s, 3H), 4.41 

(s, 2H), 7.28 (s, 1H), 12.08 (s, 1H), 12.67 (s, 1H). 13C NMR (DMSO-d6 100 MHz): δ 17.36, 

22.88, 42.71, 108.53, 120.13, 142.41, 143.55, 155.85, 157.54, 165.65, 168.96. Anal. 

(C11H11BrN4O2S2) C, H, N. 

 

(E)-N-(2'-acetamido-4'-methyl-[4,5'-bithiazol]-2-yl)-4-methylpent-2-enamide (9h). Yield 

49%. MS (ESI) [M + H]+: 351.4 m/z. 1H NMR (DMSO-d6 400 MHz): δ 1.05 (d, 6H, J = 6.7 

Hz), 2.13 (s, 3H), 2.47 (s, 3H), 2.52-2.51 (m, 1H), 6.20 (d, 1H, J = 15.5), 6.96 (dd, 1H, J = 

15.5, 6.7 Hz), 7.23 (s, 1H), 12.09 (s, 1H), 12.36 (s, 1H). 13C NMR (DMSO-d6 100 MHz): δ 

17.40, 21.58 (2x), 22.89, 30.85, 108.26, 119.99, 120.37, 142.39, 143.31, 154.24, 155.79, 

158.15, 164.02, 168.78. Anal. (C15H18N4O2S2) C, H, N. 

 

Synthesis of N-(4'-methyl-2-(vinylsulfonamido)-[4,5'-bithiazol]-2'-yl)acetamide (9i). DIPEA 

(105 μL, 0.60 mmol) and catalytic DMAP (2.4 mg, 0.02 mmol) were added to a stirred solution 

of intermediate 10 (50 mg, 0.20 mmol) in dry THF (4 mL). The mixture was cooled to 0 °C 

and a solution of 2-chloroethanesulfonyl chloride (30 μL, 0.29 mmol) in dry THF (0.5 mL) 

was added dropwise. The mixture was stirred at room temperature for 12 hours, after which 

H2O and ethyl acetate were added and the aqueous phase was extracted twice with ethyl acetate. 

The combined organic phases were washed with saturated aqueous NH4Cl solution, dried over 

Na2SO4 and evaporated. The crude was purified by flash chromatography using DCM/MeOH 
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(96/4) as eluent. White solid. Yield: 40%. MS (ESI) [M + H]+: 345.2 m/z. 1H NMR (DMSO-

d6 300 MHz): δ 2.14 (s, 3H), 2.21 (s, 3H), 5.96 (d, 1H, J = 16.8 Hz), 6.03 (d, 1H, J = 10.3 Hz), 

6.89 (dd, 1H, J = 16.8, 10.3 Hz), 8.10 (s, 1H), 8.11 (s, 1H), 12.16 (s, 1H). 13C NMR (DMSO-

d6 100 MHz): δ 17.11, 22.88, 115.35, 117.46, 127.32, 139.22, 147.96, 149.71, 157.63, 169.06, 

171.17. Anal. (C11H12N4O3S3) C, H, N. 

 

Synthesis of 1-(3-acetylphenyl)-1-(2-hydroxyethyl)thiourea (12a). NH4SCN (339 mg, 4.46 

mmol) was added portionwise to a solution of amine 11a (400 mg, 2.23 mmol) in HCl 1N (3 

mL) and the mixture was heated at 100 °C for 12 h. After cooling to room temperature saturated 

aqueous NaHCO3 solution and ethyl acetate were added to the mixture and the aqueous phase 

was extracted three times with ethyl acetate. The combined organic phases were washed with 

brine, dried over Na2SO4 and concentrated under vacuum. The crude was purified by flash 

chromatography using petroleum ether/ethyl acetate (3/7) as eluent. Yield 65%. MS (ESI) [M 

+ H]+: 239.2 m/z. 1H NMR (CDCl3 400 MHz): δ 2.63 (s, 3H), 3.88 (t, 2H, J = 6.0 Hz), 4.38 (t, 

2H, J = 6.0 Hz), 4.70 (bs, 1H), 5.90 (bs, 2H), 7.58 (d, 1H, J = 7.8 Hz), 7.61 (t, 1H, J = 7.8 Hz), 

7.92 (s, 1H), 8.00 (d, 1H, J = 7.8 Hz). 

 

Synthesis of 1-cyclohexyl-1-(2-hydroxyethyl)thiourea (12b). Benzoyl isothiocyanate (469 

μL, 3.49 mmol) was added dropwise to a solution of N-ethylcyclohexylamine 11b (500 mg, 

3.49 mmol) in dry THF (9 mL) and the mixture was refluxed for 25 minutes. The solvent of 

reaction was evaporated, the residue was dissolved in THF/LiOH 1M (1/1, 15 mL) and the 

mixture was refluxed for 5 h. After cooling to room temperature, H2O and ethyl acetate were 

added and the aqueous phase was extracted twice with ethyl acetate. The combined organic 

phases were dried over Na2SO4 and evaporated. The crude was purified by flash 

chromatography using petroleum ether/ethyl acetate (3/7) as eluent. Yield 69%. MS (ESI) [M 
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+ H]+: 203.1 m/z. 1H NMR (DMSO-d6 300 MHz): δ 1.27-1.45 (m, 4H), 1.68-1.94 (m, 6H), 3.50 

(m, 2H), 3.52 (bs, 1H), 3.87 (m, 2H), 5.03 (bs, 1H), 6.67 (bs, 2H). 

 

General Procedure for the Synthesis of Compounds 13a,b. A solution of intermediate 8 (100 

mg, 0.36 mmol) and the proper thiourea 12a,b (0.36 mmol) in ethanol (2.5 mL) was heated at 

reflux for 1 h. After cooling down to room temperature, saturated aqueous NaHCO3 solution, 

H2O and ethyl acetate were added and the aqueous phase was extracted three times with ethyl 

acetate. The combined organic phases were washed with brine, dried over Na2SO4 and 

concentrated under vacuum. The crude was purified by flash chromatography using 

DCM/MeOH (96/4) as eluent, to give compounds 13a,b as white solids. 

 

N-(2-((3-acetylphenyl)(2-hydroxyethyl)amino)-4'-methyl-[4,5'-bithiazol]-2'-yl)acetamide 

(13a). Yield 86%. MS (ESI) [M + H]+: 417.3 m/z. 1H NMR (DMSO-d6 300 MHz): δ 2.13 (s, 

3H), 2.44 (s, 3H), 2.61 (s, 3H), 3.72 (q, 2H, J = 5.4 Hz), 4.03 (t, 2H, J = 5.4 Hz), 4.92 (t, 1H, J 

= 5.4 Hz), 6.76 (s, 1H), 7.63 (t, 1H, J = 7.8 Hz), 7.83 (d, 1H, J = 7.8 Hz), 7.90 (d, 1H, J = 7.8 

Hz), 8.15 (s, 1H), 12.03 (s, 1H). 13C NMR (DMSO-d6 100 MHz): δ 17.40, 22.92, 27.31, 55.78, 

58.26, 102.87, 120.51, 126.54, 126.98, 130.70, 131.61, 138.80, 143.18, 143.74, 145.86, 155.53, 

168.65, 168.69, 197.82. Anal. (C19H20N4O3S2) C, H, N. 

 

N-(2-(cyclohexyl(2-hydroxyethyl)amino)-4'-methyl-[4,5'-bithiazol]-2'-yl)acetamide (13b). 

Yield 89%. MS (ESI) [M + H]+: 381.4 m/z. 1H NMR (DMSO-d6 300 MHz): δ 1.12-1.34 (m, 

3H), 1.56-1.64 (m, 3H), 1.79-1.82 (m, 4H), 2.12 (s, 3H), 2.44 (s, 3H), 3.40-3.41 (m, 2H), 3.58-

3.60 (m, 3H), 4.83 (t, 1H, J = 5.4 Hz), 6.71 (s, 1H), 12.00 (s, 1H). 13C NMR (DMSO-d6 100 

MHz): δ 17.39, 22.92, 25.47, 26.02 (2x), 30.30 (2x), 49.53, 59.33, 61.17, 100.91, 120.89, 

142.84, 143.77, 155.36, 168.60, 169.14. Anal. (C17H24N4O2S2) C, H, N. 
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Synthesis of 2-((2'-amino-4'-methyl-[4,5'-bithiazol]-2-yl)amino)ethanol (15). A mixture of 

intermediates 7d (513 mg, 4.27 mmol) and 14 (1000 mg, 4.27 mmol) in ethanol (15 mL) was 

heated at reflux for 1 h. Then saturated aqueous NaHCO3 solution and ethyl acetate were added 

to the mixture and the aqueous phase was extracted three times with ethyl acetate. The 

combined organic phases were washed with brine, dried over Na2SO4 and concentrated under 

vacuum. Ether was added to the crude and the solid obtained was filtered over a Buchner 

funnel, washed with ether and used in the following step without any further purification. Yield 

80%. MS (ESI) [M + H]+: 257.1 m/z. 1H NMR (DMSO-d6 300 MHz): δ 2.40 (s, 3H), 3.28 (q, 

2H, J = 5.7 Hz), 3.47 (t, 2H, J = 5.7 Hz), 4.80 (bs, 1H), 6.60 (s, 1H), 7.75 (t, 1H, J = 5.7 Hz), 

8.29 (s, 2H). 

 

Synthesis of N2-(2-((tert-butyldiphenylsilyl)oxy)ethyl)-4'-methyl-[4,5'-bithiazole]-2,2'-

diamine (16). Tert-butylchlorodiphenylsilane (946 μL, 3.69 mmol) was added dropwise to a 

cooled solution of intermediate 15 (860 mg, 3.35 mmol) and imidazole (456 mg, 6.70 mmol) 

in dry CH3CN (7.5 mL). After stirring 30 minutes at 0 °C, saturated aqueous NH4Cl solution 

and ethyl acetate were added to the mixture and the aqueous phase was extracted three times 

with ethyl acetate. The combined organic phases were washed with brine, dried over Na2SO4 

and concentrated under vacuum. The crude was purified by flash chromatography using 

DCM/MeOH (95/5) as eluent. Yield 57%. MS (ESI) [M + H]+: 495.2 m/z. 1H NMR (DMSO-

d6 400 MHz): δ 0.99 (s, 9H), 2.24 (s, 3H), 3.48 (q, 2H, J = 5.6 Hz), 3.79 (t, 2H, J = 5.6 Hz), 

6.32 (s, 1H), 6.88 (s, 2H), 7.39-7.47 (m, 7H), 7.57-7.73 (m, 4H). 

 

General Procedure for the Synthesis of Compounds 17a-c. Et3N (56 μL, 0.40 mmol) was added 

to a stirred suspension of intermediate 16 (100 mg, 0.20 mmol) in dry DCM (4 mL) at 0 °C. 



 31 

After 15 minutes a solution of the proper acyl chloride or anhydride (0.30 mmol) in dry DCM 

(0.5 mL) was added dropwise. The resulting solution was warmed to room temperature and 

stirred for 15 h. Next, H2O and DCM were added and the aqueous phase was extracted twice 

with DCM. The combined organic phases were washed with brine, dried over Na2SO4 and 

evaporated. The residue was suspended in THF (3.5 mL), cooled to 0 °C and acetic acid (106 

μL, 1.86 mmol) was added. Tetra-n-butylammonium fluoride (1.0 M solution in THF, 500 μL, 

1.72 mmol) was added dropwise and the solution was warmed to room temperature and stirred 

for 18 h. Saturated aqueous NH4Cl solution and ethyl acetate were added to the mixture and 

the aqueous phase was extracted three times with ethyl acetate. The combined organic phases 

were washed with brine, dried over Na2SO4 and concentrated under vacuum. The crude was 

purified by flash chromatography using DCM/MeOH (96/4) as eluent, affording compounds 

17a-c as white solids. 

 

N-(2-((2-hydroxyethyl)amino)-4'-methyl-[4,5'-bithiazol]-2'-yl)benzamide (17a). Yield 70%. 

MS (ESI) [M + H]+: 361.0 m/z. 1H NMR (DMSO-d6 400 MHz): δ 2.50 (s, 3H), 3.34-3.36 (m, 

2H), 3.59 (q, 2H, J = 5.6 Hz), 4.78 (t, 1H, J = 5.6 Hz), 6.66 (s, 1H), 7.55 (t, 2H, J = 7.6 Hz), 

7.64 (t, 1H, J = 7.6 Hz), 7.75 (t, 1H, J = 5.6 Hz), 8.10 (d, 2H, J = 7.6 Hz), 12.55 (s, 1H). 13C 

NMR (DMSO-d6 100 MHz): δ 17.28, 47.65, 59.92, 101.15, 121.55, 128.55 (2x), 129.06 (2x), 

132.65, 132.98, 142.80, 143.04, 155.31, 165.46, 168.60. Anal. (C16H16N4O2S2) C, H, N. 

 

N-(2-((2-hydroxyethyl)amino)-4'-methyl-[4,5'-bithiazol]-2'-yl)pivalamide (17b). Yield 77%. 

MS (ESI) [M + H]+: 341.3 m/z. 1H NMR (DMSO-d6 400 MHz): δ 1.23 (s, 9H), 2.50 (s, 3H), 

3.31-3.33 (m, 2H), 3.57-3.58 (m, 2H), 4.77 (bs, 1H), 6.59 (s, 1H), 7.72 (t, 1H, J = 5.6 Hz), 

11.65 (s, 1H). 13C NMR (DMSO-d6 100 MHz): δ 17.33, 27.09 (3x), 39.14, 47.63, 59.89, 

100.75, 121.15, 142.47, 143.22, 156.04, 168.51, 176.91. Anal. (C14H20N4O2S2) C, H, N. 
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tert-butyl (2-((2-hydroxyethyl)amino)-4'-methyl-[4,5'-bithiazol]-2'-yl)carbamate (17c). Yield 

60%. MS (ESI) [M + H]+: 357.2 m/z. 1H NMR (DMSO-d6 400 MHz): δ 1.48 (s, 9H), 2.39 (s, 

3H), 3.31-3.33 (m, 2H), 3.56-3.58 (m, 2H), 4.78 (bs, 1H), 6.56 (s, 1H), 7.72 (bs, 1H), 11.33 (s, 

1H). 13C NMR (DMSO-d6 100 MHz): δ 17.37, 28.37 (3x), 47.50, 59.90, 81.52, 100.48, 120.86, 

142.85, 143.09, 157.03, 168.39, 172.11. Anal. (C14H20N4O3S2) C, H, N. 

 

Synthesis of N-(5-acetyl-4-methylthiazol-2-yl)pivalamide (19). Intermediate 18 (1000 mg, 6.40 

mmol) was suspended in dry THF (12 mL) and the mixture was cooled to 0 °C. Pyridine (1.3 

mL) was added, followed by the dropwise addition of pivaloyl chloride (1.18 mL, 9.60 mmol). 

The reaction mixture was allowed to warm to room temperature and heated at reflux for 12 

hours. Next, H2O and ethyl acetate were added and the aqueous phase was extracted three times 

with ethyl acetate. The combined organic phases were washed three times with saturated 

aqueous NH4Cl solution and brine, dried over Na2SO4 and concentrated under vacuum. 

Compound 19 was used in the next step without any further purification. Yield: 90%. MS (ESI) 

[M + H]+: 241.4 m/z. 1H NMR (DMSO-d6 400 MHz): δ 1.19 (s, 9H), 2.47 (s, 3H), 2.58 (s, 3H), 

12.16 (s, 1H). 

 

Synthesis of N-(5-(2-bromoacetyl)-4-methylthiazol-2-yl)pivalamide (20).A solution of Br2 (213 

μL, 4.16 mmol) in 1,4-dioxane (4.7 mL) was added dropwise to a stirred solution of 

intermediate 19 (800 mg, 3.33 mmol) in 1,4-dioxane (12.7 mL). The mixture was heated at 50 

°C for 18 h. After cooling down to room temperature, saturated aqueous NaHCO3 solution and 

ethyl acetate were added and the aqueous phase was extracted three times with ethyl acetate. 

The combined organic phases were washed with brine, dried over Na2SO4 and concentrated 

under vacuum. The crude was purified by flash chromatography using petroleum ether/ethyl 
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acetate (8/2) as eluent. Yield 80%. MS (ESI) [M + H]+: 319.3 m/z. 1H NMR (DMSO-d6 400 

MHz): δ 1.24 (s, 9H), 2.60 (s, 3H), 4.64 (s, 2H), 12.32 (s, 1H). 

 

General Procedure for the Synthesis of Compounds 23a-f. A solution of intermediate 20(100 

mg, 0.36 mmol) and the proper thiourea 12a,b or 22c-f (0.36 mmol) in ethanol (2.5 mL) was 

heated at reflux for 1 h. After cooling down to room temperature, saturated aqueous NaHCO3 

solution, H2O and ethyl acetate were added and the aqueous phase was extracted three times 

with ethyl acetate. The combined organic phases were washed with brine, dried over Na2SO4 

and concentrated under vacuum. The crude was purified by flash chromatography using 

DCM/MeOH (from 97/3 to 90/10) as eluent affording 23a-f as white solids. 

 

N-(2-((3-acetylphenyl)(2-hydroxyethyl)amino)-4'-methyl-[4,5'-bithiazol]-2'yl)pivalamide 

(23a). Yield 88%. MS (ESI) [M + H]+: 459.3 m/z. 1H NMR (DMSO-d6 400 MHz): δ 1.30 (s, 

9H), 2.45 (s, 3H), 2.59 (s, 3H), 3.96 (m, 2H), 4.15 (t, 2H, J = 5.8 Hz), 4.92 (bs, 1H), 6.76 (s, 

1H), 7.63 (t, 1H, J = 7.8 Hz), 7.83 (d, 1H, J = 7.8 Hz), 7.90 (d, 1H, J = 7.8 Hz), 8.15 (s, 1H), 

11.73 (s, 1H). 13C NMR (CDCl3 100 MHz): δ 16.95, 26.74, 27.16 (3x), 39.08, 56.32, 61.50, 

102.80, 121.37, 126.43, 127.16, 130.46, 131.38, 139.01, 142.87, 143.52, 145.93, 155.61, 

169.90, 176.00, 197.18. Anal. (C22H26N4O3S2) C, H, N. 

 

N-(2-(cyclohexyl(2-hydroxyethyl)amino)-4'-methyl-[4,5'-bithiazol]-2'-yl)pivalamide (23b). 

Yield: 75%. MS (ESI) [M + H]+: 423.5 m/z. 1H NMR (CDCl3 300 MHz): δ 1.11-1.19 (m, 3H), 

1.21 (s, 9H), 1.23-1.56 (m, 3H), 1.85-2.04 (m, 4H), 2.48 (s, 3H), 3.35-3.38 (m, 1H), 3.63-3.65 

(m, 2H), 3.84-3.86 (m, 2H), 4.61 (bs, 1H), 6.40 (s, 1H), 8.99 (s, 1H). 13C NMR (CDCl3 100 

MHz): δ 16.90, 25.36, 25.86 (2x), 27.15 (3x), 30.59 (2x), 39.07, 48.50, 62.63, 63.96, 100.85, 

121.54, 142.69, 143.34, 155.56, 171.11, 175.99. Anal. (C20H30N4O2S2) C, H, N. 
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3-((4'-methyl-2'-pivalamido-[4,5'-bithiazol]-2-yl)amino)benzoic acid (23c).Yield: 68%. MS 

(ESI) [M - H]-: 415.2 m/z. 1H NMR (DMSO-d6 400 MHz): δ 1.25 (s, 9H), 2.50 (s, 3H), 6.93 

(s, 1H), 7.47 (t, 1H, J = 7.9 Hz), 7.54 (d, 1H, J = 7.9 Hz), 7.97 (d, 1H, J = 7.9 Hz), 8.24 (s, 1H), 

10.50 (s, 1H), 11.75 (s, 1H), 11.80 (s, 1H). 13C NMR (DMSO-d6 100 MHz): δ 17.41, 27.08 

(3x), 39.24, 103.56, 118.06, 120.37, 121.20, 122.53, 129.72, 132.05, 141.67, 143.40, 156.21, 

163.07, 167.71, 168.01, 177.00. Anal. (C19H20N4O3S2) C, H, N. 

 

2-((4'-methyl-2'-pivalamido-[4,5'-bithiazol]-2-yl)amino)acetic acid (23d). Yield: 75%. MS 

(ESI) [M - H]-: 353.2 m/z. 1H NMR (DMSO-d6 400 MHz): δ 1.23 (s, 9H), 2.44 (s, 3H), 3.71 

(d, 2H, J = 3.6 Hz), 6.59 (s, 1H), 7.44 (bs, 1H), 11.68 (s, 1H), 12.56 (bs, 1H). 13C NMR 

(DMSO-d6 100 MHz): δ 17.34, 27.09 (3x), 39.08, 42.69, 100.95, 121.19, 142.41, 143.22, 

156.02, 168.18, 173.61, 176.61. Anal. (C14H18N4O3S2) C, H, N. 

 

3-((4'-methyl-2'-pivalamido-[4,5'-bithiazol]-2-yl)amino)propanoic acid (23e). Yield: 87%. 

MS (ESI) [M - H]-: 367.1 m/z. 1H NMR (DMSO-d6 400 MHz): δ 1.24 (s, 9H), 2.45 (s, 3H), 

2.58 (t, 2H, J = 6.8 Hz), 3.43-3.47 (m, 2H), 6.62 (s, 1H), 7.78 (bs, 1H), 11.66 (s, 1H), 12.14 (s, 

1H). 13C NMR (DMSO-d6 100 MHz): δ 17.34, 27.09 (3x), 31.67, 39.16, 45.35, 101.05, 121.22, 

142.56, 143.12, 156.44, 168.18, 173.51, 176.09. Anal. (C15H20N4O3S2) C, H, N. 

 

4-((4'-methyl-2'-pivalamido-[4,5'-bithiazol]-2-yl)amino)butanoic acid (23f).Yield: 70%. MS 

(ESI) [M - H]-: 381.1 m/z. 1H NMR (DMSO-d6 400 MHz): δ 1.24 (s, 9H), 1.77-1.84 (m, 2H), 

2.31 (t, 2H, J = 7.4 Hz), 2.48 (s, 3H), 3.22-3.27 (m, 2H), 6.61 (s, 1H), 7.76 (t, 1H, J = 5.2 Hz), 

11.68 (s, 1H), 12.08 (s, 1H). 13C NMR (DMSO-d6 100 MHz): δ 17.34, 24.56, 27.09 (3x), 31.54, 



 35 

39.18, 44.34, 100.73, 121.12, 142.52, 143.39, 156.06, 168.40, 174.67, 176.89. Anal. 

(C16H22N4O3S2) C, H, N. 

 

Biology 

In vitro kinase inhibition assays 

Recombinant full length, HIS6-tagged PI4KIIIβ was purchased from ProQinase (Germany). 

Assay conditions: 

PI4KIIIβ reactions were performed in 10 μL using 20 mM Tris-HCl pH 7.5, 0.125 mM EGTA, 

2 mM DTT, 0.04% Triton, 3 mM MgCl2, 3 mM MnCl2, 20 μM ATP, 0.01 μCi γ-P33 ATP, 200 

μM Pi:3PS, 10% DMSO, 0.4 ng/μL of PI4KIIIβ. All reactions were performed at 30 °C for 10 

min. Reactions were stopped by adding 5μL of phosphoric acid 0.8%. Aliquots (10 μL) were 

then transferred into a P30 Filtermat (PerkinElmer), washed five times with 0.5 % phosphoric 

acid and four times with water for 5 min. The filter was dried and transferred to a sealable 

plastic bag, and scintillation cocktail (4 mL) was added. Spotted reactions were read in a 

scintillation counter (Trilux, Perkinelmer). IC50 values were obtained according to Equation 

(1), where v is the measured reaction velocity, V is the apparent maximal velocity in the 

absence of inhibitor, I is the inhibitor concentration, and IC50 is the 50% inhibitory 

concentration. 

v = V/{1+(I/IC50)}          (1) 

Lipidic substrate preparation: 

PI: phosphatidylinositol (Sigma); PS: 2-Oleoyl-1-palmitoyl-sn-glycero-3-phospho-L-serine 

(Sigma). PI and PS were dissolved in chloroform/methanol 9:1 and mixed at a 1:3 ratio. After 

chloroform/methanol evaporation, water was added to 1:62.5 w/v and the mixture sonicated to 

clarity. 
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Antiviral assays – materials and methods Assay preparation 

Enterovirus (EV): 

Rhabdosarcoma (RD) cells, Vero cells and Hela-Rh cells, subcultured in cell growth medium 

[MEM Rega3 (Cat. N°19993013; Invitrogen) supplemented with 10% FCS (Integro), 5 ml 200 

mM L-glutamine (25030024) and 5 mL 7.5% sodium bicarbonate (25080060)] at a ratio of 1:4 

and grown for 7 days in 150 cm2 tissue culture flasks (Techno Plastic Products), were harvested 

and seeded in a 96-well plate at a cell density of 20 000 cells/well in assay medium (MEM 

Rega3, 2% FCS, 5 ml L-glutamine and 5 ml sodium bicarbonate) to perform standardized 

antiviral assay against EV71 and EVD68, CV and PV, RV02 and RV14, respectively. 

Antiviral activity and cytotoxicity determinations 

Compounds were prepared as DMSO stock solution with a final compound concentration of 

10mM. The compound profiling setup was performed employing a Freedom EVO200 liquid 

handling platform (Tecan). The evaluation of the cytostatic/cytotoxic as well as the antiviral 

effect of each compound was performed in parallel within one run. Three 8-step 1-to-5 dilution 

series were prepared (starting from 100 μM) in assay medium added to empty wells 

(picornaviruses: 96-well microtiter plates, Falcon, BD) or in the medium present on top of pre-

seeded cells. Subsequently, 50 μL of a 4x virus dilution in assay medium (assay medium 

supplemented with 15 ml MgCl2 1M (Sigma, M1028) in case of RV) was added followed by 

50 μL of cell suspension. The assay plates were returned to the incubator for 2-3 (picornavirus, 

35°C for RV) days, a time at which maximal cytopathic effect (CPE) for picornaviruses is 

observed. 

For the evaluation of cytostatic/cytotoxic effects and for the evaluation of the antiviral effect 

in case of PV, CV, RV, the assay medium was replaced with 75 μL of a 5% MTS (Promega) 

solution in phenol red-free medium and incubated for 1.5 hours (37°C, 5% CO2, 95-99% 
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relative humidity). Absorbance was measured at a wavelength of 498 nm (Safire2, Tecan) and 

optical densities (OD values) were converted to percentage of untreated controls. 

Analysis of the raw data, quality control of each individual dose-response curve and 

calculation, if possible, of the EC50, EC90 and CC50 values was performed employing ViroDM, 

a custom-made data processing software package. The EC50 and EC90 (values derived from the 

dose-response curve) represent the concentrations at which respectively 50% and 90% 

inhibition of viral replication would be observed. The CC50 (value derived from the dose-

response curve) represents the concentration at which the metabolic activity of the cells would 

be reduced to 50 % of the metabolic activity of untreated cells. 

The EC50, EC90 and CC50 ± SD were, whenever possible, calculated respectively as the median 

of all the EC50, EC90 or CC50 values derived from the 3 individual dose-response curves. The 

selectivity index (SI), indicative of the therapeutic window of the compound, was calculated 

as CC50/EC50. No further statistical analysis was performed. 

 

CFTR assays 

The effects of compounds on CFTR biogenesis and function were measured using 

assays exploiting CFTR fusion probes with anion-sensitive YFP61 and pH-sensitive 

pHTomato.62 Lipofectamine transfection was used for transient transfection of HEK293 cells. 

Cells plated in 96-well plates were incubated with the YFP-CFTR- or CFTR-pHTomato- 

encoding plasmid48 using Lipofectamine 2000 (Life Technologies), according to 

manufacturer’s instructions. Following transfection, cell plates were returned to the 37°C 

incubator for 24 h. Plates were further incubated at 30°C for 24 h prior to imaging, with or 

without additional drug treatment.  

All imaging was carried out using ImageXpress (ImageXpress Micro XLS, Molecular 

Devices): an image-acquisition system equipped with a wide-field inverted fluorescence 
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microscope and fluidics robotics. Images were obtained with a 20X objective, using 

excitation/emission filters 472 ± 30 nm and 520 ± 35 nm, for YFP-CFTR and 531 ± 20 nm and 

592 ± 20 nm for CFTR-pHTomato. In the latter assay, eGFP and Hoechst nuclear stain images 

were also acquired for each well, using excitation/emission filters 472 ± 30 nm and 520 ± 35 

nm, and 377 ± 25 nm and 447 ± 30 nm, respectively. For each plate, the laser intensity and 

exposure were optimized to achieve the highest possible fluorescence whilst avoiding both 

photobleaching and saturation (illumination intensity 100-150/225 cd, and exposure 0.1 – 0.2 

s) 

For the YFP-CFTR assays, before imaging, cells were washed twice with 100 µl standard 

buffer (140 mM NaCl, 4.7 mM KCl, 1.2 mM MgCl2, 5 mM HEPES, 2.5 mM CaCl2, 1 mM 

Glucose, pH 7.4). Images were taken for 150 s at a frequency of 0.5 Hz. 50 µL extracellular Iˉ 

(as standard buffer with 140 mM NaCl replaced with 300 mM NaI; resulting in 100 mM final 

[Iˉ]) was added at 20 s, and activating compounds (50 M Forskolin alone or together with 10 

M compounds for acute treatment) were added at 60 s. Maximum rate of iodide influx was 

used to quantify CFTR ion channel activity.37 

For the CFTR-pHTomato assay, before imaging, cells were washed twice with 100 µL standard 

buffer (as above). During imaging, extracellular pH was changed using addition of 50 µL pH 

6 buffer (as standard buffer, with 5 mM HEPES replaced with 10 mM MES: final [MES] 3.3 

mM, ~ pH 6.5), and 50 µL pH 9 buffer (as standard buffer, with 5 mM HEPES replaced with 

100 mM Tris: final [Tris] 25 mM, ~ pH 8.8). Two pHTomato images (acquisition frequency 

0.5 Hz) were taken in each condition. To account for variation in transfection efficiency the 

pHTomato fluorescence was normalized using average fluorescence intensity of a soluble 

eGFP, co-expressed in the cytosol. Because the rise in pHTomato fluorescence falls largely 

within the 6.5 to 8.8 pH range,63 the change in fluorescence obtained upon increasing 

extracellular pH (Fmembrane) was used as an estimate of membrane-exposed CFTR.37 
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In vivo acute toxicity assay 

Animals 

Male C57BL/6 mice (10–12 weeks old) (Charles River Laboratories, Calco, Italy), weighing 

25-30g, were housed, five per cage, and maintained under standard conditions at our animal 

facility (12:12 h light–dark cycle, 22-24°C, food and water available ad libitum). Euthanasia 

was performed by CO2 inhalation. All appropriate measures were taken to minimize pain or 

discomfort of animals. Animal experiments were performed according to the guidelines for the 

use and care of laboratory animals and they were authorized by the local Animal Care 

Committee “Organismo Preposto al Benessere degli Animali” and by Italian Ministry of Health 

“Ministero della Salute” (DL 26/2014).  

 

Toxicity assay 

After 4 hours fasting, 23a, dissolved in carboxymethylcellulose and DSMO (90/10 for 20 and 

60mg/kg; 66/34 at 180mg/kg) was subcutaneously (s.c.) administered at 20 (1 mouse/dose), 60 

(1 mouse/dose) and 180mg/kg (3 mice/dose). Single mice were dosed in sequence at 48h 

intervals. A battery of tests to evaluate physical appearance and changes in unprovoked and 

provoked behaviour, motor activity, coordination and sensory/motor reflexes were carried out 

immediately before fasting, 1h and 24h after 23a administration. Body weight was also 

assessed before and after fasting, prior to 23a treatment or vehicle (n=5) (day 1), and daily 

thereafter for a total of 15 days. 

 

Histology  

Samples of lungs, liver and small intestine were harvested from vehicle-treated mice (n=2) and 

from mice administered with 23a 180mg/kg s.c., 4h (n=3) and 72h (n=3) after compound 
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dosing. After euthanasia, mice were exsanguinated by cutting the caudal vena cava, the trachea 

was cannulated with PE-50 tubing and the lungs were fixed in situ via the cannula with 0.6 ml 

of 10% neutral buffered formalin, before the thorax was opened. Intestinal and liver tissues 

were excised and immediately immersion-fixed in 10% neutral buffered formalin overnight. 

For histological processing, the organs were dehydrated in graded ethanol series, clarified in 

xylene and paraffin embedded. 5 μm-thick sections were obtained through a rotary microtome 

(Slee Cut 6062, Slee Medical, Mainz, Germany). For the morphological evaluation, the 

sections were stained with haematoxylin and eosin, observed using a motorized microscope 

(Nikon Eclipse 90i, Nikon, Tokyo, Japan) equipped with a digital camera (Nikon model5M) 

and connected to a PC with image analysis software (NIS – Elements AR 3.1, Nikon Tokyo, 

Japan). The histological analysis was performed in blind by two independent researchers. 

 

 

Supporting Information. The Supporting Information is available free of charge on the ACS 

Publications website at DOI: Synthesis and characterization of chemical intermediates; 

Molecular Formula Strings.  
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